1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/pci-ats.h> 15 #include <linux/bitmap.h> 16 #include <linux/slab.h> 17 #include <linux/debugfs.h> 18 #include <linux/scatterlist.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/dma-direct.h> 21 #include <linux/iommu-helper.h> 22 #include <linux/delay.h> 23 #include <linux/amd-iommu.h> 24 #include <linux/notifier.h> 25 #include <linux/export.h> 26 #include <linux/irq.h> 27 #include <linux/msi.h> 28 #include <linux/irqdomain.h> 29 #include <linux/percpu.h> 30 #include <linux/io-pgtable.h> 31 #include <linux/cc_platform.h> 32 #include <asm/irq_remapping.h> 33 #include <asm/io_apic.h> 34 #include <asm/apic.h> 35 #include <asm/hw_irq.h> 36 #include <asm/proto.h> 37 #include <asm/iommu.h> 38 #include <asm/gart.h> 39 #include <asm/dma.h> 40 41 #include "amd_iommu.h" 42 #include "../dma-iommu.h" 43 #include "../irq_remapping.h" 44 45 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 46 47 #define LOOP_TIMEOUT 100000 48 49 /* IO virtual address start page frame number */ 50 #define IOVA_START_PFN (1) 51 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 52 53 /* Reserved IOVA ranges */ 54 #define MSI_RANGE_START (0xfee00000) 55 #define MSI_RANGE_END (0xfeefffff) 56 #define HT_RANGE_START (0xfd00000000ULL) 57 #define HT_RANGE_END (0xffffffffffULL) 58 59 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL 60 61 static DEFINE_SPINLOCK(pd_bitmap_lock); 62 63 LIST_HEAD(ioapic_map); 64 LIST_HEAD(hpet_map); 65 LIST_HEAD(acpihid_map); 66 67 const struct iommu_ops amd_iommu_ops; 68 69 static ATOMIC_NOTIFIER_HEAD(ppr_notifier); 70 int amd_iommu_max_glx_val = -1; 71 72 /* 73 * general struct to manage commands send to an IOMMU 74 */ 75 struct iommu_cmd { 76 u32 data[4]; 77 }; 78 79 struct kmem_cache *amd_iommu_irq_cache; 80 81 static void detach_device(struct device *dev); 82 static int domain_enable_v2(struct protection_domain *domain, int pasids); 83 84 /**************************************************************************** 85 * 86 * Helper functions 87 * 88 ****************************************************************************/ 89 90 static inline int get_acpihid_device_id(struct device *dev, 91 struct acpihid_map_entry **entry) 92 { 93 struct acpi_device *adev = ACPI_COMPANION(dev); 94 struct acpihid_map_entry *p; 95 96 if (!adev) 97 return -ENODEV; 98 99 list_for_each_entry(p, &acpihid_map, list) { 100 if (acpi_dev_hid_uid_match(adev, p->hid, 101 p->uid[0] ? p->uid : NULL)) { 102 if (entry) 103 *entry = p; 104 return p->devid; 105 } 106 } 107 return -EINVAL; 108 } 109 110 static inline int get_device_sbdf_id(struct device *dev) 111 { 112 int sbdf; 113 114 if (dev_is_pci(dev)) 115 sbdf = get_pci_sbdf_id(to_pci_dev(dev)); 116 else 117 sbdf = get_acpihid_device_id(dev, NULL); 118 119 return sbdf; 120 } 121 122 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu) 123 { 124 struct dev_table_entry *dev_table; 125 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 126 127 BUG_ON(pci_seg == NULL); 128 dev_table = pci_seg->dev_table; 129 BUG_ON(dev_table == NULL); 130 131 return dev_table; 132 } 133 134 static inline u16 get_device_segment(struct device *dev) 135 { 136 u16 seg; 137 138 if (dev_is_pci(dev)) { 139 struct pci_dev *pdev = to_pci_dev(dev); 140 141 seg = pci_domain_nr(pdev->bus); 142 } else { 143 u32 devid = get_acpihid_device_id(dev, NULL); 144 145 seg = PCI_SBDF_TO_SEGID(devid); 146 } 147 148 return seg; 149 } 150 151 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */ 152 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid) 153 { 154 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 155 156 pci_seg->rlookup_table[devid] = iommu; 157 } 158 159 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid) 160 { 161 struct amd_iommu_pci_seg *pci_seg; 162 163 for_each_pci_segment(pci_seg) { 164 if (pci_seg->id == seg) 165 return pci_seg->rlookup_table[devid]; 166 } 167 return NULL; 168 } 169 170 static struct amd_iommu *rlookup_amd_iommu(struct device *dev) 171 { 172 u16 seg = get_device_segment(dev); 173 int devid = get_device_sbdf_id(dev); 174 175 if (devid < 0) 176 return NULL; 177 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid)); 178 } 179 180 static struct protection_domain *to_pdomain(struct iommu_domain *dom) 181 { 182 return container_of(dom, struct protection_domain, domain); 183 } 184 185 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid) 186 { 187 struct iommu_dev_data *dev_data; 188 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 189 190 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 191 if (!dev_data) 192 return NULL; 193 194 spin_lock_init(&dev_data->lock); 195 dev_data->devid = devid; 196 ratelimit_default_init(&dev_data->rs); 197 198 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list); 199 return dev_data; 200 } 201 202 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid) 203 { 204 struct iommu_dev_data *dev_data; 205 struct llist_node *node; 206 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 207 208 if (llist_empty(&pci_seg->dev_data_list)) 209 return NULL; 210 211 node = pci_seg->dev_data_list.first; 212 llist_for_each_entry(dev_data, node, dev_data_list) { 213 if (dev_data->devid == devid) 214 return dev_data; 215 } 216 217 return NULL; 218 } 219 220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 221 { 222 struct amd_iommu *iommu; 223 struct dev_table_entry *dev_table; 224 u16 devid = pci_dev_id(pdev); 225 226 if (devid == alias) 227 return 0; 228 229 iommu = rlookup_amd_iommu(&pdev->dev); 230 if (!iommu) 231 return 0; 232 233 amd_iommu_set_rlookup_table(iommu, alias); 234 dev_table = get_dev_table(iommu); 235 memcpy(dev_table[alias].data, 236 dev_table[devid].data, 237 sizeof(dev_table[alias].data)); 238 239 return 0; 240 } 241 242 static void clone_aliases(struct amd_iommu *iommu, struct device *dev) 243 { 244 struct pci_dev *pdev; 245 246 if (!dev_is_pci(dev)) 247 return; 248 pdev = to_pci_dev(dev); 249 250 /* 251 * The IVRS alias stored in the alias table may not be 252 * part of the PCI DMA aliases if it's bus differs 253 * from the original device. 254 */ 255 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL); 256 257 pci_for_each_dma_alias(pdev, clone_alias, NULL); 258 } 259 260 static void setup_aliases(struct amd_iommu *iommu, struct device *dev) 261 { 262 struct pci_dev *pdev = to_pci_dev(dev); 263 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 264 u16 ivrs_alias; 265 266 /* For ACPI HID devices, there are no aliases */ 267 if (!dev_is_pci(dev)) 268 return; 269 270 /* 271 * Add the IVRS alias to the pci aliases if it is on the same 272 * bus. The IVRS table may know about a quirk that we don't. 273 */ 274 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)]; 275 if (ivrs_alias != pci_dev_id(pdev) && 276 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 277 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 278 279 clone_aliases(iommu, dev); 280 } 281 282 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid) 283 { 284 struct iommu_dev_data *dev_data; 285 286 dev_data = search_dev_data(iommu, devid); 287 288 if (dev_data == NULL) { 289 dev_data = alloc_dev_data(iommu, devid); 290 if (!dev_data) 291 return NULL; 292 293 if (translation_pre_enabled(iommu)) 294 dev_data->defer_attach = true; 295 } 296 297 return dev_data; 298 } 299 300 /* 301 * Find or create an IOMMU group for a acpihid device. 302 */ 303 static struct iommu_group *acpihid_device_group(struct device *dev) 304 { 305 struct acpihid_map_entry *p, *entry = NULL; 306 int devid; 307 308 devid = get_acpihid_device_id(dev, &entry); 309 if (devid < 0) 310 return ERR_PTR(devid); 311 312 list_for_each_entry(p, &acpihid_map, list) { 313 if ((devid == p->devid) && p->group) 314 entry->group = p->group; 315 } 316 317 if (!entry->group) 318 entry->group = generic_device_group(dev); 319 else 320 iommu_group_ref_get(entry->group); 321 322 return entry->group; 323 } 324 325 static bool pci_iommuv2_capable(struct pci_dev *pdev) 326 { 327 static const int caps[] = { 328 PCI_EXT_CAP_ID_PRI, 329 PCI_EXT_CAP_ID_PASID, 330 }; 331 int i, pos; 332 333 if (!pci_ats_supported(pdev)) 334 return false; 335 336 for (i = 0; i < 2; ++i) { 337 pos = pci_find_ext_capability(pdev, caps[i]); 338 if (pos == 0) 339 return false; 340 } 341 342 return true; 343 } 344 345 /* 346 * This function checks if the driver got a valid device from the caller to 347 * avoid dereferencing invalid pointers. 348 */ 349 static bool check_device(struct device *dev) 350 { 351 struct amd_iommu_pci_seg *pci_seg; 352 struct amd_iommu *iommu; 353 int devid, sbdf; 354 355 if (!dev) 356 return false; 357 358 sbdf = get_device_sbdf_id(dev); 359 if (sbdf < 0) 360 return false; 361 devid = PCI_SBDF_TO_DEVID(sbdf); 362 363 iommu = rlookup_amd_iommu(dev); 364 if (!iommu) 365 return false; 366 367 /* Out of our scope? */ 368 pci_seg = iommu->pci_seg; 369 if (devid > pci_seg->last_bdf) 370 return false; 371 372 return true; 373 } 374 375 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev) 376 { 377 struct iommu_dev_data *dev_data; 378 int devid, sbdf; 379 380 if (dev_iommu_priv_get(dev)) 381 return 0; 382 383 sbdf = get_device_sbdf_id(dev); 384 if (sbdf < 0) 385 return sbdf; 386 387 devid = PCI_SBDF_TO_DEVID(sbdf); 388 dev_data = find_dev_data(iommu, devid); 389 if (!dev_data) 390 return -ENOMEM; 391 392 dev_data->dev = dev; 393 setup_aliases(iommu, dev); 394 395 /* 396 * By default we use passthrough mode for IOMMUv2 capable device. 397 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 398 * invalid address), we ignore the capability for the device so 399 * it'll be forced to go into translation mode. 400 */ 401 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 402 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { 403 dev_data->iommu_v2 = iommu->is_iommu_v2; 404 } 405 406 dev_iommu_priv_set(dev, dev_data); 407 408 return 0; 409 } 410 411 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev) 412 { 413 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 414 struct dev_table_entry *dev_table = get_dev_table(iommu); 415 int devid, sbdf; 416 417 sbdf = get_device_sbdf_id(dev); 418 if (sbdf < 0) 419 return; 420 421 devid = PCI_SBDF_TO_DEVID(sbdf); 422 pci_seg->rlookup_table[devid] = NULL; 423 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry)); 424 425 setup_aliases(iommu, dev); 426 } 427 428 static void amd_iommu_uninit_device(struct device *dev) 429 { 430 struct iommu_dev_data *dev_data; 431 432 dev_data = dev_iommu_priv_get(dev); 433 if (!dev_data) 434 return; 435 436 if (dev_data->domain) 437 detach_device(dev); 438 439 dev_iommu_priv_set(dev, NULL); 440 441 /* 442 * We keep dev_data around for unplugged devices and reuse it when the 443 * device is re-plugged - not doing so would introduce a ton of races. 444 */ 445 } 446 447 /**************************************************************************** 448 * 449 * Interrupt handling functions 450 * 451 ****************************************************************************/ 452 453 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid) 454 { 455 int i; 456 struct dev_table_entry *dev_table = get_dev_table(iommu); 457 458 for (i = 0; i < 4; ++i) 459 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]); 460 } 461 462 static void dump_command(unsigned long phys_addr) 463 { 464 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 465 int i; 466 467 for (i = 0; i < 4; ++i) 468 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 469 } 470 471 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event) 472 { 473 struct iommu_dev_data *dev_data = NULL; 474 int devid, vmg_tag, flags; 475 struct pci_dev *pdev; 476 u64 spa; 477 478 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 479 vmg_tag = (event[1]) & 0xFFFF; 480 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 481 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); 482 483 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 484 devid & 0xff); 485 if (pdev) 486 dev_data = dev_iommu_priv_get(&pdev->dev); 487 488 if (dev_data) { 489 if (__ratelimit(&dev_data->rs)) { 490 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 491 vmg_tag, spa, flags); 492 } 493 } else { 494 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 495 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 496 vmg_tag, spa, flags); 497 } 498 499 if (pdev) 500 pci_dev_put(pdev); 501 } 502 503 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event) 504 { 505 struct iommu_dev_data *dev_data = NULL; 506 int devid, flags_rmp, vmg_tag, flags; 507 struct pci_dev *pdev; 508 u64 gpa; 509 510 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 511 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; 512 vmg_tag = (event[1]) & 0xFFFF; 513 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 514 gpa = ((u64)event[3] << 32) | event[2]; 515 516 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 517 devid & 0xff); 518 if (pdev) 519 dev_data = dev_iommu_priv_get(&pdev->dev); 520 521 if (dev_data) { 522 if (__ratelimit(&dev_data->rs)) { 523 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 524 vmg_tag, gpa, flags_rmp, flags); 525 } 526 } else { 527 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 528 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 529 vmg_tag, gpa, flags_rmp, flags); 530 } 531 532 if (pdev) 533 pci_dev_put(pdev); 534 } 535 536 #define IS_IOMMU_MEM_TRANSACTION(flags) \ 537 (((flags) & EVENT_FLAG_I) == 0) 538 539 #define IS_WRITE_REQUEST(flags) \ 540 ((flags) & EVENT_FLAG_RW) 541 542 static void amd_iommu_report_page_fault(struct amd_iommu *iommu, 543 u16 devid, u16 domain_id, 544 u64 address, int flags) 545 { 546 struct iommu_dev_data *dev_data = NULL; 547 struct pci_dev *pdev; 548 549 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 550 devid & 0xff); 551 if (pdev) 552 dev_data = dev_iommu_priv_get(&pdev->dev); 553 554 if (dev_data) { 555 /* 556 * If this is a DMA fault (for which the I(nterrupt) 557 * bit will be unset), allow report_iommu_fault() to 558 * prevent logging it. 559 */ 560 if (IS_IOMMU_MEM_TRANSACTION(flags)) { 561 /* Device not attached to domain properly */ 562 if (dev_data->domain == NULL) { 563 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n"); 564 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n", 565 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), 566 PCI_FUNC(devid), domain_id); 567 goto out; 568 } 569 570 if (!report_iommu_fault(&dev_data->domain->domain, 571 &pdev->dev, address, 572 IS_WRITE_REQUEST(flags) ? 