1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/pci-ats.h> 15 #include <linux/bitmap.h> 16 #include <linux/slab.h> 17 #include <linux/debugfs.h> 18 #include <linux/scatterlist.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/dma-direct.h> 21 #include <linux/idr.h> 22 #include <linux/iommu-helper.h> 23 #include <linux/delay.h> 24 #include <linux/amd-iommu.h> 25 #include <linux/notifier.h> 26 #include <linux/export.h> 27 #include <linux/irq.h> 28 #include <linux/irqchip/irq-msi-lib.h> 29 #include <linux/msi.h> 30 #include <linux/irqdomain.h> 31 #include <linux/percpu.h> 32 #include <linux/io-pgtable.h> 33 #include <linux/cc_platform.h> 34 #include <asm/irq_remapping.h> 35 #include <asm/io_apic.h> 36 #include <asm/apic.h> 37 #include <asm/hw_irq.h> 38 #include <asm/proto.h> 39 #include <asm/iommu.h> 40 #include <asm/gart.h> 41 #include <asm/dma.h> 42 #include <uapi/linux/iommufd.h> 43 44 #include "amd_iommu.h" 45 #include "../dma-iommu.h" 46 #include "../irq_remapping.h" 47 #include "../iommu-pages.h" 48 49 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 50 51 /* Reserved IOVA ranges */ 52 #define MSI_RANGE_START (0xfee00000) 53 #define MSI_RANGE_END (0xfeefffff) 54 #define HT_RANGE_START (0xfd00000000ULL) 55 #define HT_RANGE_END (0xffffffffffULL) 56 57 LIST_HEAD(ioapic_map); 58 LIST_HEAD(hpet_map); 59 LIST_HEAD(acpihid_map); 60 61 const struct iommu_ops amd_iommu_ops; 62 static const struct iommu_dirty_ops amd_dirty_ops; 63 64 int amd_iommu_max_glx_val = -1; 65 66 /* 67 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap 68 * to know which ones are already in use. 69 */ 70 DEFINE_IDA(pdom_ids); 71 72 static int amd_iommu_attach_device(struct iommu_domain *dom, 73 struct device *dev); 74 75 static void set_dte_entry(struct amd_iommu *iommu, 76 struct iommu_dev_data *dev_data); 77 78 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid); 79 80 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid); 81 82 /**************************************************************************** 83 * 84 * Helper functions 85 * 86 ****************************************************************************/ 87 88 static __always_inline void amd_iommu_atomic128_set(__int128 *ptr, __int128 val) 89 { 90 /* 91 * Note: 92 * We use arch_cmpxchg128_local() because: 93 * - Need cmpxchg16b instruction mainly for 128-bit store to DTE 94 * (not necessary for cmpxchg since this function is already 95 * protected by a spin_lock for this DTE). 96 * - Neither need LOCK_PREFIX nor try loop because of the spin_lock. 97 */ 98 arch_cmpxchg128_local(ptr, *ptr, val); 99 } 100 101 static void write_dte_upper128(struct dev_table_entry *ptr, struct dev_table_entry *new) 102 { 103 struct dev_table_entry old; 104 105 old.data128[1] = ptr->data128[1]; 106 /* 107 * Preserve DTE_DATA2_INTR_MASK. This needs to be 108 * done here since it requires to be inside 109 * spin_lock(&dev_data->dte_lock) context. 110 */ 111 new->data[2] &= ~DTE_DATA2_INTR_MASK; 112 new->data[2] |= old.data[2] & DTE_DATA2_INTR_MASK; 113 114 amd_iommu_atomic128_set(&ptr->data128[1], new->data128[1]); 115 } 116 117 static void write_dte_lower128(struct dev_table_entry *ptr, struct dev_table_entry *new) 118 { 119 amd_iommu_atomic128_set(&ptr->data128[0], new->data128[0]); 120 } 121 122 /* 123 * Note: 124 * IOMMU reads the entire Device Table entry in a single 256-bit transaction 125 * but the driver is programming DTE using 2 128-bit cmpxchg. So, the driver 126 * need to ensure the following: 127 * - DTE[V|GV] bit is being written last when setting. 128 * - DTE[V|GV] bit is being written first when clearing. 129 * 130 * This function is used only by code, which updates DMA translation part of the DTE. 131 * So, only consider control bits related to DMA when updating the entry. 132 */ 133 static void update_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data, 134 struct dev_table_entry *new) 135 { 136 unsigned long flags; 137 struct dev_table_entry *dev_table = get_dev_table(iommu); 138 struct dev_table_entry *ptr = &dev_table[dev_data->devid]; 139 140 spin_lock_irqsave(&dev_data->dte_lock, flags); 141 142 if (!(ptr->data[0] & DTE_FLAG_V)) { 143 /* Existing DTE is not valid. */ 144 write_dte_upper128(ptr, new); 145 write_dte_lower128(ptr, new); 146 iommu_flush_dte_sync(iommu, dev_data->devid); 147 } else if (!(new->data[0] & DTE_FLAG_V)) { 148 /* Existing DTE is valid. New DTE is not valid. */ 149 write_dte_lower128(ptr, new); 150 write_dte_upper128(ptr, new); 151 iommu_flush_dte_sync(iommu, dev_data->devid); 152 } else if (!FIELD_GET(DTE_FLAG_GV, ptr->data[0])) { 153 /* 154 * Both DTEs are valid. 155 * Existing DTE has no guest page table. 156 */ 157 write_dte_upper128(ptr, new); 158 write_dte_lower128(ptr, new); 159 iommu_flush_dte_sync(iommu, dev_data->devid); 160 } else if (!FIELD_GET(DTE_FLAG_GV, new->data[0])) { 161 /* 162 * Both DTEs are valid. 163 * Existing DTE has guest page table, 164 * new DTE has no guest page table, 165 */ 166 write_dte_lower128(ptr, new); 167 write_dte_upper128(ptr, new); 168 iommu_flush_dte_sync(iommu, dev_data->devid); 169 } else if (FIELD_GET(DTE_GPT_LEVEL_MASK, ptr->data[2]) != 170 FIELD_GET(DTE_GPT_LEVEL_MASK, new->data[2])) { 171 /* 172 * Both DTEs are valid and have guest page table, 173 * but have different number of levels. So, we need 174 * to upadte both upper and lower 128-bit value, which 175 * require disabling and flushing. 176 */ 177 struct dev_table_entry clear = {}; 178 179 /* First disable DTE */ 180 write_dte_lower128(ptr, &clear); 181 iommu_flush_dte_sync(iommu, dev_data->devid); 182 183 /* Then update DTE */ 184 write_dte_upper128(ptr, new); 185 write_dte_lower128(ptr, new); 186 iommu_flush_dte_sync(iommu, dev_data->devid); 187 } else { 188 /* 189 * Both DTEs are valid and have guest page table, 190 * and same number of levels. We just need to only 191 * update the lower 128-bit. So no need to disable DTE. 192 */ 193 write_dte_lower128(ptr, new); 194 } 195 196 spin_unlock_irqrestore(&dev_data->dte_lock, flags); 197 } 198 199 static void get_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data, 200 struct dev_table_entry *dte) 201 { 202 unsigned long flags; 203 struct dev_table_entry *ptr; 204 struct dev_table_entry *dev_table = get_dev_table(iommu); 205 206 ptr = &dev_table[dev_data->devid]; 207 208 spin_lock_irqsave(&dev_data->dte_lock, flags); 209 dte->data128[0] = ptr->data128[0]; 210 dte->data128[1] = ptr->data128[1]; 211 spin_unlock_irqrestore(&dev_data->dte_lock, flags); 212 } 213 214 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom) 215 { 216 return (pdom && (pdom->pd_mode == PD_MODE_V2)); 217 } 218 219 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom) 220 { 221 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY); 222 } 223 224 /* 225 * We cannot support PASID w/ existing v1 page table in the same domain 226 * since it will be nested. However, existing domain w/ v2 page table 227 * or passthrough mode can be used for PASID. 228 */ 229 static inline bool pdom_is_sva_capable(struct protection_domain *pdom) 230 { 231 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom); 232 } 233 234 static inline int get_acpihid_device_id(struct device *dev, 235 struct acpihid_map_entry **entry) 236 { 237 struct acpi_device *adev = ACPI_COMPANION(dev); 238 struct acpihid_map_entry *p, *p1 = NULL; 239 int hid_count = 0; 240 bool fw_bug; 241 242 if (!adev) 243 return -ENODEV; 244 245 list_for_each_entry(p, &acpihid_map, list) { 246 if (acpi_dev_hid_uid_match(adev, p->hid, 247 p->uid[0] ? p->uid : NULL)) { 248 p1 = p; 249 fw_bug = false; 250 hid_count = 1; 251 break; 252 } 253 254 /* 255 * Count HID matches w/o UID, raise FW_BUG but allow exactly one match 256 */ 257 if (acpi_dev_hid_match(adev, p->hid)) { 258 p1 = p; 259 hid_count++; 260 fw_bug = true; 261 } 262 } 263 264 if (!p1) 265 return -EINVAL; 266 if (fw_bug) 267 dev_err_once(dev, FW_BUG "No ACPI device matched UID, but %d device%s matched HID.\n", 268 hid_count, hid_count > 1 ? "s" : ""); 269 if (hid_count > 1) 270 return -EINVAL; 271 if (entry) 272 *entry = p1; 273 274 return p1->devid; 275 } 276 277 static inline int get_device_sbdf_id(struct device *dev) 278 { 279 int sbdf; 280 281 if (dev_is_pci(dev)) 282 sbdf = get_pci_sbdf_id(to_pci_dev(dev)); 283 else 284 sbdf = get_acpihid_device_id(dev, NULL); 285 286 return sbdf; 287 } 288 289 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu) 290 { 291 struct dev_table_entry *dev_table; 292 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 293 294 BUG_ON(pci_seg == NULL); 295 dev_table = pci_seg->dev_table; 296 BUG_ON(dev_table == NULL); 297 298 return dev_table; 299 } 300 301 static inline u16 get_device_segment(struct device *dev) 302 { 303 u16 seg; 304 305 if (dev_is_pci(dev)) { 306 struct pci_dev *pdev = to_pci_dev(dev); 307 308 seg = pci_domain_nr(pdev->bus); 309 } else { 310 u32 devid = get_acpihid_device_id(dev, NULL); 311 312 seg = PCI_SBDF_TO_SEGID(devid); 313 } 314 315 return seg; 316 } 317 318 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */ 319 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid) 320 { 321 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 322 323 pci_seg->rlookup_table[devid] = iommu; 324 } 325 326 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid) 327 { 328 struct amd_iommu_pci_seg *pci_seg; 329 330 for_each_pci_segment(pci_seg) { 331 if (pci_seg->id == seg) 332 return pci_seg->rlookup_table[devid]; 333 } 334 return NULL; 335 } 336 337 static struct amd_iommu *rlookup_amd_iommu(struct device *dev) 338 { 339 u16 seg = get_device_segment(dev); 340 int devid = get_device_sbdf_id(dev); 341 342 if (devid < 0) 343 return NULL; 344 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid)); 345 } 346 347 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid) 348 { 349 struct iommu_dev_data *dev_data; 350 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 351 352 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 353 if (!dev_data) 354 return NULL; 355 356 mutex_init(&dev_data->mutex); 357 spin_lock_init(&dev_data->dte_lock); 358 dev_data->devid = devid; 359 ratelimit_default_init(&dev_data->rs); 360 361 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list); 362 return dev_data; 363 } 364 365 struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid) 366 { 367 struct iommu_dev_data *dev_data; 368 struct llist_node *node; 369 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 370 371 if (llist_empty(&pci_seg->dev_data_list)) 372 return NULL; 373 374 node = pci_seg->dev_data_list.first; 375 llist_for_each_entry(dev_data, node, dev_data_list) { 376 if (dev_data->devid == devid) 377 return dev_data; 378 } 379 380 return NULL; 381 } 382 383 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 384 { 385 struct dev_table_entry new; 386 struct amd_iommu *iommu; 387 struct iommu_dev_data *dev_data, *alias_data; 388 u16 devid = pci_dev_id(pdev); 389 int ret = 0; 390 391 if (devid == alias) 392 return 0; 393 394 iommu = rlookup_amd_iommu(&pdev->dev); 395 if (!iommu) 396 return 0; 397 398 /* Copy the data from pdev */ 399 dev_data = dev_iommu_priv_get(&pdev->dev); 400 if (!dev_data) { 401 pr_err("%s : Failed to get dev_data for 0x%x\n", __func__, devid); 402 ret = -EINVAL; 403 goto out; 404 } 405 get_dte256(iommu, dev_data, &new); 406 407 /* Setup alias */ 408 alias_data = find_dev_data(iommu, alias); 409 if (!alias_data) { 410 pr_err("%s : Failed to get alias dev_data for 0x%x\n", __func__, alias); 411 ret = -EINVAL; 412 goto out; 413 } 414 update_dte256(iommu, alias_data, &new); 415 416 amd_iommu_set_rlookup_table(iommu, alias); 417 out: 418 return ret; 419 } 420 421 static void clone_aliases(struct amd_iommu *iommu, struct device *dev) 422 { 423 struct pci_dev *pdev; 424 425 if (!dev_is_pci(dev)) 426 return; 427 pdev = to_pci_dev(dev); 428 429 /* 430 * The IVRS alias stored in the alias table may not be 431 * part of the PCI DMA aliases if it's bus differs 432 * from the original device. 433 */ 434 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL); 435 436 pci_for_each_dma_alias(pdev, clone_alias, NULL); 437 } 438 439 static void setup_aliases(struct amd_iommu *iommu, struct device *dev) 440 { 441 struct pci_dev *pdev = to_pci_dev(dev); 442 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 443 u16 ivrs_alias; 444 445 /* For ACPI HID devices, there are no aliases */ 446 if (!dev_is_pci(dev)) 447 return; 448 449 /* 450 * Add the IVRS alias to the pci aliases if it is on the same 451 * bus. The IVRS table may know about a quirk that we don't. 452 */ 453 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)]; 454 if (ivrs_alias != pci_dev_id(pdev) && 455 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 456 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 457 458 clone_aliases(iommu, dev); 459 } 460 461 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid) 462 { 463 struct iommu_dev_data *dev_data; 464 465 dev_data = search_dev_data(iommu, devid); 466 467 if (dev_data == NULL) { 468 dev_data = alloc_dev_data(iommu, devid); 469 if (!dev_data) 470 return NULL; 471 472 if (translation_pre_enabled(iommu)) 473 dev_data->defer_attach = true; 474 } 475 476 return dev_data; 477 } 478 479 /* 480 * Find or create an IOMMU group for a acpihid device. 