xref: /linux/drivers/iommu/amd/iommu.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40 #include <uapi/linux/iommufd.h>
41 
42 #include "amd_iommu.h"
43 #include "../dma-iommu.h"
44 #include "../irq_remapping.h"
45 
46 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
47 
48 /* Reserved IOVA ranges */
49 #define MSI_RANGE_START		(0xfee00000)
50 #define MSI_RANGE_END		(0xfeefffff)
51 #define HT_RANGE_START		(0xfd00000000ULL)
52 #define HT_RANGE_END		(0xffffffffffULL)
53 
54 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
55 
56 static DEFINE_SPINLOCK(pd_bitmap_lock);
57 
58 LIST_HEAD(ioapic_map);
59 LIST_HEAD(hpet_map);
60 LIST_HEAD(acpihid_map);
61 
62 const struct iommu_ops amd_iommu_ops;
63 static const struct iommu_dirty_ops amd_dirty_ops;
64 
65 int amd_iommu_max_glx_val = -1;
66 
67 /*
68  * general struct to manage commands send to an IOMMU
69  */
70 struct iommu_cmd {
71 	u32 data[4];
72 };
73 
74 struct kmem_cache *amd_iommu_irq_cache;
75 
76 static void detach_device(struct device *dev);
77 
78 static void set_dte_entry(struct amd_iommu *iommu,
79 			  struct iommu_dev_data *dev_data);
80 
81 /****************************************************************************
82  *
83  * Helper functions
84  *
85  ****************************************************************************/
86 
87 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
88 {
89 	return (pdom && (pdom->pd_mode == PD_MODE_V2));
90 }
91 
92 static inline int get_acpihid_device_id(struct device *dev,
93 					struct acpihid_map_entry **entry)
94 {
95 	struct acpi_device *adev = ACPI_COMPANION(dev);
96 	struct acpihid_map_entry *p;
97 
98 	if (!adev)
99 		return -ENODEV;
100 
101 	list_for_each_entry(p, &acpihid_map, list) {
102 		if (acpi_dev_hid_uid_match(adev, p->hid,
103 					   p->uid[0] ? p->uid : NULL)) {
104 			if (entry)
105 				*entry = p;
106 			return p->devid;
107 		}
108 	}
109 	return -EINVAL;
110 }
111 
112 static inline int get_device_sbdf_id(struct device *dev)
113 {
114 	int sbdf;
115 
116 	if (dev_is_pci(dev))
117 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
118 	else
119 		sbdf = get_acpihid_device_id(dev, NULL);
120 
121 	return sbdf;
122 }
123 
124 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
125 {
126 	struct dev_table_entry *dev_table;
127 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
128 
129 	BUG_ON(pci_seg == NULL);
130 	dev_table = pci_seg->dev_table;
131 	BUG_ON(dev_table == NULL);
132 
133 	return dev_table;
134 }
135 
136 static inline u16 get_device_segment(struct device *dev)
137 {
138 	u16 seg;
139 
140 	if (dev_is_pci(dev)) {
141 		struct pci_dev *pdev = to_pci_dev(dev);
142 
143 		seg = pci_domain_nr(pdev->bus);
144 	} else {
145 		u32 devid = get_acpihid_device_id(dev, NULL);
146 
147 		seg = PCI_SBDF_TO_SEGID(devid);
148 	}
149 
150 	return seg;
151 }
152 
153 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
154 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
155 {
156 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
157 
158 	pci_seg->rlookup_table[devid] = iommu;
159 }
160 
161 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
162 {
163 	struct amd_iommu_pci_seg *pci_seg;
164 
165 	for_each_pci_segment(pci_seg) {
166 		if (pci_seg->id == seg)
167 			return pci_seg->rlookup_table[devid];
168 	}
169 	return NULL;
170 }
171 
172 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
173 {
174 	u16 seg = get_device_segment(dev);
175 	int devid = get_device_sbdf_id(dev);
176 
177 	if (devid < 0)
178 		return NULL;
179 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
180 }
181 
182 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
183 {
184 	return container_of(dom, struct protection_domain, domain);
185 }
186 
187 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
188 {
189 	struct iommu_dev_data *dev_data;
190 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
191 
192 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
193 	if (!dev_data)
194 		return NULL;
195 
196 	spin_lock_init(&dev_data->lock);
197 	dev_data->devid = devid;
198 	ratelimit_default_init(&dev_data->rs);
199 
200 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
201 	return dev_data;
202 }
203 
204 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
205 {
206 	struct iommu_dev_data *dev_data;
207 	struct llist_node *node;
208 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
209 
210 	if (llist_empty(&pci_seg->dev_data_list))
211 		return NULL;
212 
213 	node = pci_seg->dev_data_list.first;
214 	llist_for_each_entry(dev_data, node, dev_data_list) {
215 		if (dev_data->devid == devid)
216 			return dev_data;
217 	}
218 
219 	return NULL;
220 }
221 
222 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
223 {
224 	struct amd_iommu *iommu;
225 	struct dev_table_entry *dev_table;
226 	u16 devid = pci_dev_id(pdev);
227 
228 	if (devid == alias)
229 		return 0;
230 
231 	iommu = rlookup_amd_iommu(&pdev->dev);
232 	if (!iommu)
233 		return 0;
234 
235 	amd_iommu_set_rlookup_table(iommu, alias);
236 	dev_table = get_dev_table(iommu);
237 	memcpy(dev_table[alias].data,
238 	       dev_table[devid].data,
239 	       sizeof(dev_table[alias].data));
240 
241 	return 0;
242 }
243 
244 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
245 {
246 	struct pci_dev *pdev;
247 
248 	if (!dev_is_pci(dev))
249 		return;
250 	pdev = to_pci_dev(dev);
251 
252 	/*
253 	 * The IVRS alias stored in the alias table may not be
254 	 * part of the PCI DMA aliases if it's bus differs
255 	 * from the original device.
256 	 */
257 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
258 
259 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
260 }
261 
262 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
263 {
264 	struct pci_dev *pdev = to_pci_dev(dev);
265 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
266 	u16 ivrs_alias;
267 
268 	/* For ACPI HID devices, there are no aliases */
269 	if (!dev_is_pci(dev))
270 		return;
271 
272 	/*
273 	 * Add the IVRS alias to the pci aliases if it is on the same
274 	 * bus. The IVRS table may know about a quirk that we don't.
275 	 */
276 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
277 	if (ivrs_alias != pci_dev_id(pdev) &&
278 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
279 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
280 
281 	clone_aliases(iommu, dev);
282 }
283 
284 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
285 {
286 	struct iommu_dev_data *dev_data;
287 
288 	dev_data = search_dev_data(iommu, devid);
289 
290 	if (dev_data == NULL) {
291 		dev_data = alloc_dev_data(iommu, devid);
292 		if (!dev_data)
293 			return NULL;
294 
295 		if (translation_pre_enabled(iommu))
296 			dev_data->defer_attach = true;
297 	}
298 
299 	return dev_data;
300 }
301 
302 /*
303 * Find or create an IOMMU group for a acpihid device.
304 */
305 static struct iommu_group *acpihid_device_group(struct device *dev)
306 {
307 	struct acpihid_map_entry *p, *entry = NULL;
308 	int devid;
309 
310 	devid = get_acpihid_device_id(dev, &entry);
311 	if (devid < 0)
312 		return ERR_PTR(devid);
313 
314 	list_for_each_entry(p, &acpihid_map, list) {
315 		if ((devid == p->devid) && p->group)
316 			entry->group = p->group;
317 	}
318 
319 	if (!entry->group)
320 		entry->group = generic_device_group(dev);
321 	else
322 		iommu_group_ref_get(entry->group);
323 
324 	return entry->group;
325 }
326 
327 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
328 {
329 	return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
330 }
331 
332 static u32 pdev_get_caps(struct pci_dev *pdev)
333 {
334 	int features;
335 	u32 flags = 0;
336 
337 	if (pci_ats_supported(pdev))
338 		flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
339 
340 	if (pci_pri_supported(pdev))
341 		flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
342 
343 	features = pci_pasid_features(pdev);
344 	if (features >= 0) {
345 		flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
346 
347 		if (features & PCI_PASID_CAP_EXEC)
348 			flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
349 
350 		if (features & PCI_PASID_CAP_PRIV)
351 			flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
352 	}
353 
354 	return flags;
355 }
356 
357 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
358 {
359 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
360 	int ret = -EINVAL;
361 
362 	if (dev_data->ats_enabled)
363 		return 0;
364 
365 	if (amd_iommu_iotlb_sup &&
366 	    (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
367 		ret = pci_enable_ats(pdev, PAGE_SHIFT);
368 		if (!ret) {
369 			dev_data->ats_enabled = 1;
370 			dev_data->ats_qdep    = pci_ats_queue_depth(pdev);
371 		}
372 	}
373 
374 	return ret;
375 }
376 
377 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
378 {
379 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
380 
381 	if (dev_data->ats_enabled) {
382 		pci_disable_ats(pdev);
383 		dev_data->ats_enabled = 0;
384 	}
385 }
386 
387 int amd_iommu_pdev_enable_cap_pri(struct pci_dev *pdev)
388 {
389 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
390 	int ret = -EINVAL;
391 
392 	if (dev_data->pri_enabled)
393 		return 0;
394 
395 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
396 		/*
397 		 * First reset the PRI state of the device.
398 		 * FIXME: Hardcode number of outstanding requests for now
399 		 */
400 		if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
401 			dev_data->pri_enabled = 1;
402 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
403 
404 			ret = 0;
405 		}
406 	}
407 
408 	return ret;
409 }
410 
411 void amd_iommu_pdev_disable_cap_pri(struct pci_dev *pdev)
412 {
413 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
414 
415 	if (dev_data->pri_enabled) {
416 		pci_disable_pri(pdev);
417 		dev_data->pri_enabled = 0;
418 	}
419 }
420 
421 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
422 {
423 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
424 	int ret = -EINVAL;
425 
426 	if (dev_data->pasid_enabled)
427 		return 0;
428 
429 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
430 		/* Only allow access to user-accessible pages */
431 		ret = pci_enable_pasid(pdev, 0);
432 		if (!ret)
433 			dev_data->pasid_enabled = 1;
434 	}
435 
436 	return ret;
437 }
438 
439 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
440 {
441 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
442 
443 	if (dev_data->pasid_enabled) {
444 		pci_disable_pasid(pdev);
445 		dev_data->pasid_enabled = 0;
446 	}
447 }
448 
449 static void pdev_enable_caps(struct pci_dev *pdev)
450 {
451 	pdev_enable_cap_ats(pdev);
452 	pdev_enable_cap_pasid(pdev);
453 	amd_iommu_pdev_enable_cap_pri(pdev);
454 
455 }
456 
457 static void pdev_disable_caps(struct pci_dev *pdev)
458 {
459 	pdev_disable_cap_ats(pdev);
460 	pdev_disable_cap_pasid(pdev);
461 	amd_iommu_pdev_disable_cap_pri(pdev);
462 }
463 
464 /*
465  * This function checks if the driver got a valid device from the caller to
466  * avoid dereferencing invalid pointers.
467  */
468 static bool check_device(struct device *dev)
469 {
470 	struct amd_iommu_pci_seg *pci_seg;
471 	struct amd_iommu *iommu;
472 	int devid, sbdf;
473 
474 	if (!dev)
475 		return false;
476 
477 	sbdf = get_device_sbdf_id(dev);
478 	if (sbdf < 0)
479 		return false;
480 	devid = PCI_SBDF_TO_DEVID(sbdf);
481 
482 	iommu = rlookup_amd_iommu(dev);
483 	if (!iommu)
484 		return false;
485 
486 	/* Out of our scope? */
487 	pci_seg = iommu->pci_seg;
488 	if (devid > pci_seg->last_bdf)
489 		return false;
490 
491 	return true;
492 }
493 
494 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
495 {
496 	struct iommu_dev_data *dev_data;
497 	int devid, sbdf;
498 
499 	if (dev_iommu_priv_get(dev))
500 		return 0;
501 
502 	sbdf = get_device_sbdf_id(dev);
503 	if (sbdf < 0)
504 		return sbdf;
505 
506 	devid = PCI_SBDF_TO_DEVID(sbdf);
507 	dev_data = find_dev_data(iommu, devid);
508 	if (!dev_data)
509 		return -ENOMEM;
510 
511 	dev_data->dev = dev;
512 	setup_aliases(iommu, dev);
513 
514 	/*
515 	 * By default we use passthrough mode for IOMMUv2 capable device.
516 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
517 	 * invalid address), we ignore the capability for the device so
518 	 * it'll be forced to go into translation mode.
519 	 */
520 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
521 	    dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
522 		dev_data->flags = pdev_get_caps(to_pci_dev(dev));
523 	}
524 
525 	dev_iommu_priv_set(dev, dev_data);
526 
527 	return 0;
528 }
529 
530 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
531 {
532 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
533 	struct dev_table_entry *dev_table = get_dev_table(iommu);
534 	int devid, sbdf;
535 
536 	sbdf = get_device_sbdf_id(dev);
537 	if (sbdf < 0)
538 		return;
539 
540 	devid = PCI_SBDF_TO_DEVID(sbdf);
541 	pci_seg->rlookup_table[devid] = NULL;
542 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
543 
544 	setup_aliases(iommu, dev);
545 }
546 
547 static void amd_iommu_uninit_device(struct device *dev)
548 {
549 	struct iommu_dev_data *dev_data;
550 
551 	dev_data = dev_iommu_priv_get(dev);
552 	if (!dev_data)
553 		return;
554 
555 	if (dev_data->domain)
556 		detach_device(dev);
557 
558 	/*
559 	 * We keep dev_data around for unplugged devices and reuse it when the
560 	 * device is re-plugged - not doing so would introduce a ton of races.