573 IOMMU_FAULT_WRITE : 574 IOMMU_FAULT_READ)) 575 goto out; 576 } 577 578 if (__ratelimit(&dev_data->rs)) { 579 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 580 domain_id, address, flags); 581 } 582 } else { 583 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 584 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 585 domain_id, address, flags); 586 } 587 588 out: 589 if (pdev) 590 pci_dev_put(pdev); 591 } 592 593 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 594 { 595 struct device *dev = iommu->iommu.dev; 596 int type, devid, flags, tag; 597 volatile u32 *event = __evt; 598 int count = 0; 599 u64 address; 600 u32 pasid; 601 602 retry: 603 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 604 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 605 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 606 (event[1] & EVENT_DOMID_MASK_LO); 607 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 608 address = (u64)(((u64)event[3]) << 32) | event[2]; 609 610 if (type == 0) { 611 /* Did we hit the erratum? */ 612 if (++count == LOOP_TIMEOUT) { 613 pr_err("No event written to event log\n"); 614 return; 615 } 616 udelay(1); 617 goto retry; 618 } 619 620 if (type == EVENT_TYPE_IO_FAULT) { 621 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags); 622 return; 623 } 624 625 switch (type) { 626 case EVENT_TYPE_ILL_DEV: 627 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 628 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 629 pasid, address, flags); 630 dump_dte_entry(iommu, devid); 631 break; 632 case EVENT_TYPE_DEV_TAB_ERR: 633 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x " 634 "address=0x%llx flags=0x%04x]\n", 635 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 636 address, flags); 637 break; 638 case EVENT_TYPE_PAGE_TAB_ERR: 639 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 640 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 641 pasid, address, flags); 642 break; 643 case EVENT_TYPE_ILL_CMD: 644 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 645 dump_command(address); 646 break; 647 case EVENT_TYPE_CMD_HARD_ERR: 648 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 649 address, flags); 650 break; 651 case EVENT_TYPE_IOTLB_INV_TO: 652 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n", 653 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 654 address); 655 break; 656 case EVENT_TYPE_INV_DEV_REQ: 657 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 658 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 659 pasid, address, flags); 660 break; 661 case EVENT_TYPE_RMP_FAULT: 662 amd_iommu_report_rmp_fault(iommu, event); 663 break; 664 case EVENT_TYPE_RMP_HW_ERR: 665 amd_iommu_report_rmp_hw_error(iommu, event); 666 break; 667 case EVENT_TYPE_INV_PPR_REQ: 668 pasid = PPR_PASID(*((u64 *)__evt)); 669 tag = event[1] & 0x03FF; 670 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 671 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 672 pasid, address, flags, tag); 673 break; 674 default: 675 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 676 event[0], event[1], event[2], event[3]); 677 } 678 679 /* 680 * To detect the hardware errata 732 we need to clear the 681 * entry back to zero. This issue does not exist on SNP 682 * enabled system. Also this buffer is not writeable on 683 * SNP enabled system. 684 */ 685 if (!amd_iommu_snp_en) 686 memset(__evt, 0, 4 * sizeof(u32)); 687 } 688 689 static void iommu_poll_events(struct amd_iommu *iommu) 690 { 691 u32 head, tail; 692 693 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 694 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 695 696 while (head != tail) { 697 iommu_print_event(iommu, iommu->evt_buf + head); 698 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 699 } 700 701 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 702 } 703 704 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) 705 { 706 struct amd_iommu_fault fault; 707 708 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { 709 pr_err_ratelimited("Unknown PPR request received\n"); 710 return; 711 } 712 713 fault.address = raw[1]; 714 fault.pasid = PPR_PASID(raw[0]); 715 fault.sbdf = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0])); 716 fault.tag = PPR_TAG(raw[0]); 717 fault.flags = PPR_FLAGS(raw[0]); 718 719 atomic_notifier_call_chain(&ppr_notifier, 0, &fault); 720 } 721 722 static void iommu_poll_ppr_log(struct amd_iommu *iommu) 723 { 724 u32 head, tail; 725 726 if (iommu->ppr_log == NULL) 727 return; 728 729 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 730 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 731 732 while (head != tail) { 733 volatile u64 *raw; 734 u64 entry[2]; 735 int i; 736 737 raw = (u64 *)(iommu->ppr_log + head); 738 739 /* 740 * Hardware bug: Interrupt may arrive before the entry is 741 * written to memory. If this happens we need to wait for the 742 * entry to arrive. 743 */ 744 for (i = 0; i < LOOP_TIMEOUT; ++i) { 745 if (PPR_REQ_TYPE(raw[0]) != 0) 746 break; 747 udelay(1); 748 } 749 750 /* Avoid memcpy function-call overhead */ 751 entry[0] = raw[0]; 752 entry[1] = raw[1]; 753 754 /* 755 * To detect the hardware errata 733 we need to clear the 756 * entry back to zero. This issue does not exist on SNP 757 * enabled system. Also this buffer is not writeable on 758 * SNP enabled system. 759 */ 760 if (!amd_iommu_snp_en) 761 raw[0] = raw[1] = 0UL; 762 763 /* Update head pointer of hardware ring-buffer */ 764 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; 765 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 766 767 /* Handle PPR entry */ 768 iommu_handle_ppr_entry(iommu, entry); 769 770 /* Refresh ring-buffer information */ 771 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 772 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 773 } 774 } 775 776 #ifdef CONFIG_IRQ_REMAP 777 static int (*iommu_ga_log_notifier)(u32); 778 779 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 780 { 781 iommu_ga_log_notifier = notifier; 782 783 return 0; 784 } 785 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 786 787 static void iommu_poll_ga_log(struct amd_iommu *iommu) 788 { 789 u32 head, tail; 790 791 if (iommu->ga_log == NULL) 792 return; 793 794 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 795 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 796 797 while (head != tail) { 798 volatile u64 *raw; 799 u64 log_entry; 800 801 raw = (u64 *)(iommu->ga_log + head); 802 803 /* Avoid memcpy function-call overhead */ 804 log_entry = *raw; 805 806 /* Update head pointer of hardware ring-buffer */ 807 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 808 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 809 810 /* Handle GA entry */ 811 switch (GA_REQ_TYPE(log_entry)) { 812 case GA_GUEST_NR: 813 if (!iommu_ga_log_notifier) 814 break; 815 816 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 817 __func__, GA_DEVID(log_entry), 818 GA_TAG(log_entry)); 819 820 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 821 pr_err("GA log notifier failed.\n"); 822 break; 823 default: 824 break; 825 } 826 } 827 } 828 829 static void 830 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 831 { 832 if (!irq_remapping_enabled || !dev_is_pci(dev) || 833 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev))) 834 return; 835 836 dev_set_msi_domain(dev, iommu->ir_domain); 837 } 838 839 #else /* CONFIG_IRQ_REMAP */ 840 static inline void 841 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 842 #endif /* !CONFIG_IRQ_REMAP */ 843 844 #define AMD_IOMMU_INT_MASK \ 845 (MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \ 846 MMIO_STATUS_EVT_INT_MASK | \ 847 MMIO_STATUS_PPR_INT_MASK | \ 848 MMIO_STATUS_GALOG_OVERFLOW_MASK | \ 849 MMIO_STATUS_GALOG_INT_MASK) 850 851 irqreturn_t amd_iommu_int_thread(int irq, void *data) 852 { 853 struct amd_iommu *iommu = (struct amd_iommu *) data; 854 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 855 856 while (status & AMD_IOMMU_INT_MASK) { 857 /* Enable interrupt sources again */ 858 writel(AMD_IOMMU_INT_MASK, 859 iommu->mmio_base + MMIO_STATUS_OFFSET); 860 861 if (status & MMIO_STATUS_EVT_INT_MASK) { 862 pr_devel("Processing IOMMU Event Log\n"); 863 iommu_poll_events(iommu); 864 } 865 866 if (status & MMIO_STATUS_PPR_INT_MASK) { 867 pr_devel("Processing IOMMU PPR Log\n"); 868 iommu_poll_ppr_log(iommu); 869 } 870 871 #ifdef CONFIG_IRQ_REMAP 872 if (status & (MMIO_STATUS_GALOG_INT_MASK | 873 MMIO_STATUS_GALOG_OVERFLOW_MASK)) { 874 pr_devel("Processing IOMMU GA Log\n"); 875 iommu_poll_ga_log(iommu); 876 } 877 878 if (status & MMIO_STATUS_GALOG_OVERFLOW_MASK) { 879 pr_info_ratelimited("IOMMU GA Log overflow\n"); 880 amd_iommu_restart_ga_log(iommu); 881 } 882 #endif 883 884 if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) { 885 pr_info_ratelimited("IOMMU event log overflow\n"); 886 amd_iommu_restart_event_logging(iommu); 887 } 888 889 /* 890 * Hardware bug: ERBT1312 891 * When re-enabling interrupt (by writing 1 892 * to clear the bit), the hardware might also try to set 893 * the interrupt bit in the event status register. 894 * In this scenario, the bit will be set, and disable 895 * subsequent interrupts. 896 * 897 * Workaround: The IOMMU driver should read back the 898 * status register and check if the interrupt bits are cleared. 899 * If not, driver will need to go through the interrupt handler 900 * again and re-clear the bits 901 */ 902 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 903 } 904 return IRQ_HANDLED; 905 } 906 907 irqreturn_t amd_iommu_int_handler(int irq, void *data) 908 { 909 return IRQ_WAKE_THREAD; 910 } 911 912 /**************************************************************************** 913 * 914 * IOMMU command queuing functions 915 * 916 ****************************************************************************/ 917 918 static int wait_on_sem(struct amd_iommu *iommu, u64 data) 919 { 920 int i = 0; 921 922 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { 923 udelay(1); 924 i += 1; 925 } 926 927 if (i == LOOP_TIMEOUT) { 928 pr_alert("Completion-Wait loop timed out\n"); 929 return -EIO; 930 } 931 932 return 0; 933 } 934 935 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 936 struct iommu_cmd *cmd) 937 { 938 u8 *target; 939 u32 tail; 940 941 /* Copy command to buffer */ 942 tail = iommu->cmd_buf_tail; 943 target = iommu->cmd_buf + tail; 944 memcpy(target, cmd, sizeof(*cmd)); 945 946 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 947 iommu->cmd_buf_tail = tail; 948 949 /* Tell the IOMMU about it */ 950 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 951 } 952 953 static void build_completion_wait(struct iommu_cmd *cmd, 954 struct amd_iommu *iommu, 955 u64 data) 956 { 957 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); 958 959 memset(cmd, 0, sizeof(*cmd)); 960 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 961 cmd->data[1] = upper_32_bits(paddr); 962 cmd->data[2] = lower_32_bits(data); 963 cmd->data[3] = upper_32_bits(data); 964 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 965 } 966 967 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 968 { 969 memset(cmd, 0, sizeof(*cmd)); 970 cmd->data[0] = devid; 971 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 972 } 973 974 /* 975 * Builds an invalidation address which is suitable for one page or multiple 976 * pages. Sets the size bit (S) as needed is more than one page is flushed. 