481 */ 482 static struct iommu_group *acpihid_device_group(struct device *dev) 483 { 484 struct acpihid_map_entry *p, *entry = NULL; 485 int devid; 486 487 devid = get_acpihid_device_id(dev, &entry); 488 if (devid < 0) 489 return ERR_PTR(devid); 490 491 list_for_each_entry(p, &acpihid_map, list) { 492 if ((devid == p->devid) && p->group) 493 entry->group = p->group; 494 } 495 496 if (!entry->group) 497 entry->group = generic_device_group(dev); 498 else 499 iommu_group_ref_get(entry->group); 500 501 return entry->group; 502 } 503 504 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data) 505 { 506 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP); 507 } 508 509 static u32 pdev_get_caps(struct pci_dev *pdev) 510 { 511 int features; 512 u32 flags = 0; 513 514 if (pci_ats_supported(pdev)) 515 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 516 517 if (pci_pri_supported(pdev)) 518 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 519 520 features = pci_pasid_features(pdev); 521 if (features >= 0) { 522 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 523 524 if (features & PCI_PASID_CAP_EXEC) 525 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 526 527 if (features & PCI_PASID_CAP_PRIV) 528 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 529 } 530 531 return flags; 532 } 533 534 static inline int pdev_enable_cap_ats(struct pci_dev *pdev) 535 { 536 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 537 int ret = -EINVAL; 538 539 if (dev_data->ats_enabled) 540 return 0; 541 542 if (amd_iommu_iotlb_sup && 543 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) { 544 ret = pci_enable_ats(pdev, PAGE_SHIFT); 545 if (!ret) { 546 dev_data->ats_enabled = 1; 547 dev_data->ats_qdep = pci_ats_queue_depth(pdev); 548 } 549 } 550 551 return ret; 552 } 553 554 static inline void pdev_disable_cap_ats(struct pci_dev *pdev) 555 { 556 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 557 558 if (dev_data->ats_enabled) { 559 pci_disable_ats(pdev); 560 dev_data->ats_enabled = 0; 561 } 562 } 563 564 static inline int pdev_enable_cap_pri(struct pci_dev *pdev) 565 { 566 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 567 int ret = -EINVAL; 568 569 if (dev_data->pri_enabled) 570 return 0; 571 572 if (!dev_data->ats_enabled) 573 return 0; 574 575 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) { 576 /* 577 * First reset the PRI state of the device. 578 * FIXME: Hardcode number of outstanding requests for now 579 */ 580 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) { 581 dev_data->pri_enabled = 1; 582 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 583 584 ret = 0; 585 } 586 } 587 588 return ret; 589 } 590 591 static inline void pdev_disable_cap_pri(struct pci_dev *pdev) 592 { 593 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 594 595 if (dev_data->pri_enabled) { 596 pci_disable_pri(pdev); 597 dev_data->pri_enabled = 0; 598 } 599 } 600 601 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev) 602 { 603 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 604 int ret = -EINVAL; 605 606 if (dev_data->pasid_enabled) 607 return 0; 608 609 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) { 610 /* Only allow access to user-accessible pages */ 611 ret = pci_enable_pasid(pdev, 0); 612 if (!ret) 613 dev_data->pasid_enabled = 1; 614 } 615 616 return ret; 617 } 618 619 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev) 620 { 621 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 622 623 if (dev_data->pasid_enabled) { 624 pci_disable_pasid(pdev); 625 dev_data->pasid_enabled = 0; 626 } 627 } 628 629 static void pdev_enable_caps(struct pci_dev *pdev) 630 { 631 pdev_enable_cap_pasid(pdev); 632 pdev_enable_cap_ats(pdev); 633 pdev_enable_cap_pri(pdev); 634 } 635 636 static void pdev_disable_caps(struct pci_dev *pdev) 637 { 638 pdev_disable_cap_ats(pdev); 639 pdev_disable_cap_pasid(pdev); 640 pdev_disable_cap_pri(pdev); 641 } 642 643 /* 644 * This function checks if the driver got a valid device from the caller to 645 * avoid dereferencing invalid pointers. 646 */ 647 static bool check_device(struct device *dev) 648 { 649 struct amd_iommu_pci_seg *pci_seg; 650 struct amd_iommu *iommu; 651 int devid, sbdf; 652 653 if (!dev) 654 return false; 655 656 sbdf = get_device_sbdf_id(dev); 657 if (sbdf < 0) 658 return false; 659 devid = PCI_SBDF_TO_DEVID(sbdf); 660 661 iommu = rlookup_amd_iommu(dev); 662 if (!iommu) 663 return false; 664 665 /* Out of our scope? */ 666 pci_seg = iommu->pci_seg; 667 if (devid > pci_seg->last_bdf) 668 return false; 669 670 return true; 671 } 672 673 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev) 674 { 675 struct iommu_dev_data *dev_data; 676 int devid, sbdf; 677 678 if (dev_iommu_priv_get(dev)) 679 return 0; 680 681 sbdf = get_device_sbdf_id(dev); 682 if (sbdf < 0) 683 return sbdf; 684 685 devid = PCI_SBDF_TO_DEVID(sbdf); 686 dev_data = find_dev_data(iommu, devid); 687 if (!dev_data) 688 return -ENOMEM; 689 690 dev_data->dev = dev; 691 692 /* 693 * The dev_iommu_priv_set() needes to be called before setup_aliases. 694 * Otherwise, subsequent call to dev_iommu_priv_get() will fail. 695 */ 696 dev_iommu_priv_set(dev, dev_data); 697 setup_aliases(iommu, dev); 698 699 /* 700 * By default we use passthrough mode for IOMMUv2 capable device. 701 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 702 * invalid address), we ignore the capability for the device so 703 * it'll be forced to go into translation mode. 704 */ 705 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 706 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) { 707 dev_data->flags = pdev_get_caps(to_pci_dev(dev)); 708 } 709 710 return 0; 711 } 712 713 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev) 714 { 715 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 716 struct dev_table_entry *dev_table = get_dev_table(iommu); 717 int devid, sbdf; 718 719 sbdf = get_device_sbdf_id(dev); 720 if (sbdf < 0) 721 return; 722 723 devid = PCI_SBDF_TO_DEVID(sbdf); 724 pci_seg->rlookup_table[devid] = NULL; 725 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry)); 726 727 setup_aliases(iommu, dev); 728 } 729 730 731 /**************************************************************************** 732 * 733 * Interrupt handling functions 734 * 735 ****************************************************************************/ 736 737 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid) 738 { 739 int i; 740 struct dev_table_entry dte; 741 struct iommu_dev_data *dev_data = find_dev_data(iommu, devid); 742 743 get_dte256(iommu, dev_data, &dte); 744 745 for (i = 0; i < 4; ++i) 746 pr_err("DTE[%d]: %016llx\n", i, dte.data[i]); 747 } 748 749 static void dump_command(unsigned long phys_addr) 750 { 751 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 752 int i; 753 754 for (i = 0; i < 4; ++i) 755 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 756 } 757 758 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event) 759 { 760 struct iommu_dev_data *dev_data = NULL; 761 int devid, vmg_tag, flags; 762 struct pci_dev *pdev; 763 u64 spa; 764 765 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 766 vmg_tag = (event[1]) & 0xFFFF; 767 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 768 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); 769 770 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 771 devid & 0xff); 772 if (pdev) 773 dev_data = dev_iommu_priv_get(&pdev->dev); 774 775 if (dev_data) { 776 if (__ratelimit(&dev_data->rs)) { 777 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 778 vmg_tag, spa, flags); 779 } 780 } else { 781 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 782 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 783 vmg_tag, spa, flags); 784 } 785 786 if (pdev) 787 pci_dev_put(pdev); 788 } 789 790 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event) 791 { 792 struct iommu_dev_data *dev_data = NULL; 793 int devid, flags_rmp, vmg_tag, flags; 794 struct pci_dev *pdev; 795 u64 gpa; 796 797 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 798 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; 799 vmg_tag = (event[1]) & 0xFFFF; 800 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 801 gpa = ((u64)event[3] << 32) | event[2]; 802 803 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 804 devid & 0xff); 805 if (pdev) 806 dev_data = dev_iommu_priv_get(&pdev->dev); 807 808 if (dev_data) { 809 if (__ratelimit(&dev_data->rs)) { 810 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 811 vmg_tag, gpa, flags_rmp, flags); 812 } 813 } else { 814 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 815 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 816 vmg_tag, gpa, flags_rmp, flags); 817 } 818 819 if (pdev) 820 pci_dev_put(pdev); 821 } 822 823 #define IS_IOMMU_MEM_TRANSACTION(flags) \ 824 (((flags) & EVENT_FLAG_I) == 0) 825 826 #define IS_WRITE_REQUEST(flags) \ 827 ((flags) & EVENT_FLAG_RW) 828 829 static void amd_iommu_report_page_fault(struct amd_iommu *iommu, 830 u16 devid, u16 domain_id, 831 u64 address, int flags) 832 { 833 struct iommu_dev_data *dev_data = NULL; 834 struct pci_dev *pdev; 835 836 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 837 devid & 0xff); 838 if (pdev) 839 dev_data = dev_iommu_priv_get(&pdev->dev); 840 841 if (dev_data) { 842 /* 843 * If this is a DMA fault (for which the I(nterrupt) 844 * bit will be unset), allow report_iommu_fault() to 845 * prevent logging it. 846 */ 847 if (IS_IOMMU_MEM_TRANSACTION(flags)) { 848 /* Device not attached to domain properly */ 849 if (dev_data->domain == NULL) { 850 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n"); 851 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n", 852 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), 853 PCI_FUNC(devid), domain_id); 854 goto out; 855 } 856 857 if (!report_iommu_fault(&dev_data->domain->domain, 858 &pdev->dev, address, 859 IS_WRITE_REQUEST(flags) ? 860 IOMMU_FAULT_WRITE : 861 IOMMU_FAULT_READ)) 862 goto out; 863 } 864 865 if (__ratelimit(&dev_data->rs)) { 866 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 867 domain_id, address, flags); 868 } 869 } else { 870 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 871 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 872 domain_id, address, flags); 873 } 874 875 out: 876 if (pdev) 877 pci_dev_put(pdev); 878 } 879 880 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 881 { 882 struct device *dev = iommu->iommu.dev; 883 int type, devid, flags, tag; 884 volatile u32 *event = __evt; 885 int count = 0; 886 u64 address, ctrl; 887 u32 pasid; 888 889 retry: 890 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 891 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 892 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 893 (event[1] & EVENT_DOMID_MASK_LO); 894 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 895 address = (u64)(((u64)event[3]) << 32) | event[2]; 896 ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET); 897 898 if (type == 0) { 899 /* Did we hit the erratum? */ 900 if (++count == LOOP_TIMEOUT) { 901 pr_err("No event written to event log\n"); 902 return; 903 } 904 udelay(1); 905 goto retry; 906 } 907 908 if (type == EVENT_TYPE_IO_FAULT) { 909 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags); 910 return; 911 } 912 913 switch (type) { 914 case EVENT_TYPE_ILL_DEV: 915 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 916 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 917 pasid, address, flags); 918 dev_err(dev, "Control Reg : 0x%llx\n", ctrl); 919 dump_dte_entry(iommu, devid); 920 break; 921 case EVENT_TYPE_DEV_TAB_ERR: 922 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x " 923 "address=0x%llx flags=0x%04x]\n", 924 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 925 address, flags); 926 break; 927 case EVENT_TYPE_PAGE_TAB_ERR: 928 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 929 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 930 pasid, address, flags); 931 break; 932 case EVENT_TYPE_ILL_CMD: 933 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 934 dump_command(address); 935 break; 936 case EVENT_TYPE_CMD_HARD_ERR: 937 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 938 address, flags); 939 break; 940 case EVENT_TYPE_IOTLB_INV_TO: 941 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n", 942 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 943 address); 944 break; 945 case EVENT_TYPE_INV_DEV_REQ: 946 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 947 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 948 pasid, address, flags); 949 break; 950 case EVENT_TYPE_RMP_FAULT: 951 amd_iommu_report_rmp_fault(iommu, event); 952 break; 953 case EVENT_TYPE_RMP_HW_ERR: 954 amd_iommu_report_rmp_hw_error(iommu, event); 955 break; 956 case EVENT_TYPE_INV_PPR_REQ: 957 pasid = PPR_PASID(*((u64 *)__evt)); 958 tag = event[1] & 0x03FF; 959 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 960 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 961 pasid, address, flags, tag); 962 break; 963 default: 964 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 965 event[0], event[1], event[2], event[3]); 966 } 967 968 /* 969 * To detect the hardware errata 732 we need to clear the 970 * entry back to zero. This issue does not exist on SNP 971 * enabled system. Also this buffer is not writeable on 972 * SNP enabled system. 973 */ 974 if (!amd_iommu_snp_en) 975 memset(__evt, 0, 4 * sizeof(u32)); 976 } 977 978 static void iommu_poll_events(struct amd_iommu *iommu) 979 { 980 u32 head, tail; 981 982 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 983 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 984 985 while (head != tail) { 986 iommu_print_event(iommu, iommu->evt_buf + head); 987 988 /* Update head pointer of hardware ring-buffer */ 989 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 990 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 991 } 992 993 } 994 995 #ifdef CONFIG_IRQ_REMAP 996 static int (*iommu_ga_log_notifier)(u32); 997 998 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 999 { 1000 iommu_ga_log_notifier = notifier; 1001 1002 /* 1003 * Ensure all in-flight IRQ handlers run to completion before returning 1004 * to the caller, e.g. to ensure module code isn't unloaded while it's 1005 * being executed in the IRQ handler. 1006 */ 1007 if (!notifier) 1008 synchronize_rcu(); 1009 1010 return 0; 1011 } 1012 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 1013 1014 static void iommu_poll_ga_log(struct amd_iommu *iommu) 1015 { 1016 u32 head, tail; 1017 1018 if (iommu->ga_log == NULL) 1019 return; 1020 1021 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 1022 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 1023 1024 while (head != tail) { 1025 volatile u64 *raw; 1026 u64 log_entry; 1027 1028 raw = (u64 *)(iommu->ga_log + head); 1029 1030 /* Avoid memcpy function-call overhead */ 1031 log_entry = *raw; 1032 1033 /* Update head pointer of hardware ring-buffer */ 1034 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 1035 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 1036 1037 /* Handle GA entry */ 1038 switch (GA_REQ_TYPE(log_entry)) { 1039 case GA_GUEST_NR: 1040 if (!iommu_ga_log_notifier) 1041 break; 1042 1043 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 1044 __func__, GA_DEVID(log_entry), 1045 GA_TAG(log_entry)); 1046 1047 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 1048 pr_err("GA log notifier failed.