561 	 */
562 }
563 
564 /****************************************************************************
565  *
566  * Interrupt handling functions
567  *
568  ****************************************************************************/
569 
570 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
571 {
572 	int i;
573 	struct dev_table_entry *dev_table = get_dev_table(iommu);
574 
575 	for (i = 0; i < 4; ++i)
576 		pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
577 }
578 
579 static void dump_command(unsigned long phys_addr)
580 {
581 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
582 	int i;
583 
584 	for (i = 0; i < 4; ++i)
585 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
586 }
587 
588 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
589 {
590 	struct iommu_dev_data *dev_data = NULL;
591 	int devid, vmg_tag, flags;
592 	struct pci_dev *pdev;
593 	u64 spa;
594 
595 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
596 	vmg_tag = (event[1]) & 0xFFFF;
597 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
598 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
599 
600 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
601 					   devid & 0xff);
602 	if (pdev)
603 		dev_data = dev_iommu_priv_get(&pdev->dev);
604 
605 	if (dev_data) {
606 		if (__ratelimit(&dev_data->rs)) {
607 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
608 				vmg_tag, spa, flags);
609 		}
610 	} else {
611 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
612 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
613 			vmg_tag, spa, flags);
614 	}
615 
616 	if (pdev)
617 		pci_dev_put(pdev);
618 }
619 
620 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
621 {
622 	struct iommu_dev_data *dev_data = NULL;
623 	int devid, flags_rmp, vmg_tag, flags;
624 	struct pci_dev *pdev;
625 	u64 gpa;
626 
627 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
628 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
629 	vmg_tag   = (event[1]) & 0xFFFF;
630 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
631 	gpa       = ((u64)event[3] << 32) | event[2];
632 
633 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
634 					   devid & 0xff);
635 	if (pdev)
636 		dev_data = dev_iommu_priv_get(&pdev->dev);
637 
638 	if (dev_data) {
639 		if (__ratelimit(&dev_data->rs)) {
640 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
641 				vmg_tag, gpa, flags_rmp, flags);
642 		}
643 	} else {
644 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
645 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
646 			vmg_tag, gpa, flags_rmp, flags);
647 	}
648 
649 	if (pdev)
650 		pci_dev_put(pdev);
651 }
652 
653 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
654 	(((flags) & EVENT_FLAG_I) == 0)
655 
656 #define IS_WRITE_REQUEST(flags)			\
657 	((flags) & EVENT_FLAG_RW)
658 
659 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
660 					u16 devid, u16 domain_id,
661 					u64 address, int flags)
662 {
663 	struct iommu_dev_data *dev_data = NULL;
664 	struct pci_dev *pdev;
665 
666 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
667 					   devid & 0xff);
668 	if (pdev)
669 		dev_data = dev_iommu_priv_get(&pdev->dev);
670 
671 	if (dev_data) {
672 		/*
673 		 * If this is a DMA fault (for which the I(nterrupt)
674 		 * bit will be unset), allow report_iommu_fault() to
675 		 * prevent logging it.
676 		 */
677 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
678 			/* Device not attached to domain properly */
679 			if (dev_data->domain == NULL) {
680 				pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
681 				pr_err_ratelimited("  device=%04x:%02x:%02x.%x domain=0x%04x\n",
682 						   iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
683 						   PCI_FUNC(devid), domain_id);
684 				goto out;
685 			}
686 
687 			if (!report_iommu_fault(&dev_data->domain->domain,
688 						&pdev->dev, address,
689 						IS_WRITE_REQUEST(flags) ?
690 							IOMMU_FAULT_WRITE :
691 							IOMMU_FAULT_READ))
692 				goto out;
693 		}
694 
695 		if (__ratelimit(&dev_data->rs)) {
696 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
697 				domain_id, address, flags);
698 		}
699 	} else {
700 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
701 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
702 			domain_id, address, flags);
703 	}
704 
705 out:
706 	if (pdev)
707 		pci_dev_put(pdev);
708 }
709 
710 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
711 {
712 	struct device *dev = iommu->iommu.dev;
713 	int type, devid, flags, tag;
714 	volatile u32 *event = __evt;
715 	int count = 0;
716 	u64 address;
717 	u32 pasid;
718 
719 retry:
720 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
721 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
722 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
723 		  (event[1] & EVENT_DOMID_MASK_LO);
724 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
725 	address = (u64)(((u64)event[3]) << 32) | event[2];
726 
727 	if (type == 0) {
728 		/* Did we hit the erratum? */
729 		if (++count == LOOP_TIMEOUT) {
730 			pr_err("No event written to event log\n");
731 			return;
732 		}
733 		udelay(1);
734 		goto retry;
735 	}
736 
737 	if (type == EVENT_TYPE_IO_FAULT) {
738 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
739 		return;
740 	}
741 
742 	switch (type) {
743 	case EVENT_TYPE_ILL_DEV:
744 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
745 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
746 			pasid, address, flags);
747 		dump_dte_entry(iommu, devid);
748 		break;
749 	case EVENT_TYPE_DEV_TAB_ERR:
750 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
751 			"address=0x%llx flags=0x%04x]\n",
752 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
753 			address, flags);
754 		break;
755 	case EVENT_TYPE_PAGE_TAB_ERR:
756 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
757 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
758 			pasid, address, flags);
759 		break;
760 	case EVENT_TYPE_ILL_CMD:
761 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
762 		dump_command(address);
763 		break;
764 	case EVENT_TYPE_CMD_HARD_ERR:
765 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
766 			address, flags);
767 		break;
768 	case EVENT_TYPE_IOTLB_INV_TO:
769 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
770 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
771 			address);
772 		break;
773 	case EVENT_TYPE_INV_DEV_REQ:
774 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
775 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
776 			pasid, address, flags);
777 		break;
778 	case EVENT_TYPE_RMP_FAULT:
779 		amd_iommu_report_rmp_fault(iommu, event);
780 		break;
781 	case EVENT_TYPE_RMP_HW_ERR:
782 		amd_iommu_report_rmp_hw_error(iommu, event);
783 		break;
784 	case EVENT_TYPE_INV_PPR_REQ:
785 		pasid = PPR_PASID(*((u64 *)__evt));
786 		tag = event[1] & 0x03FF;
787 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
788 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
789 			pasid, address, flags, tag);
790 		break;
791 	default:
792 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
793 			event[0], event[1], event[2], event[3]);
794 	}
795 
796 	/*
797 	 * To detect the hardware errata 732 we need to clear the
798 	 * entry back to zero. This issue does not exist on SNP
799 	 * enabled system. Also this buffer is not writeable on
800 	 * SNP enabled system.
801 	 */
802 	if (!amd_iommu_snp_en)
803 		memset(__evt, 0, 4 * sizeof(u32));
804 }
805 
806 static void iommu_poll_events(struct amd_iommu *iommu)
807 {
808 	u32 head, tail;
809 
810 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
811 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
812 
813 	while (head != tail) {
814 		iommu_print_event(iommu, iommu->evt_buf + head);
815 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
816 	}
817 
818 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
819 }
820 
821 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
822 {
823 	u32 head, tail;
824 
825 	if (iommu->ppr_log == NULL)
826 		return;
827 
828 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
829 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
830 
831 	while (head != tail) {
832 		volatile u64 *raw;
833 		u64 entry[2];
834 		int i;
835 
836 		raw = (u64 *)(iommu->ppr_log + head);
837 
838 		/*
839 		 * Hardware bug: Interrupt may arrive before the entry is
840 		 * written to memory. If this happens we need to wait for the
841 		 * entry to arrive.
842 		 */
843 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
844 			if (PPR_REQ_TYPE(raw[0]) != 0)
845 				break;
846 			udelay(1);
847 		}
848 
849 		/* Avoid memcpy function-call overhead */
850 		entry[0] = raw[0];
851 		entry[1] = raw[1];
852 
853 		/*
854 		 * To detect the hardware errata 733 we need to clear the
855 		 * entry back to zero. This issue does not exist on SNP
856 		 * enabled system. Also this buffer is not writeable on
857 		 * SNP enabled system.
858 		 */
859 		if (!amd_iommu_snp_en)
860 			raw[0] = raw[1] = 0UL;
861 
862 		/* Update head pointer of hardware ring-buffer */
863 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
864 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
865 
866 		/* TODO: PPR Handler will be added when we add IOPF support */
867 
868 		/* Refresh ring-buffer information */
869 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
870 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
871 	}
872 }
873 
874 #ifdef CONFIG_IRQ_REMAP
875 static int (*iommu_ga_log_notifier)(u32);
876 
877 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
878 {
879 	iommu_ga_log_notifier = notifier;
880 
881 	return 0;
882 }
883 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
884 
885 static void iommu_poll_ga_log(struct amd_iommu *iommu)
886 {
887 	u32 head, tail;
888 
889 	if (iommu->ga_log == NULL)
890 		return;
891 
892 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
893 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
894 
895 	while (head != tail) {
896 		volatile u64 *raw;
897 		u64 log_entry;
898 
899 		raw = (u64 *)(iommu->ga_log + head);
900 
901 		/* Avoid memcpy function-call overhead */
902 		log_entry = *raw;
903 
904 		/* Update head pointer of hardware ring-buffer */
905 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
906 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
907 
908 		/* Handle GA entry */
909 		switch (GA_REQ_TYPE(log_entry)) {
910 		case GA_GUEST_NR:
911 			if (!iommu_ga_log_notifier)
912 				break;
913 
914 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
915 				 __func__, GA_DEVID(log_entry),
916 				 GA_TAG(log_entry));
917 
918 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
919 				pr_err("GA log notifier failed.\n");
920 			break;
921 		default:
922 			break;
923 		}
924 	}
925 }
926 
927 static void
928 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
929 {
930 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
931 	    !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
932 		return;
933 
934 	dev_set_msi_domain(dev, iommu->ir_domain);
935 }
936 
937 #else /* CONFIG_IRQ_REMAP */
938 static inline void
939 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
940 #endif /* !CONFIG_IRQ_REMAP */
941 
942 static void amd_iommu_handle_irq(void *data, const char *evt_type,
943 				 u32 int_mask, u32 overflow_mask,
944 				 void (*int_handler)(struct amd_iommu *),
945 				 void (*overflow_handler)(struct amd_iommu *))
946 {
947 	struct amd_iommu *iommu = (struct amd_iommu *) data;
948 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
949 	u32 mask = int_mask | overflow_mask;
950 
951 	while (status & mask) {
952 		/* Enable interrupt sources again */
953 		writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
954 
955 		if (int_handler) {
956 			pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
957 				 iommu->index, evt_type);
958 			int_handler(iommu);
959 		}
960 
961 		if ((status & overflow_mask) && overflow_handler)
962 			overflow_handler(iommu);
963 
964 		/*
965 		 * Hardware bug: ERBT1312
966 		 * When re-enabling interrupt (by writing 1
967 		 * to clear the bit), the hardware might also try to set
968 		 * the interrupt bit in the event status register.
969 		 * In this scenario, the bit will be set, and disable
970 		 * subsequent interrupts.
971 		 *
972 		 * Workaround: The IOMMU driver should read back the
973 		 * status register and check if the interrupt bits are cleared.
974 		 * If not, driver will need to go through the interrupt handler
975 		 * again and re-clear the bits
976 		 */
977 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
978 	}
979 }
980 
981 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
982 {
983 	amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
984 			     MMIO_STATUS_EVT_OVERFLOW_MASK,
985 			     iommu_poll_events, amd_iommu_restart_event_logging);
986 
987 	return IRQ_HANDLED;
988 }
989 
990 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
991 {
992 	amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
993 			     MMIO_STATUS_PPR_OVERFLOW_MASK,
994 			     iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
995 
996 	return IRQ_HANDLED;
997 }
998 
999 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1000 {
1001 #ifdef CONFIG_IRQ_REMAP
1002 	amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1003 			     MMIO_STATUS_GALOG_OVERFLOW_MASK,
1004 			     iommu_poll_ga_log, amd_iommu_restart_ga_log);
1005 #endif
1006 
1007 	return IRQ_HANDLED;
1008 }
1009 
1010 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1011 {
1012 	amd_iommu_int_thread_evtlog(irq, data);
1013 	amd_iommu_int_thread_pprlog(irq, data);
1014 	amd_iommu_int_thread_galog(irq, data);
1015 
1016 	return IRQ_HANDLED;
1017 }
1018 
1019 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1020 {
1021 	return IRQ_WAKE_THREAD;
1022 }
1023 
1024 /****************************************************************************
1025  *
1026  * IOMMU command queuing functions
1027  *
1028  ****************************************************************************/
1029 
1030 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1031 {
1032 	int i = 0;
1033 
1034 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1035 		udelay(1);
1036 		i += 1;
1037 	}
1038 
1039 	if (i == LOOP_TIMEOUT) {
1040 		pr_alert("Completion-Wait loop timed out\n");
1041 		return -EIO;
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1048 			       struct iommu_cmd *cmd)
1049 {
1050 	u8 *target;
1051 	u32 tail;
1052 
1053 	/* Copy command to buffer */
1054 	tail = iommu->cmd_buf_tail;
1055 	target = iommu->cmd_buf + tail;
1056 	memcpy(target, cmd, sizeof(*cmd));
1057 
1058 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1059 	iommu->cmd_buf_tail = tail;
1060 
1061 	/* Tell the IOMMU about it */
1062 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1063 }
1064 
1065 static void build_completion_wait(struct iommu_cmd *cmd,
1066 				  struct amd_iommu *iommu,
1067 				  u64 data)
1068 {
1069 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1070 
1071 	memset(cmd, 0, sizeof(*cmd));
1072 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1073 	cmd->data[1] = upper_32_bits(paddr);
1074 	cmd->data[2] = lower_32_bits(data);
1075 	cmd->data[3] = upper_32_bits(data);
1076 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1077 }
1078 
1079 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1080 {
1081 	memset(cmd, 0, sizeof(*cmd));
1082 	cmd->data[0] = devid;
1083 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1084 }
1085 
1086 /*
1087  * Builds an invalidation address which is suitable for one page or multiple
1088  * pages. Sets the size bit (S) as needed is more than one page is flushed.