977 */ 978 static inline u64 build_inv_address(u64 address, size_t size) 979 { 980 u64 pages, end, msb_diff; 981 982 pages = iommu_num_pages(address, size, PAGE_SIZE); 983 984 if (pages == 1) 985 return address & PAGE_MASK; 986 987 end = address + size - 1; 988 989 /* 990 * msb_diff would hold the index of the most significant bit that 991 * flipped between the start and end. 992 */ 993 msb_diff = fls64(end ^ address) - 1; 994 995 /* 996 * Bits 63:52 are sign extended. If for some reason bit 51 is different 997 * between the start and the end, invalidate everything. 998 */ 999 if (unlikely(msb_diff > 51)) { 1000 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 1001 } else { 1002 /* 1003 * The msb-bit must be clear on the address. Just set all the 1004 * lower bits. 1005 */ 1006 address |= (1ull << msb_diff) - 1; 1007 } 1008 1009 /* Clear bits 11:0 */ 1010 address &= PAGE_MASK; 1011 1012 /* Set the size bit - we flush more than one 4kb page */ 1013 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; 1014 } 1015 1016 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 1017 size_t size, u16 domid, int pde) 1018 { 1019 u64 inv_address = build_inv_address(address, size); 1020 1021 memset(cmd, 0, sizeof(*cmd)); 1022 cmd->data[1] |= domid; 1023 cmd->data[2] = lower_32_bits(inv_address); 1024 cmd->data[3] = upper_32_bits(inv_address); 1025 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1026 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ 1027 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1028 } 1029 1030 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 1031 u64 address, size_t size) 1032 { 1033 u64 inv_address = build_inv_address(address, size); 1034 1035 memset(cmd, 0, sizeof(*cmd)); 1036 cmd->data[0] = devid; 1037 cmd->data[0] |= (qdep & 0xff) << 24; 1038 cmd->data[1] = devid; 1039 cmd->data[2] = lower_32_bits(inv_address); 1040 cmd->data[3] = upper_32_bits(inv_address); 1041 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1042 } 1043 1044 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid, 1045 u64 address, bool size) 1046 { 1047 memset(cmd, 0, sizeof(*cmd)); 1048 1049 address &= ~(0xfffULL); 1050 1051 cmd->data[0] = pasid; 1052 cmd->data[1] = domid; 1053 cmd->data[2] = lower_32_bits(address); 1054 cmd->data[3] = upper_32_bits(address); 1055 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1056 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1057 if (size) 1058 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 1059 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1060 } 1061 1062 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1063 int qdep, u64 address, bool size) 1064 { 1065 memset(cmd, 0, sizeof(*cmd)); 1066 1067 address &= ~(0xfffULL); 1068 1069 cmd->data[0] = devid; 1070 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 1071 cmd->data[0] |= (qdep & 0xff) << 24; 1072 cmd->data[1] = devid; 1073 cmd->data[1] |= (pasid & 0xff) << 16; 1074 cmd->data[2] = lower_32_bits(address); 1075 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1076 cmd->data[3] = upper_32_bits(address); 1077 if (size) 1078 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 1079 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1080 } 1081 1082 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1083 int status, int tag, bool gn) 1084 { 1085 memset(cmd, 0, sizeof(*cmd)); 1086 1087 cmd->data[0] = devid; 1088 if (gn) { 1089 cmd->data[1] = pasid; 1090 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 1091 } 1092 cmd->data[3] = tag & 0x1ff; 1093 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 1094 1095 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 1096 } 1097 1098 static void build_inv_all(struct iommu_cmd *cmd) 1099 { 1100 memset(cmd, 0, sizeof(*cmd)); 1101 CMD_SET_TYPE(cmd, CMD_INV_ALL); 1102 } 1103 1104 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 1105 { 1106 memset(cmd, 0, sizeof(*cmd)); 1107 cmd->data[0] = devid; 1108 CMD_SET_TYPE(cmd, CMD_INV_IRT); 1109 } 1110 1111 /* 1112 * Writes the command to the IOMMUs command buffer and informs the 1113 * hardware about the new command. 1114 */ 1115 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 1116 struct iommu_cmd *cmd, 1117 bool sync) 1118 { 1119 unsigned int count = 0; 1120 u32 left, next_tail; 1121 1122 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1123 again: 1124 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1125 1126 if (left <= 0x20) { 1127 /* Skip udelay() the first time around */ 1128 if (count++) { 1129 if (count == LOOP_TIMEOUT) { 1130 pr_err("Command buffer timeout\n"); 1131 return -EIO; 1132 } 1133 1134 udelay(1); 1135 } 1136 1137 /* Update head and recheck remaining space */ 1138 iommu->cmd_buf_head = readl(iommu->mmio_base + 1139 MMIO_CMD_HEAD_OFFSET); 1140 1141 goto again; 1142 } 1143 1144 copy_cmd_to_buffer(iommu, cmd); 1145 1146 /* Do we need to make sure all commands are processed? */ 1147 iommu->need_sync = sync; 1148 1149 return 0; 1150 } 1151 1152 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1153 struct iommu_cmd *cmd, 1154 bool sync) 1155 { 1156 unsigned long flags; 1157 int ret; 1158 1159 raw_spin_lock_irqsave(&iommu->lock, flags); 1160 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1161 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1162 1163 return ret; 1164 } 1165 1166 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1167 { 1168 return iommu_queue_command_sync(iommu, cmd, true); 1169 } 1170 1171 /* 1172 * This function queues a completion wait command into the command 1173 * buffer of an IOMMU 1174 */ 1175 static int iommu_completion_wait(struct amd_iommu *iommu) 1176 { 1177 struct iommu_cmd cmd; 1178 unsigned long flags; 1179 int ret; 1180 u64 data; 1181 1182 if (!iommu->need_sync) 1183 return 0; 1184 1185 raw_spin_lock_irqsave(&iommu->lock, flags); 1186 1187 data = ++iommu->cmd_sem_val; 1188 build_completion_wait(&cmd, iommu, data); 1189 1190 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1191 if (ret) 1192 goto out_unlock; 1193 1194 ret = wait_on_sem(iommu, data); 1195 1196 out_unlock: 1197 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1198 1199 return ret; 1200 } 1201 1202 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1203 { 1204 struct iommu_cmd cmd; 1205 1206 build_inv_dte(&cmd, devid); 1207 1208 return iommu_queue_command(iommu, &cmd); 1209 } 1210 1211 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1212 { 1213 u32 devid; 1214 u16 last_bdf = iommu->pci_seg->last_bdf; 1215 1216 for (devid = 0; devid <= last_bdf; ++devid) 1217 iommu_flush_dte(iommu, devid); 1218 1219 iommu_completion_wait(iommu); 1220 } 1221 1222 /* 1223 * This function uses heavy locking and may disable irqs for some time. But 1224 * this is no issue because it is only called during resume. 1225 */ 1226 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1227 { 1228 u32 dom_id; 1229 u16 last_bdf = iommu->pci_seg->last_bdf; 1230 1231 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) { 1232 struct iommu_cmd cmd; 1233 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1234 dom_id, 1); 1235 iommu_queue_command(iommu, &cmd); 1236 } 1237 1238 iommu_completion_wait(iommu); 1239 } 1240 1241 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1242 { 1243 struct iommu_cmd cmd; 1244 1245 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1246 dom_id, 1); 1247 iommu_queue_command(iommu, &cmd); 1248 1249 iommu_completion_wait(iommu); 1250 } 1251 1252 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1253 { 1254 struct iommu_cmd cmd; 1255 1256 build_inv_all(&cmd); 1257 1258 iommu_queue_command(iommu, &cmd); 1259 iommu_completion_wait(iommu); 1260 } 1261 1262 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1263 { 1264 struct iommu_cmd cmd; 1265 1266 build_inv_irt(&cmd, devid); 1267 1268 iommu_queue_command(iommu, &cmd); 1269 } 1270 1271 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1272 { 1273 u32 devid; 1274 u16 last_bdf = iommu->pci_seg->last_bdf; 1275 1276 for (devid = 0; devid <= last_bdf; devid++) 1277 iommu_flush_irt(iommu, devid); 1278 1279 iommu_completion_wait(iommu); 1280 } 1281 1282 void iommu_flush_all_caches(struct amd_iommu *iommu) 1283 { 1284 if (iommu_feature(iommu, FEATURE_IA)) { 1285 amd_iommu_flush_all(iommu); 1286 } else { 1287 amd_iommu_flush_dte_all(iommu); 1288 amd_iommu_flush_irt_all(iommu); 1289 amd_iommu_flush_tlb_all(iommu); 1290 } 1291 } 1292 1293 /* 1294 * Command send function for flushing on-device TLB 1295 */ 1296 static int device_flush_iotlb(struct iommu_dev_data *dev_data, 1297 u64 address, size_t size) 1298 { 1299 struct amd_iommu *iommu; 1300 struct iommu_cmd cmd; 1301 int qdep; 1302 1303 qdep = dev_data->ats.qdep; 1304 iommu = rlookup_amd_iommu(dev_data->dev); 1305 if (!iommu) 1306 return -EINVAL; 1307 1308 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); 1309 1310 return iommu_queue_command(iommu, &cmd); 1311 } 1312 1313 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1314 { 1315 struct amd_iommu *iommu = data; 1316 1317 return iommu_flush_dte(iommu, alias); 1318 } 1319 1320 /* 1321 * Command send function for invalidating a device table entry 1322 */ 1323 static int device_flush_dte(struct iommu_dev_data *dev_data) 1324 { 1325 struct amd_iommu *iommu; 1326 struct pci_dev *pdev = NULL; 1327 struct amd_iommu_pci_seg *pci_seg; 1328 u16 alias; 1329 int ret; 1330 1331 iommu = rlookup_amd_iommu(dev_data->dev); 1332 if (!iommu) 1333 return -EINVAL; 1334 1335 if (dev_is_pci(dev_data->dev)) 1336 pdev = to_pci_dev(dev_data->dev); 1337 1338 if (pdev) 1339 ret = pci_for_each_dma_alias(pdev, 1340 device_flush_dte_alias, iommu); 1341 else 1342 ret = iommu_flush_dte(iommu, dev_data->devid); 1343 if (ret) 1344 return ret; 1345 1346 pci_seg = iommu->pci_seg; 1347 alias = pci_seg->alias_table[dev_data->devid]; 1348 if (alias != dev_data->devid) { 1349 ret = iommu_flush_dte(iommu, alias); 1350 if (ret) 1351 return ret; 1352 } 1353 1354 if (dev_data->ats.enabled) 1355 ret = device_flush_iotlb(dev_data, 0, ~0UL); 1356 1357 return ret; 1358 } 1359 1360 /* 1361 * TLB invalidation function which is called from the mapping functions. 1362 * It invalidates a single PTE if the range to flush is within a single 1363 * page. Otherwise it flushes the whole TLB of the IOMMU. 1364 */ 1365 static void __domain_flush_pages(struct protection_domain *domain, 1366 u64 address, size_t size, int pde) 1367 { 1368 struct iommu_dev_data *dev_data; 1369 struct iommu_cmd cmd; 1370 int ret = 0, i; 1371 1372 build_inv_iommu_pages(&cmd, address, size, domain->id, pde); 1373 1374 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1375 if (!domain->dev_iommu[i]) 1376 continue; 1377 1378 /* 1379 * Devices of this domain are behind this IOMMU 1380 * We need a TLB flush 1381 */ 1382 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1383 } 1384 1385 list_for_each_entry(dev_data, &domain->dev_list, list) { 1386 1387 if (!dev_data->ats.enabled) 1388 continue; 1389 1390 ret |= device_flush_iotlb(dev_data, address, size); 1391 } 1392 1393 WARN_ON(ret); 1394 } 1395 1396 static void domain_flush_pages(struct protection_domain *domain, 1397 u64 address, size_t size, int pde) 1398 { 1399 if (likely(!amd_iommu_np_cache)) { 1400 __domain_flush_pages(domain, address, size, pde); 1401 return; 1402 } 1403 1404 /* 1405 * When NpCache is on, we infer that we run in a VM and use a vIOMMU. 1406 * In such setups it is best to avoid flushes of ranges which are not 1407 * naturally aligned, since it would lead to flushes of unmodified 1408 * PTEs. Such flushes would require the hypervisor to do more work than 1409 * necessary. Therefore, perform repeated flushes of aligned ranges 1410 * until you cover the range. Each iteration flushes the smaller 1411 * between the natural alignment of the address that we flush and the 1412 * greatest naturally aligned region that fits in the range. 1413 */ 1414 while (size != 0) { 1415 int addr_alignment = __ffs(address); 1416 int size_alignment = __fls(size); 1417 int min_alignment; 1418 size_t flush_size; 1419 1420 /* 1421 * size is always non-zero, but address might be zero, causing 1422 * addr_alignment to be negative. As the casting of the 1423 * argument in __ffs(address) to long might trim the high bits 1424 * of the address on x86-32, cast to long when doing the check. 1425 */ 1426 if (likely((unsigned long)address != 0)) 1427 min_alignment = min(addr_alignment, size_alignment); 1428 else 1429 min_alignment = size_alignment; 1430 1431 flush_size = 1ul << min_alignment; 1432 1433 __domain_flush_pages(domain, address, flush_size, pde); 1434 address += flush_size; 1435 size -= flush_size; 1436 } 1437 } 1438 1439 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1440 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain) 1441 { 1442 domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); 1443 } 1444 1445 void amd_iommu_domain_flush_complete(struct protection_domain *domain) 1446 { 1447 int i; 1448 1449 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1450 if (domain && !domain->dev_iommu[i]) 1451 continue; 1452 1453 /* 1454 * Devices of this domain are behind this IOMMU 1455 * We need to wait for completion of all commands. 