\n"); 1049 break; 1050 default: 1051 break; 1052 } 1053 } 1054 } 1055 1056 static void 1057 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 1058 { 1059 if (!irq_remapping_enabled || !dev_is_pci(dev) || 1060 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev))) 1061 return; 1062 1063 dev_set_msi_domain(dev, iommu->ir_domain); 1064 } 1065 1066 #else /* CONFIG_IRQ_REMAP */ 1067 static inline void 1068 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 1069 #endif /* !CONFIG_IRQ_REMAP */ 1070 1071 static void amd_iommu_handle_irq(void *data, const char *evt_type, 1072 u32 int_mask, u32 overflow_mask, 1073 void (*int_handler)(struct amd_iommu *), 1074 void (*overflow_handler)(struct amd_iommu *)) 1075 { 1076 struct amd_iommu *iommu = (struct amd_iommu *) data; 1077 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 1078 u32 mask = int_mask | overflow_mask; 1079 1080 while (status & mask) { 1081 /* Enable interrupt sources again */ 1082 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET); 1083 1084 if (int_handler) { 1085 pr_devel("Processing IOMMU (ivhd%d) %s Log\n", 1086 iommu->index, evt_type); 1087 int_handler(iommu); 1088 } 1089 1090 if ((status & overflow_mask) && overflow_handler) 1091 overflow_handler(iommu); 1092 1093 /* 1094 * Hardware bug: ERBT1312 1095 * When re-enabling interrupt (by writing 1 1096 * to clear the bit), the hardware might also try to set 1097 * the interrupt bit in the event status register. 1098 * In this scenario, the bit will be set, and disable 1099 * subsequent interrupts. 1100 * 1101 * Workaround: The IOMMU driver should read back the 1102 * status register and check if the interrupt bits are cleared. 1103 * If not, driver will need to go through the interrupt handler 1104 * again and re-clear the bits 1105 */ 1106 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 1107 } 1108 } 1109 1110 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data) 1111 { 1112 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK, 1113 MMIO_STATUS_EVT_OVERFLOW_MASK, 1114 iommu_poll_events, amd_iommu_restart_event_logging); 1115 1116 return IRQ_HANDLED; 1117 } 1118 1119 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data) 1120 { 1121 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK, 1122 MMIO_STATUS_PPR_OVERFLOW_MASK, 1123 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log); 1124 1125 return IRQ_HANDLED; 1126 } 1127 1128 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data) 1129 { 1130 #ifdef CONFIG_IRQ_REMAP 1131 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK, 1132 MMIO_STATUS_GALOG_OVERFLOW_MASK, 1133 iommu_poll_ga_log, amd_iommu_restart_ga_log); 1134 #endif 1135 1136 return IRQ_HANDLED; 1137 } 1138 1139 irqreturn_t amd_iommu_int_thread(int irq, void *data) 1140 { 1141 amd_iommu_int_thread_evtlog(irq, data); 1142 amd_iommu_int_thread_pprlog(irq, data); 1143 amd_iommu_int_thread_galog(irq, data); 1144 1145 return IRQ_HANDLED; 1146 } 1147 1148 irqreturn_t amd_iommu_int_handler(int irq, void *data) 1149 { 1150 return IRQ_WAKE_THREAD; 1151 } 1152 1153 /**************************************************************************** 1154 * 1155 * IOMMU command queuing functions 1156 * 1157 ****************************************************************************/ 1158 1159 static int wait_on_sem(struct amd_iommu *iommu, u64 data) 1160 { 1161 int i = 0; 1162 1163 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { 1164 udelay(1); 1165 i += 1; 1166 } 1167 1168 if (i == LOOP_TIMEOUT) { 1169 pr_alert("Completion-Wait loop timed out\n"); 1170 return -EIO; 1171 } 1172 1173 return 0; 1174 } 1175 1176 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 1177 struct iommu_cmd *cmd) 1178 { 1179 u8 *target; 1180 u32 tail; 1181 1182 /* Copy command to buffer */ 1183 tail = iommu->cmd_buf_tail; 1184 target = iommu->cmd_buf + tail; 1185 memcpy(target, cmd, sizeof(*cmd)); 1186 1187 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1188 iommu->cmd_buf_tail = tail; 1189 1190 /* Tell the IOMMU about it */ 1191 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 1192 } 1193 1194 static void build_completion_wait(struct iommu_cmd *cmd, 1195 struct amd_iommu *iommu, 1196 u64 data) 1197 { 1198 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); 1199 1200 memset(cmd, 0, sizeof(*cmd)); 1201 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 1202 cmd->data[1] = upper_32_bits(paddr); 1203 cmd->data[2] = lower_32_bits(data); 1204 cmd->data[3] = upper_32_bits(data); 1205 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 1206 } 1207 1208 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 1209 { 1210 memset(cmd, 0, sizeof(*cmd)); 1211 cmd->data[0] = devid; 1212 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 1213 } 1214 1215 /* 1216 * Builds an invalidation address which is suitable for one page or multiple 1217 * pages. Sets the size bit (S) as needed is more than one page is flushed. 1218 */ 1219 static inline u64 build_inv_address(u64 address, size_t size) 1220 { 1221 u64 pages, end, msb_diff; 1222 1223 pages = iommu_num_pages(address, size, PAGE_SIZE); 1224 1225 if (pages == 1) 1226 return address & PAGE_MASK; 1227 1228 end = address + size - 1; 1229 1230 /* 1231 * msb_diff would hold the index of the most significant bit that 1232 * flipped between the start and end. 1233 */ 1234 msb_diff = fls64(end ^ address) - 1; 1235 1236 /* 1237 * Bits 63:52 are sign extended. If for some reason bit 51 is different 1238 * between the start and the end, invalidate everything. 1239 */ 1240 if (unlikely(msb_diff > 51)) { 1241 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 1242 } else { 1243 /* 1244 * The msb-bit must be clear on the address. Just set all the 1245 * lower bits. 1246 */ 1247 address |= (1ull << msb_diff) - 1; 1248 } 1249 1250 /* Clear bits 11:0 */ 1251 address &= PAGE_MASK; 1252 1253 /* Set the size bit - we flush more than one 4kb page */ 1254 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; 1255 } 1256 1257 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 1258 size_t size, u16 domid, 1259 ioasid_t pasid, bool gn) 1260 { 1261 u64 inv_address = build_inv_address(address, size); 1262 1263 memset(cmd, 0, sizeof(*cmd)); 1264 1265 cmd->data[1] |= domid; 1266 cmd->data[2] = lower_32_bits(inv_address); 1267 cmd->data[3] = upper_32_bits(inv_address); 1268 /* PDE bit - we want to flush everything, not only the PTEs */ 1269 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1270 if (gn) { 1271 cmd->data[0] |= pasid; 1272 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1273 } 1274 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1275 } 1276 1277 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 1278 u64 address, size_t size, 1279 ioasid_t pasid, bool gn) 1280 { 1281 u64 inv_address = build_inv_address(address, size); 1282 1283 memset(cmd, 0, sizeof(*cmd)); 1284 1285 cmd->data[0] = devid; 1286 cmd->data[0] |= (qdep & 0xff) << 24; 1287 cmd->data[1] = devid; 1288 cmd->data[2] = lower_32_bits(inv_address); 1289 cmd->data[3] = upper_32_bits(inv_address); 1290 if (gn) { 1291 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 1292 cmd->data[1] |= (pasid & 0xff) << 16; 1293 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1294 } 1295 1296 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1297 } 1298 1299 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1300 int status, int tag, u8 gn) 1301 { 1302 memset(cmd, 0, sizeof(*cmd)); 1303 1304 cmd->data[0] = devid; 1305 if (gn) { 1306 cmd->data[1] = pasid; 1307 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 1308 } 1309 cmd->data[3] = tag & 0x1ff; 1310 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 1311 1312 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 1313 } 1314 1315 static void build_inv_all(struct iommu_cmd *cmd) 1316 { 1317 memset(cmd, 0, sizeof(*cmd)); 1318 CMD_SET_TYPE(cmd, CMD_INV_ALL); 1319 } 1320 1321 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 1322 { 1323 memset(cmd, 0, sizeof(*cmd)); 1324 cmd->data[0] = devid; 1325 CMD_SET_TYPE(cmd, CMD_INV_IRT); 1326 } 1327 1328 /* 1329 * Writes the command to the IOMMUs command buffer and informs the 1330 * hardware about the new command. 1331 */ 1332 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 1333 struct iommu_cmd *cmd, 1334 bool sync) 1335 { 1336 unsigned int count = 0; 1337 u32 left, next_tail; 1338 1339 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1340 again: 1341 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1342 1343 if (left <= 0x20) { 1344 /* Skip udelay() the first time around */ 1345 if (count++) { 1346 if (count == LOOP_TIMEOUT) { 1347 pr_err("Command buffer timeout\n"); 1348 return -EIO; 1349 } 1350 1351 udelay(1); 1352 } 1353 1354 /* Update head and recheck remaining space */ 1355 iommu->cmd_buf_head = readl(iommu->mmio_base + 1356 MMIO_CMD_HEAD_OFFSET); 1357 1358 goto again; 1359 } 1360 1361 copy_cmd_to_buffer(iommu, cmd); 1362 1363 /* Do we need to make sure all commands are processed? */ 1364 iommu->need_sync = sync; 1365 1366 return 0; 1367 } 1368 1369 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1370 struct iommu_cmd *cmd, 1371 bool sync) 1372 { 1373 unsigned long flags; 1374 int ret; 1375 1376 raw_spin_lock_irqsave(&iommu->lock, flags); 1377 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1378 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1379 1380 return ret; 1381 } 1382 1383 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1384 { 1385 return iommu_queue_command_sync(iommu, cmd, true); 1386 } 1387 1388 /* 1389 * This function queues a completion wait command into the command 1390 * buffer of an IOMMU 1391 */ 1392 static int iommu_completion_wait(struct amd_iommu *iommu) 1393 { 1394 struct iommu_cmd cmd; 1395 unsigned long flags; 1396 int ret; 1397 u64 data; 1398 1399 if (!iommu->need_sync) 1400 return 0; 1401 1402 data = atomic64_inc_return(&iommu->cmd_sem_val); 1403 build_completion_wait(&cmd, iommu, data); 1404 1405 raw_spin_lock_irqsave(&iommu->lock, flags); 1406 1407 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1408 if (ret) 1409 goto out_unlock; 1410 1411 ret = wait_on_sem(iommu, data); 1412 1413 out_unlock: 1414 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1415 1416 return ret; 1417 } 1418 1419 static void domain_flush_complete(struct protection_domain *domain) 1420 { 1421 struct pdom_iommu_info *pdom_iommu_info; 1422 unsigned long i; 1423 1424 lockdep_assert_held(&domain->lock); 1425 1426 /* 1427 * Devices of this domain are behind this IOMMU 1428 * We need to wait for completion of all commands. 1429 */ 1430 xa_for_each(&domain->iommu_array, i, pdom_iommu_info) 1431 iommu_completion_wait(pdom_iommu_info->iommu); 1432 } 1433 1434 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1435 { 1436 struct iommu_cmd cmd; 1437 1438 build_inv_dte(&cmd, devid); 1439 1440 return iommu_queue_command(iommu, &cmd); 1441 } 1442 1443 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid) 1444 { 1445 int ret; 1446 1447 ret = iommu_flush_dte(iommu, devid); 1448 if (!ret) 1449 iommu_completion_wait(iommu); 1450 } 1451 1452 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1453 { 1454 u32 devid; 1455 u16 last_bdf = iommu->pci_seg->last_bdf; 1456 1457 for (devid = 0; devid <= last_bdf; ++devid) 1458 iommu_flush_dte(iommu, devid); 1459 1460 iommu_completion_wait(iommu); 1461 } 1462 1463 /* 1464 * This function uses heavy locking and may disable irqs for some time. But 1465 * this is no issue because it is only called during resume. 1466 */ 1467 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1468 { 1469 u32 dom_id; 1470 u16 last_bdf = iommu->pci_seg->last_bdf; 1471 1472 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) { 1473 struct iommu_cmd cmd; 1474 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1475 dom_id, IOMMU_NO_PASID, false); 1476 iommu_queue_command(iommu, &cmd); 1477 } 1478 1479 iommu_completion_wait(iommu); 1480 } 1481 1482 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1483 { 1484 struct iommu_cmd cmd; 1485 1486 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1487 dom_id, IOMMU_NO_PASID, false); 1488 iommu_queue_command(iommu, &cmd); 1489 1490 iommu_completion_wait(iommu); 1491 } 1492 1493 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1494 { 1495 struct iommu_cmd cmd; 1496 1497 build_inv_all(&cmd); 1498 1499 iommu_queue_command(iommu, &cmd); 1500 iommu_completion_wait(iommu); 1501 } 1502 1503 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1504 { 1505 struct iommu_cmd cmd; 1506 1507 build_inv_irt(&cmd, devid); 1508 1509 iommu_queue_command(iommu, &cmd); 1510 } 1511 1512 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1513 { 1514 u32 devid; 1515 u16 last_bdf = iommu->pci_seg->last_bdf; 1516 1517 if (iommu->irtcachedis_enabled) 1518 return; 1519 1520 for (devid = 0; devid <= last_bdf; devid++) 1521 iommu_flush_irt(iommu, devid); 1522 1523 iommu_completion_wait(iommu); 1524 } 1525 1526 void amd_iommu_flush_all_caches(struct amd_iommu *iommu) 1527 { 1528 if (check_feature(FEATURE_IA)) { 1529 amd_iommu_flush_all(iommu); 1530 } else { 1531 amd_iommu_flush_dte_all(iommu); 1532 amd_iommu_flush_irt_all(iommu); 1533 amd_iommu_flush_tlb_all(iommu); 1534 } 1535 } 1536 1537 /* 1538 * Command send function for flushing on-device TLB 1539 */ 1540 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address, 1541 size_t size, ioasid_t pasid, bool gn) 1542 { 1543 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 1544 struct iommu_cmd cmd; 1545 int qdep = dev_data->ats_qdep; 1546 1547 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, 1548 size, pasid, gn); 1549 1550 return iommu_queue_command(iommu, &cmd); 1551 } 1552 1553 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1554 { 1555 struct amd_iommu *iommu = data; 1556 1557 return iommu_flush_dte(iommu, alias); 1558 } 1559 1560 /* 1561 * Command send function for invalidating a device table entry 1562 */ 1563 static int device_flush_dte(struct iommu_dev_data *dev_data) 1564 { 1565 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 1566 struct pci_dev *pdev = NULL; 1567 struct amd_iommu_pci_seg *pci_seg; 1568 u16 alias; 1569 int ret; 1570 1571 if (dev_is_pci(dev_data->dev)) 1572 pdev = to_pci_dev(dev_data->dev); 1573 1574 if (pdev) 1575 ret = pci_for_each_dma_alias(pdev, 1576 device_flush_dte_alias, iommu); 1577 else 1578 ret = iommu_flush_dte(iommu, dev_data->devid); 1579 if (ret) 1580 return ret; 1581 1582 pci_seg = iommu->pci_seg; 1583 alias = pci_seg->alias_table[dev_data->devid]; 1584 if (alias != dev_data->devid) { 1585 ret = iommu_flush_dte(iommu, alias); 1586 if (ret) 1587 return ret; 1588 } 1589 1590 if (dev_data->ats_enabled) { 1591 /* Invalidate the entire contents of an IOTLB */ 1592 ret = device_flush_iotlb(dev_data, 0, ~0UL, 1593 IOMMU_NO_PASID, false); 1594 } 1595 1596 return ret; 1597 } 1598 1599 static int domain_flush_pages_v2(struct protection_domain *pdom, 1600 u64 address, size_t size) 1601 { 1602 struct iommu_dev_data *dev_data; 1603 struct iommu_cmd cmd; 1604 int ret = 0; 1605 1606 lockdep_assert_held(&pdom->lock); 1607 list_for_each_entry(dev_data, &pdom->dev_list, list) { 1608 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 1609 u16 domid = dev_data->gcr3_info.domid; 1610 1611 build_inv_iommu_pages(&cmd, address, size, 1612 domid, IOMMU_NO_PASID, true); 1613 1614 ret |= iommu_queue_command(iommu, &cmd); 1615 } 1616 1617 return ret; 1618 } 1619 1620 static int domain_flush_pages_v1(struct protection_domain *pdom, 1621 u64 address, size_t size) 1622 { 1623 struct pdom_iommu_info *pdom_iommu_info; 1624 struct iommu_cmd cmd; 1625 int ret = 0; 1626 unsigned long i; 1627 1628 lockdep_assert_held(&pdom->lock); 1629 1630 build_inv_iommu_pages(&cmd, address, size, 1631 pdom->id, IOMMU_NO_PASID, false); 1632 1633 xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) { 1634 /* 1635 * Devices of this domain are behind this IOMMU 1636 * We need a TLB flush 1637 */ 1638 ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd); 1639 } 1640 1641 return ret; 1642 } 1643 1644 /* 1645 * TLB invalidation function which is called from the mapping functions. 