1089  */
1090 static inline u64 build_inv_address(u64 address, size_t size)
1091 {
1092 	u64 pages, end, msb_diff;
1093 
1094 	pages = iommu_num_pages(address, size, PAGE_SIZE);
1095 
1096 	if (pages == 1)
1097 		return address & PAGE_MASK;
1098 
1099 	end = address + size - 1;
1100 
1101 	/*
1102 	 * msb_diff would hold the index of the most significant bit that
1103 	 * flipped between the start and end.
1104 	 */
1105 	msb_diff = fls64(end ^ address) - 1;
1106 
1107 	/*
1108 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1109 	 * between the start and the end, invalidate everything.
1110 	 */
1111 	if (unlikely(msb_diff > 51)) {
1112 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1113 	} else {
1114 		/*
1115 		 * The msb-bit must be clear on the address. Just set all the
1116 		 * lower bits.
1117 		 */
1118 		address |= (1ull << msb_diff) - 1;
1119 	}
1120 
1121 	/* Clear bits 11:0 */
1122 	address &= PAGE_MASK;
1123 
1124 	/* Set the size bit - we flush more than one 4kb page */
1125 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1126 }
1127 
1128 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1129 				  size_t size, u16 domid,
1130 				  ioasid_t pasid, bool gn)
1131 {
1132 	u64 inv_address = build_inv_address(address, size);
1133 
1134 	memset(cmd, 0, sizeof(*cmd));
1135 
1136 	cmd->data[1] |= domid;
1137 	cmd->data[2]  = lower_32_bits(inv_address);
1138 	cmd->data[3]  = upper_32_bits(inv_address);
1139 	/* PDE bit - we want to flush everything, not only the PTEs */
1140 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1141 	if (gn) {
1142 		cmd->data[0] |= pasid;
1143 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1144 	}
1145 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1146 }
1147 
1148 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1149 				  u64 address, size_t size,
1150 				  ioasid_t pasid, bool gn)
1151 {
1152 	u64 inv_address = build_inv_address(address, size);
1153 
1154 	memset(cmd, 0, sizeof(*cmd));
1155 
1156 	cmd->data[0]  = devid;
1157 	cmd->data[0] |= (qdep & 0xff) << 24;
1158 	cmd->data[1]  = devid;
1159 	cmd->data[2]  = lower_32_bits(inv_address);
1160 	cmd->data[3]  = upper_32_bits(inv_address);
1161 	if (gn) {
1162 		cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1163 		cmd->data[1] |= (pasid & 0xff) << 16;
1164 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1165 	}
1166 
1167 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1168 }
1169 
1170 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1171 			       int status, int tag, u8 gn)
1172 {
1173 	memset(cmd, 0, sizeof(*cmd));
1174 
1175 	cmd->data[0]  = devid;
1176 	if (gn) {
1177 		cmd->data[1]  = pasid;
1178 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1179 	}
1180 	cmd->data[3]  = tag & 0x1ff;
1181 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1182 
1183 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1184 }
1185 
1186 static void build_inv_all(struct iommu_cmd *cmd)
1187 {
1188 	memset(cmd, 0, sizeof(*cmd));
1189 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1190 }
1191 
1192 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1193 {
1194 	memset(cmd, 0, sizeof(*cmd));
1195 	cmd->data[0] = devid;
1196 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1197 }
1198 
1199 /*
1200  * Writes the command to the IOMMUs command buffer and informs the
1201  * hardware about the new command.
1202  */
1203 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1204 				      struct iommu_cmd *cmd,
1205 				      bool sync)
1206 {
1207 	unsigned int count = 0;
1208 	u32 left, next_tail;
1209 
1210 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1211 again:
1212 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1213 
1214 	if (left <= 0x20) {
1215 		/* Skip udelay() the first time around */
1216 		if (count++) {
1217 			if (count == LOOP_TIMEOUT) {
1218 				pr_err("Command buffer timeout\n");
1219 				return -EIO;
1220 			}
1221 
1222 			udelay(1);
1223 		}
1224 
1225 		/* Update head and recheck remaining space */
1226 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1227 					    MMIO_CMD_HEAD_OFFSET);
1228 
1229 		goto again;
1230 	}
1231 
1232 	copy_cmd_to_buffer(iommu, cmd);
1233 
1234 	/* Do we need to make sure all commands are processed? */
1235 	iommu->need_sync = sync;
1236 
1237 	return 0;
1238 }
1239 
1240 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1241 				    struct iommu_cmd *cmd,
1242 				    bool sync)
1243 {
1244 	unsigned long flags;
1245 	int ret;
1246 
1247 	raw_spin_lock_irqsave(&iommu->lock, flags);
1248 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1249 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1250 
1251 	return ret;
1252 }
1253 
1254 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1255 {
1256 	return iommu_queue_command_sync(iommu, cmd, true);
1257 }
1258 
1259 /*
1260  * This function queues a completion wait command into the command
1261  * buffer of an IOMMU
1262  */
1263 static int iommu_completion_wait(struct amd_iommu *iommu)
1264 {
1265 	struct iommu_cmd cmd;
1266 	unsigned long flags;
1267 	int ret;
1268 	u64 data;
1269 
1270 	if (!iommu->need_sync)
1271 		return 0;
1272 
1273 	data = atomic64_add_return(1, &iommu->cmd_sem_val);
1274 	build_completion_wait(&cmd, iommu, data);
1275 
1276 	raw_spin_lock_irqsave(&iommu->lock, flags);
1277 
1278 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1279 	if (ret)
1280 		goto out_unlock;
1281 
1282 	ret = wait_on_sem(iommu, data);
1283 
1284 out_unlock:
1285 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1286 
1287 	return ret;
1288 }
1289 
1290 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1291 {
1292 	struct iommu_cmd cmd;
1293 
1294 	build_inv_dte(&cmd, devid);
1295 
1296 	return iommu_queue_command(iommu, &cmd);
1297 }
1298 
1299 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1300 {
1301 	u32 devid;
1302 	u16 last_bdf = iommu->pci_seg->last_bdf;
1303 
1304 	for (devid = 0; devid <= last_bdf; ++devid)
1305 		iommu_flush_dte(iommu, devid);
1306 
1307 	iommu_completion_wait(iommu);
1308 }
1309 
1310 /*
1311  * This function uses heavy locking and may disable irqs for some time. But
1312  * this is no issue because it is only called during resume.
1313  */
1314 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1315 {
1316 	u32 dom_id;
1317 	u16 last_bdf = iommu->pci_seg->last_bdf;
1318 
1319 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1320 		struct iommu_cmd cmd;
1321 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1322 				      dom_id, IOMMU_NO_PASID, false);
1323 		iommu_queue_command(iommu, &cmd);
1324 	}
1325 
1326 	iommu_completion_wait(iommu);
1327 }
1328 
1329 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1330 {
1331 	struct iommu_cmd cmd;
1332 
1333 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1334 			      dom_id, IOMMU_NO_PASID, false);
1335 	iommu_queue_command(iommu, &cmd);
1336 
1337 	iommu_completion_wait(iommu);
1338 }
1339 
1340 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1341 {
1342 	struct iommu_cmd cmd;
1343 
1344 	build_inv_all(&cmd);
1345 
1346 	iommu_queue_command(iommu, &cmd);
1347 	iommu_completion_wait(iommu);
1348 }
1349 
1350 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1351 {
1352 	struct iommu_cmd cmd;
1353 
1354 	build_inv_irt(&cmd, devid);
1355 
1356 	iommu_queue_command(iommu, &cmd);
1357 }
1358 
1359 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1360 {
1361 	u32 devid;
1362 	u16 last_bdf = iommu->pci_seg->last_bdf;
1363 
1364 	if (iommu->irtcachedis_enabled)
1365 		return;
1366 
1367 	for (devid = 0; devid <= last_bdf; devid++)
1368 		iommu_flush_irt(iommu, devid);
1369 
1370 	iommu_completion_wait(iommu);
1371 }
1372 
1373 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1374 {
1375 	if (check_feature(FEATURE_IA)) {
1376 		amd_iommu_flush_all(iommu);
1377 	} else {
1378 		amd_iommu_flush_dte_all(iommu);
1379 		amd_iommu_flush_irt_all(iommu);
1380 		amd_iommu_flush_tlb_all(iommu);
1381 	}
1382 }
1383 
1384 /*
1385  * Command send function for flushing on-device TLB
1386  */
1387 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1388 			      size_t size, ioasid_t pasid, bool gn)
1389 {
1390 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1391 	struct iommu_cmd cmd;
1392 	int qdep = dev_data->ats_qdep;
1393 
1394 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1395 			      size, pasid, gn);
1396 
1397 	return iommu_queue_command(iommu, &cmd);
1398 }
1399 
1400 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1401 {
1402 	struct amd_iommu *iommu = data;
1403 
1404 	return iommu_flush_dte(iommu, alias);
1405 }
1406 
1407 /*
1408  * Command send function for invalidating a device table entry
1409  */
1410 static int device_flush_dte(struct iommu_dev_data *dev_data)
1411 {
1412 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1413 	struct pci_dev *pdev = NULL;
1414 	struct amd_iommu_pci_seg *pci_seg;
1415 	u16 alias;
1416 	int ret;
1417 
1418 	if (dev_is_pci(dev_data->dev))
1419 		pdev = to_pci_dev(dev_data->dev);
1420 
1421 	if (pdev)
1422 		ret = pci_for_each_dma_alias(pdev,
1423 					     device_flush_dte_alias, iommu);
1424 	else
1425 		ret = iommu_flush_dte(iommu, dev_data->devid);
1426 	if (ret)
1427 		return ret;
1428 
1429 	pci_seg = iommu->pci_seg;
1430 	alias = pci_seg->alias_table[dev_data->devid];
1431 	if (alias != dev_data->devid) {
1432 		ret = iommu_flush_dte(iommu, alias);
1433 		if (ret)
1434 			return ret;
1435 	}
1436 
1437 	if (dev_data->ats_enabled) {
1438 		/* Invalidate the entire contents of an IOTLB */
1439 		ret = device_flush_iotlb(dev_data, 0, ~0UL,
1440 					 IOMMU_NO_PASID, false);
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 static int domain_flush_pages_v2(struct protection_domain *pdom,
1447 				 u64 address, size_t size)
1448 {
1449 	struct iommu_dev_data *dev_data;
1450 	struct iommu_cmd cmd;
1451 	int ret = 0;
1452 
1453 	list_for_each_entry(dev_data, &pdom->dev_list, list) {
1454 		struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1455 		u16 domid = dev_data->gcr3_info.domid;
1456 
1457 		build_inv_iommu_pages(&cmd, address, size,
1458 				      domid, IOMMU_NO_PASID, true);
1459 
1460 		ret |= iommu_queue_command(iommu, &cmd);
1461 	}
1462 
1463 	return ret;
1464 }
1465 
1466 static int domain_flush_pages_v1(struct protection_domain *pdom,
1467 				 u64 address, size_t size)
1468 {
1469 	struct iommu_cmd cmd;
1470 	int ret = 0, i;
1471 
1472 	build_inv_iommu_pages(&cmd, address, size,
1473 			      pdom->id, IOMMU_NO_PASID, false);
1474 
1475 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1476 		if (!pdom->dev_iommu[i])
1477 			continue;
1478 
1479 		/*
1480 		 * Devices of this domain are behind this IOMMU
1481 		 * We need a TLB flush
1482 		 */
1483 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1484 	}
1485 
1486 	return ret;
1487 }
1488 
1489 /*
1490  * TLB invalidation function which is called from the mapping functions.
1491  * It flushes range of PTEs of the domain.
1492  */
1493 static void __domain_flush_pages(struct protection_domain *domain,
1494 				 u64 address, size_t size)
1495 {
1496 	struct iommu_dev_data *dev_data;
1497 	int ret = 0;
1498 	ioasid_t pasid = IOMMU_NO_PASID;
1499 	bool gn = false;
1500 
1501 	if (pdom_is_v2_pgtbl_mode(domain)) {
1502 		gn = true;
1503 		ret = domain_flush_pages_v2(domain, address, size);
1504 	} else {
1505 		ret = domain_flush_pages_v1(domain, address, size);
1506 	}
1507 
1508 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1509 
1510 		if (!dev_data->ats_enabled)
1511 			continue;
1512 
1513 		ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1514 	}
1515 
1516 	WARN_ON(ret);
1517 }
1518 
1519 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1520 				  u64 address, size_t size)
1521 {
1522 	if (likely(!amd_iommu_np_cache)) {
1523 		__domain_flush_pages(domain, address, size);
1524 
1525 		/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1526 		amd_iommu_domain_flush_complete(domain);
1527 
1528 		return;
1529 	}
1530 
1531 	/*
1532 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1533 	 * In such setups it is best to avoid flushes of ranges which are not
1534 	 * naturally aligned, since it would lead to flushes of unmodified
1535 	 * PTEs. Such flushes would require the hypervisor to do more work than
1536 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1537 	 * until you cover the range. Each iteration flushes the smaller
1538 	 * between the natural alignment of the address that we flush and the
1539 	 * greatest naturally aligned region that fits in the range.
1540 	 */
1541 	while (size != 0) {
1542 		int addr_alignment = __ffs(address);
1543 		int size_alignment = __fls(size);
1544 		int min_alignment;
1545 		size_t flush_size;
1546 
1547 		/*
1548 		 * size is always non-zero, but address might be zero, causing
1549 		 * addr_alignment to be negative. As the casting of the
1550 		 * argument in __ffs(address) to long might trim the high bits
1551 		 * of the address on x86-32, cast to long when doing the check.