1456 */ 1457 iommu_completion_wait(amd_iommus[i]); 1458 } 1459 } 1460 1461 /* Flush the not present cache if it exists */ 1462 static void domain_flush_np_cache(struct protection_domain *domain, 1463 dma_addr_t iova, size_t size) 1464 { 1465 if (unlikely(amd_iommu_np_cache)) { 1466 unsigned long flags; 1467 1468 spin_lock_irqsave(&domain->lock, flags); 1469 domain_flush_pages(domain, iova, size, 1); 1470 amd_iommu_domain_flush_complete(domain); 1471 spin_unlock_irqrestore(&domain->lock, flags); 1472 } 1473 } 1474 1475 1476 /* 1477 * This function flushes the DTEs for all devices in domain 1478 */ 1479 static void domain_flush_devices(struct protection_domain *domain) 1480 { 1481 struct iommu_dev_data *dev_data; 1482 1483 list_for_each_entry(dev_data, &domain->dev_list, list) 1484 device_flush_dte(dev_data); 1485 } 1486 1487 /**************************************************************************** 1488 * 1489 * The next functions belong to the domain allocation. A domain is 1490 * allocated for every IOMMU as the default domain. If device isolation 1491 * is enabled, every device get its own domain. The most important thing 1492 * about domains is the page table mapping the DMA address space they 1493 * contain. 1494 * 1495 ****************************************************************************/ 1496 1497 static u16 domain_id_alloc(void) 1498 { 1499 int id; 1500 1501 spin_lock(&pd_bitmap_lock); 1502 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1503 BUG_ON(id == 0); 1504 if (id > 0 && id < MAX_DOMAIN_ID) 1505 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1506 else 1507 id = 0; 1508 spin_unlock(&pd_bitmap_lock); 1509 1510 return id; 1511 } 1512 1513 static void domain_id_free(int id) 1514 { 1515 spin_lock(&pd_bitmap_lock); 1516 if (id > 0 && id < MAX_DOMAIN_ID) 1517 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1518 spin_unlock(&pd_bitmap_lock); 1519 } 1520 1521 static void free_gcr3_tbl_level1(u64 *tbl) 1522 { 1523 u64 *ptr; 1524 int i; 1525 1526 for (i = 0; i < 512; ++i) { 1527 if (!(tbl[i] & GCR3_VALID)) 1528 continue; 1529 1530 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1531 1532 free_page((unsigned long)ptr); 1533 } 1534 } 1535 1536 static void free_gcr3_tbl_level2(u64 *tbl) 1537 { 1538 u64 *ptr; 1539 int i; 1540 1541 for (i = 0; i < 512; ++i) { 1542 if (!(tbl[i] & GCR3_VALID)) 1543 continue; 1544 1545 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1546 1547 free_gcr3_tbl_level1(ptr); 1548 } 1549 } 1550 1551 static void free_gcr3_table(struct protection_domain *domain) 1552 { 1553 if (domain->glx == 2) 1554 free_gcr3_tbl_level2(domain->gcr3_tbl); 1555 else if (domain->glx == 1) 1556 free_gcr3_tbl_level1(domain->gcr3_tbl); 1557 else 1558 BUG_ON(domain->glx != 0); 1559 1560 free_page((unsigned long)domain->gcr3_tbl); 1561 } 1562 1563 static void set_dte_entry(struct amd_iommu *iommu, u16 devid, 1564 struct protection_domain *domain, bool ats, bool ppr) 1565 { 1566 u64 pte_root = 0; 1567 u64 flags = 0; 1568 u32 old_domid; 1569 struct dev_table_entry *dev_table = get_dev_table(iommu); 1570 1571 if (domain->iop.mode != PAGE_MODE_NONE) 1572 pte_root = iommu_virt_to_phys(domain->iop.root); 1573 1574 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) 1575 << DEV_ENTRY_MODE_SHIFT; 1576 1577 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V; 1578 1579 /* 1580 * When SNP is enabled, Only set TV bit when IOMMU 1581 * page translation is in use. 1582 */ 1583 if (!amd_iommu_snp_en || (domain->id != 0)) 1584 pte_root |= DTE_FLAG_TV; 1585 1586 flags = dev_table[devid].data[1]; 1587 1588 if (ats) 1589 flags |= DTE_FLAG_IOTLB; 1590 1591 if (ppr) { 1592 if (iommu_feature(iommu, FEATURE_EPHSUP)) 1593 pte_root |= 1ULL << DEV_ENTRY_PPR; 1594 } 1595 1596 if (domain->flags & PD_IOMMUV2_MASK) { 1597 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); 1598 u64 glx = domain->glx; 1599 u64 tmp; 1600 1601 pte_root |= DTE_FLAG_GV; 1602 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1603 1604 /* First mask out possible old values for GCR3 table */ 1605 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1606 flags &= ~tmp; 1607 1608 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1609 flags &= ~tmp; 1610 1611 /* Encode GCR3 table into DTE */ 1612 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1613 pte_root |= tmp; 1614 1615 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1616 flags |= tmp; 1617 1618 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1619 flags |= tmp; 1620 1621 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) { 1622 dev_table[devid].data[2] |= 1623 ((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT); 1624 } 1625 1626 if (domain->flags & PD_GIOV_MASK) 1627 pte_root |= DTE_FLAG_GIOV; 1628 } 1629 1630 flags &= ~DEV_DOMID_MASK; 1631 flags |= domain->id; 1632 1633 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK; 1634 dev_table[devid].data[1] = flags; 1635 dev_table[devid].data[0] = pte_root; 1636 1637 /* 1638 * A kdump kernel might be replacing a domain ID that was copied from 1639 * the previous kernel--if so, it needs to flush the translation cache 1640 * entries for the old domain ID that is being overwritten 1641 */ 1642 if (old_domid) { 1643 amd_iommu_flush_tlb_domid(iommu, old_domid); 1644 } 1645 } 1646 1647 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid) 1648 { 1649 struct dev_table_entry *dev_table = get_dev_table(iommu); 1650 1651 /* remove entry from the device table seen by the hardware */ 1652 dev_table[devid].data[0] = DTE_FLAG_V; 1653 1654 if (!amd_iommu_snp_en) 1655 dev_table[devid].data[0] |= DTE_FLAG_TV; 1656 1657 dev_table[devid].data[1] &= DTE_FLAG_MASK; 1658 1659 amd_iommu_apply_erratum_63(iommu, devid); 1660 } 1661 1662 static void do_attach(struct iommu_dev_data *dev_data, 1663 struct protection_domain *domain) 1664 { 1665 struct amd_iommu *iommu; 1666 bool ats; 1667 1668 iommu = rlookup_amd_iommu(dev_data->dev); 1669 if (!iommu) 1670 return; 1671 ats = dev_data->ats.enabled; 1672 1673 /* Update data structures */ 1674 dev_data->domain = domain; 1675 list_add(&dev_data->list, &domain->dev_list); 1676 1677 /* Update NUMA Node ID */ 1678 if (domain->nid == NUMA_NO_NODE) 1679 domain->nid = dev_to_node(dev_data->dev); 1680 1681 /* Do reference counting */ 1682 domain->dev_iommu[iommu->index] += 1; 1683 domain->dev_cnt += 1; 1684 1685 /* Update device table */ 1686 set_dte_entry(iommu, dev_data->devid, domain, 1687 ats, dev_data->iommu_v2); 1688 clone_aliases(iommu, dev_data->dev); 1689 1690 device_flush_dte(dev_data); 1691 } 1692 1693 static void do_detach(struct iommu_dev_data *dev_data) 1694 { 1695 struct protection_domain *domain = dev_data->domain; 1696 struct amd_iommu *iommu; 1697 1698 iommu = rlookup_amd_iommu(dev_data->dev); 1699 if (!iommu) 1700 return; 1701 1702 /* Update data structures */ 1703 dev_data->domain = NULL; 1704 list_del(&dev_data->list); 1705 clear_dte_entry(iommu, dev_data->devid); 1706 clone_aliases(iommu, dev_data->dev); 1707 1708 /* Flush the DTE entry */ 1709 device_flush_dte(dev_data); 1710 1711 /* Flush IOTLB */ 1712 amd_iommu_domain_flush_tlb_pde(domain); 1713 1714 /* Wait for the flushes to finish */ 1715 amd_iommu_domain_flush_complete(domain); 1716 1717 /* decrease reference counters - needs to happen after the flushes */ 1718 domain->dev_iommu[iommu->index] -= 1; 1719 domain->dev_cnt -= 1; 1720 } 1721 1722 static void pdev_iommuv2_disable(struct pci_dev *pdev) 1723 { 1724 pci_disable_ats(pdev); 1725 pci_disable_pri(pdev); 1726 pci_disable_pasid(pdev); 1727 } 1728 1729 static int pdev_pri_ats_enable(struct pci_dev *pdev) 1730 { 1731 int ret; 1732 1733 /* Only allow access to user-accessible pages */ 1734 ret = pci_enable_pasid(pdev, 0); 1735 if (ret) 1736 return ret; 1737 1738 /* First reset the PRI state of the device */ 1739 ret = pci_reset_pri(pdev); 1740 if (ret) 1741 goto out_err_pasid; 1742 1743 /* Enable PRI */ 1744 /* FIXME: Hardcode number of outstanding requests for now */ 1745 ret = pci_enable_pri(pdev, 32); 1746 if (ret) 1747 goto out_err_pasid; 1748 1749 ret = pci_enable_ats(pdev, PAGE_SHIFT); 1750 if (ret) 1751 goto out_err_pri; 1752 1753 return 0; 1754 1755 out_err_pri: 1756 pci_disable_pri(pdev); 1757 1758 out_err_pasid: 1759 pci_disable_pasid(pdev); 1760 1761 return ret; 1762 } 1763 1764 /* 1765 * If a device is not yet associated with a domain, this function makes the 1766 * device visible in the domain 1767 */ 1768 static int attach_device(struct device *dev, 1769 struct protection_domain *domain) 1770 { 1771 struct iommu_dev_data *dev_data; 1772 struct pci_dev *pdev; 1773 unsigned long flags; 1774 int ret; 1775 1776 spin_lock_irqsave(&domain->lock, flags); 1777 1778 dev_data = dev_iommu_priv_get(dev); 1779 1780 spin_lock(&dev_data->lock); 1781 1782 ret = -EBUSY; 1783 if (dev_data->domain != NULL) 1784 goto out; 1785 1786 if (!dev_is_pci(dev)) 1787 goto skip_ats_check; 1788 1789 pdev = to_pci_dev(dev); 1790 if (domain->flags & PD_IOMMUV2_MASK) { 1791 struct iommu_domain *def_domain = iommu_get_dma_domain(dev); 1792 1793 ret = -EINVAL; 1794 1795 /* 1796 * In case of using AMD_IOMMU_V1 page table mode and the device 1797 * is enabling for PPR/ATS support (using v2 table), 1798 * we need to make sure that the domain type is identity map. 1799 */ 1800 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 1801 def_domain->type != IOMMU_DOMAIN_IDENTITY) { 1802 goto out; 1803 } 1804 1805 if (dev_data->iommu_v2) { 1806 if (pdev_pri_ats_enable(pdev) != 0) 1807 goto out; 1808 1809 dev_data->ats.enabled = true; 1810 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1811 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 1812 } 1813 } else if (amd_iommu_iotlb_sup && 1814 pci_enable_ats(pdev, PAGE_SHIFT) == 0) { 1815 dev_data->ats.enabled = true; 1816 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1817 } 1818 1819 skip_ats_check: 1820 ret = 0; 1821 1822 do_attach(dev_data, domain); 1823 1824 /* 1825 * We might boot into a crash-kernel here. The crashed kernel 1826 * left the caches in the IOMMU dirty. So we have to flush 1827 * here to evict all dirty stuff. 1828 */ 1829 amd_iommu_domain_flush_tlb_pde(domain); 1830 1831 amd_iommu_domain_flush_complete(domain); 1832 1833 out: 1834 spin_unlock(&dev_data->lock); 1835 1836 spin_unlock_irqrestore(&domain->lock, flags); 1837 1838 return ret; 1839 } 1840 1841 /* 1842 * Removes a device from a protection domain (with devtable_lock held) 1843 */ 1844 static void detach_device(struct device *dev) 1845 { 1846 struct protection_domain *domain; 1847 struct iommu_dev_data *dev_data; 1848 unsigned long flags; 1849 1850 dev_data = dev_iommu_priv_get(dev); 1851 domain = dev_data->domain; 1852 1853 spin_lock_irqsave(&domain->lock, flags); 1854 1855 spin_lock(&dev_data->lock); 1856 1857 /* 1858 * First check if the device is still attached. It might already 1859 * be detached from its domain because the generic 1860 * iommu_detach_group code detached it and we try again here in 1861 * our alias handling. 