1646 * It flushes range of PTEs of the domain. 1647 */ 1648 static void __domain_flush_pages(struct protection_domain *domain, 1649 u64 address, size_t size) 1650 { 1651 struct iommu_dev_data *dev_data; 1652 int ret = 0; 1653 ioasid_t pasid = IOMMU_NO_PASID; 1654 bool gn = false; 1655 1656 lockdep_assert_held(&domain->lock); 1657 1658 if (pdom_is_v2_pgtbl_mode(domain)) { 1659 gn = true; 1660 ret = domain_flush_pages_v2(domain, address, size); 1661 } else { 1662 ret = domain_flush_pages_v1(domain, address, size); 1663 } 1664 1665 list_for_each_entry(dev_data, &domain->dev_list, list) { 1666 1667 if (!dev_data->ats_enabled) 1668 continue; 1669 1670 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn); 1671 } 1672 1673 WARN_ON(ret); 1674 } 1675 1676 void amd_iommu_domain_flush_pages(struct protection_domain *domain, 1677 u64 address, size_t size) 1678 { 1679 lockdep_assert_held(&domain->lock); 1680 1681 if (likely(!amd_iommu_np_cache)) { 1682 __domain_flush_pages(domain, address, size); 1683 1684 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */ 1685 domain_flush_complete(domain); 1686 1687 return; 1688 } 1689 1690 /* 1691 * When NpCache is on, we infer that we run in a VM and use a vIOMMU. 1692 * In such setups it is best to avoid flushes of ranges which are not 1693 * naturally aligned, since it would lead to flushes of unmodified 1694 * PTEs. Such flushes would require the hypervisor to do more work than 1695 * necessary. Therefore, perform repeated flushes of aligned ranges 1696 * until you cover the range. Each iteration flushes the smaller 1697 * between the natural alignment of the address that we flush and the 1698 * greatest naturally aligned region that fits in the range. 1699 */ 1700 while (size != 0) { 1701 int addr_alignment = __ffs(address); 1702 int size_alignment = __fls(size); 1703 int min_alignment; 1704 size_t flush_size; 1705 1706 /* 1707 * size is always non-zero, but address might be zero, causing 1708 * addr_alignment to be negative. As the casting of the 1709 * argument in __ffs(address) to long might trim the high bits 1710 * of the address on x86-32, cast to long when doing the check. 1711 */ 1712 if (likely((unsigned long)address != 0)) 1713 min_alignment = min(addr_alignment, size_alignment); 1714 else 1715 min_alignment = size_alignment; 1716 1717 flush_size = 1ul << min_alignment; 1718 1719 __domain_flush_pages(domain, address, flush_size); 1720 address += flush_size; 1721 size -= flush_size; 1722 } 1723 1724 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */ 1725 domain_flush_complete(domain); 1726 } 1727 1728 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1729 static void amd_iommu_domain_flush_all(struct protection_domain *domain) 1730 { 1731 amd_iommu_domain_flush_pages(domain, 0, 1732 CMD_INV_IOMMU_ALL_PAGES_ADDRESS); 1733 } 1734 1735 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data, 1736 ioasid_t pasid, u64 address, size_t size) 1737 { 1738 struct iommu_cmd cmd; 1739 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 1740 1741 build_inv_iommu_pages(&cmd, address, size, 1742 dev_data->gcr3_info.domid, pasid, true); 1743 iommu_queue_command(iommu, &cmd); 1744 1745 if (dev_data->ats_enabled) 1746 device_flush_iotlb(dev_data, address, size, pasid, true); 1747 1748 iommu_completion_wait(iommu); 1749 } 1750 1751 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data, 1752 ioasid_t pasid) 1753 { 1754 amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0, 1755 CMD_INV_IOMMU_ALL_PAGES_ADDRESS); 1756 } 1757 1758 /* Flush the not present cache if it exists */ 1759 static void domain_flush_np_cache(struct protection_domain *domain, 1760 dma_addr_t iova, size_t size) 1761 { 1762 if (unlikely(amd_iommu_np_cache)) { 1763 unsigned long flags; 1764 1765 spin_lock_irqsave(&domain->lock, flags); 1766 amd_iommu_domain_flush_pages(domain, iova, size); 1767 spin_unlock_irqrestore(&domain->lock, flags); 1768 } 1769 } 1770 1771 1772 /* 1773 * This function flushes the DTEs for all devices in domain 1774 */ 1775 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) 1776 { 1777 struct iommu_dev_data *dev_data; 1778 1779 lockdep_assert_held(&domain->lock); 1780 1781 list_for_each_entry(dev_data, &domain->dev_list, list) { 1782 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev); 1783 1784 set_dte_entry(iommu, dev_data); 1785 clone_aliases(iommu, dev_data->dev); 1786 } 1787 1788 list_for_each_entry(dev_data, &domain->dev_list, list) 1789 device_flush_dte(dev_data); 1790 1791 domain_flush_complete(domain); 1792 } 1793 1794 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag) 1795 { 1796 struct iommu_dev_data *dev_data; 1797 struct amd_iommu *iommu; 1798 struct iommu_cmd cmd; 1799 1800 dev_data = dev_iommu_priv_get(dev); 1801 iommu = get_amd_iommu_from_dev(dev); 1802 1803 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 1804 tag, dev_data->pri_tlp); 1805 1806 return iommu_queue_command(iommu, &cmd); 1807 } 1808 1809 /**************************************************************************** 1810 * 1811 * The next functions belong to the domain allocation. A domain is 1812 * allocated for every IOMMU as the default domain. If device isolation 1813 * is enabled, every device get its own domain. The most important thing 1814 * about domains is the page table mapping the DMA address space they 1815 * contain. 1816 * 1817 ****************************************************************************/ 1818 1819 static int pdom_id_alloc(void) 1820 { 1821 return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC); 1822 } 1823 1824 static void pdom_id_free(int id) 1825 { 1826 ida_free(&pdom_ids, id); 1827 } 1828 1829 static void free_gcr3_tbl_level1(u64 *tbl) 1830 { 1831 u64 *ptr; 1832 int i; 1833 1834 for (i = 0; i < 512; ++i) { 1835 if (!(tbl[i] & GCR3_VALID)) 1836 continue; 1837 1838 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1839 1840 iommu_free_pages(ptr); 1841 } 1842 } 1843 1844 static void free_gcr3_tbl_level2(u64 *tbl) 1845 { 1846 u64 *ptr; 1847 int i; 1848 1849 for (i = 0; i < 512; ++i) { 1850 if (!(tbl[i] & GCR3_VALID)) 1851 continue; 1852 1853 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1854 1855 free_gcr3_tbl_level1(ptr); 1856 } 1857 } 1858 1859 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info) 1860 { 1861 if (gcr3_info->glx == 2) 1862 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl); 1863 else if (gcr3_info->glx == 1) 1864 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl); 1865 else 1866 WARN_ON_ONCE(gcr3_info->glx != 0); 1867 1868 gcr3_info->glx = 0; 1869 1870 /* Free per device domain ID */ 1871 pdom_id_free(gcr3_info->domid); 1872 1873 iommu_free_pages(gcr3_info->gcr3_tbl); 1874 gcr3_info->gcr3_tbl = NULL; 1875 } 1876 1877 /* 1878 * Number of GCR3 table levels required. Level must be 4-Kbyte 1879 * page and can contain up to 512 entries. 1880 */ 1881 static int get_gcr3_levels(int pasids) 1882 { 1883 int levels; 1884 1885 if (pasids == -1) 1886 return amd_iommu_max_glx_val; 1887 1888 levels = get_count_order(pasids); 1889 1890 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels; 1891 } 1892 1893 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info, 1894 struct amd_iommu *iommu, int pasids) 1895 { 1896 int levels = get_gcr3_levels(pasids); 1897 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE; 1898 int domid; 1899 1900 if (levels > amd_iommu_max_glx_val) 1901 return -EINVAL; 1902 1903 if (gcr3_info->gcr3_tbl) 1904 return -EBUSY; 1905 1906 /* Allocate per device domain ID */ 1907 domid = pdom_id_alloc(); 1908 if (domid <= 0) 1909 return -ENOSPC; 1910 gcr3_info->domid = domid; 1911 1912 gcr3_info->gcr3_tbl = iommu_alloc_pages_node_sz(nid, GFP_ATOMIC, SZ_4K); 1913 if (gcr3_info->gcr3_tbl == NULL) { 1914 pdom_id_free(domid); 1915 return -ENOMEM; 1916 } 1917 1918 gcr3_info->glx = levels; 1919 1920 return 0; 1921 } 1922 1923 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info, 1924 ioasid_t pasid, bool alloc) 1925 { 1926 int index; 1927 u64 *pte; 1928 u64 *root = gcr3_info->gcr3_tbl; 1929 int level = gcr3_info->glx; 1930 1931 while (true) { 1932 1933 index = (pasid >> (9 * level)) & 0x1ff; 1934 pte = &root[index]; 1935 1936 if (level == 0) 1937 break; 1938 1939 if (!(*pte & GCR3_VALID)) { 1940 if (!alloc) 1941 return NULL; 1942 1943 root = (void *)get_zeroed_page(GFP_ATOMIC); 1944 if (root == NULL) 1945 return NULL; 1946 1947 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 1948 } 1949 1950 root = iommu_phys_to_virt(*pte & PAGE_MASK); 1951 1952 level -= 1; 1953 } 1954 1955 return pte; 1956 } 1957 1958 static int update_gcr3(struct iommu_dev_data *dev_data, 1959 ioasid_t pasid, unsigned long gcr3, bool set) 1960 { 1961 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1962 u64 *pte; 1963 1964 pte = __get_gcr3_pte(gcr3_info, pasid, true); 1965 if (pte == NULL) 1966 return -ENOMEM; 1967 1968 if (set) 1969 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID; 1970 else 1971 *pte = 0; 1972 1973 dev_flush_pasid_all(dev_data, pasid); 1974 return 0; 1975 } 1976 1977 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid, 1978 unsigned long gcr3) 1979 { 1980 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1981 int ret; 1982 1983 iommu_group_mutex_assert(dev_data->dev); 1984 1985 ret = update_gcr3(dev_data, pasid, gcr3, true); 1986 if (ret) 1987 return ret; 1988 1989 gcr3_info->pasid_cnt++; 1990 return ret; 1991 } 1992 1993 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid) 1994 { 1995 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1996 int ret; 1997 1998 iommu_group_mutex_assert(dev_data->dev); 1999 2000 ret = update_gcr3(dev_data, pasid, 0, false); 2001 if (ret) 2002 return ret; 2003 2004 gcr3_info->pasid_cnt--; 2005 return ret; 2006 } 2007 2008 static void make_clear_dte(struct iommu_dev_data *dev_data, struct dev_table_entry *ptr, 2009 struct dev_table_entry *new) 2010 { 2011 /* All existing DTE must have V bit set */ 2012 new->data128[0] = DTE_FLAG_V; 2013 new->data128[1] = 0; 2014 } 2015 2016 /* 2017 * Note: 2018 * The old value for GCR3 table and GPT have been cleared from caller. 2019 */ 2020 static void set_dte_gcr3_table(struct amd_iommu *iommu, 2021 struct iommu_dev_data *dev_data, 2022 struct dev_table_entry *target) 2023 { 2024 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 2025 u64 gcr3; 2026 2027 if (!gcr3_info->gcr3_tbl) 2028 return; 2029 2030 pr_debug("%s: devid=%#x, glx=%#x, gcr3_tbl=%#llx\n", 2031 __func__, dev_data->devid, gcr3_info->glx, 2032 (unsigned long long)gcr3_info->gcr3_tbl); 2033 2034 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl); 2035 2036 target->data[0] |= DTE_FLAG_GV | 2037 FIELD_PREP(DTE_GLX, gcr3_info->glx) | 2038 FIELD_PREP(DTE_GCR3_14_12, gcr3 >> 12); 2039 if (pdom_is_v2_pgtbl_mode(dev_data->domain)) 2040 target->data[0] |= DTE_FLAG_GIOV; 2041 2042 target->data[1] |= FIELD_PREP(DTE_GCR3_30_15, gcr3 >> 15) | 2043 FIELD_PREP(DTE_GCR3_51_31, gcr3 >> 31); 2044 2045 /* Guest page table can only support 4 and 5 levels */ 2046 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) 2047 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_5_LEVEL); 2048 else 2049 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_4_LEVEL); 2050 } 2051 2052 static void set_dte_entry(struct amd_iommu *iommu, 2053 struct iommu_dev_data *dev_data) 2054 { 2055 u16 domid; 2056 u32 old_domid; 2057 struct dev_table_entry *initial_dte; 2058 struct dev_table_entry new = {}; 2059 struct protection_domain *domain = dev_data->domain; 2060 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 2061 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid]; 2062 2063 if (gcr3_info && gcr3_info->gcr3_tbl) 2064 domid = dev_data->gcr3_info.domid; 2065 else 2066 domid = domain->id; 2067 2068 make_clear_dte(dev_data, dte, &new); 2069 2070 if (domain->iop.mode != PAGE_MODE_NONE) 2071 new.data[0] |= iommu_virt_to_phys(domain->iop.root); 2072 2073 new.data[0] |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) 2074 << DEV_ENTRY_MODE_SHIFT; 2075 2076 new.data[0] |= DTE_FLAG_IR | DTE_FLAG_IW; 2077 2078 /* 2079 * When SNP is enabled, we can only support TV=1 with non-zero domain ID. 2080 * This is prevented by the SNP-enable and IOMMU_DOMAIN_IDENTITY check in 2081 * do_iommu_domain_alloc(). 2082 */ 2083 WARN_ON(amd_iommu_snp_en && (domid == 0)); 2084 new.data[0] |= DTE_FLAG_TV; 2085 2086 if (dev_data->ppr) 2087 new.data[0] |= 1ULL << DEV_ENTRY_PPR; 2088 2089 if (domain->dirty_tracking) 2090 new.data[0] |= DTE_FLAG_HAD; 2091 2092 if (dev_data->ats_enabled) 2093 new.data[1] |= DTE_FLAG_IOTLB; 2094 2095 old_domid = READ_ONCE(dte->data[1]) & DEV_DOMID_MASK; 2096 new.data[1] |= domid; 2097 2098 /* 2099 * Restore cached persistent DTE bits, which can be set by information 2100 * in IVRS table. See set_dev_entry_from_acpi(). 