1552 		 */
1553 		if (likely((unsigned long)address != 0))
1554 			min_alignment = min(addr_alignment, size_alignment);
1555 		else
1556 			min_alignment = size_alignment;
1557 
1558 		flush_size = 1ul << min_alignment;
1559 
1560 		__domain_flush_pages(domain, address, flush_size);
1561 		address += flush_size;
1562 		size -= flush_size;
1563 	}
1564 
1565 	/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1566 	amd_iommu_domain_flush_complete(domain);
1567 }
1568 
1569 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1570 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1571 {
1572 	amd_iommu_domain_flush_pages(domain, 0,
1573 				     CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1574 }
1575 
1576 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1577 				     ioasid_t pasid, u64 address, size_t size)
1578 {
1579 	struct iommu_cmd cmd;
1580 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1581 
1582 	build_inv_iommu_pages(&cmd, address, size,
1583 			      dev_data->gcr3_info.domid, pasid, true);
1584 	iommu_queue_command(iommu, &cmd);
1585 
1586 	if (dev_data->ats_enabled)
1587 		device_flush_iotlb(dev_data, address, size, pasid, true);
1588 
1589 	iommu_completion_wait(iommu);
1590 }
1591 
1592 void amd_iommu_dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1593 				   ioasid_t pasid)
1594 {
1595 	amd_iommu_dev_flush_pasid_pages(dev_data, 0,
1596 					CMD_INV_IOMMU_ALL_PAGES_ADDRESS, pasid);
1597 }
1598 
1599 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1600 {
1601 	int i;
1602 
1603 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1604 		if (domain && !domain->dev_iommu[i])
1605 			continue;
1606 
1607 		/*
1608 		 * Devices of this domain are behind this IOMMU
1609 		 * We need to wait for completion of all commands.
1610 		 */
1611 		iommu_completion_wait(amd_iommus[i]);
1612 	}
1613 }
1614 
1615 /* Flush the not present cache if it exists */
1616 static void domain_flush_np_cache(struct protection_domain *domain,
1617 		dma_addr_t iova, size_t size)
1618 {
1619 	if (unlikely(amd_iommu_np_cache)) {
1620 		unsigned long flags;
1621 
1622 		spin_lock_irqsave(&domain->lock, flags);
1623 		amd_iommu_domain_flush_pages(domain, iova, size);
1624 		spin_unlock_irqrestore(&domain->lock, flags);
1625 	}
1626 }
1627 
1628 
1629 /*
1630  * This function flushes the DTEs for all devices in domain
1631  */
1632 static void domain_flush_devices(struct protection_domain *domain)
1633 {
1634 	struct iommu_dev_data *dev_data;
1635 
1636 	list_for_each_entry(dev_data, &domain->dev_list, list)
1637 		device_flush_dte(dev_data);
1638 }
1639 
1640 static void update_device_table(struct protection_domain *domain)
1641 {
1642 	struct iommu_dev_data *dev_data;
1643 
1644 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1645 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1646 
1647 		set_dte_entry(iommu, dev_data);
1648 		clone_aliases(iommu, dev_data->dev);
1649 	}
1650 }
1651 
1652 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1653 {
1654 	update_device_table(domain);
1655 	domain_flush_devices(domain);
1656 }
1657 
1658 void amd_iommu_domain_update(struct protection_domain *domain)
1659 {
1660 	/* Update device table */
1661 	amd_iommu_update_and_flush_device_table(domain);
1662 
1663 	/* Flush domain TLB(s) and wait for completion */
1664 	amd_iommu_domain_flush_all(domain);
1665 }
1666 
1667 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
1668 			   int status, int tag)
1669 {
1670 	struct iommu_dev_data *dev_data;
1671 	struct amd_iommu *iommu;
1672 	struct iommu_cmd cmd;
1673 
1674 	dev_data = dev_iommu_priv_get(&pdev->dev);
1675 	iommu    = get_amd_iommu_from_dev(&pdev->dev);
1676 
1677 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1678 			   tag, dev_data->pri_tlp);
1679 
1680 	return iommu_queue_command(iommu, &cmd);
1681 }
1682 
1683 /****************************************************************************
1684  *
1685  * The next functions belong to the domain allocation. A domain is
1686  * allocated for every IOMMU as the default domain. If device isolation
1687  * is enabled, every device get its own domain. The most important thing
1688  * about domains is the page table mapping the DMA address space they
1689  * contain.
1690  *
1691  ****************************************************************************/
1692 
1693 static u16 domain_id_alloc(void)
1694 {
1695 	int id;
1696 
1697 	spin_lock(&pd_bitmap_lock);
1698 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1699 	BUG_ON(id == 0);
1700 	if (id > 0 && id < MAX_DOMAIN_ID)
1701 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1702 	else
1703 		id = 0;
1704 	spin_unlock(&pd_bitmap_lock);
1705 
1706 	return id;
1707 }
1708 
1709 static void domain_id_free(int id)
1710 {
1711 	spin_lock(&pd_bitmap_lock);
1712 	if (id > 0 && id < MAX_DOMAIN_ID)
1713 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1714 	spin_unlock(&pd_bitmap_lock);
1715 }
1716 
1717 static void free_gcr3_tbl_level1(u64 *tbl)
1718 {
1719 	u64 *ptr;
1720 	int i;
1721 
1722 	for (i = 0; i < 512; ++i) {
1723 		if (!(tbl[i] & GCR3_VALID))
1724 			continue;
1725 
1726 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1727 
1728 		free_page((unsigned long)ptr);
1729 	}
1730 }
1731 
1732 static void free_gcr3_tbl_level2(u64 *tbl)
1733 {
1734 	u64 *ptr;
1735 	int i;
1736 
1737 	for (i = 0; i < 512; ++i) {
1738 		if (!(tbl[i] & GCR3_VALID))
1739 			continue;
1740 
1741 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1742 
1743 		free_gcr3_tbl_level1(ptr);
1744 	}
1745 }
1746 
1747 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1748 {
1749 	if (gcr3_info->glx == 2)
1750 		free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1751 	else if (gcr3_info->glx == 1)
1752 		free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1753 	else
1754 		WARN_ON_ONCE(gcr3_info->glx != 0);
1755 
1756 	gcr3_info->glx = 0;
1757 
1758 	/* Free per device domain ID */
1759 	domain_id_free(gcr3_info->domid);
1760 
1761 	free_page((unsigned long)gcr3_info->gcr3_tbl);
1762 	gcr3_info->gcr3_tbl = NULL;
1763 }
1764 
1765 /*
1766  * Number of GCR3 table levels required. Level must be 4-Kbyte
1767  * page and can contain up to 512 entries.
1768  */
1769 static int get_gcr3_levels(int pasids)
1770 {
1771 	int levels;
1772 
1773 	if (pasids == -1)
1774 		return amd_iommu_max_glx_val;
1775 
1776 	levels = get_count_order(pasids);
1777 
1778 	return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1779 }
1780 
1781 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1782 			    struct amd_iommu *iommu, int pasids)
1783 {
1784 	int levels = get_gcr3_levels(pasids);
1785 	int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1786 
1787 	if (levels > amd_iommu_max_glx_val)
1788 		return -EINVAL;
1789 
1790 	if (gcr3_info->gcr3_tbl)
1791 		return -EBUSY;
1792 
1793 	/* Allocate per device domain ID */
1794 	gcr3_info->domid = domain_id_alloc();
1795 
1796 	gcr3_info->gcr3_tbl = alloc_pgtable_page(nid, GFP_ATOMIC);
1797 	if (gcr3_info->gcr3_tbl == NULL) {
1798 		domain_id_free(gcr3_info->domid);
1799 		return -ENOMEM;
1800 	}
1801 
1802 	gcr3_info->glx = levels;
1803 
1804 	return 0;
1805 }
1806 
1807 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1808 			   ioasid_t pasid, bool alloc)
1809 {
1810 	int index;
1811 	u64 *pte;
1812 	u64 *root = gcr3_info->gcr3_tbl;
1813 	int level = gcr3_info->glx;
1814 
1815 	while (true) {
1816 
1817 		index = (pasid >> (9 * level)) & 0x1ff;
1818 		pte   = &root[index];
1819 
1820 		if (level == 0)
1821 			break;
1822 
1823 		if (!(*pte & GCR3_VALID)) {
1824 			if (!alloc)
1825 				return NULL;
1826 
1827 			root = (void *)get_zeroed_page(GFP_ATOMIC);
1828 			if (root == NULL)
1829 				return NULL;
1830 
1831 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
1832 		}
1833 
1834 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
1835 
1836 		level -= 1;
1837 	}
1838 
1839 	return pte;
1840 }
1841 
1842 static int update_gcr3(struct iommu_dev_data *dev_data,
1843 		       ioasid_t pasid, unsigned long gcr3, bool set)
1844 {
1845 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1846 	u64 *pte;
1847 
1848 	pte = __get_gcr3_pte(gcr3_info, pasid, true);
1849 	if (pte == NULL)
1850 		return -ENOMEM;
1851 
1852 	if (set)
1853 		*pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1854 	else
1855 		*pte = 0;
1856 
1857 	amd_iommu_dev_flush_pasid_all(dev_data, pasid);
1858 	return 0;
1859 }
1860 
1861 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1862 		       unsigned long gcr3)
1863 {
1864 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1865 	int ret;
1866 
1867 	iommu_group_mutex_assert(dev_data->dev);
1868 
1869 	ret = update_gcr3(dev_data, pasid, gcr3, true);
1870 	if (ret)
1871 		return ret;
1872 
1873 	gcr3_info->pasid_cnt++;
1874 	return ret;
1875 }
1876 
1877 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1878 {
1879 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1880 	int ret;
1881 
1882 	iommu_group_mutex_assert(dev_data->dev);
1883 
1884 	ret = update_gcr3(dev_data, pasid, 0, false);
1885 	if (ret)
1886 		return ret;
1887 
1888 	gcr3_info->pasid_cnt--;
1889 	return ret;
1890 }
1891 
1892 static void set_dte_entry(struct amd_iommu *iommu,
1893 			  struct iommu_dev_data *dev_data)
1894 {
1895 	u64 pte_root = 0;
1896 	u64 flags = 0;
1897 	u32 old_domid;
1898 	u16 devid = dev_data->devid;
1899 	u16 domid;
1900 	struct protection_domain *domain = dev_data->domain;
1901 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1902 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1903 
1904 	if (gcr3_info && gcr3_info->gcr3_tbl)
1905 		domid = dev_data->gcr3_info.domid;
1906 	else
1907 		domid = domain->id;
1908 
1909 	if (domain->iop.mode != PAGE_MODE_NONE)
1910 		pte_root = iommu_virt_to_phys(domain->iop.root);
1911 
1912 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1913 		    << DEV_ENTRY_MODE_SHIFT;
1914 
1915 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1916 
1917 	/*
1918 	 * When SNP is enabled, Only set TV bit when IOMMU
1919 	 * page translation is in use.