1862 */ 1863 if (WARN_ON(!dev_data->domain)) 1864 goto out; 1865 1866 do_detach(dev_data); 1867 1868 if (!dev_is_pci(dev)) 1869 goto out; 1870 1871 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) 1872 pdev_iommuv2_disable(to_pci_dev(dev)); 1873 else if (dev_data->ats.enabled) 1874 pci_disable_ats(to_pci_dev(dev)); 1875 1876 dev_data->ats.enabled = false; 1877 1878 out: 1879 spin_unlock(&dev_data->lock); 1880 1881 spin_unlock_irqrestore(&domain->lock, flags); 1882 } 1883 1884 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 1885 { 1886 struct iommu_device *iommu_dev; 1887 struct amd_iommu *iommu; 1888 int ret; 1889 1890 if (!check_device(dev)) 1891 return ERR_PTR(-ENODEV); 1892 1893 iommu = rlookup_amd_iommu(dev); 1894 if (!iommu) 1895 return ERR_PTR(-ENODEV); 1896 1897 /* Not registered yet? */ 1898 if (!iommu->iommu.ops) 1899 return ERR_PTR(-ENODEV); 1900 1901 if (dev_iommu_priv_get(dev)) 1902 return &iommu->iommu; 1903 1904 ret = iommu_init_device(iommu, dev); 1905 if (ret) { 1906 if (ret != -ENOTSUPP) 1907 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 1908 iommu_dev = ERR_PTR(ret); 1909 iommu_ignore_device(iommu, dev); 1910 } else { 1911 amd_iommu_set_pci_msi_domain(dev, iommu); 1912 iommu_dev = &iommu->iommu; 1913 } 1914 1915 iommu_completion_wait(iommu); 1916 1917 return iommu_dev; 1918 } 1919 1920 static void amd_iommu_probe_finalize(struct device *dev) 1921 { 1922 /* Domains are initialized for this device - have a look what we ended up with */ 1923 set_dma_ops(dev, NULL); 1924 iommu_setup_dma_ops(dev, 0, U64_MAX); 1925 } 1926 1927 static void amd_iommu_release_device(struct device *dev) 1928 { 1929 struct amd_iommu *iommu; 1930 1931 if (!check_device(dev)) 1932 return; 1933 1934 iommu = rlookup_amd_iommu(dev); 1935 if (!iommu) 1936 return; 1937 1938 amd_iommu_uninit_device(dev); 1939 iommu_completion_wait(iommu); 1940 } 1941 1942 static struct iommu_group *amd_iommu_device_group(struct device *dev) 1943 { 1944 if (dev_is_pci(dev)) 1945 return pci_device_group(dev); 1946 1947 return acpihid_device_group(dev); 1948 } 1949 1950 /***************************************************************************** 1951 * 1952 * The next functions belong to the dma_ops mapping/unmapping code. 1953 * 1954 *****************************************************************************/ 1955 1956 static void update_device_table(struct protection_domain *domain) 1957 { 1958 struct iommu_dev_data *dev_data; 1959 1960 list_for_each_entry(dev_data, &domain->dev_list, list) { 1961 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev); 1962 1963 if (!iommu) 1964 continue; 1965 set_dte_entry(iommu, dev_data->devid, domain, 1966 dev_data->ats.enabled, dev_data->iommu_v2); 1967 clone_aliases(iommu, dev_data->dev); 1968 } 1969 } 1970 1971 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) 1972 { 1973 update_device_table(domain); 1974 domain_flush_devices(domain); 1975 } 1976 1977 void amd_iommu_domain_update(struct protection_domain *domain) 1978 { 1979 /* Update device table */ 1980 amd_iommu_update_and_flush_device_table(domain); 1981 1982 /* Flush domain TLB(s) and wait for completion */ 1983 amd_iommu_domain_flush_tlb_pde(domain); 1984 amd_iommu_domain_flush_complete(domain); 1985 } 1986 1987 /***************************************************************************** 1988 * 1989 * The following functions belong to the exported interface of AMD IOMMU 1990 * 1991 * This interface allows access to lower level functions of the IOMMU 1992 * like protection domain handling and assignement of devices to domains 1993 * which is not possible with the dma_ops interface. 1994 * 1995 *****************************************************************************/ 1996 1997 static void cleanup_domain(struct protection_domain *domain) 1998 { 1999 struct iommu_dev_data *entry; 2000 unsigned long flags; 2001 2002 spin_lock_irqsave(&domain->lock, flags); 2003 2004 while (!list_empty(&domain->dev_list)) { 2005 entry = list_first_entry(&domain->dev_list, 2006 struct iommu_dev_data, list); 2007 BUG_ON(!entry->domain); 2008 do_detach(entry); 2009 } 2010 2011 spin_unlock_irqrestore(&domain->lock, flags); 2012 } 2013 2014 static void protection_domain_free(struct protection_domain *domain) 2015 { 2016 if (!domain) 2017 return; 2018 2019 if (domain->iop.pgtbl_cfg.tlb) 2020 free_io_pgtable_ops(&domain->iop.iop.ops); 2021 2022 if (domain->id) 2023 domain_id_free(domain->id); 2024 2025 kfree(domain); 2026 } 2027 2028 static int protection_domain_init_v1(struct protection_domain *domain, int mode) 2029 { 2030 u64 *pt_root = NULL; 2031 2032 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); 2033 2034 spin_lock_init(&domain->lock); 2035 domain->id = domain_id_alloc(); 2036 if (!domain->id) 2037 return -ENOMEM; 2038 INIT_LIST_HEAD(&domain->dev_list); 2039 2040 if (mode != PAGE_MODE_NONE) { 2041 pt_root = (void *)get_zeroed_page(GFP_KERNEL); 2042 if (!pt_root) { 2043 domain_id_free(domain->id); 2044 return -ENOMEM; 2045 } 2046 } 2047 2048 amd_iommu_domain_set_pgtable(domain, pt_root, mode); 2049 2050 return 0; 2051 } 2052 2053 static int protection_domain_init_v2(struct protection_domain *domain) 2054 { 2055 spin_lock_init(&domain->lock); 2056 domain->id = domain_id_alloc(); 2057 if (!domain->id) 2058 return -ENOMEM; 2059 INIT_LIST_HEAD(&domain->dev_list); 2060 2061 domain->flags |= PD_GIOV_MASK; 2062 2063 domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2; 2064 2065 if (domain_enable_v2(domain, 1)) { 2066 domain_id_free(domain->id); 2067 return -ENOMEM; 2068 } 2069 2070 return 0; 2071 } 2072 2073 static struct protection_domain *protection_domain_alloc(unsigned int type) 2074 { 2075 struct io_pgtable_ops *pgtbl_ops; 2076 struct protection_domain *domain; 2077 int pgtable; 2078 int mode = DEFAULT_PGTABLE_LEVEL; 2079 int ret; 2080 2081 /* 2082 * Force IOMMU v1 page table when iommu=pt and 2083 * when allocating domain for pass-through devices. 2084 */ 2085 if (type == IOMMU_DOMAIN_IDENTITY) { 2086 pgtable = AMD_IOMMU_V1; 2087 mode = PAGE_MODE_NONE; 2088 } else if (type == IOMMU_DOMAIN_UNMANAGED) { 2089 pgtable = AMD_IOMMU_V1; 2090 } else if (type == IOMMU_DOMAIN_DMA || type == IOMMU_DOMAIN_DMA_FQ) { 2091 pgtable = amd_iommu_pgtable; 2092 } else { 2093 return NULL; 2094 } 2095 2096 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2097 if (!domain) 2098 return NULL; 2099 2100 switch (pgtable) { 2101 case AMD_IOMMU_V1: 2102 ret = protection_domain_init_v1(domain, mode); 2103 break; 2104 case AMD_IOMMU_V2: 2105 ret = protection_domain_init_v2(domain); 2106 break; 2107 default: 2108 ret = -EINVAL; 2109 } 2110 2111 if (ret) 2112 goto out_err; 2113 2114 /* No need to allocate io pgtable ops in passthrough mode */ 2115 if (type == IOMMU_DOMAIN_IDENTITY) 2116 return domain; 2117 2118 domain->nid = NUMA_NO_NODE; 2119 2120 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain); 2121 if (!pgtbl_ops) { 2122 domain_id_free(domain->id); 2123 goto out_err; 2124 } 2125 2126 return domain; 2127 out_err: 2128 kfree(domain); 2129 return NULL; 2130 } 2131 2132 static inline u64 dma_max_address(void) 2133 { 2134 if (amd_iommu_pgtable == AMD_IOMMU_V1) 2135 return ~0ULL; 2136 2137 /* V2 with 4/5 level page table */ 2138 return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1); 2139 } 2140 2141 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) 2142 { 2143 struct protection_domain *domain; 2144 2145 /* 2146 * Since DTE[Mode]=0 is prohibited on SNP-enabled system, 2147 * default to use IOMMU_DOMAIN_DMA[_FQ]. 2148 */ 2149 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY)) 2150 return NULL; 2151 2152 domain = protection_domain_alloc(type); 2153 if (!domain) 2154 return NULL; 2155 2156 domain->domain.geometry.aperture_start = 0; 2157 domain->domain.geometry.aperture_end = dma_max_address(); 2158 domain->domain.geometry.force_aperture = true; 2159 2160 return &domain->domain; 2161 } 2162 2163 static void amd_iommu_domain_free(struct iommu_domain *dom) 2164 { 2165 struct protection_domain *domain; 2166 2167 domain = to_pdomain(dom); 2168 2169 if (domain->dev_cnt > 0) 2170 cleanup_domain(domain); 2171 2172 BUG_ON(domain->dev_cnt != 0); 2173 2174 if (!dom) 2175 return; 2176 2177 if (domain->flags & PD_IOMMUV2_MASK) 2178 free_gcr3_table(domain); 2179 2180 protection_domain_free(domain); 2181 } 2182 2183 static int amd_iommu_attach_device(struct iommu_domain *dom, 2184 struct device *dev) 2185 { 2186 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2187 struct protection_domain *domain = to_pdomain(dom); 2188 struct amd_iommu *iommu = rlookup_amd_iommu(dev); 2189 int ret; 2190 2191 /* 2192 * Skip attach device to domain if new domain is same as 2193 * devices current domain 2194 */ 2195 if (dev_data->domain == domain) 2196 return 0; 2197 2198 dev_data->defer_attach = false; 2199 2200 if (dev_data->domain) 2201 detach_device(dev); 2202 2203 ret = attach_device(dev, domain); 2204 2205 #ifdef CONFIG_IRQ_REMAP 2206 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2207 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2208 dev_data->use_vapic = 1; 2209 else 2210 dev_data->use_vapic = 0; 2211 } 2212 #endif 2213 2214 iommu_completion_wait(iommu); 2215 2216 return ret; 2217 } 2218 2219 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom, 2220 unsigned long iova, size_t size) 2221 { 2222 struct protection_domain *domain = to_pdomain(dom); 2223 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2224 2225 if (ops->map_pages) 2226 domain_flush_np_cache(domain, iova, size); 2227 } 2228 2229 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova, 2230 phys_addr_t paddr, size_t pgsize, size_t pgcount, 2231 int iommu_prot, gfp_t gfp, size_t *mapped) 2232 { 2233 struct protection_domain *domain = to_pdomain(dom); 2234 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2235 int prot = 0; 2236 int ret = -EINVAL; 2237 2238 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2239 (domain->iop.mode == PAGE_MODE_NONE)) 2240 return -EINVAL; 2241 2242 if (iommu_prot & IOMMU_READ) 2243 prot |= IOMMU_PROT_IR; 2244 if (iommu_prot & IOMMU_WRITE) 2245 prot |= IOMMU_PROT_IW; 2246 2247 if (ops->map_pages) { 2248 ret = ops->map_pages(ops, iova, paddr, pgsize, 2249 pgcount, prot, gfp, mapped); 2250 } 2251 2252 return ret; 2253 } 2254 2255 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, 2256 struct iommu_iotlb_gather *gather, 2257 unsigned long iova, size_t size) 2258 { 2259 /* 2260 * AMD's IOMMU can flush as many pages as necessary in a single flush. 2261 * Unless we run in a virtual machine, which can be inferred according 2262 * to whether "non-present cache" is on, it is probably best to prefer 2263 * (potentially) too extensive TLB flushing (i.e., more misses) over 2264 * mutliple TLB flushes (i.e., more flushes). For virtual machines the 2265 * hypervisor needs to synchronize the host IOMMU PTEs with those of 2266 * the guest, and the trade-off is different: unnecessary TLB flushes 2267 * should be avoided. 2268 */ 2269 if (amd_iommu_np_cache && 2270 iommu_iotlb_gather_is_disjoint(gather, iova, size)) 2271 iommu_iotlb_sync(domain, gather); 2272 2273 iommu_iotlb_gather_add_range(gather, iova, size); 2274 } 2275 2276 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova, 2277 size_t pgsize, size_t pgcount, 2278 struct iommu_iotlb_gather *gather) 2279 { 2280 struct protection_domain *domain = to_pdomain(dom); 2281 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2282 size_t r; 2283 2284 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2285 (domain->iop.mode == PAGE_MODE_NONE)) 2286 return 0; 2287 2288 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0; 2289 2290 if (r) 2291 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r); 2292 2293 return r; 2294 } 2295 2296 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2297 dma_addr_t iova) 2298 { 2299 struct protection_domain *domain = to_pdomain(dom); 2300 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2301 2302 return ops->iova_to_phys(ops, iova); 2303 } 2304 2305 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap) 2306 { 2307 switch (cap) { 2308 case IOMMU_CAP_CACHE_COHERENCY: 2309 return true; 2310 case IOMMU_CAP_NOEXEC: 2311 return false; 2312 case IOMMU_CAP_PRE_BOOT_PROTECTION: 2313 return amdr_ivrs_remap_support; 2314 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY: 2315 return true; 2316 default: 2317 break; 2318 } 2319 2320 return false; 2321 } 2322 2323 static void amd_iommu_get_resv_regions(struct device *dev, 2324 struct list_head *head) 2325 { 2326 struct iommu_resv_region *region; 2327 struct unity_map_entry *entry; 2328 struct amd_iommu *iommu; 2329 struct amd_iommu_pci_seg *pci_seg; 2330 int devid, sbdf; 2331 2332 sbdf = get_device_sbdf_id(dev); 2333 if (sbdf < 0) 2334 return; 2335 2336 devid = PCI_SBDF_TO_DEVID(sbdf); 2337 iommu = rlookup_amd_iommu(dev); 2338 if (!iommu) 2339 return; 2340 pci_seg = iommu->pci_seg; 2341 2342 list_for_each_entry(entry, &pci_seg->unity_map, list) { 2343 int type, prot = 0; 2344 size_t length; 2345 2346 if (devid < entry->devid_start || devid > entry->devid_end) 2347 continue; 2348 2349 type = IOMMU_RESV_DIRECT; 2350 length = entry->address_end - entry->address_start; 2351 if (entry->prot & IOMMU_PROT_IR) 2352 prot |= IOMMU_READ; 2353 if (entry->prot & IOMMU_PROT_IW) 2354 prot |= IOMMU_WRITE; 2355 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2356 /* Exclusion range */ 2357 type = IOMMU_RESV_RESERVED; 2358 2359 region = iommu_alloc_resv_region(entry->address_start, 2360 length, prot, type, 2361 GFP_KERNEL); 2362 if (!region) { 2363 dev_err(dev, "Out of memory allocating dm-regions\n"); 2364 return; 2365 } 2366 list_add_tail(®ion->list, head); 2367 } 2368 2369 region = iommu_alloc_resv_region(MSI_RANGE_START, 2370 MSI_RANGE_END - MSI_RANGE_START + 1, 2371 0, IOMMU_RESV_MSI, GFP_KERNEL); 2372 if (!region) 2373 return; 2374 list_add_tail(®ion->list, head); 2375 2376 region = iommu_alloc_resv_region(HT_RANGE_START, 2377 HT_RANGE_END - HT_RANGE_START + 1, 2378 0, IOMMU_RESV_RESERVED, GFP_KERNEL); 2379 if (!region) 2380 return; 2381 list_add_tail(®ion->list, head); 2382 } 2383 2384 bool amd_iommu_is_attach_deferred(struct device *dev) 2385 { 2386 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2387 2388 return dev_data->defer_attach; 2389 } 2390 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); 2391 2392 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2393 { 2394 struct protection_domain *dom = to_pdomain(domain); 2395 unsigned long flags; 2396 2397 spin_lock_irqsave(&dom->lock, flags); 2398 amd_iommu_domain_flush_tlb_pde(dom); 2399 amd_iommu_domain_flush_complete(dom); 2400 spin_unlock_irqrestore(&dom->lock, flags); 2401 } 2402 2403 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2404 struct iommu_iotlb_gather *gather) 2405 { 2406 struct protection_domain *dom = to_pdomain(domain); 2407 unsigned long flags; 2408 2409 spin_lock_irqsave(&dom->lock, flags); 2410 domain_flush_pages(dom, gather->start, gather->end - gather->start + 1, 1); 2411 amd_iommu_domain_flush_complete(dom); 2412 spin_unlock_irqrestore(&dom->lock, flags); 2413 } 2414 2415 static int amd_iommu_def_domain_type(struct device *dev) 2416 { 2417 struct iommu_dev_data *dev_data; 2418 2419 dev_data = dev_iommu_priv_get(dev); 2420 if (!dev_data) 2421 return 0; 2422 2423 /* 2424 * Do not identity map IOMMUv2 capable devices when: 2425 * - memory encryption is active, because some of those devices 2426 * (AMD GPUs) don't have the encryption bit in their DMA-mask 2427 * and require remapping. 