2101 */ 2102 initial_dte = amd_iommu_get_ivhd_dte_flags(iommu->pci_seg->id, dev_data->devid); 2103 if (initial_dte) { 2104 new.data128[0] |= initial_dte->data128[0]; 2105 new.data128[1] |= initial_dte->data128[1]; 2106 } 2107 2108 set_dte_gcr3_table(iommu, dev_data, &new); 2109 2110 update_dte256(iommu, dev_data, &new); 2111 2112 /* 2113 * A kdump kernel might be replacing a domain ID that was copied from 2114 * the previous kernel--if so, it needs to flush the translation cache 2115 * entries for the old domain ID that is being overwritten 2116 */ 2117 if (old_domid) { 2118 amd_iommu_flush_tlb_domid(iommu, old_domid); 2119 } 2120 } 2121 2122 /* 2123 * Clear DMA-remap related flags to block all DMA (blockeded domain) 2124 */ 2125 static void clear_dte_entry(struct amd_iommu *iommu, struct iommu_dev_data *dev_data) 2126 { 2127 struct dev_table_entry new = {}; 2128 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid]; 2129 2130 make_clear_dte(dev_data, dte, &new); 2131 update_dte256(iommu, dev_data, &new); 2132 } 2133 2134 /* Update and flush DTE for the given device */ 2135 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set) 2136 { 2137 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 2138 2139 if (set) 2140 set_dte_entry(iommu, dev_data); 2141 else 2142 clear_dte_entry(iommu, dev_data); 2143 2144 clone_aliases(iommu, dev_data->dev); 2145 device_flush_dte(dev_data); 2146 iommu_completion_wait(iommu); 2147 } 2148 2149 /* 2150 * If domain is SVA capable then initialize GCR3 table. Also if domain is 2151 * in v2 page table mode then update GCR3[0]. 2152 */ 2153 static int init_gcr3_table(struct iommu_dev_data *dev_data, 2154 struct protection_domain *pdom) 2155 { 2156 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2157 int max_pasids = dev_data->max_pasids; 2158 int ret = 0; 2159 2160 /* 2161 * If domain is in pt mode then setup GCR3 table only if device 2162 * is PASID capable 2163 */ 2164 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data)) 2165 return ret; 2166 2167 /* 2168 * By default, setup GCR3 table to support MAX PASIDs 2169 * supported by the device/IOMMU. 2170 */ 2171 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu, 2172 max_pasids > 0 ? max_pasids : 1); 2173 if (ret) 2174 return ret; 2175 2176 /* Setup GCR3[0] only if domain is setup with v2 page table mode */ 2177 if (!pdom_is_v2_pgtbl_mode(pdom)) 2178 return ret; 2179 2180 ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true); 2181 if (ret) 2182 free_gcr3_table(&dev_data->gcr3_info); 2183 2184 return ret; 2185 } 2186 2187 static void destroy_gcr3_table(struct iommu_dev_data *dev_data, 2188 struct protection_domain *pdom) 2189 { 2190 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 2191 2192 if (pdom_is_v2_pgtbl_mode(pdom)) 2193 update_gcr3(dev_data, 0, 0, false); 2194 2195 if (gcr3_info->gcr3_tbl == NULL) 2196 return; 2197 2198 free_gcr3_table(gcr3_info); 2199 } 2200 2201 static int pdom_attach_iommu(struct amd_iommu *iommu, 2202 struct protection_domain *pdom) 2203 { 2204 struct pdom_iommu_info *pdom_iommu_info, *curr; 2205 unsigned long flags; 2206 int ret = 0; 2207 2208 spin_lock_irqsave(&pdom->lock, flags); 2209 2210 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index); 2211 if (pdom_iommu_info) { 2212 pdom_iommu_info->refcnt++; 2213 goto out_unlock; 2214 } 2215 2216 pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC); 2217 if (!pdom_iommu_info) { 2218 ret = -ENOMEM; 2219 goto out_unlock; 2220 } 2221 2222 pdom_iommu_info->iommu = iommu; 2223 pdom_iommu_info->refcnt = 1; 2224 2225 curr = xa_cmpxchg(&pdom->iommu_array, iommu->index, 2226 NULL, pdom_iommu_info, GFP_ATOMIC); 2227 if (curr) { 2228 kfree(pdom_iommu_info); 2229 ret = -ENOSPC; 2230 goto out_unlock; 2231 } 2232 2233 out_unlock: 2234 spin_unlock_irqrestore(&pdom->lock, flags); 2235 return ret; 2236 } 2237 2238 static void pdom_detach_iommu(struct amd_iommu *iommu, 2239 struct protection_domain *pdom) 2240 { 2241 struct pdom_iommu_info *pdom_iommu_info; 2242 unsigned long flags; 2243 2244 spin_lock_irqsave(&pdom->lock, flags); 2245 2246 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index); 2247 if (!pdom_iommu_info) { 2248 spin_unlock_irqrestore(&pdom->lock, flags); 2249 return; 2250 } 2251 2252 pdom_iommu_info->refcnt--; 2253 if (pdom_iommu_info->refcnt == 0) { 2254 xa_erase(&pdom->iommu_array, iommu->index); 2255 kfree(pdom_iommu_info); 2256 } 2257 2258 spin_unlock_irqrestore(&pdom->lock, flags); 2259 } 2260 2261 /* 2262 * If a device is not yet associated with a domain, this function makes the 2263 * device visible in the domain 2264 */ 2265 static int attach_device(struct device *dev, 2266 struct protection_domain *domain) 2267 { 2268 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2269 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2270 struct pci_dev *pdev; 2271 unsigned long flags; 2272 int ret = 0; 2273 2274 mutex_lock(&dev_data->mutex); 2275 2276 if (dev_data->domain != NULL) { 2277 ret = -EBUSY; 2278 goto out; 2279 } 2280 2281 /* Do reference counting */ 2282 ret = pdom_attach_iommu(iommu, domain); 2283 if (ret) 2284 goto out; 2285 2286 /* Setup GCR3 table */ 2287 if (pdom_is_sva_capable(domain)) { 2288 ret = init_gcr3_table(dev_data, domain); 2289 if (ret) { 2290 pdom_detach_iommu(iommu, domain); 2291 goto out; 2292 } 2293 } 2294 2295 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL; 2296 if (pdev && pdom_is_sva_capable(domain)) { 2297 pdev_enable_caps(pdev); 2298 2299 /* 2300 * Device can continue to function even if IOPF 2301 * enablement failed. Hence in error path just 2302 * disable device PRI support. 2303 */ 2304 if (amd_iommu_iopf_add_device(iommu, dev_data)) 2305 pdev_disable_cap_pri(pdev); 2306 } else if (pdev) { 2307 pdev_enable_cap_ats(pdev); 2308 } 2309 2310 /* Update data structures */ 2311 dev_data->domain = domain; 2312 spin_lock_irqsave(&domain->lock, flags); 2313 list_add(&dev_data->list, &domain->dev_list); 2314 spin_unlock_irqrestore(&domain->lock, flags); 2315 2316 /* Update device table */ 2317 dev_update_dte(dev_data, true); 2318 2319 out: 2320 mutex_unlock(&dev_data->mutex); 2321 2322 return ret; 2323 } 2324 2325 /* 2326 * Removes a device from a protection domain (with devtable_lock held) 2327 */ 2328 static void detach_device(struct device *dev) 2329 { 2330 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2331 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2332 struct protection_domain *domain = dev_data->domain; 2333 unsigned long flags; 2334 2335 mutex_lock(&dev_data->mutex); 2336 2337 /* 2338 * First check if the device is still attached. It might already 2339 * be detached from its domain because the generic 2340 * iommu_detach_group code detached it and we try again here in 2341 * our alias handling. 2342 */ 2343 if (WARN_ON(!dev_data->domain)) 2344 goto out; 2345 2346 /* Remove IOPF handler */ 2347 if (dev_data->ppr) { 2348 iopf_queue_flush_dev(dev); 2349 amd_iommu_iopf_remove_device(iommu, dev_data); 2350 } 2351 2352 if (dev_is_pci(dev)) 2353 pdev_disable_caps(to_pci_dev(dev)); 2354 2355 /* Clear DTE and flush the entry */ 2356 dev_update_dte(dev_data, false); 2357 2358 /* Flush IOTLB and wait for the flushes to finish */ 2359 spin_lock_irqsave(&domain->lock, flags); 2360 amd_iommu_domain_flush_all(domain); 2361 list_del(&dev_data->list); 2362 spin_unlock_irqrestore(&domain->lock, flags); 2363 2364 /* Clear GCR3 table */ 2365 if (pdom_is_sva_capable(domain)) 2366 destroy_gcr3_table(dev_data, domain); 2367 2368 /* Update data structures */ 2369 dev_data->domain = NULL; 2370 2371 /* decrease reference counters - needs to happen after the flushes */ 2372 pdom_detach_iommu(iommu, domain); 2373 2374 out: 2375 mutex_unlock(&dev_data->mutex); 2376 } 2377 2378 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 2379 { 2380 struct iommu_device *iommu_dev; 2381 struct amd_iommu *iommu; 2382 struct iommu_dev_data *dev_data; 2383 int ret; 2384 2385 if (!check_device(dev)) 2386 return ERR_PTR(-ENODEV); 2387 2388 iommu = rlookup_amd_iommu(dev); 2389 if (!iommu) 2390 return ERR_PTR(-ENODEV); 2391 2392 /* Not registered yet? */ 2393 if (!iommu->iommu.ops) 2394 return ERR_PTR(-ENODEV); 2395 2396 if (dev_iommu_priv_get(dev)) 2397 return &iommu->iommu; 2398 2399 ret = iommu_init_device(iommu, dev); 2400 if (ret) { 2401 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 2402 iommu_dev = ERR_PTR(ret); 2403 iommu_ignore_device(iommu, dev); 2404 goto out_err; 2405 } 2406 2407 amd_iommu_set_pci_msi_domain(dev, iommu); 2408 iommu_dev = &iommu->iommu; 2409 2410 /* 2411 * If IOMMU and device supports PASID then it will contain max 2412 * supported PASIDs, else it will be zero. 2413 */ 2414 dev_data = dev_iommu_priv_get(dev); 2415 if (amd_iommu_pasid_supported() && dev_is_pci(dev) && 2416 pdev_pasid_supported(dev_data)) { 2417 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids, 2418 pci_max_pasids(to_pci_dev(dev))); 2419 } 2420 2421 if (amd_iommu_pgtable == PD_MODE_NONE) { 2422 pr_warn_once("%s: DMA translation not supported by iommu.\n", 2423 __func__); 2424 iommu_dev = ERR_PTR(-ENODEV); 2425 goto out_err; 2426 } 2427 2428 out_err: 2429 2430 iommu_completion_wait(iommu); 2431 2432 if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2)) 2433 dev_data->max_irqs = MAX_IRQS_PER_TABLE_2K; 2434 else 2435 dev_data->max_irqs = MAX_IRQS_PER_TABLE_512; 2436 2437 if (dev_is_pci(dev)) 2438 pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT); 2439 2440 return iommu_dev; 2441 } 2442 2443 static void amd_iommu_release_device(struct device *dev) 2444 { 2445 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2446 2447 WARN_ON(dev_data->domain); 2448 2449 /* 2450 * We keep dev_data around for unplugged devices and reuse it when the 2451 * device is re-plugged - not doing so would introduce a ton of races. 2452 */ 2453 } 2454 2455 static struct iommu_group *amd_iommu_device_group(struct device *dev) 2456 { 2457 if (dev_is_pci(dev)) 2458 return pci_device_group(dev); 2459 2460 return acpihid_device_group(dev); 2461 } 2462 2463 /***************************************************************************** 2464 * 2465 * The following functions belong to the exported interface of AMD IOMMU 2466 * 2467 * This interface allows access to lower level functions of the IOMMU 2468 * like protection domain handling and assignement of devices to domains 2469 * which is not possible with the dma_ops interface. 2470 * 2471 *****************************************************************************/ 2472 2473 static void protection_domain_init(struct protection_domain *domain) 2474 { 2475 spin_lock_init(&domain->lock); 2476 INIT_LIST_HEAD(&domain->dev_list); 2477 INIT_LIST_HEAD(&domain->dev_data_list); 2478 xa_init(&domain->iommu_array); 2479 } 2480 2481 struct protection_domain *protection_domain_alloc(void) 2482 { 2483 struct protection_domain *domain; 2484 int domid; 2485 2486 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2487 if (!domain) 2488 return NULL; 2489 2490 domid = pdom_id_alloc(); 2491 if (domid <= 0) { 2492 kfree(domain); 2493 return NULL; 2494 } 2495 domain->id = domid; 2496 2497 protection_domain_init(domain); 2498 2499 return domain; 2500 } 2501 2502 static int pdom_setup_pgtable(struct protection_domain *domain, 2503 struct device *dev) 2504 { 2505 struct io_pgtable_ops *pgtbl_ops; 2506 enum io_pgtable_fmt fmt; 2507 2508 switch (domain->pd_mode) { 2509 case PD_MODE_V1: 2510 fmt = AMD_IOMMU_V1; 2511 break; 2512 case PD_MODE_V2: 2513 fmt = AMD_IOMMU_V2; 2514 break; 2515 case PD_MODE_NONE: 2516 WARN_ON_ONCE(1); 2517 return -EPERM; 2518 } 2519 2520 domain->iop.pgtbl.cfg.amd.nid = dev_to_node(dev); 2521 pgtbl_ops = alloc_io_pgtable_ops(fmt, &domain->iop.pgtbl.cfg, domain); 2522 if (!pgtbl_ops) 2523 return -ENOMEM; 2524 2525 return 0; 2526 } 2527 2528 static inline u64 dma_max_address(enum protection_domain_mode pgtable) 2529 { 2530 if (pgtable == PD_MODE_V1) 2531 return PM_LEVEL_SIZE(amd_iommu_hpt_level); 2532 2533 /* 2534 * V2 with 4/5 level page table. Note that "2.2.6.5 AMD64 4-Kbyte Page 2535 * Translation" shows that the V2 table sign extends the top of the 2536 * address space creating a reserved region in the middle of the 2537 * translation, just like the CPU does. Further Vasant says the docs are 2538 * incomplete and this only applies to non-zero PASIDs. If the AMDv2 2539 * page table is assigned to the 0 PASID then there is no sign extension 2540 * check. 2541 * 2542 * Since the IOMMU must have a fixed geometry, and the core code does 2543 * not understand sign extended addressing, we have to chop off the high 2544 * bit to get consistent behavior with attachments of the domain to any 2545 * PASID. 