1920 	 */
1921 	if (!amd_iommu_snp_en || (domid != 0))
1922 		pte_root |= DTE_FLAG_TV;
1923 
1924 	flags = dev_table[devid].data[1];
1925 
1926 	if (dev_data->ats_enabled)
1927 		flags |= DTE_FLAG_IOTLB;
1928 
1929 	if (dev_data->ppr)
1930 		pte_root |= 1ULL << DEV_ENTRY_PPR;
1931 
1932 	if (domain->dirty_tracking)
1933 		pte_root |= DTE_FLAG_HAD;
1934 
1935 	if (gcr3_info && gcr3_info->gcr3_tbl) {
1936 		u64 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
1937 		u64 glx  = gcr3_info->glx;
1938 		u64 tmp;
1939 
1940 		pte_root |= DTE_FLAG_GV;
1941 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1942 
1943 		/* First mask out possible old values for GCR3 table */
1944 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1945 		flags    &= ~tmp;
1946 
1947 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1948 		flags    &= ~tmp;
1949 
1950 		/* Encode GCR3 table into DTE */
1951 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1952 		pte_root |= tmp;
1953 
1954 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1955 		flags    |= tmp;
1956 
1957 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1958 		flags    |= tmp;
1959 
1960 		if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1961 			dev_table[devid].data[2] |=
1962 				((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1963 		}
1964 
1965 		/* GIOV is supported with V2 page table mode only */
1966 		if (pdom_is_v2_pgtbl_mode(domain))
1967 			pte_root |= DTE_FLAG_GIOV;
1968 	}
1969 
1970 	flags &= ~DEV_DOMID_MASK;
1971 	flags |= domid;
1972 
1973 	old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1974 	dev_table[devid].data[1]  = flags;
1975 	dev_table[devid].data[0]  = pte_root;
1976 
1977 	/*
1978 	 * A kdump kernel might be replacing a domain ID that was copied from
1979 	 * the previous kernel--if so, it needs to flush the translation cache
1980 	 * entries for the old domain ID that is being overwritten
1981 	 */
1982 	if (old_domid) {
1983 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1984 	}
1985 }
1986 
1987 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1988 {
1989 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1990 
1991 	/* remove entry from the device table seen by the hardware */
1992 	dev_table[devid].data[0]  = DTE_FLAG_V;
1993 
1994 	if (!amd_iommu_snp_en)
1995 		dev_table[devid].data[0] |= DTE_FLAG_TV;
1996 
1997 	dev_table[devid].data[1] &= DTE_FLAG_MASK;
1998 
1999 	amd_iommu_apply_erratum_63(iommu, devid);
2000 }
2001 
2002 static int do_attach(struct iommu_dev_data *dev_data,
2003 		     struct protection_domain *domain)
2004 {
2005 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2006 	int ret = 0;
2007 
2008 	/* Update data structures */
2009 	dev_data->domain = domain;
2010 	list_add(&dev_data->list, &domain->dev_list);
2011 
2012 	/* Update NUMA Node ID */
2013 	if (domain->nid == NUMA_NO_NODE)
2014 		domain->nid = dev_to_node(dev_data->dev);
2015 
2016 	/* Do reference counting */
2017 	domain->dev_iommu[iommu->index] += 1;
2018 	domain->dev_cnt                 += 1;
2019 
2020 	/* Init GCR3 table and update device table */
2021 	if (domain->pd_mode == PD_MODE_V2) {
2022 		/* By default, setup GCR3 table to support single PASID */
2023 		ret = setup_gcr3_table(&dev_data->gcr3_info, iommu, 1);
2024 		if (ret)
2025 			return ret;
2026 
2027 		ret = update_gcr3(dev_data, 0,
2028 				  iommu_virt_to_phys(domain->iop.pgd), true);
2029 		if (ret) {
2030 			free_gcr3_table(&dev_data->gcr3_info);
2031 			return ret;
2032 		}
2033 	}
2034 
2035 	/* Update device table */
2036 	set_dte_entry(iommu, dev_data);
2037 	clone_aliases(iommu, dev_data->dev);
2038 
2039 	device_flush_dte(dev_data);
2040 
2041 	return ret;
2042 }
2043 
2044 static void do_detach(struct iommu_dev_data *dev_data)
2045 {
2046 	struct protection_domain *domain = dev_data->domain;
2047 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2048 
2049 	/* Clear GCR3 table */
2050 	if (domain->pd_mode == PD_MODE_V2) {
2051 		update_gcr3(dev_data, 0, 0, false);
2052 		free_gcr3_table(&dev_data->gcr3_info);
2053 	}
2054 
2055 	/* Update data structures */
2056 	dev_data->domain = NULL;
2057 	list_del(&dev_data->list);
2058 	clear_dte_entry(iommu, dev_data->devid);
2059 	clone_aliases(iommu, dev_data->dev);
2060 
2061 	/* Flush the DTE entry */
2062 	device_flush_dte(dev_data);
2063 
2064 	/* Flush IOTLB and wait for the flushes to finish */
2065 	amd_iommu_domain_flush_all(domain);
2066 
2067 	/* decrease reference counters - needs to happen after the flushes */
2068 	domain->dev_iommu[iommu->index] -= 1;
2069 	domain->dev_cnt                 -= 1;
2070 }
2071 
2072 /*
2073  * If a device is not yet associated with a domain, this function makes the
2074  * device visible in the domain
2075  */
2076 static int attach_device(struct device *dev,
2077 			 struct protection_domain *domain)
2078 {
2079 	struct iommu_dev_data *dev_data;
2080 	unsigned long flags;
2081 	int ret = 0;
2082 
2083 	spin_lock_irqsave(&domain->lock, flags);
2084 
2085 	dev_data = dev_iommu_priv_get(dev);
2086 
2087 	spin_lock(&dev_data->lock);
2088 
2089 	if (dev_data->domain != NULL) {
2090 		ret = -EBUSY;
2091 		goto out;
2092 	}
2093 
2094 	if (dev_is_pci(dev))
2095 		pdev_enable_caps(to_pci_dev(dev));
2096 
2097 	ret = do_attach(dev_data, domain);
2098 
2099 out:
2100 	spin_unlock(&dev_data->lock);
2101 
2102 	spin_unlock_irqrestore(&domain->lock, flags);
2103 
2104 	return ret;
2105 }
2106 
2107 /*
2108  * Removes a device from a protection domain (with devtable_lock held)
2109  */
2110 static void detach_device(struct device *dev)
2111 {
2112 	struct protection_domain *domain;
2113 	struct iommu_dev_data *dev_data;
2114 	unsigned long flags;
2115 
2116 	dev_data = dev_iommu_priv_get(dev);
2117 	domain   = dev_data->domain;
2118 
2119 	spin_lock_irqsave(&domain->lock, flags);
2120 
2121 	spin_lock(&dev_data->lock);
2122 
2123 	/*
2124 	 * First check if the device is still attached. It might already
2125 	 * be detached from its domain because the generic
2126 	 * iommu_detach_group code detached it and we try again here in
2127 	 * our alias handling.
2128 	 */
2129 	if (WARN_ON(!dev_data->domain))
2130 		goto out;
2131 
2132 	do_detach(dev_data);
2133 
2134 	if (dev_is_pci(dev))
2135 		pdev_disable_caps(to_pci_dev(dev));
2136 
2137 out:
2138 	spin_unlock(&dev_data->lock);
2139 
2140 	spin_unlock_irqrestore(&domain->lock, flags);
2141 }
2142 
2143 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2144 {
2145 	struct iommu_device *iommu_dev;
2146 	struct amd_iommu *iommu;
2147 	int ret;
2148 
2149 	if (!check_device(dev))
2150 		return ERR_PTR(-ENODEV);
2151 
2152 	iommu = rlookup_amd_iommu(dev);
2153 	if (!iommu)
2154 		return ERR_PTR(-ENODEV);
2155 
2156 	/* Not registered yet? */
2157 	if (!iommu->iommu.ops)
2158 		return ERR_PTR(-ENODEV);
2159 
2160 	if (dev_iommu_priv_get(dev))
2161 		return &iommu->iommu;
2162 
2163 	ret = iommu_init_device(iommu, dev);
2164 	if (ret) {
2165 		dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2166 		iommu_dev = ERR_PTR(ret);
2167 		iommu_ignore_device(iommu, dev);
2168 	} else {
2169 		amd_iommu_set_pci_msi_domain(dev, iommu);
2170 		iommu_dev = &iommu->iommu;
2171 	}
2172 
2173 	iommu_completion_wait(iommu);
2174 
2175 	return iommu_dev;
2176 }
2177 
2178 static void amd_iommu_probe_finalize(struct device *dev)
2179 {
2180 	/* Domains are initialized for this device - have a look what we ended up with */
2181 	set_dma_ops(dev, NULL);
2182 	iommu_setup_dma_ops(dev, 0, U64_MAX);
2183 }
2184 
2185 static void amd_iommu_release_device(struct device *dev)
2186 {
2187 	struct amd_iommu *iommu;
2188 
2189 	if (!check_device(dev))
2190 		return;
2191 
2192 	iommu = rlookup_amd_iommu(dev);
2193 	if (!iommu)
2194 		return;
2195 
2196 	amd_iommu_uninit_device(dev);
2197 	iommu_completion_wait(iommu);
2198 }
2199 
2200 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2201 {
2202 	if (dev_is_pci(dev))
2203 		return pci_device_group(dev);
2204 
2205 	return acpihid_device_group(dev);
2206 }
2207 
2208 /*****************************************************************************
2209  *
2210  * The following functions belong to the exported interface of AMD IOMMU
2211  *
2212  * This interface allows access to lower level functions of the IOMMU
2213  * like protection domain handling and assignement of devices to domains
2214  * which is not possible with the dma_ops interface.
2215  *
2216  *****************************************************************************/
2217 
2218 static void cleanup_domain(struct protection_domain *domain)
2219 {
2220 	struct iommu_dev_data *entry;
2221 
2222 	lockdep_assert_held(&domain->lock);
2223 
2224 	if (!domain->dev_cnt)
2225 		return;
2226 
2227 	while (!list_empty(&domain->dev_list)) {
2228 		entry = list_first_entry(&domain->dev_list,
2229 					 struct iommu_dev_data, list);
2230 		BUG_ON(!entry->domain);
2231 		do_detach(entry);
2232 	}
2233 	WARN_ON(domain->dev_cnt != 0);
2234 }
2235 
2236 static void protection_domain_free(struct protection_domain *domain)
2237 {
2238 	if (!domain)
2239 		return;
2240 
2241 	if (domain->iop.pgtbl_cfg.tlb)
2242 		free_io_pgtable_ops(&domain->iop.iop.ops);
2243 
2244 	if (domain->iop.root)
2245 		free_page((unsigned long)domain->iop.root);
2246 
2247 	if (domain->id)
2248 		domain_id_free(domain->id);
2249 
2250 	kfree(domain);
2251 }
2252 
2253 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2254 {
2255 	u64 *pt_root = NULL;
2256 
2257 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2258 
2259 	if (mode != PAGE_MODE_NONE) {
2260 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2261 		if (!pt_root)
2262 			return -ENOMEM;
2263 	}
2264 
2265 	domain->pd_mode = PD_MODE_V1;
2266 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2267 
2268 	return 0;
2269 }
2270 
2271 static int protection_domain_init_v2(struct protection_domain *pdom)
2272 {
2273 	pdom->pd_mode = PD_MODE_V2;
2274 	pdom->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
2275 
2276 	return 0;
2277 }
2278 
2279 static struct protection_domain *protection_domain_alloc(unsigned int type)
2280 {
2281 	struct io_pgtable_ops *pgtbl_ops;
2282 	struct protection_domain *domain;
2283 	int pgtable;
2284 	int ret;
2285 
2286 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2287 	if (!domain)
2288 		return NULL;
2289 
2290 	domain->id = domain_id_alloc();
2291 	if (!domain->id)
2292 		goto out_err;
2293 
2294 	spin_lock_init(&domain->lock);
2295 	INIT_LIST_HEAD(&domain->dev_list);
2296 	domain->nid = NUMA_NO_NODE;
2297 
2298 	switch (type) {
2299 	/* No need to allocate io pgtable ops in passthrough mode */
2300 	case IOMMU_DOMAIN_IDENTITY:
2301 		return domain;
2302 	case IOMMU_DOMAIN_DMA:
2303 		pgtable = amd_iommu_pgtable;
2304 		break;
2305 	/*
2306 	 * Force IOMMU v1 page table when allocating
2307 	 * domain for pass-through devices.
2308 	 */
2309 	case IOMMU_DOMAIN_UNMANAGED:
2310 		pgtable = AMD_IOMMU_V1;
2311 		break;
2312 	default:
2313 		goto out_err;
2314 	}
2315 
2316 	switch (pgtable) {
2317 	case AMD_IOMMU_V1:
2318 		ret = protection_domain_init_v1(domain, DEFAULT_PGTABLE_LEVEL);
2319 		break;
2320 	case AMD_IOMMU_V2:
2321 		ret = protection_domain_init_v2(domain);
2322 		break;
2323 	default:
2324 		ret = -EINVAL;
2325 		break;
2326 	}
2327 
2328 	if (ret)
2329 		goto out_err;
2330 
2331 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2332 	if (!pgtbl_ops)
2333 		goto out_err;
2334 
2335 	return domain;
2336 out_err:
2337 	protection_domain_free(domain);
2338 	return NULL;
2339 }
2340 
2341 static inline u64 dma_max_address(void)
2342 {
2343 	if (amd_iommu_pgtable == AMD_IOMMU_V1)
2344 		return ~0ULL;
2345 
2346 	/* V2 with 4/5 level page table */
2347 	return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2348 }
2349 
2350 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2351 {
2352 	return iommu && (iommu->features & FEATURE_HDSUP);
2353 }
2354 
2355 static struct iommu_domain *do_iommu_domain_alloc(unsigned int type,
2356 						  struct device *dev, u32 flags)
2357 {
2358 	bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2359 	struct protection_domain *domain;
2360 	struct amd_iommu *iommu = NULL;
2361 
2362 	if (dev)
2363 		iommu = get_amd_iommu_from_dev(dev);
2364 
2365 	/*
2366 	 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2367 	 * default to use IOMMU_DOMAIN_DMA[_FQ].
2368 	 */
2369 	if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2370 		return ERR_PTR(-EINVAL);
2371 
2372 	if (dirty_tracking && !amd_iommu_hd_support(iommu))
2373 		return ERR_PTR(-EOPNOTSUPP);
2374 
2375 	domain = protection_domain_alloc(type);
2376 	if (!domain)
2377 		return ERR_PTR(-ENOMEM);
2378 
2379 	domain->domain.geometry.aperture_start = 0;
2380 	domain->domain.geometry.aperture_end   = dma_max_address();
2381 	domain->domain.geometry.force_aperture = true;
2382 
2383 	if (iommu) {
2384 		domain->domain.type = type;
2385 		domain->domain.pgsize_bitmap = iommu->iommu.ops->pgsize_bitmap;
2386 		domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2387 
2388 		if (dirty_tracking)
2389 			domain->domain.dirty_ops = &amd_dirty_ops;
2390 	}
2391 
2392 	return &domain->domain;
2393 }
2394 
2395 static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type)
2396 {
2397 	struct iommu_domain *domain;
2398 
2399 	domain = do_iommu_domain_alloc(type, NULL, 0);
2400 	if (IS_ERR(domain))
2401 		return NULL;
2402 
2403 	return domain;
2404 }
2405 
2406 static struct iommu_domain *
2407 amd_iommu_domain_alloc_user(struct device *dev, u32 flags,
2408 			    struct iommu_domain *parent,
2409 			    const struct iommu_user_data *user_data)
2410 
2411 {
2412 	unsigned int type = IOMMU_DOMAIN_UNMANAGED;
2413 
2414 	if ((flags & ~IOMMU_HWPT_ALLOC_DIRTY_TRACKING) || parent || user_data)
2415 		return ERR_PTR(-EOPNOTSUPP);
2416 
2417 	return do_iommu_domain_alloc(type, dev, flags);
2418 }
2419 
2420 static void amd_iommu_domain_free(struct iommu_domain *dom)
2421 {
2422 	struct protection_domain *domain;
2423 	unsigned long flags;
2424 
2425 	if (!dom)
2426 		return;
2427 
2428 	domain = to_pdomain(dom);
2429 
2430 	spin_lock_irqsave(&domain->lock, flags);
2431 
2432 	cleanup_domain(domain);
2433 
2434 	spin_unlock_irqrestore(&domain->lock, flags);
2435 
2436 	protection_domain_free(domain);
2437 }
2438 
2439 static int amd_iommu_attach_device(struct iommu_domain *dom,
2440 				   struct device *dev)
2441 {
2442 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2443 	struct protection_domain *domain = to_pdomain(dom);
2444 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2445 	int ret;
2446 
2447 	/*
2448 	 * Skip attach device to domain if new domain is same as
2449 	 * devices current domain
2450 	 */
2451 	if (dev_data->domain == domain)
2452 		return 0;
2453 
2454 	dev_data->defer_attach = false;
2455 
2456 	/*
2457 	 * Restrict to devices with compatible IOMMU hardware support
2458 	 * when enforcement of dirty tracking is enabled.