2428 * - SNP is enabled, because it prohibits DTE[Mode]=0. 2429 */ 2430 if (dev_data->iommu_v2 && 2431 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) && 2432 !amd_iommu_snp_en) { 2433 return IOMMU_DOMAIN_IDENTITY; 2434 } 2435 2436 return 0; 2437 } 2438 2439 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain) 2440 { 2441 /* IOMMU_PTE_FC is always set */ 2442 return true; 2443 } 2444 2445 const struct iommu_ops amd_iommu_ops = { 2446 .capable = amd_iommu_capable, 2447 .domain_alloc = amd_iommu_domain_alloc, 2448 .probe_device = amd_iommu_probe_device, 2449 .release_device = amd_iommu_release_device, 2450 .probe_finalize = amd_iommu_probe_finalize, 2451 .device_group = amd_iommu_device_group, 2452 .get_resv_regions = amd_iommu_get_resv_regions, 2453 .is_attach_deferred = amd_iommu_is_attach_deferred, 2454 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 2455 .def_domain_type = amd_iommu_def_domain_type, 2456 .default_domain_ops = &(const struct iommu_domain_ops) { 2457 .attach_dev = amd_iommu_attach_device, 2458 .map_pages = amd_iommu_map_pages, 2459 .unmap_pages = amd_iommu_unmap_pages, 2460 .iotlb_sync_map = amd_iommu_iotlb_sync_map, 2461 .iova_to_phys = amd_iommu_iova_to_phys, 2462 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2463 .iotlb_sync = amd_iommu_iotlb_sync, 2464 .free = amd_iommu_domain_free, 2465 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency, 2466 } 2467 }; 2468 2469 /***************************************************************************** 2470 * 2471 * The next functions do a basic initialization of IOMMU for pass through 2472 * mode 2473 * 2474 * In passthrough mode the IOMMU is initialized and enabled but not used for 2475 * DMA-API translation. 2476 * 2477 *****************************************************************************/ 2478 2479 /* IOMMUv2 specific functions */ 2480 int amd_iommu_register_ppr_notifier(struct notifier_block *nb) 2481 { 2482 return atomic_notifier_chain_register(&ppr_notifier, nb); 2483 } 2484 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); 2485 2486 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) 2487 { 2488 return atomic_notifier_chain_unregister(&ppr_notifier, nb); 2489 } 2490 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); 2491 2492 void amd_iommu_domain_direct_map(struct iommu_domain *dom) 2493 { 2494 struct protection_domain *domain = to_pdomain(dom); 2495 unsigned long flags; 2496 2497 spin_lock_irqsave(&domain->lock, flags); 2498 2499 if (domain->iop.pgtbl_cfg.tlb) 2500 free_io_pgtable_ops(&domain->iop.iop.ops); 2501 2502 spin_unlock_irqrestore(&domain->lock, flags); 2503 } 2504 EXPORT_SYMBOL(amd_iommu_domain_direct_map); 2505 2506 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */ 2507 static int domain_enable_v2(struct protection_domain *domain, int pasids) 2508 { 2509 int levels; 2510 2511 /* Number of GCR3 table levels required */ 2512 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) 2513 levels += 1; 2514 2515 if (levels > amd_iommu_max_glx_val) 2516 return -EINVAL; 2517 2518 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); 2519 if (domain->gcr3_tbl == NULL) 2520 return -ENOMEM; 2521 2522 domain->glx = levels; 2523 domain->flags |= PD_IOMMUV2_MASK; 2524 2525 amd_iommu_domain_update(domain); 2526 2527 return 0; 2528 } 2529 2530 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) 2531 { 2532 struct protection_domain *pdom = to_pdomain(dom); 2533 unsigned long flags; 2534 int ret; 2535 2536 spin_lock_irqsave(&pdom->lock, flags); 2537 2538 /* 2539 * Save us all sanity checks whether devices already in the 2540 * domain support IOMMUv2. Just force that the domain has no 2541 * devices attached when it is switched into IOMMUv2 mode. 2542 */ 2543 ret = -EBUSY; 2544 if (pdom->dev_cnt > 0 || pdom->flags & PD_IOMMUV2_MASK) 2545 goto out; 2546 2547 if (!pdom->gcr3_tbl) 2548 ret = domain_enable_v2(pdom, pasids); 2549 2550 out: 2551 spin_unlock_irqrestore(&pdom->lock, flags); 2552 return ret; 2553 } 2554 EXPORT_SYMBOL(amd_iommu_domain_enable_v2); 2555 2556 static int __flush_pasid(struct protection_domain *domain, u32 pasid, 2557 u64 address, bool size) 2558 { 2559 struct iommu_dev_data *dev_data; 2560 struct iommu_cmd cmd; 2561 int i, ret; 2562 2563 if (!(domain->flags & PD_IOMMUV2_MASK)) 2564 return -EINVAL; 2565 2566 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); 2567 2568 /* 2569 * IOMMU TLB needs to be flushed before Device TLB to 2570 * prevent device TLB refill from IOMMU TLB 2571 */ 2572 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 2573 if (domain->dev_iommu[i] == 0) 2574 continue; 2575 2576 ret = iommu_queue_command(amd_iommus[i], &cmd); 2577 if (ret != 0) 2578 goto out; 2579 } 2580 2581 /* Wait until IOMMU TLB flushes are complete */ 2582 amd_iommu_domain_flush_complete(domain); 2583 2584 /* Now flush device TLBs */ 2585 list_for_each_entry(dev_data, &domain->dev_list, list) { 2586 struct amd_iommu *iommu; 2587 int qdep; 2588 2589 /* 2590 There might be non-IOMMUv2 capable devices in an IOMMUv2 2591 * domain. 2592 */ 2593 if (!dev_data->ats.enabled) 2594 continue; 2595 2596 qdep = dev_data->ats.qdep; 2597 iommu = rlookup_amd_iommu(dev_data->dev); 2598 if (!iommu) 2599 continue; 2600 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, 2601 qdep, address, size); 2602 2603 ret = iommu_queue_command(iommu, &cmd); 2604 if (ret != 0) 2605 goto out; 2606 } 2607 2608 /* Wait until all device TLBs are flushed */ 2609 amd_iommu_domain_flush_complete(domain); 2610 2611 ret = 0; 2612 2613 out: 2614 2615 return ret; 2616 } 2617 2618 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid, 2619 u64 address) 2620 { 2621 return __flush_pasid(domain, pasid, address, false); 2622 } 2623 2624 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid, 2625 u64 address) 2626 { 2627 struct protection_domain *domain = to_pdomain(dom); 2628 unsigned long flags; 2629 int ret; 2630 2631 spin_lock_irqsave(&domain->lock, flags); 2632 ret = __amd_iommu_flush_page(domain, pasid, address); 2633 spin_unlock_irqrestore(&domain->lock, flags); 2634 2635 return ret; 2636 } 2637 EXPORT_SYMBOL(amd_iommu_flush_page); 2638 2639 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid) 2640 { 2641 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 2642 true); 2643 } 2644 2645 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid) 2646 { 2647 struct protection_domain *domain = to_pdomain(dom); 2648 unsigned long flags; 2649 int ret; 2650 2651 spin_lock_irqsave(&domain->lock, flags); 2652 ret = __amd_iommu_flush_tlb(domain, pasid); 2653 spin_unlock_irqrestore(&domain->lock, flags); 2654 2655 return ret; 2656 } 2657 EXPORT_SYMBOL(amd_iommu_flush_tlb); 2658 2659 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc) 2660 { 2661 int index; 2662 u64 *pte; 2663 2664 while (true) { 2665 2666 index = (pasid >> (9 * level)) & 0x1ff; 2667 pte = &root[index]; 2668 2669 if (level == 0) 2670 break; 2671 2672 if (!(*pte & GCR3_VALID)) { 2673 if (!alloc) 2674 return NULL; 2675 2676 root = (void *)get_zeroed_page(GFP_ATOMIC); 2677 if (root == NULL) 2678 return NULL; 2679 2680 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 2681 } 2682 2683 root = iommu_phys_to_virt(*pte & PAGE_MASK); 2684 2685 level -= 1; 2686 } 2687 2688 return pte; 2689 } 2690 2691 static int __set_gcr3(struct protection_domain *domain, u32 pasid, 2692 unsigned long cr3) 2693 { 2694 u64 *pte; 2695 2696 if (domain->iop.mode != PAGE_MODE_NONE) 2697 return -EINVAL; 2698 2699 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); 2700 if (pte == NULL) 2701 return -ENOMEM; 2702 2703 *pte = (cr3 & PAGE_MASK) | GCR3_VALID; 2704 2705 return __amd_iommu_flush_tlb(domain, pasid); 2706 } 2707 2708 static int __clear_gcr3(struct protection_domain *domain, u32 pasid) 2709 { 2710 u64 *pte; 2711 2712 if (domain->iop.mode != PAGE_MODE_NONE) 2713 return -EINVAL; 2714 2715 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); 2716 if (pte == NULL) 2717 return 0; 2718 2719 *pte = 0; 2720 2721 return __amd_iommu_flush_tlb(domain, pasid); 2722 } 2723 2724 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid, 2725 unsigned long cr3) 2726 { 2727 struct protection_domain *domain = to_pdomain(dom); 2728 unsigned long flags; 2729 int ret; 2730 2731 spin_lock_irqsave(&domain->lock, flags); 2732 ret = __set_gcr3(domain, pasid, cr3); 2733 spin_unlock_irqrestore(&domain->lock, flags); 2734 2735 return ret; 2736 } 2737 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); 2738 2739 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid) 2740 { 2741 struct protection_domain *domain = to_pdomain(dom); 2742 unsigned long flags; 2743 int ret; 2744 2745 spin_lock_irqsave(&domain->lock, flags); 2746 ret = __clear_gcr3(domain, pasid); 2747 spin_unlock_irqrestore(&domain->lock, flags); 2748 2749 return ret; 2750 } 2751 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); 2752 2753 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid, 2754 int status, int tag) 2755 { 2756 struct iommu_dev_data *dev_data; 2757 struct amd_iommu *iommu; 2758 struct iommu_cmd cmd; 2759 2760 dev_data = dev_iommu_priv_get(&pdev->dev); 2761 iommu = rlookup_amd_iommu(&pdev->dev); 2762 if (!iommu) 2763 return -ENODEV; 2764 2765 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 2766 tag, dev_data->pri_tlp); 2767 2768 return iommu_queue_command(iommu, &cmd); 2769 } 2770 EXPORT_SYMBOL(amd_iommu_complete_ppr); 2771 2772 int amd_iommu_device_info(struct pci_dev *pdev, 2773 struct amd_iommu_device_info *info) 2774 { 2775 int max_pasids; 2776 int pos; 2777 2778 if (pdev == NULL || info == NULL) 2779 return -EINVAL; 2780 2781 if (!amd_iommu_v2_supported()) 2782 return -EINVAL; 2783 2784 memset(info, 0, sizeof(*info)); 2785 2786 if (pci_ats_supported(pdev)) 2787 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 2788 2789 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 2790 if (pos) 2791 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 2792 2793 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); 2794 if (pos) { 2795 int features; 2796 2797 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); 2798 max_pasids = min(max_pasids, (1 << 20)); 2799 2800 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 2801 info->max_pasids = min(pci_max_pasids(pdev), max_pasids); 2802 2803 features = pci_pasid_features(pdev); 2804 if (features & PCI_PASID_CAP_EXEC) 2805 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 2806 if (features & PCI_PASID_CAP_PRIV) 2807 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 2808 } 2809 2810 return 0; 2811 } 2812 EXPORT_SYMBOL(amd_iommu_device_info); 2813 2814 #ifdef CONFIG_IRQ_REMAP 2815 2816 /***************************************************************************** 2817 * 2818 * Interrupt Remapping Implementation 2819 * 2820 *****************************************************************************/ 2821 2822 static struct irq_chip amd_ir_chip; 2823 static DEFINE_SPINLOCK(iommu_table_lock); 2824 2825 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid, 2826 struct irq_remap_table *table) 2827 { 2828 u64 dte; 2829 struct dev_table_entry *dev_table = get_dev_table(iommu); 2830 2831 dte = dev_table[devid].data[2]; 2832 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 2833 dte |= iommu_virt_to_phys(table->table); 2834 dte |= DTE_IRQ_REMAP_INTCTL; 2835 dte |= DTE_INTTABLEN; 2836 dte |= DTE_IRQ_REMAP_ENABLE; 2837 2838 dev_table[devid].data[2] = dte; 2839 } 2840 2841 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid) 2842 { 2843 struct irq_remap_table *table; 2844 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2845 2846 if (WARN_ONCE(!pci_seg->rlookup_table[devid], 2847 "%s: no iommu for devid %x:%x\n", 2848 __func__, pci_seg->id, devid)) 2849 return NULL; 2850 2851 table = pci_seg->irq_lookup_table[devid]; 2852 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n", 2853 __func__, pci_seg->id, devid)) 2854 return NULL; 2855 2856 return table; 2857 } 2858 2859 static struct irq_remap_table *__alloc_irq_table(void) 2860 { 2861 struct irq_remap_table *table; 2862 2863 table = kzalloc(sizeof(*table), GFP_KERNEL); 2864 if (!table) 2865 return NULL; 2866 2867 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 2868 if (!table->table) { 2869 kfree(table); 2870 return NULL; 2871 } 2872 raw_spin_lock_init(&table->lock); 2873 2874 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 2875 memset(table->table, 0, 2876 MAX_IRQS_PER_TABLE * sizeof(u32)); 2877 else 2878 memset(table->table, 0, 2879 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 2880 return table; 2881 } 2882 2883 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 2884 struct irq_remap_table *table) 2885 { 2886 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2887 2888 pci_seg->irq_lookup_table[devid] = table; 2889 set_dte_irq_entry(iommu, devid, table); 2890 iommu_flush_dte(iommu, devid); 2891 } 2892 2893 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 2894 void *data) 2895 { 2896 struct irq_remap_table *table = data; 2897 struct amd_iommu_pci_seg *pci_seg; 2898 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev); 2899 2900 if (!iommu) 2901 return -EINVAL; 2902 2903 pci_seg = iommu->pci_seg; 2904 pci_seg->irq_lookup_table[alias] = table; 2905 set_dte_irq_entry(iommu, alias, table); 2906 iommu_flush_dte(pci_seg->rlookup_table[alias], alias); 2907 2908 return 0; 2909 } 2910 2911 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu, 2912 u16 devid, struct pci_dev *pdev) 2913 { 2914 struct irq_remap_table *table = NULL; 2915 struct irq_remap_table *new_table = NULL; 2916 struct amd_iommu_pci_seg *pci_seg; 2917 unsigned long flags; 2918 u16 alias; 2919 2920 spin_lock_irqsave(&iommu_table_lock, flags); 2921 2922 pci_seg = iommu->pci_seg; 2923 table = pci_seg->irq_lookup_table[devid]; 2924 if (table) 2925 goto out_unlock; 2926 2927 alias = pci_seg->alias_table[devid]; 2928 table = pci_seg->irq_lookup_table[alias]; 2929 if (table) { 2930 set_remap_table_entry(iommu, devid, table); 2931 goto out_wait; 2932 } 2933 spin_unlock_irqrestore(&iommu_table_lock, flags); 2934 2935 /* Nothing there yet, allocate new irq remapping table */ 2936 new_table = __alloc_irq_table(); 2937 if (!new_table) 2938 return NULL; 2939 2940 spin_lock_irqsave(&iommu_table_lock, flags); 2941 2942 table = pci_seg->irq_lookup_table[devid]; 2943 if (table) 2944 goto out_unlock; 2945 2946 table = pci_seg->irq_lookup_table[alias]; 2947 if (table) { 2948 set_remap_table_entry(iommu, devid, table); 2949 goto out_wait; 2950 } 2951 2952 table = new_table; 2953 new_table = NULL; 2954 2955 if (pdev) 2956 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 2957 table); 2958 else 2959 set_remap_table_entry(iommu, devid, table); 2960 2961 if (devid != alias) 2962 set_remap_table_entry(iommu, alias, table); 2963 2964 out_wait: 2965 iommu_completion_wait(iommu); 2966 2967 out_unlock: 2968 spin_unlock_irqrestore(&iommu_table_lock, flags); 2969 2970 if (new_table) { 2971 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 2972 kfree(new_table); 2973 } 2974 return table; 2975 } 2976 2977 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count, 2978 bool align, struct pci_dev *pdev) 2979 { 2980 struct irq_remap_table *table; 2981 int index, c, alignment = 1; 2982 unsigned long flags; 2983 2984 table = alloc_irq_table(iommu, devid, pdev); 2985 if (!table) 2986 return -ENODEV; 2987 2988 if (align) 2989 alignment = roundup_pow_of_two(count); 2990 2991 raw_spin_lock_irqsave(&table->lock, flags); 2992 2993 /* Scan table for free entries */ 2994 for (index = ALIGN(table->min_index, alignment), c = 0; 2995 index < MAX_IRQS_PER_TABLE;) { 2996 if (!iommu->irte_ops->is_allocated(table, index)) { 2997 c += 1; 2998 } else { 2999 c = 0; 3000 index = ALIGN(index + 1, alignment); 3001 continue; 3002 } 3003 3004 if (c == count) { 3005 for (; c != 0; --c) 3006 iommu->irte_ops->set_allocated(table, index - c + 1); 3007 3008 index -= count - 1; 3009 goto out; 3010 } 3011 3012 index++; 3013 } 3014 3015 index = -ENOSPC; 3016 3017 out: 3018 raw_spin_unlock_irqrestore(&table->lock, flags); 3019 3020 return index; 3021 } 3022 3023 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 3024 struct irte_ga *irte, struct amd_ir_data *data) 3025 { 3026 bool ret; 3027 struct irq_remap_table *table; 3028 unsigned long flags; 3029 struct irte_ga *entry; 3030 3031 table = get_irq_table(iommu, devid); 3032 if (!table) 3033 return -ENOMEM; 3034 3035 raw_spin_lock_irqsave(&table->lock, flags); 3036 3037 entry = (struct irte_ga *)table->table; 3038 entry = &entry[index]; 3039 3040 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val, 3041 entry->lo.val, entry->hi.val, 3042 irte->lo.val, irte->hi.val); 3043 /* 3044 * We use cmpxchg16 to atomically update the 128-bit IRTE, 3045 * and it cannot be updated by the hardware or other processors 3046 * behind us, so the return value of cmpxchg16 should be the 3047 * same as the old value. 3048 */ 3049 WARN_ON(!ret); 3050 3051 if (data) 3052 data->ref = entry; 3053 3054 raw_spin_unlock_irqrestore(&table->lock, flags); 3055 3056 iommu_flush_irt(iommu, devid); 3057 iommu_completion_wait(iommu); 3058 3059 return 0; 3060 } 3061 3062 static int modify_irte(struct amd_iommu *iommu, 3063 u16 devid, int index, union irte *irte) 3064 { 3065 struct irq_remap_table *table; 3066 unsigned long flags; 3067 3068 table = get_irq_table(iommu, devid); 3069 if (!table) 3070 return -ENOMEM; 3071 3072 raw_spin_lock_irqsave(&table->lock, flags); 3073 table->table[index] = irte->val; 3074 raw_spin_unlock_irqrestore(&table->lock, flags); 3075 3076 iommu_flush_irt(iommu, devid); 3077 iommu_completion_wait(iommu); 3078 3079 return 0; 3080 } 3081 3082 static void free_irte(struct amd_iommu *iommu, u16 devid, int index) 3083 { 3084 struct irq_remap_table *table; 3085 unsigned long flags; 3086 3087 table = get_irq_table(iommu, devid); 3088 if (!table) 3089 return; 3090 3091 raw_spin_lock_irqsave(&table->lock, flags); 3092 iommu->irte_ops->clear_allocated(table, index); 3093 raw_spin_unlock_irqrestore(&table->lock, flags); 3094 3095 iommu_flush_irt(iommu, devid); 3096 iommu_completion_wait(iommu); 3097 } 3098 3099 static void irte_prepare(void *entry, 3100 u32 delivery_mode, bool dest_mode, 3101 u8 vector, u32 dest_apicid, int devid) 3102 { 3103 union irte *irte = (union irte *) entry; 3104 3105 irte->val = 0; 3106 irte->fields.vector = vector; 3107 irte->fields.int_type = delivery_mode; 3108 irte->fields.destination = dest_apicid; 3109 irte->fields.dm = dest_mode; 3110 irte->fields.valid = 1; 3111 } 3112 3113 static void irte_ga_prepare(void *entry, 3114 u32 delivery_mode, bool dest_mode, 3115 u8 vector, u32 dest_apicid, int devid) 3116 { 3117 struct irte_ga *irte = (struct irte_ga *) entry; 3118 3119 irte->lo.val = 0; 3120 irte->hi.val = 0; 3121 irte->lo.fields_remap.int_type = delivery_mode; 3122 irte->lo.fields_remap.dm = dest_mode; 3123 irte->hi.fields.vector = vector; 3124 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3125 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3126 irte->lo.fields_remap.valid = 1; 3127 } 3128 3129 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3130 { 3131 union irte *irte = (union irte *) entry; 3132 3133 irte->fields.valid = 1; 3134 modify_irte(iommu, devid, index, irte); 3135 } 3136 3137 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3138 { 3139 struct irte_ga *irte = (struct irte_ga *) entry; 3140 3141 irte->lo.fields_remap.valid = 1; 3142 modify_irte_ga(iommu, devid, index, irte, NULL); 3143 } 3144 3145 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3146 { 3147 union irte *irte = (union irte *) entry; 3148 3149 irte->fields.valid = 0; 3150 modify_irte(iommu, devid, index, irte); 3151 } 3152 3153 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3154 { 3155 struct irte_ga *irte = (struct irte_ga *) entry; 3156 3157 irte->lo.fields_remap.valid = 0; 3158 modify_irte_ga(iommu, devid, index, irte, NULL); 3159 } 3160 3161 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3162 u8 vector, u32 dest_apicid) 3163 { 3164 union irte *irte = (union irte *) entry; 3165 3166 irte->fields.vector = vector; 3167 irte->fields.destination = dest_apicid; 3168 modify_irte(iommu, devid, index, irte); 3169 } 3170 3171 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3172 u8 vector, u32 dest_apicid) 3173 { 3174 struct irte_ga *irte = (struct irte_ga *) entry; 3175 3176 if (!irte->lo.fields_remap.guest_mode) { 3177 irte->hi.fields.vector = vector; 3178 irte->lo.fields_remap.destination = 3179 APICID_TO_IRTE_DEST_LO(dest_apicid); 3180 irte->hi.fields.destination = 3181 APICID_TO_IRTE_DEST_HI(dest_apicid); 3182 modify_irte_ga(iommu, devid, index, irte, NULL); 3183 } 3184 } 3185 3186 #define IRTE_ALLOCATED (~1U) 3187 static void irte_set_allocated(struct irq_remap_table *table, int index) 3188 { 3189 table->table[index] = IRTE_ALLOCATED; 3190 } 3191 3192 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3193 { 3194 struct irte_ga *ptr = (struct irte_ga *)table->table; 3195 struct irte_ga *irte = &ptr[index]; 3196 3197 memset(&irte->lo.val, 0, sizeof(u64)); 3198 memset(&irte->hi.val, 0, sizeof(u64)); 3199 irte->hi.fields.vector = 0xff; 3200 } 3201 3202 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3203 { 3204 union irte *ptr = (union irte *)table->table; 3205 union irte *irte = &ptr[index]; 3206 3207 return irte->val != 0; 3208 } 3209 3210 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3211 { 3212 struct irte_ga *ptr = (struct irte_ga *)table->table; 3213 struct irte_ga *irte = &ptr[index]; 3214 3215 return irte->hi.fields.vector != 0; 3216 } 3217 3218 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3219 { 3220 table->table[index] = 0; 3221 } 3222 3223 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3224 { 3225 struct irte_ga *ptr = (struct irte_ga *)table->table; 3226 struct irte_ga *irte = &ptr[index]; 3227 3228 memset(&irte->lo.val, 0, sizeof(u64)); 3229 memset(&irte->hi.val, 0, sizeof(u64)); 3230 } 3231 3232 static int get_devid(struct irq_alloc_info *info) 3233 { 3234 switch (info->type) { 3235 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3236 return get_ioapic_devid(info->devid); 3237 case X86_IRQ_ALLOC_TYPE_HPET: 3238 return get_hpet_devid(info->devid); 3239 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3240 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3241 return get_device_sbdf_id(msi_desc_to_dev(info->desc)); 3242 default: 3243 WARN_ON_ONCE(1); 3244 return -1; 3245 } 3246 } 3247 3248 struct irq_remap_ops amd_iommu_irq_ops = { 3249 .prepare = amd_iommu_prepare, 3250 .enable = amd_iommu_enable, 3251 .disable = amd_iommu_disable, 3252 .reenable = amd_iommu_reenable, 3253 .enable_faulting = amd_iommu_enable_faulting, 3254 }; 3255 3256 static void fill_msi_msg(struct msi_msg *msg, u32 index) 3257 { 3258 msg->data = index; 3259 msg->address_lo = 0; 3260 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 3261 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 3262 } 3263 3264 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3265 struct irq_cfg *irq_cfg, 3266 struct irq_alloc_info *info, 3267 int devid, int index, int sub_handle) 3268 { 3269 struct irq_2_irte *irte_info = &data->irq_2_irte; 3270 struct amd_iommu *iommu = data->iommu; 3271 3272 if (!iommu) 3273 return; 3274 3275 data->irq_2_irte.devid = devid; 3276 data->irq_2_irte.index = index + sub_handle; 3277 iommu->irte_ops->prepare(data->entry, apic->delivery_mode, 3278 apic->dest_mode_logical, irq_cfg->vector, 3279 irq_cfg->dest_apicid, devid); 3280 3281 switch (info->type) { 3282 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3283 case X86_IRQ_ALLOC_TYPE_HPET: 3284 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3285 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3286 fill_msi_msg(&data->msi_entry, irte_info->index); 3287 break; 3288 3289 default: 3290 BUG_ON(1); 3291 break; 3292 } 3293 } 3294 3295 struct amd_irte_ops irte_32_ops = { 3296 .prepare = irte_prepare, 3297 .activate = irte_activate, 3298 .deactivate = irte_deactivate, 3299 .set_affinity = irte_set_affinity, 3300 .set_allocated = irte_set_allocated, 3301 .is_allocated = irte_is_allocated, 3302 .clear_allocated = irte_clear_allocated, 3303 }; 3304 3305 struct amd_irte_ops irte_128_ops = { 3306 .prepare = irte_ga_prepare, 3307 .activate = irte_ga_activate, 3308 .deactivate = irte_ga_deactivate, 3309 .set_affinity = irte_ga_set_affinity, 3310 .set_allocated = irte_ga_set_allocated, 3311 .is_allocated = irte_ga_is_allocated, 3312 .clear_allocated = irte_ga_clear_allocated, 3313 }; 3314 3315 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3316 unsigned int nr_irqs, void *arg) 3317 { 3318 struct irq_alloc_info *info = arg; 3319 struct irq_data *irq_data; 3320 struct amd_ir_data *data = NULL; 3321 struct amd_iommu *iommu; 3322 struct irq_cfg *cfg; 3323 int i, ret, devid, seg, sbdf; 3324 int index; 3325 3326 if (!info) 3327 return -EINVAL; 3328 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI) 3329 return -EINVAL; 3330 3331 sbdf = get_devid(info); 3332 if (sbdf < 0) 3333 return -EINVAL; 3334 3335 seg = PCI_SBDF_TO_SEGID(sbdf); 3336 devid = PCI_SBDF_TO_DEVID(sbdf); 3337 iommu = __rlookup_amd_iommu(seg, devid); 3338 if (!iommu) 3339 return -EINVAL; 3340 3341 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3342 if (ret < 0) 3343 return ret; 3344 3345 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3346 struct irq_remap_table *table; 3347 3348 table = alloc_irq_table(iommu, devid, NULL); 3349 if (table) { 3350 if (!table->min_index) { 3351 /* 3352 * Keep the first 32 indexes free for IOAPIC 3353 * interrupts. 