2546 */ 2547 return ((1ULL << (PM_LEVEL_SHIFT(amd_iommu_gpt_level) - 1)) - 1); 2548 } 2549 2550 static bool amd_iommu_hd_support(struct amd_iommu *iommu) 2551 { 2552 if (amd_iommu_hatdis) 2553 return false; 2554 2555 return iommu && (iommu->features & FEATURE_HDSUP); 2556 } 2557 2558 static struct iommu_domain * 2559 do_iommu_domain_alloc(struct device *dev, u32 flags, 2560 enum protection_domain_mode pgtable) 2561 { 2562 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING; 2563 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2564 struct protection_domain *domain; 2565 int ret; 2566 2567 domain = protection_domain_alloc(); 2568 if (!domain) 2569 return ERR_PTR(-ENOMEM); 2570 2571 domain->pd_mode = pgtable; 2572 ret = pdom_setup_pgtable(domain, dev); 2573 if (ret) { 2574 pdom_id_free(domain->id); 2575 kfree(domain); 2576 return ERR_PTR(ret); 2577 } 2578 2579 domain->domain.geometry.aperture_start = 0; 2580 domain->domain.geometry.aperture_end = dma_max_address(pgtable); 2581 domain->domain.geometry.force_aperture = true; 2582 domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap; 2583 2584 domain->domain.type = IOMMU_DOMAIN_UNMANAGED; 2585 domain->domain.ops = iommu->iommu.ops->default_domain_ops; 2586 2587 if (dirty_tracking) 2588 domain->domain.dirty_ops = &amd_dirty_ops; 2589 2590 return &domain->domain; 2591 } 2592 2593 static struct iommu_domain * 2594 amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags, 2595 const struct iommu_user_data *user_data) 2596 2597 { 2598 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2599 const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING | 2600 IOMMU_HWPT_ALLOC_PASID; 2601 2602 if ((flags & ~supported_flags) || user_data) 2603 return ERR_PTR(-EOPNOTSUPP); 2604 2605 switch (flags & supported_flags) { 2606 case IOMMU_HWPT_ALLOC_DIRTY_TRACKING: 2607 /* Allocate domain with v1 page table for dirty tracking */ 2608 if (!amd_iommu_hd_support(iommu)) 2609 break; 2610 return do_iommu_domain_alloc(dev, flags, PD_MODE_V1); 2611 case IOMMU_HWPT_ALLOC_PASID: 2612 /* Allocate domain with v2 page table if IOMMU supports PASID. */ 2613 if (!amd_iommu_pasid_supported()) 2614 break; 2615 return do_iommu_domain_alloc(dev, flags, PD_MODE_V2); 2616 case 0: 2617 /* If nothing specific is required use the kernel commandline default */ 2618 return do_iommu_domain_alloc(dev, 0, amd_iommu_pgtable); 2619 default: 2620 break; 2621 } 2622 return ERR_PTR(-EOPNOTSUPP); 2623 } 2624 2625 void amd_iommu_domain_free(struct iommu_domain *dom) 2626 { 2627 struct protection_domain *domain = to_pdomain(dom); 2628 2629 WARN_ON(!list_empty(&domain->dev_list)); 2630 if (domain->domain.type & __IOMMU_DOMAIN_PAGING) 2631 free_io_pgtable_ops(&domain->iop.pgtbl.ops); 2632 pdom_id_free(domain->id); 2633 kfree(domain); 2634 } 2635 2636 static int blocked_domain_attach_device(struct iommu_domain *domain, 2637 struct device *dev) 2638 { 2639 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2640 2641 if (dev_data->domain) 2642 detach_device(dev); 2643 2644 /* Clear DTE and flush the entry */ 2645 mutex_lock(&dev_data->mutex); 2646 dev_update_dte(dev_data, false); 2647 mutex_unlock(&dev_data->mutex); 2648 2649 return 0; 2650 } 2651 2652 static int blocked_domain_set_dev_pasid(struct iommu_domain *domain, 2653 struct device *dev, ioasid_t pasid, 2654 struct iommu_domain *old) 2655 { 2656 amd_iommu_remove_dev_pasid(dev, pasid, old); 2657 return 0; 2658 } 2659 2660 static struct iommu_domain blocked_domain = { 2661 .type = IOMMU_DOMAIN_BLOCKED, 2662 .ops = &(const struct iommu_domain_ops) { 2663 .attach_dev = blocked_domain_attach_device, 2664 .set_dev_pasid = blocked_domain_set_dev_pasid, 2665 } 2666 }; 2667 2668 static struct protection_domain identity_domain; 2669 2670 static const struct iommu_domain_ops identity_domain_ops = { 2671 .attach_dev = amd_iommu_attach_device, 2672 }; 2673 2674 void amd_iommu_init_identity_domain(void) 2675 { 2676 struct iommu_domain *domain = &identity_domain.domain; 2677 2678 domain->type = IOMMU_DOMAIN_IDENTITY; 2679 domain->ops = &identity_domain_ops; 2680 domain->owner = &amd_iommu_ops; 2681 2682 identity_domain.id = pdom_id_alloc(); 2683 2684 protection_domain_init(&identity_domain); 2685 } 2686 2687 /* Same as blocked domain except it supports only ops->attach_dev() */ 2688 static struct iommu_domain release_domain = { 2689 .type = IOMMU_DOMAIN_BLOCKED, 2690 .ops = &(const struct iommu_domain_ops) { 2691 .attach_dev = blocked_domain_attach_device, 2692 } 2693 }; 2694 2695 static int amd_iommu_attach_device(struct iommu_domain *dom, 2696 struct device *dev) 2697 { 2698 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2699 struct protection_domain *domain = to_pdomain(dom); 2700 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2701 int ret; 2702 2703 /* 2704 * Skip attach device to domain if new domain is same as 2705 * devices current domain 2706 */ 2707 if (dev_data->domain == domain) 2708 return 0; 2709 2710 dev_data->defer_attach = false; 2711 2712 /* 2713 * Restrict to devices with compatible IOMMU hardware support 2714 * when enforcement of dirty tracking is enabled. 2715 */ 2716 if (dom->dirty_ops && !amd_iommu_hd_support(iommu)) 2717 return -EINVAL; 2718 2719 if (dev_data->domain) 2720 detach_device(dev); 2721 2722 ret = attach_device(dev, domain); 2723 2724 #ifdef CONFIG_IRQ_REMAP 2725 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2726 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2727 dev_data->use_vapic = 1; 2728 else 2729 dev_data->use_vapic = 0; 2730 } 2731 #endif 2732 2733 return ret; 2734 } 2735 2736 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom, 2737 unsigned long iova, size_t size) 2738 { 2739 struct protection_domain *domain = to_pdomain(dom); 2740 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2741 2742 if (ops->map_pages) 2743 domain_flush_np_cache(domain, iova, size); 2744 return 0; 2745 } 2746 2747 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova, 2748 phys_addr_t paddr, size_t pgsize, size_t pgcount, 2749 int iommu_prot, gfp_t gfp, size_t *mapped) 2750 { 2751 struct protection_domain *domain = to_pdomain(dom); 2752 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2753 int prot = 0; 2754 int ret = -EINVAL; 2755 2756 if ((domain->pd_mode == PD_MODE_V1) && 2757 (domain->iop.mode == PAGE_MODE_NONE)) 2758 return -EINVAL; 2759 2760 if (iommu_prot & IOMMU_READ) 2761 prot |= IOMMU_PROT_IR; 2762 if (iommu_prot & IOMMU_WRITE) 2763 prot |= IOMMU_PROT_IW; 2764 2765 if (ops->map_pages) { 2766 ret = ops->map_pages(ops, iova, paddr, pgsize, 2767 pgcount, prot, gfp, mapped); 2768 } 2769 2770 return ret; 2771 } 2772 2773 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, 2774 struct iommu_iotlb_gather *gather, 2775 unsigned long iova, size_t size) 2776 { 2777 /* 2778 * AMD's IOMMU can flush as many pages as necessary in a single flush. 2779 * Unless we run in a virtual machine, which can be inferred according 2780 * to whether "non-present cache" is on, it is probably best to prefer 2781 * (potentially) too extensive TLB flushing (i.e., more misses) over 2782 * mutliple TLB flushes (i.e., more flushes). For virtual machines the 2783 * hypervisor needs to synchronize the host IOMMU PTEs with those of 2784 * the guest, and the trade-off is different: unnecessary TLB flushes 2785 * should be avoided. 2786 */ 2787 if (amd_iommu_np_cache && 2788 iommu_iotlb_gather_is_disjoint(gather, iova, size)) 2789 iommu_iotlb_sync(domain, gather); 2790 2791 iommu_iotlb_gather_add_range(gather, iova, size); 2792 } 2793 2794 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova, 2795 size_t pgsize, size_t pgcount, 2796 struct iommu_iotlb_gather *gather) 2797 { 2798 struct protection_domain *domain = to_pdomain(dom); 2799 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2800 size_t r; 2801 2802 if ((domain->pd_mode == PD_MODE_V1) && 2803 (domain->iop.mode == PAGE_MODE_NONE)) 2804 return 0; 2805 2806 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0; 2807 2808 if (r) 2809 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r); 2810 2811 return r; 2812 } 2813 2814 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2815 dma_addr_t iova) 2816 { 2817 struct protection_domain *domain = to_pdomain(dom); 2818 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2819 2820 return ops->iova_to_phys(ops, iova); 2821 } 2822 2823 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap) 2824 { 2825 switch (cap) { 2826 case IOMMU_CAP_CACHE_COHERENCY: 2827 return true; 2828 case IOMMU_CAP_NOEXEC: 2829 return false; 2830 case IOMMU_CAP_PRE_BOOT_PROTECTION: 2831 return amdr_ivrs_remap_support; 2832 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY: 2833 return true; 2834 case IOMMU_CAP_DEFERRED_FLUSH: 2835 return true; 2836 case IOMMU_CAP_DIRTY_TRACKING: { 2837 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2838 2839 return amd_iommu_hd_support(iommu); 2840 } 2841 default: 2842 break; 2843 } 2844 2845 return false; 2846 } 2847 2848 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain, 2849 bool enable) 2850 { 2851 struct protection_domain *pdomain = to_pdomain(domain); 2852 struct dev_table_entry *dte; 2853 struct iommu_dev_data *dev_data; 2854 bool domain_flush = false; 2855 struct amd_iommu *iommu; 2856 unsigned long flags; 2857 u64 new; 2858 2859 spin_lock_irqsave(&pdomain->lock, flags); 2860 if (!(pdomain->dirty_tracking ^ enable)) { 2861 spin_unlock_irqrestore(&pdomain->lock, flags); 2862 return 0; 2863 } 2864 2865 list_for_each_entry(dev_data, &pdomain->dev_list, list) { 2866 spin_lock(&dev_data->dte_lock); 2867 iommu = get_amd_iommu_from_dev_data(dev_data); 2868 dte = &get_dev_table(iommu)[dev_data->devid]; 2869 new = dte->data[0]; 2870 new = (enable ? new | DTE_FLAG_HAD : new & ~DTE_FLAG_HAD); 2871 dte->data[0] = new; 2872 spin_unlock(&dev_data->dte_lock); 2873 2874 /* Flush device DTE */ 2875 device_flush_dte(dev_data); 2876 domain_flush = true; 2877 } 2878 2879 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */ 2880 if (domain_flush) 2881 amd_iommu_domain_flush_all(pdomain); 2882 2883 pdomain->dirty_tracking = enable; 2884 spin_unlock_irqrestore(&pdomain->lock, flags); 2885 2886 return 0; 2887 } 2888 2889 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain, 2890 unsigned long iova, size_t size, 2891 unsigned long flags, 2892 struct iommu_dirty_bitmap *dirty) 2893 { 2894 struct protection_domain *pdomain = to_pdomain(domain); 2895 struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops; 2896 unsigned long lflags; 2897 2898 if (!ops || !ops->read_and_clear_dirty) 2899 return -EOPNOTSUPP; 2900 2901 spin_lock_irqsave(&pdomain->lock, lflags); 2902 if (!pdomain->dirty_tracking && dirty->bitmap) { 2903 spin_unlock_irqrestore(&pdomain->lock, lflags); 2904 return -EINVAL; 2905 } 2906 spin_unlock_irqrestore(&pdomain->lock, lflags); 2907 2908 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty); 2909 } 2910 2911 static void amd_iommu_get_resv_regions(struct device *dev, 2912 struct list_head *head) 2913 { 2914 struct iommu_resv_region *region; 2915 struct unity_map_entry *entry; 2916 struct amd_iommu *iommu; 2917 struct amd_iommu_pci_seg *pci_seg; 2918 int devid, sbdf; 2919 2920 sbdf = get_device_sbdf_id(dev); 2921 if (sbdf < 0) 2922 return; 2923 2924 devid = PCI_SBDF_TO_DEVID(sbdf); 2925 iommu = get_amd_iommu_from_dev(dev); 2926 pci_seg = iommu->pci_seg; 2927 2928 list_for_each_entry(entry, &pci_seg->unity_map, list) { 2929 int type, prot = 0; 2930 size_t length; 2931 2932 if (devid < entry->devid_start || devid > entry->devid_end) 2933 continue; 2934 2935 type = IOMMU_RESV_DIRECT; 2936 length = entry->address_end - entry->address_start; 2937 if (entry->prot & IOMMU_PROT_IR) 2938 prot |= IOMMU_READ; 2939 if (entry->prot & IOMMU_PROT_IW) 2940 prot |= IOMMU_WRITE; 2941 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2942 /* Exclusion range */ 2943 type = IOMMU_RESV_RESERVED; 2944 2945 region = iommu_alloc_resv_region(entry->address_start, 2946 length, prot, type, 2947 GFP_KERNEL); 2948 if (!region) { 2949 dev_err(dev, "Out of memory allocating dm-regions\n"); 2950 return; 2951 } 2952 list_add_tail(®ion->list, head); 2953 } 2954 2955 region = iommu_alloc_resv_region(MSI_RANGE_START, 2956 MSI_RANGE_END - MSI_RANGE_START + 1, 2957 0, IOMMU_RESV_MSI, GFP_KERNEL); 2958 if (!region) 2959 return; 2960 list_add_tail(®ion->list, head); 2961 2962 if (amd_iommu_ht_range_ignore()) 2963 return; 2964 2965 region = iommu_alloc_resv_region(HT_RANGE_START, 2966 HT_RANGE_END - HT_RANGE_START + 1, 2967 0, IOMMU_RESV_RESERVED, GFP_KERNEL); 2968 if (!region) 2969 return; 2970 list_add_tail(®ion->list, head); 2971 } 2972 2973 static bool amd_iommu_is_attach_deferred(struct device *dev) 2974 { 2975 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2976 2977 return dev_data->defer_attach; 2978 } 2979 2980 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2981 { 2982 struct protection_domain *dom = to_pdomain(domain); 2983 unsigned long flags; 2984 2985 spin_lock_irqsave(&dom->lock, flags); 2986 amd_iommu_domain_flush_all(dom); 2987 spin_unlock_irqrestore(&dom->lock, flags); 2988 } 2989 2990 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2991 struct iommu_iotlb_gather *gather) 2992 { 2993 struct protection_domain *dom = to_pdomain(domain); 2994 unsigned long flags; 2995 2996 spin_lock_irqsave(&dom->lock, flags); 2997 amd_iommu_domain_flush_pages(dom, gather->start, 2998 gather->end - gather->start + 1); 2999 spin_unlock_irqrestore(&dom->lock, flags); 3000 } 3001 3002 static int amd_iommu_def_domain_type(struct device *dev) 3003 { 3004 struct iommu_dev_data *dev_data; 3005 3006 dev_data = dev_iommu_priv_get(dev); 3007 if (!dev_data) 3008 return 0; 3009 3010 /* Always use DMA domain for untrusted device */ 3011 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 3012 return IOMMU_DOMAIN_DMA; 3013 3014 /* 3015 * Do not identity map IOMMUv2 capable devices when: 3016 * - memory encryption is active, because some of those devices 3017 * (AMD GPUs) don't have the encryption bit in their DMA-mask 3018 * and require remapping. 3019 * - SNP is enabled, because it prohibits DTE[Mode]=0. 3020 */ 3021 if (pdev_pasid_supported(dev_data) && 3022 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) && 3023 !amd_iommu_snp_en) { 3024 return IOMMU_DOMAIN_IDENTITY; 3025 } 3026 3027 return 0; 3028 } 3029 3030 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain) 3031 { 3032 /* IOMMU_PTE_FC is always set */ 3033 return true; 3034 } 3035 3036 static const struct iommu_dirty_ops amd_dirty_ops = { 3037 .set_dirty_tracking = amd_iommu_set_dirty_tracking, 3038 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty, 3039 }; 3040 3041 const struct iommu_ops amd_iommu_ops = { 3042 .capable = amd_iommu_capable, 3043 .blocked_domain = &blocked_domain, 3044 .release_domain = &release_domain, 3045 .identity_domain = &identity_domain.domain, 3046 .domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags, 3047 .domain_alloc_sva = amd_iommu_domain_alloc_sva, 3048 .probe_device = amd_iommu_probe_device, 3049 .release_device = amd_iommu_release_device, 3050 .device_group = amd_iommu_device_group, 3051 .get_resv_regions = amd_iommu_get_resv_regions, 3052 .is_attach_deferred = amd_iommu_is_attach_deferred, 3053 .def_domain_type = amd_iommu_def_domain_type, 3054 .page_response = amd_iommu_page_response, 3055 .default_domain_ops = &(const struct iommu_domain_ops) { 3056 .attach_dev = amd_iommu_attach_device, 3057 .map_pages = amd_iommu_map_pages, 3058 .unmap_pages = amd_iommu_unmap_pages, 3059 .iotlb_sync_map = amd_iommu_iotlb_sync_map, 3060 .iova_to_phys = amd_iommu_iova_to_phys, 3061 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 3062 .iotlb_sync = amd_iommu_iotlb_sync, 3063 .free = amd_iommu_domain_free, 3064 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency, 3065 } 3066 }; 3067 3068 #ifdef CONFIG_IRQ_REMAP 3069 3070 /***************************************************************************** 3071 * 3072 * Interrupt Remapping Implementation 3073 * 3074 *****************************************************************************/ 3075 3076 static struct irq_chip amd_ir_chip; 3077 static DEFINE_SPINLOCK(iommu_table_lock); 3078 3079 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid) 3080 { 3081 int ret; 3082 u64 data; 3083 unsigned long flags; 