2459 	 */
2460 	if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2461 		return -EINVAL;
2462 
2463 	if (dev_data->domain)
2464 		detach_device(dev);
2465 
2466 	ret = attach_device(dev, domain);
2467 
2468 #ifdef CONFIG_IRQ_REMAP
2469 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2470 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2471 			dev_data->use_vapic = 1;
2472 		else
2473 			dev_data->use_vapic = 0;
2474 	}
2475 #endif
2476 
2477 	iommu_completion_wait(iommu);
2478 
2479 	return ret;
2480 }
2481 
2482 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2483 				    unsigned long iova, size_t size)
2484 {
2485 	struct protection_domain *domain = to_pdomain(dom);
2486 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2487 
2488 	if (ops->map_pages)
2489 		domain_flush_np_cache(domain, iova, size);
2490 	return 0;
2491 }
2492 
2493 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2494 			       phys_addr_t paddr, size_t pgsize, size_t pgcount,
2495 			       int iommu_prot, gfp_t gfp, size_t *mapped)
2496 {
2497 	struct protection_domain *domain = to_pdomain(dom);
2498 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2499 	int prot = 0;
2500 	int ret = -EINVAL;
2501 
2502 	if ((domain->pd_mode == PD_MODE_V1) &&
2503 	    (domain->iop.mode == PAGE_MODE_NONE))
2504 		return -EINVAL;
2505 
2506 	if (iommu_prot & IOMMU_READ)
2507 		prot |= IOMMU_PROT_IR;
2508 	if (iommu_prot & IOMMU_WRITE)
2509 		prot |= IOMMU_PROT_IW;
2510 
2511 	if (ops->map_pages) {
2512 		ret = ops->map_pages(ops, iova, paddr, pgsize,
2513 				     pgcount, prot, gfp, mapped);
2514 	}
2515 
2516 	return ret;
2517 }
2518 
2519 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2520 					    struct iommu_iotlb_gather *gather,
2521 					    unsigned long iova, size_t size)
2522 {
2523 	/*
2524 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2525 	 * Unless we run in a virtual machine, which can be inferred according
2526 	 * to whether "non-present cache" is on, it is probably best to prefer
2527 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2528 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2529 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2530 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2531 	 * should be avoided.
2532 	 */
2533 	if (amd_iommu_np_cache &&
2534 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2535 		iommu_iotlb_sync(domain, gather);
2536 
2537 	iommu_iotlb_gather_add_range(gather, iova, size);
2538 }
2539 
2540 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2541 				    size_t pgsize, size_t pgcount,
2542 				    struct iommu_iotlb_gather *gather)
2543 {
2544 	struct protection_domain *domain = to_pdomain(dom);
2545 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2546 	size_t r;
2547 
2548 	if ((domain->pd_mode == PD_MODE_V1) &&
2549 	    (domain->iop.mode == PAGE_MODE_NONE))
2550 		return 0;
2551 
2552 	r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2553 
2554 	if (r)
2555 		amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2556 
2557 	return r;
2558 }
2559 
2560 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2561 					  dma_addr_t iova)
2562 {
2563 	struct protection_domain *domain = to_pdomain(dom);
2564 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2565 
2566 	return ops->iova_to_phys(ops, iova);
2567 }
2568 
2569 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2570 {
2571 	switch (cap) {
2572 	case IOMMU_CAP_CACHE_COHERENCY:
2573 		return true;
2574 	case IOMMU_CAP_NOEXEC:
2575 		return false;
2576 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2577 		return amdr_ivrs_remap_support;
2578 	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2579 		return true;
2580 	case IOMMU_CAP_DEFERRED_FLUSH:
2581 		return true;
2582 	case IOMMU_CAP_DIRTY_TRACKING: {
2583 		struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2584 
2585 		return amd_iommu_hd_support(iommu);
2586 	}
2587 	default:
2588 		break;
2589 	}
2590 
2591 	return false;
2592 }
2593 
2594 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2595 					bool enable)
2596 {
2597 	struct protection_domain *pdomain = to_pdomain(domain);
2598 	struct dev_table_entry *dev_table;
2599 	struct iommu_dev_data *dev_data;
2600 	bool domain_flush = false;
2601 	struct amd_iommu *iommu;
2602 	unsigned long flags;
2603 	u64 pte_root;
2604 
2605 	spin_lock_irqsave(&pdomain->lock, flags);
2606 	if (!(pdomain->dirty_tracking ^ enable)) {
2607 		spin_unlock_irqrestore(&pdomain->lock, flags);
2608 		return 0;
2609 	}
2610 
2611 	list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2612 		iommu = get_amd_iommu_from_dev_data(dev_data);
2613 
2614 		dev_table = get_dev_table(iommu);
2615 		pte_root = dev_table[dev_data->devid].data[0];
2616 
2617 		pte_root = (enable ? pte_root | DTE_FLAG_HAD :
2618 				     pte_root & ~DTE_FLAG_HAD);
2619 
2620 		/* Flush device DTE */
2621 		dev_table[dev_data->devid].data[0] = pte_root;
2622 		device_flush_dte(dev_data);
2623 		domain_flush = true;
2624 	}
2625 
2626 	/* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2627 	if (domain_flush)
2628 		amd_iommu_domain_flush_all(pdomain);
2629 
2630 	pdomain->dirty_tracking = enable;
2631 	spin_unlock_irqrestore(&pdomain->lock, flags);
2632 
2633 	return 0;
2634 }
2635 
2636 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2637 					  unsigned long iova, size_t size,
2638 					  unsigned long flags,
2639 					  struct iommu_dirty_bitmap *dirty)
2640 {
2641 	struct protection_domain *pdomain = to_pdomain(domain);
2642 	struct io_pgtable_ops *ops = &pdomain->iop.iop.ops;
2643 	unsigned long lflags;
2644 
2645 	if (!ops || !ops->read_and_clear_dirty)
2646 		return -EOPNOTSUPP;
2647 
2648 	spin_lock_irqsave(&pdomain->lock, lflags);
2649 	if (!pdomain->dirty_tracking && dirty->bitmap) {
2650 		spin_unlock_irqrestore(&pdomain->lock, lflags);
2651 		return -EINVAL;
2652 	}
2653 	spin_unlock_irqrestore(&pdomain->lock, lflags);
2654 
2655 	return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2656 }
2657 
2658 static void amd_iommu_get_resv_regions(struct device *dev,
2659 				       struct list_head *head)
2660 {
2661 	struct iommu_resv_region *region;
2662 	struct unity_map_entry *entry;
2663 	struct amd_iommu *iommu;
2664 	struct amd_iommu_pci_seg *pci_seg;
2665 	int devid, sbdf;
2666 
2667 	sbdf = get_device_sbdf_id(dev);
2668 	if (sbdf < 0)
2669 		return;
2670 
2671 	devid = PCI_SBDF_TO_DEVID(sbdf);
2672 	iommu = get_amd_iommu_from_dev(dev);
2673 	pci_seg = iommu->pci_seg;
2674 
2675 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2676 		int type, prot = 0;
2677 		size_t length;
2678 
2679 		if (devid < entry->devid_start || devid > entry->devid_end)
2680 			continue;
2681 
2682 		type   = IOMMU_RESV_DIRECT;
2683 		length = entry->address_end - entry->address_start;
2684 		if (entry->prot & IOMMU_PROT_IR)
2685 			prot |= IOMMU_READ;
2686 		if (entry->prot & IOMMU_PROT_IW)
2687 			prot |= IOMMU_WRITE;
2688 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2689 			/* Exclusion range */
2690 			type = IOMMU_RESV_RESERVED;
2691 
2692 		region = iommu_alloc_resv_region(entry->address_start,
2693 						 length, prot, type,
2694 						 GFP_KERNEL);
2695 		if (!region) {
2696 			dev_err(dev, "Out of memory allocating dm-regions\n");
2697 			return;
2698 		}
2699 		list_add_tail(&region->list, head);
2700 	}
2701 
2702 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2703 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2704 					 0, IOMMU_RESV_MSI, GFP_KERNEL);
2705 	if (!region)
2706 		return;
2707 	list_add_tail(&region->list, head);
2708 
2709 	region = iommu_alloc_resv_region(HT_RANGE_START,
2710 					 HT_RANGE_END - HT_RANGE_START + 1,
2711 					 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2712 	if (!region)
2713 		return;
2714 	list_add_tail(&region->list, head);
2715 }
2716 
2717 bool amd_iommu_is_attach_deferred(struct device *dev)
2718 {
2719 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2720 
2721 	return dev_data->defer_attach;
2722 }
2723 
2724 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2725 {
2726 	struct protection_domain *dom = to_pdomain(domain);
2727 	unsigned long flags;
2728 
2729 	spin_lock_irqsave(&dom->lock, flags);
2730 	amd_iommu_domain_flush_all(dom);
2731 	spin_unlock_irqrestore(&dom->lock, flags);
2732 }
2733 
2734 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2735 				 struct iommu_iotlb_gather *gather)
2736 {
2737 	struct protection_domain *dom = to_pdomain(domain);
2738 	unsigned long flags;
2739 
2740 	spin_lock_irqsave(&dom->lock, flags);
2741 	amd_iommu_domain_flush_pages(dom, gather->start,
2742 				     gather->end - gather->start + 1);
2743 	spin_unlock_irqrestore(&dom->lock, flags);
2744 }
2745 
2746 static int amd_iommu_def_domain_type(struct device *dev)
2747 {
2748 	struct iommu_dev_data *dev_data;
2749 
2750 	dev_data = dev_iommu_priv_get(dev);
2751 	if (!dev_data)
2752 		return 0;
2753 
2754 	/*
2755 	 * Do not identity map IOMMUv2 capable devices when:
2756 	 *  - memory encryption is active, because some of those devices
2757 	 *    (AMD GPUs) don't have the encryption bit in their DMA-mask
2758 	 *    and require remapping.
2759 	 *  - SNP is enabled, because it prohibits DTE[Mode]=0.