3354 */ 3355 table->min_index = 32; 3356 for (i = 0; i < 32; ++i) 3357 iommu->irte_ops->set_allocated(table, i); 3358 } 3359 WARN_ON(table->min_index != 32); 3360 index = info->ioapic.pin; 3361 } else { 3362 index = -ENOMEM; 3363 } 3364 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3365 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3366 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3367 3368 index = alloc_irq_index(iommu, devid, nr_irqs, align, 3369 msi_desc_to_pci_dev(info->desc)); 3370 } else { 3371 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL); 3372 } 3373 3374 if (index < 0) { 3375 pr_warn("Failed to allocate IRTE\n"); 3376 ret = index; 3377 goto out_free_parent; 3378 } 3379 3380 for (i = 0; i < nr_irqs; i++) { 3381 irq_data = irq_domain_get_irq_data(domain, virq + i); 3382 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3383 if (!cfg) { 3384 ret = -EINVAL; 3385 goto out_free_data; 3386 } 3387 3388 ret = -ENOMEM; 3389 data = kzalloc(sizeof(*data), GFP_KERNEL); 3390 if (!data) 3391 goto out_free_data; 3392 3393 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3394 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3395 else 3396 data->entry = kzalloc(sizeof(struct irte_ga), 3397 GFP_KERNEL); 3398 if (!data->entry) { 3399 kfree(data); 3400 goto out_free_data; 3401 } 3402 3403 data->iommu = iommu; 3404 irq_data->hwirq = (devid << 16) + i; 3405 irq_data->chip_data = data; 3406 irq_data->chip = &amd_ir_chip; 3407 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3408 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3409 } 3410 3411 return 0; 3412 3413 out_free_data: 3414 for (i--; i >= 0; i--) { 3415 irq_data = irq_domain_get_irq_data(domain, virq + i); 3416 if (irq_data) 3417 kfree(irq_data->chip_data); 3418 } 3419 for (i = 0; i < nr_irqs; i++) 3420 free_irte(iommu, devid, index + i); 3421 out_free_parent: 3422 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3423 return ret; 3424 } 3425 3426 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3427 unsigned int nr_irqs) 3428 { 3429 struct irq_2_irte *irte_info; 3430 struct irq_data *irq_data; 3431 struct amd_ir_data *data; 3432 int i; 3433 3434 for (i = 0; i < nr_irqs; i++) { 3435 irq_data = irq_domain_get_irq_data(domain, virq + i); 3436 if (irq_data && irq_data->chip_data) { 3437 data = irq_data->chip_data; 3438 irte_info = &data->irq_2_irte; 3439 free_irte(data->iommu, irte_info->devid, irte_info->index); 3440 kfree(data->entry); 3441 kfree(data); 3442 } 3443 } 3444 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3445 } 3446 3447 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3448 struct amd_ir_data *ir_data, 3449 struct irq_2_irte *irte_info, 3450 struct irq_cfg *cfg); 3451 3452 static int irq_remapping_activate(struct irq_domain *domain, 3453 struct irq_data *irq_data, bool reserve) 3454 { 3455 struct amd_ir_data *data = irq_data->chip_data; 3456 struct irq_2_irte *irte_info = &data->irq_2_irte; 3457 struct amd_iommu *iommu = data->iommu; 3458 struct irq_cfg *cfg = irqd_cfg(irq_data); 3459 3460 if (!iommu) 3461 return 0; 3462 3463 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid, 3464 irte_info->index); 3465 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3466 return 0; 3467 } 3468 3469 static void irq_remapping_deactivate(struct irq_domain *domain, 3470 struct irq_data *irq_data) 3471 { 3472 struct amd_ir_data *data = irq_data->chip_data; 3473 struct irq_2_irte *irte_info = &data->irq_2_irte; 3474 struct amd_iommu *iommu = data->iommu; 3475 3476 if (iommu) 3477 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid, 3478 irte_info->index); 3479 } 3480 3481 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, 3482 enum irq_domain_bus_token bus_token) 3483 { 3484 struct amd_iommu *iommu; 3485 int devid = -1; 3486 3487 if (!amd_iommu_irq_remap) 3488 return 0; 3489 3490 if (x86_fwspec_is_ioapic(fwspec)) 3491 devid = get_ioapic_devid(fwspec->param[0]); 3492 else if (x86_fwspec_is_hpet(fwspec)) 3493 devid = get_hpet_devid(fwspec->param[0]); 3494 3495 if (devid < 0) 3496 return 0; 3497 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff)); 3498 3499 return iommu && iommu->ir_domain == d; 3500 } 3501 3502 static const struct irq_domain_ops amd_ir_domain_ops = { 3503 .select = irq_remapping_select, 3504 .alloc = irq_remapping_alloc, 3505 .free = irq_remapping_free, 3506 .activate = irq_remapping_activate, 3507 .deactivate = irq_remapping_deactivate, 3508 }; 3509 3510 int amd_iommu_activate_guest_mode(void *data) 3511 { 3512 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3513 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3514 u64 valid; 3515 3516 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry) 3517 return 0; 3518 3519 valid = entry->lo.fields_vapic.valid; 3520 3521 entry->lo.val = 0; 3522 entry->hi.val = 0; 3523 3524 entry->lo.fields_vapic.valid = valid; 3525 entry->lo.fields_vapic.guest_mode = 1; 3526 entry->lo.fields_vapic.ga_log_intr = 1; 3527 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3528 entry->hi.fields.vector = ir_data->ga_vector; 3529 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3530 3531 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3532 ir_data->irq_2_irte.index, entry, ir_data); 3533 } 3534 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3535 3536 int amd_iommu_deactivate_guest_mode(void *data) 3537 { 3538 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3539 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3540 struct irq_cfg *cfg = ir_data->cfg; 3541 u64 valid; 3542 3543 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3544 !entry || !entry->lo.fields_vapic.guest_mode) 3545 return 0; 3546 3547 valid = entry->lo.fields_remap.valid; 3548 3549 entry->lo.val = 0; 3550 entry->hi.val = 0; 3551 3552 entry->lo.fields_remap.valid = valid; 3553 entry->lo.fields_remap.dm = apic->dest_mode_logical; 3554 entry->lo.fields_remap.int_type = apic->delivery_mode; 3555 entry->hi.fields.vector = cfg->vector; 3556 entry->lo.fields_remap.destination = 3557 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3558 entry->hi.fields.destination = 3559 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3560 3561 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3562 ir_data->irq_2_irte.index, entry, ir_data); 3563 } 3564 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3565 3566 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3567 { 3568 int ret; 3569 struct amd_iommu_pi_data *pi_data = vcpu_info; 3570 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3571 struct amd_ir_data *ir_data = data->chip_data; 3572 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3573 struct iommu_dev_data *dev_data; 3574 3575 if (ir_data->iommu == NULL) 3576 return -EINVAL; 3577 3578 dev_data = search_dev_data(ir_data->iommu, irte_info->devid); 3579 3580 /* Note: 3581 * This device has never been set up for guest mode. 3582 * we should not modify the IRTE 3583 */ 3584 if (!dev_data || !dev_data->use_vapic) 3585 return 0; 3586 3587 ir_data->cfg = irqd_cfg(data); 3588 pi_data->ir_data = ir_data; 3589 3590 /* Note: 3591 * SVM tries to set up for VAPIC mode, but we are in 3592 * legacy mode. So, we force legacy mode instead. 3593 */ 3594 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3595 pr_debug("%s: Fall back to using intr legacy remap\n", 3596 __func__); 3597 pi_data->is_guest_mode = false; 3598 } 3599 3600 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3601 if (pi_data->is_guest_mode) { 3602 ir_data->ga_root_ptr = (pi_data->base >> 12); 3603 ir_data->ga_vector = vcpu_pi_info->vector; 3604 ir_data->ga_tag = pi_data->ga_tag; 3605 ret = amd_iommu_activate_guest_mode(ir_data); 3606 if (!ret) 3607 ir_data->cached_ga_tag = pi_data->ga_tag; 3608 } else { 3609 ret = amd_iommu_deactivate_guest_mode(ir_data); 3610 3611 /* 3612 * This communicates the ga_tag back to the caller 3613 * so that it can do all the necessary clean up. 3614 */ 3615 if (!ret) 3616 ir_data->cached_ga_tag = 0; 3617 } 3618 3619 return ret; 3620 } 3621 3622 3623 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3624 struct amd_ir_data *ir_data, 3625 struct irq_2_irte *irte_info, 3626 struct irq_cfg *cfg) 3627 { 3628 3629 /* 3630 * Atomically updates the IRTE with the new destination, vector 3631 * and flushes the interrupt entry cache. 3632 */ 3633 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid, 3634 irte_info->index, cfg->vector, 3635 cfg->dest_apicid); 3636 } 3637 3638 static int amd_ir_set_affinity(struct irq_data *data, 3639 const struct cpumask *mask, bool force) 3640 { 3641 struct amd_ir_data *ir_data = data->chip_data; 3642 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3643 struct irq_cfg *cfg = irqd_cfg(data); 3644 struct irq_data *parent = data->parent_data; 3645 struct amd_iommu *iommu = ir_data->iommu; 3646 int ret; 3647 3648 if (!iommu) 3649 return -ENODEV; 3650 3651 ret = parent->chip->irq_set_affinity(parent, mask, force); 3652 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3653 return ret; 3654 3655 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3656 /* 3657 * After this point, all the interrupts will start arriving 3658 * at the new destination. So, time to cleanup the previous 3659 * vector allocation. 3660 */ 3661 send_cleanup_vector(cfg); 3662 3663 return IRQ_SET_MASK_OK_DONE; 3664 } 3665 3666 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3667 { 3668 struct amd_ir_data *ir_data = irq_data->chip_data; 3669 3670 *msg = ir_data->msi_entry; 3671 } 3672 3673 static struct irq_chip amd_ir_chip = { 3674 .name = "AMD-IR", 3675 .irq_ack = apic_ack_irq, 3676 .irq_set_affinity = amd_ir_set_affinity, 3677 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3678 .irq_compose_msi_msg = ir_compose_msi_msg, 3679 }; 3680 3681 static const struct msi_parent_ops amdvi_msi_parent_ops = { 3682 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | 3683 MSI_FLAG_MULTI_PCI_MSI | 3684 MSI_FLAG_PCI_IMS, 3685 .prefix = "IR-", 3686 .init_dev_msi_info = msi_parent_init_dev_msi_info, 3687 }; 3688 3689 static const struct msi_parent_ops virt_amdvi_msi_parent_ops = { 3690 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | 3691 MSI_FLAG_MULTI_PCI_MSI, 3692 .prefix = "vIR-", 3693 .init_dev_msi_info = msi_parent_init_dev_msi_info, 3694 }; 3695 3696 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3697 { 3698 struct fwnode_handle *fn; 3699 3700 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3701 if (!fn) 3702 return -ENOMEM; 3703 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0, 3704 fn, &amd_ir_domain_ops, iommu); 3705 if (!iommu->ir_domain) { 3706 irq_domain_free_fwnode(fn); 3707 return -ENOMEM; 3708 } 3709 3710 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI); 3711 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT | 3712 IRQ_DOMAIN_FLAG_ISOLATED_MSI; 3713 3714 if (amd_iommu_np_cache) 3715 iommu->ir_domain->msi_parent_ops = &virt_amdvi_msi_parent_ops; 3716 else 3717 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops; 3718 3719 return 0; 3720 } 3721 3722 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 3723 { 3724 unsigned long flags; 3725 struct amd_iommu *iommu; 3726 struct irq_remap_table *table; 3727 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3728 int devid = ir_data->irq_2_irte.devid; 3729 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3730 struct irte_ga *ref = (struct irte_ga *) ir_data->ref; 3731 3732 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3733 !ref || !entry || !entry->lo.fields_vapic.guest_mode) 3734 return 0; 3735 3736 iommu = ir_data->iommu; 3737 if (!iommu) 3738 return -ENODEV; 3739 3740 table = get_irq_table(iommu, devid); 3741 if (!table) 3742 return -ENODEV; 3743 3744 raw_spin_lock_irqsave(&table->lock, flags); 3745 3746 if (ref->lo.fields_vapic.guest_mode) { 3747 if (cpu >= 0) { 3748 ref->lo.fields_vapic.destination = 3749 APICID_TO_IRTE_DEST_LO(cpu); 3750 ref->hi.fields.destination = 3751 APICID_TO_IRTE_DEST_HI(cpu); 3752 } 3753 ref->lo.fields_vapic.is_run = is_run; 3754 barrier(); 3755 } 3756 3757 raw_spin_unlock_irqrestore(&table->lock, flags); 3758 3759 iommu_flush_irt(iommu, devid); 3760 iommu_completion_wait(iommu); 3761 return 0; 3762 } 3763 EXPORT_SYMBOL(amd_iommu_update_ga); 3764 #endif 3765