3084 struct iommu_cmd cmd, cmd2; 3085 3086 if (iommu->irtcachedis_enabled) 3087 return; 3088 3089 build_inv_irt(&cmd, devid); 3090 data = atomic64_inc_return(&iommu->cmd_sem_val); 3091 build_completion_wait(&cmd2, iommu, data); 3092 3093 raw_spin_lock_irqsave(&iommu->lock, flags); 3094 ret = __iommu_queue_command_sync(iommu, &cmd, true); 3095 if (ret) 3096 goto out; 3097 ret = __iommu_queue_command_sync(iommu, &cmd2, false); 3098 if (ret) 3099 goto out; 3100 wait_on_sem(iommu, data); 3101 out: 3102 raw_spin_unlock_irqrestore(&iommu->lock, flags); 3103 } 3104 3105 static inline u8 iommu_get_int_tablen(struct iommu_dev_data *dev_data) 3106 { 3107 if (dev_data && dev_data->max_irqs == MAX_IRQS_PER_TABLE_2K) 3108 return DTE_INTTABLEN_2K; 3109 return DTE_INTTABLEN_512; 3110 } 3111 3112 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid, 3113 struct irq_remap_table *table) 3114 { 3115 u64 new; 3116 struct dev_table_entry *dte = &get_dev_table(iommu)[devid]; 3117 struct iommu_dev_data *dev_data = search_dev_data(iommu, devid); 3118 3119 if (dev_data) 3120 spin_lock(&dev_data->dte_lock); 3121 3122 new = READ_ONCE(dte->data[2]); 3123 new &= ~DTE_IRQ_PHYS_ADDR_MASK; 3124 new |= iommu_virt_to_phys(table->table); 3125 new |= DTE_IRQ_REMAP_INTCTL; 3126 new |= iommu_get_int_tablen(dev_data); 3127 new |= DTE_IRQ_REMAP_ENABLE; 3128 WRITE_ONCE(dte->data[2], new); 3129 3130 if (dev_data) 3131 spin_unlock(&dev_data->dte_lock); 3132 } 3133 3134 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid) 3135 { 3136 struct irq_remap_table *table; 3137 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 3138 3139 if (WARN_ONCE(!pci_seg->rlookup_table[devid], 3140 "%s: no iommu for devid %x:%x\n", 3141 __func__, pci_seg->id, devid)) 3142 return NULL; 3143 3144 table = pci_seg->irq_lookup_table[devid]; 3145 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n", 3146 __func__, pci_seg->id, devid)) 3147 return NULL; 3148 3149 return table; 3150 } 3151 3152 static struct irq_remap_table *__alloc_irq_table(int nid, size_t size) 3153 { 3154 struct irq_remap_table *table; 3155 3156 table = kzalloc(sizeof(*table), GFP_KERNEL); 3157 if (!table) 3158 return NULL; 3159 3160 table->table = iommu_alloc_pages_node_sz( 3161 nid, GFP_KERNEL, max(DTE_INTTAB_ALIGNMENT, size)); 3162 if (!table->table) { 3163 kfree(table); 3164 return NULL; 3165 } 3166 raw_spin_lock_init(&table->lock); 3167 3168 return table; 3169 } 3170 3171 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 3172 struct irq_remap_table *table) 3173 { 3174 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 3175 3176 pci_seg->irq_lookup_table[devid] = table; 3177 set_dte_irq_entry(iommu, devid, table); 3178 iommu_flush_dte(iommu, devid); 3179 } 3180 3181 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 3182 void *data) 3183 { 3184 struct irq_remap_table *table = data; 3185 struct amd_iommu_pci_seg *pci_seg; 3186 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev); 3187 3188 if (!iommu) 3189 return -EINVAL; 3190 3191 pci_seg = iommu->pci_seg; 3192 pci_seg->irq_lookup_table[alias] = table; 3193 set_dte_irq_entry(iommu, alias, table); 3194 iommu_flush_dte(pci_seg->rlookup_table[alias], alias); 3195 3196 return 0; 3197 } 3198 3199 static inline size_t get_irq_table_size(unsigned int max_irqs) 3200 { 3201 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3202 return max_irqs * sizeof(u32); 3203 3204 return max_irqs * (sizeof(u64) * 2); 3205 } 3206 3207 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu, 3208 u16 devid, struct pci_dev *pdev, 3209 unsigned int max_irqs) 3210 { 3211 struct irq_remap_table *table = NULL; 3212 struct irq_remap_table *new_table = NULL; 3213 struct amd_iommu_pci_seg *pci_seg; 3214 unsigned long flags; 3215 int nid = iommu && iommu->dev ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE; 3216 u16 alias; 3217 3218 spin_lock_irqsave(&iommu_table_lock, flags); 3219 3220 pci_seg = iommu->pci_seg; 3221 table = pci_seg->irq_lookup_table[devid]; 3222 if (table) 3223 goto out_unlock; 3224 3225 alias = pci_seg->alias_table[devid]; 3226 table = pci_seg->irq_lookup_table[alias]; 3227 if (table) { 3228 set_remap_table_entry(iommu, devid, table); 3229 goto out_wait; 3230 } 3231 spin_unlock_irqrestore(&iommu_table_lock, flags); 3232 3233 /* Nothing there yet, allocate new irq remapping table */ 3234 new_table = __alloc_irq_table(nid, get_irq_table_size(max_irqs)); 3235 if (!new_table) 3236 return NULL; 3237 3238 spin_lock_irqsave(&iommu_table_lock, flags); 3239 3240 table = pci_seg->irq_lookup_table[devid]; 3241 if (table) 3242 goto out_unlock; 3243 3244 table = pci_seg->irq_lookup_table[alias]; 3245 if (table) { 3246 set_remap_table_entry(iommu, devid, table); 3247 goto out_wait; 3248 } 3249 3250 table = new_table; 3251 new_table = NULL; 3252 3253 if (pdev) 3254 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 3255 table); 3256 else 3257 set_remap_table_entry(iommu, devid, table); 3258 3259 if (devid != alias) 3260 set_remap_table_entry(iommu, alias, table); 3261 3262 out_wait: 3263 iommu_completion_wait(iommu); 3264 3265 out_unlock: 3266 spin_unlock_irqrestore(&iommu_table_lock, flags); 3267 3268 if (new_table) { 3269 iommu_free_pages(new_table->table); 3270 kfree(new_table); 3271 } 3272 return table; 3273 } 3274 3275 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count, 3276 bool align, struct pci_dev *pdev, 3277 unsigned long max_irqs) 3278 { 3279 struct irq_remap_table *table; 3280 int index, c, alignment = 1; 3281 unsigned long flags; 3282 3283 table = alloc_irq_table(iommu, devid, pdev, max_irqs); 3284 if (!table) 3285 return -ENODEV; 3286 3287 if (align) 3288 alignment = roundup_pow_of_two(count); 3289 3290 raw_spin_lock_irqsave(&table->lock, flags); 3291 3292 /* Scan table for free entries */ 3293 for (index = ALIGN(table->min_index, alignment), c = 0; 3294 index < max_irqs;) { 3295 if (!iommu->irte_ops->is_allocated(table, index)) { 3296 c += 1; 3297 } else { 3298 c = 0; 3299 index = ALIGN(index + 1, alignment); 3300 continue; 3301 } 3302 3303 if (c == count) { 3304 for (; c != 0; --c) 3305 iommu->irte_ops->set_allocated(table, index - c + 1); 3306 3307 index -= count - 1; 3308 goto out; 3309 } 3310 3311 index++; 3312 } 3313 3314 index = -ENOSPC; 3315 3316 out: 3317 raw_spin_unlock_irqrestore(&table->lock, flags); 3318 3319 return index; 3320 } 3321 3322 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 3323 struct irte_ga *irte) 3324 { 3325 struct irq_remap_table *table; 3326 struct irte_ga *entry; 3327 unsigned long flags; 3328 u128 old; 3329 3330 table = get_irq_table(iommu, devid); 3331 if (!table) 3332 return -ENOMEM; 3333 3334 raw_spin_lock_irqsave(&table->lock, flags); 3335 3336 entry = (struct irte_ga *)table->table; 3337 entry = &entry[index]; 3338 3339 /* 3340 * We use cmpxchg16 to atomically update the 128-bit IRTE, 3341 * and it cannot be updated by the hardware or other processors 3342 * behind us, so the return value of cmpxchg16 should be the 3343 * same as the old value. 3344 */ 3345 old = entry->irte; 3346 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte)); 3347 3348 raw_spin_unlock_irqrestore(&table->lock, flags); 3349 3350 return 0; 3351 } 3352 3353 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 3354 struct irte_ga *irte) 3355 { 3356 bool ret; 3357 3358 ret = __modify_irte_ga(iommu, devid, index, irte); 3359 if (ret) 3360 return ret; 3361 3362 iommu_flush_irt_and_complete(iommu, devid); 3363 3364 return 0; 3365 } 3366 3367 static int modify_irte(struct amd_iommu *iommu, 3368 u16 devid, int index, union irte *irte) 3369 { 3370 struct irq_remap_table *table; 3371 unsigned long flags; 3372 3373 table = get_irq_table(iommu, devid); 3374 if (!table) 3375 return -ENOMEM; 3376 3377 raw_spin_lock_irqsave(&table->lock, flags); 3378 table->table[index] = irte->val; 3379 raw_spin_unlock_irqrestore(&table->lock, flags); 3380 3381 iommu_flush_irt_and_complete(iommu, devid); 3382 3383 return 0; 3384 } 3385 3386 static void free_irte(struct amd_iommu *iommu, u16 devid, int index) 3387 { 3388 struct irq_remap_table *table; 3389 unsigned long flags; 3390 3391 table = get_irq_table(iommu, devid); 3392 if (!table) 3393 return; 3394 3395 raw_spin_lock_irqsave(&table->lock, flags); 3396 iommu->irte_ops->clear_allocated(table, index); 3397 raw_spin_unlock_irqrestore(&table->lock, flags); 3398 3399 iommu_flush_irt_and_complete(iommu, devid); 3400 } 3401 3402 static void irte_prepare(void *entry, 3403 u32 delivery_mode, bool dest_mode, 3404 u8 vector, u32 dest_apicid, int devid) 3405 { 3406 union irte *irte = (union irte *) entry; 3407 3408 irte->val = 0; 3409 irte->fields.vector = vector; 3410 irte->fields.int_type = delivery_mode; 3411 irte->fields.destination = dest_apicid; 3412 irte->fields.dm = dest_mode; 3413 irte->fields.valid = 1; 3414 } 3415 3416 static void irte_ga_prepare(void *entry, 3417 u32 delivery_mode, bool dest_mode, 3418 u8 vector, u32 dest_apicid, int devid) 3419 { 3420 struct irte_ga *irte = (struct irte_ga *) entry; 3421 3422 irte->lo.val = 0; 3423 irte->hi.val = 0; 3424 irte->lo.fields_remap.int_type = delivery_mode; 3425 irte->lo.fields_remap.dm = dest_mode; 3426 irte->hi.fields.vector = vector; 3427 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3428 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3429 irte->lo.fields_remap.valid = 1; 3430 } 3431 3432 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3433 { 3434 union irte *irte = (union irte *) entry; 3435 3436 irte->fields.valid = 1; 3437 modify_irte(iommu, devid, index, irte); 3438 } 3439 3440 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3441 { 3442 struct irte_ga *irte = (struct irte_ga *) entry; 3443 3444 irte->lo.fields_remap.valid = 1; 3445 modify_irte_ga(iommu, devid, index, irte); 3446 } 3447 3448 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3449 { 3450 union irte *irte = (union irte *) entry; 3451 3452 irte->fields.valid = 0; 3453 modify_irte(iommu, devid, index, irte); 3454 } 3455 3456 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3457 { 3458 struct irte_ga *irte = (struct irte_ga *) entry; 3459 3460 irte->lo.fields_remap.valid = 0; 3461 modify_irte_ga(iommu, devid, index, irte); 3462 } 3463 3464 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3465 u8 vector, u32 dest_apicid) 3466 { 3467 union irte *irte = (union irte *) entry; 3468 3469 irte->fields.vector = vector; 3470 irte->fields.destination = dest_apicid; 3471 modify_irte(iommu, devid, index, irte); 3472 } 3473 3474 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3475 u8 vector, u32 dest_apicid) 3476 { 3477 struct irte_ga *irte = (struct irte_ga *) entry; 3478 3479 if (!irte->lo.fields_remap.guest_mode) { 3480 irte->hi.fields.vector = vector; 3481 irte->lo.fields_remap.destination = 3482 APICID_TO_IRTE_DEST_LO(dest_apicid); 3483 irte->hi.fields.destination = 3484 APICID_TO_IRTE_DEST_HI(dest_apicid); 3485 modify_irte_ga(iommu, devid, index, irte); 3486 } 3487 } 3488 3489 #define IRTE_ALLOCATED (~1U) 3490 static void irte_set_allocated(struct irq_remap_table *table, int index) 3491 { 3492 table->table[index] = IRTE_ALLOCATED; 3493 } 3494 3495 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3496 { 3497 struct irte_ga *ptr = (struct irte_ga *)table->table; 3498 struct irte_ga *irte = &ptr[index]; 3499 3500 memset(&irte->lo.val, 0, sizeof(u64)); 3501 memset(&irte->hi.val, 0, sizeof(u64)); 3502 irte->hi.fields.vector = 0xff; 3503 } 3504 3505 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3506 { 3507 union irte *ptr = (union irte *)table->table; 3508 union irte *irte = &ptr[index]; 3509 3510 return irte->val != 0; 3511 } 3512 3513 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3514 { 3515 struct irte_ga *ptr = (struct irte_ga *)table->table; 3516 struct irte_ga *irte = &ptr[index]; 3517 3518 return irte->hi.fields.vector != 0; 3519 } 3520 3521 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3522 { 3523 table->table[index] = 0; 3524 } 3525 3526 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3527 { 3528 struct irte_ga *ptr = (struct irte_ga *)table->table; 3529 struct irte_ga *irte = &ptr[index]; 3530 3531 memset(&irte->lo.val, 0, sizeof(u64)); 3532 memset(&irte->hi.val, 0, sizeof(u64)); 3533 } 3534 3535 static int get_devid(struct irq_alloc_info *info) 3536 { 3537 switch (info->type) { 3538 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3539 return get_ioapic_devid(info->devid); 3540 case X86_IRQ_ALLOC_TYPE_HPET: 3541 return get_hpet_devid(info->devid); 3542 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3543 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3544 return get_device_sbdf_id(msi_desc_to_dev(info->desc)); 3545 default: 3546 WARN_ON_ONCE(1); 3547 return -1; 3548 } 3549 } 3550 3551 struct irq_remap_ops amd_iommu_irq_ops = { 3552 .prepare = amd_iommu_prepare, 3553 .enable = amd_iommu_enable, 3554 .disable = amd_iommu_disable, 3555 .reenable = amd_iommu_reenable, 3556 .enable_faulting = amd_iommu_enable_faulting, 3557 }; 3558 3559 static void fill_msi_msg(struct msi_msg *msg, u32 index) 3560 { 3561 msg->data = index; 3562 msg->address_lo = 0; 3563 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 3564 /* 3565 * The struct msi_msg.dest_mode_logical is used to set the DM bit 3566 * in MSI Message Address Register. For device w/ 2K int-remap support, 3567 * this is bit must be set to 1 regardless of the actual destination 3568 * mode, which is signified by the IRTE[DM]. 