2760 	 */
2761 	if (pdev_pasid_supported(dev_data) &&
2762 	    !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2763 	    !amd_iommu_snp_en) {
2764 		return IOMMU_DOMAIN_IDENTITY;
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2771 {
2772 	/* IOMMU_PTE_FC is always set */
2773 	return true;
2774 }
2775 
2776 static const struct iommu_dirty_ops amd_dirty_ops = {
2777 	.set_dirty_tracking = amd_iommu_set_dirty_tracking,
2778 	.read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2779 };
2780 
2781 const struct iommu_ops amd_iommu_ops = {
2782 	.capable = amd_iommu_capable,
2783 	.domain_alloc = amd_iommu_domain_alloc,
2784 	.domain_alloc_user = amd_iommu_domain_alloc_user,
2785 	.probe_device = amd_iommu_probe_device,
2786 	.release_device = amd_iommu_release_device,
2787 	.probe_finalize = amd_iommu_probe_finalize,
2788 	.device_group = amd_iommu_device_group,
2789 	.get_resv_regions = amd_iommu_get_resv_regions,
2790 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2791 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2792 	.def_domain_type = amd_iommu_def_domain_type,
2793 	.default_domain_ops = &(const struct iommu_domain_ops) {
2794 		.attach_dev	= amd_iommu_attach_device,
2795 		.map_pages	= amd_iommu_map_pages,
2796 		.unmap_pages	= amd_iommu_unmap_pages,
2797 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2798 		.iova_to_phys	= amd_iommu_iova_to_phys,
2799 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2800 		.iotlb_sync	= amd_iommu_iotlb_sync,
2801 		.free		= amd_iommu_domain_free,
2802 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2803 	}
2804 };
2805 
2806 #ifdef CONFIG_IRQ_REMAP
2807 
2808 /*****************************************************************************
2809  *
2810  * Interrupt Remapping Implementation
2811  *
2812  *****************************************************************************/
2813 
2814 static struct irq_chip amd_ir_chip;
2815 static DEFINE_SPINLOCK(iommu_table_lock);
2816 
2817 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2818 {
2819 	int ret;
2820 	u64 data;
2821 	unsigned long flags;
2822 	struct iommu_cmd cmd, cmd2;
2823 
2824 	if (iommu->irtcachedis_enabled)
2825 		return;
2826 
2827 	build_inv_irt(&cmd, devid);
2828 	data = atomic64_add_return(1, &iommu->cmd_sem_val);
2829 	build_completion_wait(&cmd2, iommu, data);
2830 
2831 	raw_spin_lock_irqsave(&iommu->lock, flags);
2832 	ret = __iommu_queue_command_sync(iommu, &cmd, true);
2833 	if (ret)
2834 		goto out;
2835 	ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2836 	if (ret)
2837 		goto out;
2838 	wait_on_sem(iommu, data);
2839 out:
2840 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
2841 }
2842 
2843 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2844 			      struct irq_remap_table *table)
2845 {
2846 	u64 dte;
2847 	struct dev_table_entry *dev_table = get_dev_table(iommu);
2848 
2849 	dte	= dev_table[devid].data[2];
2850 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2851 	dte	|= iommu_virt_to_phys(table->table);
2852 	dte	|= DTE_IRQ_REMAP_INTCTL;
2853 	dte	|= DTE_INTTABLEN;
2854 	dte	|= DTE_IRQ_REMAP_ENABLE;
2855 
2856 	dev_table[devid].data[2] = dte;
2857 }
2858 
2859 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2860 {
2861 	struct irq_remap_table *table;
2862 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2863 
2864 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2865 		      "%s: no iommu for devid %x:%x\n",
2866 		      __func__, pci_seg->id, devid))
2867 		return NULL;
2868 
2869 	table = pci_seg->irq_lookup_table[devid];
2870 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2871 		      __func__, pci_seg->id, devid))
2872 		return NULL;
2873 
2874 	return table;
2875 }
2876 
2877 static struct irq_remap_table *__alloc_irq_table(void)
2878 {
2879 	struct irq_remap_table *table;
2880 
2881 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2882 	if (!table)
2883 		return NULL;
2884 
2885 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2886 	if (!table->table) {
2887 		kfree(table);
2888 		return NULL;
2889 	}
2890 	raw_spin_lock_init(&table->lock);
2891 
2892 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2893 		memset(table->table, 0,
2894 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2895 	else
2896 		memset(table->table, 0,
2897 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2898 	return table;
2899 }
2900 
2901 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2902 				  struct irq_remap_table *table)
2903 {
2904 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2905 
2906 	pci_seg->irq_lookup_table[devid] = table;
2907 	set_dte_irq_entry(iommu, devid, table);
2908 	iommu_flush_dte(iommu, devid);
2909 }
2910 
2911 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2912 				       void *data)
2913 {
2914 	struct irq_remap_table *table = data;
2915 	struct amd_iommu_pci_seg *pci_seg;
2916 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2917 
2918 	if (!iommu)
2919 		return -EINVAL;
2920 
2921 	pci_seg = iommu->pci_seg;
2922 	pci_seg->irq_lookup_table[alias] = table;
2923 	set_dte_irq_entry(iommu, alias, table);
2924 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2925 
2926 	return 0;
2927 }
2928 
2929 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2930 					       u16 devid, struct pci_dev *pdev)
2931 {
2932 	struct irq_remap_table *table = NULL;
2933 	struct irq_remap_table *new_table = NULL;
2934 	struct amd_iommu_pci_seg *pci_seg;
2935 	unsigned long flags;
2936 	u16 alias;
2937 
2938 	spin_lock_irqsave(&iommu_table_lock, flags);
2939 
2940 	pci_seg = iommu->pci_seg;
2941 	table = pci_seg->irq_lookup_table[devid];
2942 	if (table)
2943 		goto out_unlock;
2944 
2945 	alias = pci_seg->alias_table[devid];
2946 	table = pci_seg->irq_lookup_table[alias];
2947 	if (table) {
2948 		set_remap_table_entry(iommu, devid, table);
2949 		goto out_wait;
2950 	}
2951 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2952 
2953 	/* Nothing there yet, allocate new irq remapping table */
2954 	new_table = __alloc_irq_table();
2955 	if (!new_table)
2956 		return NULL;
2957 
2958 	spin_lock_irqsave(&iommu_table_lock, flags);
2959 
2960 	table = pci_seg->irq_lookup_table[devid];
2961 	if (table)
2962 		goto out_unlock;
2963 
2964 	table = pci_seg->irq_lookup_table[alias];
2965 	if (table) {
2966 		set_remap_table_entry(iommu, devid, table);
2967 		goto out_wait;
2968 	}
2969 
2970 	table = new_table;
2971 	new_table = NULL;
2972 
2973 	if (pdev)
2974 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2975 				       table);
2976 	else
2977 		set_remap_table_entry(iommu, devid, table);
2978 
2979 	if (devid != alias)
2980 		set_remap_table_entry(iommu, alias, table);
2981 
2982 out_wait:
2983 	iommu_completion_wait(iommu);
2984 
2985 out_unlock:
2986 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2987 
2988 	if (new_table) {
2989 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2990 		kfree(new_table);
2991 	}
2992 	return table;
2993 }
2994 
2995 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
2996 			   bool align, struct pci_dev *pdev)
2997 {
2998 	struct irq_remap_table *table;
2999 	int index, c, alignment = 1;
3000 	unsigned long flags;
3001 
3002 	table = alloc_irq_table(iommu, devid, pdev);
3003 	if (!table)
3004 		return -ENODEV;
3005 
3006 	if (align)
3007 		alignment = roundup_pow_of_two(count);
3008 
3009 	raw_spin_lock_irqsave(&table->lock, flags);
3010 
3011 	/* Scan table for free entries */
3012 	for (index = ALIGN(table->min_index, alignment), c = 0;
3013 	     index < MAX_IRQS_PER_TABLE;) {
3014 		if (!iommu->irte_ops->is_allocated(table, index)) {
3015 			c += 1;
3016 		} else {
3017 			c     = 0;
3018 			index = ALIGN(index + 1, alignment);
3019 			continue;
3020 		}
3021 
3022 		if (c == count)	{
3023 			for (; c != 0; --c)
3024 				iommu->irte_ops->set_allocated(table, index - c + 1);
3025 
3026 			index -= count - 1;
3027 			goto out;
3028 		}
3029 
3030 		index++;
3031 	}
3032 
3033 	index = -ENOSPC;
3034 
3035 out:
3036 	raw_spin_unlock_irqrestore(&table->lock, flags);
3037 
3038 	return index;
3039 }
3040 
3041 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3042 			    struct irte_ga *irte)
3043 {
3044 	struct irq_remap_table *table;
3045 	struct irte_ga *entry;
3046 	unsigned long flags;
3047 	u128 old;
3048 
3049 	table = get_irq_table(iommu, devid);
3050 	if (!table)
3051 		return -ENOMEM;
3052 
3053 	raw_spin_lock_irqsave(&table->lock, flags);
3054 
3055 	entry = (struct irte_ga *)table->table;
3056 	entry = &entry[index];
3057 
3058 	/*
3059 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3060 	 * and it cannot be updated by the hardware or other processors
3061 	 * behind us, so the return value of cmpxchg16 should be the
3062 	 * same as the old value.
3063 	 */
3064 	old = entry->irte;
3065 	WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3066 
3067 	raw_spin_unlock_irqrestore(&table->lock, flags);
3068 
3069 	return 0;
3070 }
3071 
3072 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3073 			  struct irte_ga *irte)
3074 {
3075 	bool ret;
3076 
3077 	ret = __modify_irte_ga(iommu, devid, index, irte);
3078 	if (ret)
3079 		return ret;
3080 
3081 	iommu_flush_irt_and_complete(iommu, devid);
3082 
3083 	return 0;
3084 }
3085 
3086 static int modify_irte(struct amd_iommu *iommu,
3087 		       u16 devid, int index, union irte *irte)
3088 {
3089 	struct irq_remap_table *table;
3090 	unsigned long flags;
3091 
3092 	table = get_irq_table(iommu, devid);
3093 	if (!table)
3094 		return -ENOMEM;
3095 
3096 	raw_spin_lock_irqsave(&table->lock, flags);
3097 	table->table[index] = irte->val;
3098 	raw_spin_unlock_irqrestore(&table->lock, flags);
3099 
3100 	iommu_flush_irt_and_complete(iommu, devid);
3101 
3102 	return 0;
3103 }
3104 
3105 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3106 {
3107 	struct irq_remap_table *table;
3108 	unsigned long flags;
3109 
3110 	table = get_irq_table(iommu, devid);
3111 	if (!table)
3112 		return;
3113 
3114 	raw_spin_lock_irqsave(&table->lock, flags);
3115 	iommu->irte_ops->clear_allocated(table, index);
3116 	raw_spin_unlock_irqrestore(&table->lock, flags);
3117 
3118 	iommu_flush_irt_and_complete(iommu, devid);
3119 }
3120 
3121 static void irte_prepare(void *entry,
3122 			 u32 delivery_mode, bool dest_mode,
3123 			 u8 vector, u32 dest_apicid, int devid)
3124 {
3125 	union irte *irte = (union irte *) entry;
3126 
3127 	irte->val                = 0;
3128 	irte->fields.vector      = vector;
3129 	irte->fields.int_type    = delivery_mode;
3130 	irte->fields.destination = dest_apicid;
3131 	irte->fields.dm          = dest_mode;
3132 	irte->fields.valid       = 1;
3133 }
3134 
3135 static void irte_ga_prepare(void *entry,
3136 			    u32 delivery_mode, bool dest_mode,
3137 			    u8 vector, u32 dest_apicid, int devid)
3138 {
3139 	struct irte_ga *irte = (struct irte_ga *) entry;
3140 
3141 	irte->lo.val                      = 0;
3142 	irte->hi.val                      = 0;
3143 	irte->lo.fields_remap.int_type    = delivery_mode;
3144 	irte->lo.fields_remap.dm          = dest_mode;
3145 	irte->hi.fields.vector            = vector;
3146 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3147 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3148 	irte->lo.fields_remap.valid       = 1;
3149 }
3150 
3151 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3152 {
3153 	union irte *irte = (union irte *) entry;
3154 
3155 	irte->fields.valid = 1;
3156 	modify_irte(iommu, devid, index, irte);
3157 }
3158 
3159 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3160 {
3161 	struct irte_ga *irte = (struct irte_ga *) entry;
3162 
3163 	irte->lo.fields_remap.valid = 1;
3164 	modify_irte_ga(iommu, devid, index, irte);
3165 }
3166 
3167 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3168 {
3169 	union irte *irte = (union irte *) entry;
3170 
3171 	irte->fields.valid = 0;
3172 	modify_irte(iommu, devid, index, irte);
3173 }
3174 
3175 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3176 {
3177 	struct irte_ga *irte = (struct irte_ga *) entry;
3178 
3179 	irte->lo.fields_remap.valid = 0;
3180 	modify_irte_ga(iommu, devid, index, irte);
3181 }
3182 
3183 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3184 			      u8 vector, u32 dest_apicid)
3185 {
3186 	union irte *irte = (union irte *) entry;
3187 
3188 	irte->fields.vector = vector;
3189 	irte->fields.destination = dest_apicid;
3190 	modify_irte(iommu, devid, index, irte);
3191 }
3192 
3193 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3194 				 u8 vector, u32 dest_apicid)
3195 {
3196 	struct irte_ga *irte = (struct irte_ga *) entry;
3197 
3198 	if (!irte->lo.fields_remap.guest_mode) {
3199 		irte->hi.fields.vector = vector;
3200 		irte->lo.fields_remap.destination =
3201 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3202 		irte->hi.fields.destination =
3203 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3204 		modify_irte_ga(iommu, devid, index, irte);
3205 	}
3206 }
3207 
3208 #define IRTE_ALLOCATED (~1U)
3209 static void irte_set_allocated(struct irq_remap_table *table, int index)
3210 {
3211 	table->table[index] = IRTE_ALLOCATED;
3212 }
3213 
3214 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3215 {
3216 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3217 	struct irte_ga *irte = &ptr[index];
3218 
3219 	memset(&irte->lo.val, 0, sizeof(u64));
3220 	memset(&irte->hi.val, 0, sizeof(u64));
3221 	irte->hi.fields.vector = 0xff;
3222 }
3223 
3224 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3225 {
3226 	union irte *ptr = (union irte *)table->table;
3227 	union irte *irte = &ptr[index];
3228 
3229 	return irte->val != 0;
3230 }
3231 
3232 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3233 {
3234 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3235 	struct irte_ga *irte = &ptr[index];
3236 
3237 	return irte->hi.fields.vector != 0;
3238 }
3239 
3240 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3241 {
3242 	table->table[index] = 0;
3243 }
3244 
3245 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3246 {
3247 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3248 	struct irte_ga *irte = &ptr[index];
3249 
3250 	memset(&irte->lo.val, 0, sizeof(u64));
3251 	memset(&irte->hi.val, 0, sizeof(u64));
3252 }
3253 
3254 static int get_devid(struct irq_alloc_info *info)
3255 {
3256 	switch (info->type) {
3257 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3258 		return get_ioapic_devid(info->devid);
3259 	case X86_IRQ_ALLOC_TYPE_HPET:
3260 		return get_hpet_devid(info->devid);
3261 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3262 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3263 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3264 	default:
3265 		WARN_ON_ONCE(1);
3266 		return -1;
3267 	}
3268 }
3269 
3270 struct irq_remap_ops amd_iommu_irq_ops = {
3271 	.prepare		= amd_iommu_prepare,
3272 	.enable			= amd_iommu_enable,
3273 	.disable		= amd_iommu_disable,
3274 	.reenable		= amd_iommu_reenable,
3275 	.enable_faulting	= amd_iommu_enable_faulting,
3276 };
3277 
3278 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3279 {
3280 	msg->data = index;
3281 	msg->address_lo = 0;
3282 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3283 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3284 }
3285 
3286 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3287 				       struct irq_cfg *irq_cfg,
3288 				       struct irq_alloc_info *info,
3289 				       int devid, int index, int sub_handle)
3290 {
3291 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3292 	struct amd_iommu *iommu = data->iommu;
3293 
3294 	if (!iommu)
3295 		return;
3296 
3297 	data->irq_2_irte.devid = devid;
3298 	data->irq_2_irte.index = index + sub_handle;
3299 	iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3300 				 apic->dest_mode_logical, irq_cfg->vector,
3301 				 irq_cfg->dest_apicid, devid);
3302 
3303 	switch (info->type) {
3304 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3305 	case X86_IRQ_ALLOC_TYPE_HPET:
3306 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3307 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3308 		fill_msi_msg(&data->msi_entry, irte_info->index);
3309 		break;
3310 
3311 	default:
3312 		BUG_ON(1);
3313 		break;
3314 	}
3315 }
3316 
3317 struct amd_irte_ops irte_32_ops = {
3318 	.prepare = irte_prepare,
3319 	.activate = irte_activate,
3320 	.deactivate = irte_deactivate,
3321 	.set_affinity = irte_set_affinity,
3322 	.set_allocated = irte_set_allocated,
3323 	.is_allocated = irte_is_allocated,
3324 	.clear_allocated = irte_clear_allocated,
3325 };
3326 
3327 struct amd_irte_ops irte_128_ops = {
3328 	.prepare = irte_ga_prepare,
3329 	.activate = irte_ga_activate,
3330 	.deactivate = irte_ga_deactivate,
3331 	.set_affinity = irte_ga_set_affinity,
3332 	.set_allocated = irte_ga_set_allocated,
3333 	.is_allocated = irte_ga_is_allocated,
3334 	.clear_allocated = irte_ga_clear_allocated,
3335 };
3336 
3337 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3338 			       unsigned int nr_irqs, void *arg)
3339 {
3340 	struct irq_alloc_info *info = arg;
3341 	struct irq_data *irq_data;
3342 	struct amd_ir_data *data = NULL;
3343 	struct amd_iommu *iommu;
3344 	struct irq_cfg *cfg;
3345 	int i, ret, devid, seg, sbdf;
3346 	int index;
3347 
3348 	if (!info)
3349 		return -EINVAL;
3350 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3351 		return -EINVAL;
3352 
3353 	sbdf = get_devid(info);
3354 	if (sbdf < 0)
3355 		return -EINVAL;
3356 
3357 	seg = PCI_SBDF_TO_SEGID(sbdf);
3358 	devid = PCI_SBDF_TO_DEVID(sbdf);
3359 	iommu = __rlookup_amd_iommu(seg, devid);
3360 	if (!iommu)
3361 		return -EINVAL;
3362 
3363 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3364 	if (ret < 0)
3365 		return ret;
3366 
3367 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3368 		struct irq_remap_table *table;
3369 
3370 		table = alloc_irq_table(iommu, devid, NULL);
3371 		if (table) {
3372 			if (!table->min_index) {
3373 				/*
3374 				 * Keep the first 32 indexes free for IOAPIC
3375 				 * interrupts.
3376 				 */
3377 				table->min_index = 32;
3378 				for (i = 0; i < 32; ++i)
3379 					iommu->irte_ops->set_allocated(table, i);
3380 			}
3381 			WARN_ON(table->min_index != 32);
3382 			index = info->ioapic.pin;
3383 		} else {
3384 			index = -ENOMEM;
3385 		}
3386 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3387 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3388 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3389 
3390 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3391 					msi_desc_to_pci_dev(info->desc));
3392 	} else {
3393 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3394 	}
3395 
3396 	if (index < 0) {
3397 		pr_warn("Failed to allocate IRTE\n");
3398 		ret = index;
3399 		goto out_free_parent;
3400 	}
3401 
3402 	for (i = 0; i < nr_irqs; i++) {
3403 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3404 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3405 		if (!cfg) {
3406 			ret = -EINVAL;
3407 			goto out_free_data;
3408 		}
3409 
3410 		ret = -ENOMEM;
3411 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3412 		if (!data)
3413 			goto out_free_data;
3414 
3415 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3416 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3417 		else
3418 			data->entry = kzalloc(sizeof(struct irte_ga),
3419 						     GFP_KERNEL);
3420 		if (!data->entry) {
3421 			kfree(data);
3422 			goto out_free_data;
3423 		}
3424 
3425 		data->iommu = iommu;
3426 		irq_data->hwirq = (devid << 16) + i;
3427 		irq_data->chip_data = data;
3428 		irq_data->chip = &amd_ir_chip;
3429 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3430 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3431 	}
3432 
3433 	return 0;
3434 
3435 out_free_data:
3436 	for (i--; i >= 0; i--) {
3437 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3438 		if (irq_data)
3439 			kfree(irq_data->chip_data);
3440 	}
3441 	for (i = 0; i < nr_irqs; i++)
3442 		free_irte(iommu, devid, index + i);
3443 out_free_parent:
3444 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3445 	return ret;
3446 }
3447 
3448 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3449 			       unsigned int nr_irqs)
3450 {
3451 	struct irq_2_irte *irte_info;
3452 	struct irq_data *irq_data;
3453 	struct amd_ir_data *data;
3454 	int i;
3455 
3456 	for (i = 0; i < nr_irqs; i++) {
3457 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3458 		if (irq_data && irq_data->chip_data) {
3459 			data = irq_data->chip_data;
3460 			irte_info = &data->irq_2_irte;
3461 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3462 			kfree(data->entry);
3463 			kfree(data);
3464 		}
3465 	}
3466 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3467 }
3468 
3469 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3470 			       struct amd_ir_data *ir_data,
3471 			       struct irq_2_irte *irte_info,
3472 			       struct irq_cfg *cfg);
3473 
3474 static int irq_remapping_activate(struct irq_domain *domain,
3475 				  struct irq_data *irq_data, bool reserve)
3476 {
3477 	struct amd_ir_data *data = irq_data->chip_data;
3478 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3479 	struct amd_iommu *iommu = data->iommu;
3480 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3481 
3482 	if (!iommu)
3483 		return 0;
3484 
3485 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3486 				  irte_info->index);
3487 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3488 	return 0;
3489 }
3490 
3491 static void irq_remapping_deactivate(struct irq_domain *domain,
3492 				     struct irq_data *irq_data)
3493 {
3494 	struct amd_ir_data *data = irq_data->chip_data;
3495 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3496 	struct amd_iommu *iommu = data->iommu;
3497 
3498 	if (iommu)
3499 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3500 					    irte_info->index);
3501 }
3502 
3503 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3504 				enum irq_domain_bus_token bus_token)
3505 {
3506 	struct amd_iommu *iommu;
3507 	int devid = -1;
3508 
3509 	if (!amd_iommu_irq_remap)
3510 		return 0;
3511 
3512 	if (x86_fwspec_is_ioapic(fwspec))
3513 		devid = get_ioapic_devid(fwspec->param[0]);
3514 	else if (x86_fwspec_is_hpet(fwspec))
3515 		devid = get_hpet_devid(fwspec->param[0]);
3516 
3517 	if (devid < 0)
3518 		return 0;
3519 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3520 
3521 	return iommu && iommu->ir_domain == d;
3522 }
3523 
3524 static const struct irq_domain_ops amd_ir_domain_ops = {
3525 	.select = irq_remapping_select,
3526 	.alloc = irq_remapping_alloc,
3527 	.free = irq_remapping_free,
3528 	.activate = irq_remapping_activate,
3529 	.deactivate = irq_remapping_deactivate,
3530 };
3531 
3532 int amd_iommu_activate_guest_mode(void *data)
3533 {
3534 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3535 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3536 	u64 valid;
3537 
3538 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3539 		return 0;
3540 
3541 	valid = entry->lo.fields_vapic.valid;
3542 
3543 	entry->lo.val = 0;
3544 	entry->hi.val = 0;
3545 
3546 	entry->lo.fields_vapic.valid       = valid;
3547 	entry->lo.fields_vapic.guest_mode  = 1;
3548 	entry->lo.fields_vapic.ga_log_intr = 1;
3549 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3550 	entry->hi.fields.vector            = ir_data->ga_vector;
3551 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3552 
3553 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3554 			      ir_data->irq_2_irte.index, entry);
3555 }
3556 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3557 
3558 int amd_iommu_deactivate_guest_mode(void *data)
3559 {
3560 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3561 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3562 	struct irq_cfg *cfg = ir_data->cfg;
3563 	u64 valid;
3564 
3565 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3566 	    !entry || !entry->lo.fields_vapic.guest_mode)
3567 		return 0;
3568 
3569 	valid = entry->lo.fields_remap.valid;
3570 
3571 	entry->lo.val = 0;
3572 	entry->hi.val = 0;
3573 
3574 	entry->lo.fields_remap.valid       = valid;
3575 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3576 	entry->lo.fields_remap.int_type    = APIC_DELIVERY_MODE_FIXED;
3577 	entry->hi.fields.vector            = cfg->vector;
3578 	entry->lo.fields_remap.destination =
3579 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3580 	entry->hi.fields.destination =
3581 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3582 
3583 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3584 			      ir_data->irq_2_irte.index, entry);
3585 }
3586 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3587 
3588 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3589 {
3590 	int ret;
3591 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3592 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3593 	struct amd_ir_data *ir_data = data->chip_data;
3594 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3595 	struct iommu_dev_data *dev_data;
3596 
3597 	if (ir_data->iommu == NULL)
3598 		return -EINVAL;
3599 
3600 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3601 
3602 	/* Note:
3603 	 * This device has never been set up for guest mode.
3604 	 * we should not modify the IRTE
3605 	 */
3606 	if (!dev_data || !dev_data->use_vapic)
3607 		return 0;
3608 
3609 	ir_data->cfg = irqd_cfg(data);
3610 	pi_data->ir_data = ir_data;
3611 
3612 	/* Note:
3613 	 * SVM tries to set up for VAPIC mode, but we are in
3614 	 * legacy mode. So, we force legacy mode instead.
3615 	 */
3616 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3617 		pr_debug("%s: Fall back to using intr legacy remap\n",
3618 			 __func__);
3619 		pi_data->is_guest_mode = false;
3620 	}
3621 
3622 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3623 	if (pi_data->is_guest_mode) {
3624 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3625 		ir_data->ga_vector = vcpu_pi_info->vector;
3626 		ir_data->ga_tag = pi_data->ga_tag;
3627 		ret = amd_iommu_activate_guest_mode(ir_data);
3628 		if (!ret)
3629 			ir_data->cached_ga_tag = pi_data->ga_tag;
3630 	} else {
3631 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3632 
3633 		/*
3634 		 * This communicates the ga_tag back to the caller
3635 		 * so that it can do all the necessary clean up.
3636 		 */
3637 		if (!ret)
3638 			ir_data->cached_ga_tag = 0;
3639 	}
3640 
3641 	return ret;
3642 }
3643 
3644 
3645 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3646 			       struct amd_ir_data *ir_data,
3647 			       struct irq_2_irte *irte_info,
3648 			       struct irq_cfg *cfg)
3649 {
3650 
3651 	/*
3652 	 * Atomically updates the IRTE with the new destination, vector
3653 	 * and flushes the interrupt entry cache.
3654 	 */
3655 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3656 				      irte_info->index, cfg->vector,
3657 				      cfg->dest_apicid);
3658 }
3659 
3660 static int amd_ir_set_affinity(struct irq_data *data,
3661 			       const struct cpumask *mask, bool force)
3662 {
3663 	struct amd_ir_data *ir_data = data->chip_data;
3664 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3665 	struct irq_cfg *cfg = irqd_cfg(data);
3666 	struct irq_data *parent = data->parent_data;
3667 	struct amd_iommu *iommu = ir_data->iommu;
3668 	int ret;
3669 
3670 	if (!iommu)
3671 		return -ENODEV;
3672 
3673 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3674 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3675 		return ret;
3676 
3677 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3678 	/*
3679 	 * After this point, all the interrupts will start arriving
3680 	 * at the new destination. So, time to cleanup the previous
3681 	 * vector allocation.
3682 	 */
3683 	vector_schedule_cleanup(cfg);
3684 
3685 	return IRQ_SET_MASK_OK_DONE;
3686 }
3687 
3688 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3689 {
3690 	struct amd_ir_data *ir_data = irq_data->chip_data;
3691 
3692 	*msg = ir_data->msi_entry;
3693 }
3694 
3695 static struct irq_chip amd_ir_chip = {
3696 	.name			= "AMD-IR",
3697 	.irq_ack		= apic_ack_irq,
3698 	.irq_set_affinity	= amd_ir_set_affinity,
3699 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3700 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3701 };
3702 
3703 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3704 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
3705 				  MSI_FLAG_MULTI_PCI_MSI |
3706 				  MSI_FLAG_PCI_IMS,
3707 	.prefix			= "IR-",
3708 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3709 };
3710 
3711 static const struct msi_parent_ops virt_amdvi_msi_parent_ops = {
3712 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
3713 				  MSI_FLAG_MULTI_PCI_MSI,
3714 	.prefix			= "vIR-",
3715 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3716 };
3717 
3718 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3719 {
3720 	struct fwnode_handle *fn;
3721 
3722 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3723 	if (!fn)
3724 		return -ENOMEM;
3725 	iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3726 						       fn, &amd_ir_domain_ops, iommu);
3727 	if (!iommu->ir_domain) {
3728 		irq_domain_free_fwnode(fn);
3729 		return -ENOMEM;
3730 	}
3731 
3732 	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_AMDVI);
3733 	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3734 				   IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3735 
3736 	if (amd_iommu_np_cache)
3737 		iommu->ir_domain->msi_parent_ops = &virt_amdvi_msi_parent_ops;
3738 	else
3739 		iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3740 
3741 	return 0;
3742 }
3743 
3744 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3745 {
3746 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3747 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3748 
3749 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3750 	    !entry || !entry->lo.fields_vapic.guest_mode)
3751 		return 0;
3752 
3753 	if (!ir_data->iommu)
3754 		return -ENODEV;
3755 
3756 	if (cpu >= 0) {
3757 		entry->lo.fields_vapic.destination =
3758 					APICID_TO_IRTE_DEST_LO(cpu);
3759 		entry->hi.fields.destination =
3760 					APICID_TO_IRTE_DEST_HI(cpu);
3761 	}
3762 	entry->lo.fields_vapic.is_run = is_run;
3763 
3764 	return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3765 				ir_data->irq_2_irte.index, entry);
3766 }
3767 EXPORT_SYMBOL(amd_iommu_update_ga);
3768 #endif
3769