3569 */ 3570 if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2)) 3571 msg->arch_addr_lo.dest_mode_logical = true; 3572 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 3573 } 3574 3575 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3576 struct irq_cfg *irq_cfg, 3577 struct irq_alloc_info *info, 3578 int devid, int index, int sub_handle) 3579 { 3580 struct irq_2_irte *irte_info = &data->irq_2_irte; 3581 struct amd_iommu *iommu = data->iommu; 3582 3583 if (!iommu) 3584 return; 3585 3586 data->irq_2_irte.devid = devid; 3587 data->irq_2_irte.index = index + sub_handle; 3588 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED, 3589 apic->dest_mode_logical, irq_cfg->vector, 3590 irq_cfg->dest_apicid, devid); 3591 3592 switch (info->type) { 3593 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3594 case X86_IRQ_ALLOC_TYPE_HPET: 3595 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3596 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3597 fill_msi_msg(&data->msi_entry, irte_info->index); 3598 break; 3599 3600 default: 3601 BUG_ON(1); 3602 break; 3603 } 3604 } 3605 3606 struct amd_irte_ops irte_32_ops = { 3607 .prepare = irte_prepare, 3608 .activate = irte_activate, 3609 .deactivate = irte_deactivate, 3610 .set_affinity = irte_set_affinity, 3611 .set_allocated = irte_set_allocated, 3612 .is_allocated = irte_is_allocated, 3613 .clear_allocated = irte_clear_allocated, 3614 }; 3615 3616 struct amd_irte_ops irte_128_ops = { 3617 .prepare = irte_ga_prepare, 3618 .activate = irte_ga_activate, 3619 .deactivate = irte_ga_deactivate, 3620 .set_affinity = irte_ga_set_affinity, 3621 .set_allocated = irte_ga_set_allocated, 3622 .is_allocated = irte_ga_is_allocated, 3623 .clear_allocated = irte_ga_clear_allocated, 3624 }; 3625 3626 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3627 unsigned int nr_irqs, void *arg) 3628 { 3629 struct irq_alloc_info *info = arg; 3630 struct irq_data *irq_data; 3631 struct amd_ir_data *data = NULL; 3632 struct amd_iommu *iommu; 3633 struct irq_cfg *cfg; 3634 struct iommu_dev_data *dev_data; 3635 unsigned long max_irqs; 3636 int i, ret, devid, seg, sbdf; 3637 int index; 3638 3639 if (!info) 3640 return -EINVAL; 3641 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI) 3642 return -EINVAL; 3643 3644 sbdf = get_devid(info); 3645 if (sbdf < 0) 3646 return -EINVAL; 3647 3648 seg = PCI_SBDF_TO_SEGID(sbdf); 3649 devid = PCI_SBDF_TO_DEVID(sbdf); 3650 iommu = __rlookup_amd_iommu(seg, devid); 3651 if (!iommu) 3652 return -EINVAL; 3653 3654 dev_data = search_dev_data(iommu, devid); 3655 max_irqs = dev_data ? dev_data->max_irqs : MAX_IRQS_PER_TABLE_512; 3656 3657 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3658 if (ret < 0) 3659 return ret; 3660 3661 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3662 struct irq_remap_table *table; 3663 3664 table = alloc_irq_table(iommu, devid, NULL, max_irqs); 3665 if (table) { 3666 if (!table->min_index) { 3667 /* 3668 * Keep the first 32 indexes free for IOAPIC 3669 * interrupts. 3670 */ 3671 table->min_index = 32; 3672 for (i = 0; i < 32; ++i) 3673 iommu->irte_ops->set_allocated(table, i); 3674 } 3675 WARN_ON(table->min_index != 32); 3676 index = info->ioapic.pin; 3677 } else { 3678 index = -ENOMEM; 3679 } 3680 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3681 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3682 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3683 3684 index = alloc_irq_index(iommu, devid, nr_irqs, align, 3685 msi_desc_to_pci_dev(info->desc), 3686 max_irqs); 3687 } else { 3688 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL, 3689 max_irqs); 3690 } 3691 3692 if (index < 0) { 3693 pr_warn("Failed to allocate IRTE\n"); 3694 ret = index; 3695 goto out_free_parent; 3696 } 3697 3698 for (i = 0; i < nr_irqs; i++) { 3699 irq_data = irq_domain_get_irq_data(domain, virq + i); 3700 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3701 if (!cfg) { 3702 ret = -EINVAL; 3703 goto out_free_data; 3704 } 3705 3706 ret = -ENOMEM; 3707 data = kzalloc(sizeof(*data), GFP_KERNEL); 3708 if (!data) 3709 goto out_free_data; 3710 3711 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3712 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3713 else 3714 data->entry = kzalloc(sizeof(struct irte_ga), 3715 GFP_KERNEL); 3716 if (!data->entry) { 3717 kfree(data); 3718 goto out_free_data; 3719 } 3720 3721 data->iommu = iommu; 3722 irq_data->hwirq = (devid << 16) + i; 3723 irq_data->chip_data = data; 3724 irq_data->chip = &amd_ir_chip; 3725 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3726 } 3727 3728 return 0; 3729 3730 out_free_data: 3731 for (i--; i >= 0; i--) { 3732 irq_data = irq_domain_get_irq_data(domain, virq + i); 3733 if (irq_data) 3734 kfree(irq_data->chip_data); 3735 } 3736 for (i = 0; i < nr_irqs; i++) 3737 free_irte(iommu, devid, index + i); 3738 out_free_parent: 3739 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3740 return ret; 3741 } 3742 3743 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3744 unsigned int nr_irqs) 3745 { 3746 struct irq_2_irte *irte_info; 3747 struct irq_data *irq_data; 3748 struct amd_ir_data *data; 3749 int i; 3750 3751 for (i = 0; i < nr_irqs; i++) { 3752 irq_data = irq_domain_get_irq_data(domain, virq + i); 3753 if (irq_data && irq_data->chip_data) { 3754 data = irq_data->chip_data; 3755 irte_info = &data->irq_2_irte; 3756 free_irte(data->iommu, irte_info->devid, irte_info->index); 3757 kfree(data->entry); 3758 kfree(data); 3759 } 3760 } 3761 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3762 } 3763 3764 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3765 struct amd_ir_data *ir_data, 3766 struct irq_2_irte *irte_info, 3767 struct irq_cfg *cfg); 3768 3769 static int irq_remapping_activate(struct irq_domain *domain, 3770 struct irq_data *irq_data, bool reserve) 3771 { 3772 struct amd_ir_data *data = irq_data->chip_data; 3773 struct irq_2_irte *irte_info = &data->irq_2_irte; 3774 struct amd_iommu *iommu = data->iommu; 3775 struct irq_cfg *cfg = irqd_cfg(irq_data); 3776 3777 if (!iommu) 3778 return 0; 3779 3780 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid, 3781 irte_info->index); 3782 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3783 return 0; 3784 } 3785 3786 static void irq_remapping_deactivate(struct irq_domain *domain, 3787 struct irq_data *irq_data) 3788 { 3789 struct amd_ir_data *data = irq_data->chip_data; 3790 struct irq_2_irte *irte_info = &data->irq_2_irte; 3791 struct amd_iommu *iommu = data->iommu; 3792 3793 if (iommu) 3794 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid, 3795 irte_info->index); 3796 } 3797 3798 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, 3799 enum irq_domain_bus_token bus_token) 3800 { 3801 struct amd_iommu *iommu; 3802 int devid = -1; 3803 3804 if (!amd_iommu_irq_remap) 3805 return 0; 3806 3807 if (x86_fwspec_is_ioapic(fwspec)) 3808 devid = get_ioapic_devid(fwspec->param[0]); 3809 else if (x86_fwspec_is_hpet(fwspec)) 3810 devid = get_hpet_devid(fwspec->param[0]); 3811 3812 if (devid < 0) 3813 return 0; 3814 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff)); 3815 3816 return iommu && iommu->ir_domain == d; 3817 } 3818 3819 static const struct irq_domain_ops amd_ir_domain_ops = { 3820 .select = irq_remapping_select, 3821 .alloc = irq_remapping_alloc, 3822 .free = irq_remapping_free, 3823 .activate = irq_remapping_activate, 3824 .deactivate = irq_remapping_deactivate, 3825 }; 3826 3827 static void __amd_iommu_update_ga(struct irte_ga *entry, int cpu, 3828 bool ga_log_intr) 3829 { 3830 if (cpu >= 0) { 3831 entry->lo.fields_vapic.destination = 3832 APICID_TO_IRTE_DEST_LO(cpu); 3833 entry->hi.fields.destination = 3834 APICID_TO_IRTE_DEST_HI(cpu); 3835 entry->lo.fields_vapic.is_run = true; 3836 entry->lo.fields_vapic.ga_log_intr = false; 3837 } else { 3838 entry->lo.fields_vapic.is_run = false; 3839 entry->lo.fields_vapic.ga_log_intr = ga_log_intr; 3840 } 3841 } 3842 3843 /* 3844 * Update the pCPU information for an IRTE that is configured to post IRQs to 3845 * a vCPU, without issuing an IOMMU invalidation for the IRTE. 3846 * 3847 * If the vCPU is associated with a pCPU (@cpu >= 0), configure the Destination 3848 * with the pCPU's APIC ID, set IsRun, and clear GALogIntr. If the vCPU isn't 3849 * associated with a pCPU (@cpu < 0), clear IsRun and set/clear GALogIntr based 3850 * on input from the caller (e.g. KVM only requests GALogIntr when the vCPU is 3851 * blocking and requires a notification wake event). I.e. treat vCPUs that are 3852 * associated with a pCPU as running. This API is intended to be used when a 3853 * vCPU is scheduled in/out (or stops running for any reason), to do a fast 3854 * update of IsRun, GALogIntr, and (conditionally) Destination. 3855 * 3856 * Per the IOMMU spec, the Destination, IsRun, and GATag fields are not cached 3857 * and thus don't require an invalidation to ensure the IOMMU consumes fresh 3858 * information. 3859 */ 3860 int amd_iommu_update_ga(void *data, int cpu, bool ga_log_intr) 3861 { 3862 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3863 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3864 3865 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))) 3866 return -EINVAL; 3867 3868 if (!entry || !entry->lo.fields_vapic.guest_mode) 3869 return 0; 3870 3871 if (!ir_data->iommu) 3872 return -ENODEV; 3873 3874 __amd_iommu_update_ga(entry, cpu, ga_log_intr); 3875 3876 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3877 ir_data->irq_2_irte.index, entry); 3878 } 3879 EXPORT_SYMBOL(amd_iommu_update_ga); 3880 3881 int amd_iommu_activate_guest_mode(void *data, int cpu, bool ga_log_intr) 3882 { 3883 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3884 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3885 u64 valid; 3886 3887 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))) 3888 return -EINVAL; 3889 3890 if (!entry) 3891 return 0; 3892 3893 valid = entry->lo.fields_vapic.valid; 3894 3895 entry->lo.val = 0; 3896 entry->hi.val = 0; 3897 3898 entry->lo.fields_vapic.valid = valid; 3899 entry->lo.fields_vapic.guest_mode = 1; 3900 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3901 entry->hi.fields.vector = ir_data->ga_vector; 3902 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3903 3904 __amd_iommu_update_ga(entry, cpu, ga_log_intr); 3905 3906 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3907 ir_data->irq_2_irte.index, entry); 3908 } 3909 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3910 3911 int amd_iommu_deactivate_guest_mode(void *data) 3912 { 3913 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3914 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3915 struct irq_cfg *cfg = ir_data->cfg; 3916 u64 valid; 3917 3918 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))) 3919 return -EINVAL; 3920 3921 if (!entry || !entry->lo.fields_vapic.guest_mode) 3922 return 0; 3923 3924 valid = entry->lo.fields_remap.valid; 3925 3926 entry->lo.val = 0; 3927 entry->hi.val = 0; 3928 3929 entry->lo.fields_remap.valid = valid; 3930 entry->lo.fields_remap.dm = apic->dest_mode_logical; 3931 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED; 3932 entry->hi.fields.vector = cfg->vector; 3933 entry->lo.fields_remap.destination = 3934 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3935 entry->hi.fields.destination = 3936 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3937 3938 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3939 ir_data->irq_2_irte.index, entry); 3940 } 3941 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3942 3943 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *info) 3944 { 3945 int ret; 3946 struct amd_iommu_pi_data *pi_data = info; 3947 struct amd_ir_data *ir_data = data->chip_data; 3948 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3949 struct iommu_dev_data *dev_data; 3950 3951 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))) 3952 return -EINVAL; 3953 3954 if (ir_data->iommu == NULL) 3955 return -EINVAL; 3956 3957 dev_data = search_dev_data(ir_data->iommu, irte_info->devid); 3958 3959 /* Note: 3960 * This device has never been set up for guest mode. 3961 * we should not modify the IRTE 3962 */ 3963 if (!dev_data || !dev_data->use_vapic) 3964 return -EINVAL; 3965 3966 ir_data->cfg = irqd_cfg(data); 3967 3968 if (pi_data) { 3969 pi_data->ir_data = ir_data; 3970 3971 ir_data->ga_root_ptr = (pi_data->vapic_addr >> 12); 3972 ir_data->ga_vector = pi_data->vector; 3973 ir_data->ga_tag = pi_data->ga_tag; 3974 if (pi_data->is_guest_mode) 3975 ret = amd_iommu_activate_guest_mode(ir_data, pi_data->cpu, 3976 pi_data->ga_log_intr); 3977 else 3978 ret = amd_iommu_deactivate_guest_mode(ir_data); 3979 } else { 3980 ret = amd_iommu_deactivate_guest_mode(ir_data); 3981 } 3982 3983 return ret; 3984 } 3985 3986 3987 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3988 struct amd_ir_data *ir_data, 3989 struct irq_2_irte *irte_info, 3990 struct irq_cfg *cfg) 3991 { 3992 3993 /* 3994 * Atomically updates the IRTE with the new destination, vector 3995 * and flushes the interrupt entry cache. 3996 */ 3997 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid, 3998 irte_info->index, cfg->vector, 3999 cfg->dest_apicid); 4000 } 4001 4002 static int amd_ir_set_affinity(struct irq_data *data, 4003 const struct cpumask *mask, bool force) 4004 { 4005 struct amd_ir_data *ir_data = data->chip_data; 4006 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 4007 struct irq_cfg *cfg = irqd_cfg(data); 4008 struct irq_data *parent = data->parent_data; 4009 struct amd_iommu *iommu = ir_data->iommu; 4010 int ret; 4011 4012 if (!iommu) 4013 return -ENODEV; 4014 4015 ret = parent->chip->irq_set_affinity(parent, mask, force); 4016 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 4017 return ret; 4018 4019 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 4020 /* 4021 * After this point, all the interrupts will start arriving 4022 * at the new destination. So, time to cleanup the previous 4023 * vector allocation. 4024 */ 4025 vector_schedule_cleanup(cfg); 4026 4027 return IRQ_SET_MASK_OK_DONE; 4028 } 4029 4030 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 4031 { 4032 struct amd_ir_data *ir_data = irq_data->chip_data; 4033 4034 *msg = ir_data->msi_entry; 4035 } 4036 4037 static struct irq_chip amd_ir_chip = { 4038 .name = "AMD-IR", 4039 .irq_ack = apic_ack_irq, 4040 .irq_set_affinity = amd_ir_set_affinity, 4041 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 4042 .irq_compose_msi_msg = ir_compose_msi_msg, 4043 }; 4044 4045 static const struct msi_parent_ops amdvi_msi_parent_ops = { 4046 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI, 4047 .bus_select_token = DOMAIN_BUS_AMDVI, 4048 .bus_select_mask = MATCH_PCI_MSI, 4049 .prefix = "IR-", 4050 .init_dev_msi_info = msi_parent_init_dev_msi_info, 4051 }; 4052 4053 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 4054 { 4055 struct irq_domain_info info = { 4056 .fwnode = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index), 4057 .ops = &amd_ir_domain_ops, 4058 .domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI, 4059 .host_data = iommu, 4060 .parent = arch_get_ir_parent_domain(), 4061 }; 4062 4063 if (!info.fwnode) 4064 return -ENOMEM; 4065 4066 iommu->ir_domain = msi_create_parent_irq_domain(&info, &amdvi_msi_parent_ops); 4067 if (!iommu->ir_domain) { 4068 irq_domain_free_fwnode(info.fwnode); 4069 return -ENOMEM; 4070 } 4071 return 0; 4072 } 4073 #endif 4074