xref: /linux/drivers/iommu/amd/iommu.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40 #include <uapi/linux/iommufd.h>
41 
42 #include "amd_iommu.h"
43 #include "../dma-iommu.h"
44 #include "../irq_remapping.h"
45 
46 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
47 
48 /* Reserved IOVA ranges */
49 #define MSI_RANGE_START		(0xfee00000)
50 #define MSI_RANGE_END		(0xfeefffff)
51 #define HT_RANGE_START		(0xfd00000000ULL)
52 #define HT_RANGE_END		(0xffffffffffULL)
53 
54 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
55 
56 static DEFINE_SPINLOCK(pd_bitmap_lock);
57 
58 LIST_HEAD(ioapic_map);
59 LIST_HEAD(hpet_map);
60 LIST_HEAD(acpihid_map);
61 
62 const struct iommu_ops amd_iommu_ops;
63 static const struct iommu_dirty_ops amd_dirty_ops;
64 
65 int amd_iommu_max_glx_val = -1;
66 
67 /*
68  * general struct to manage commands send to an IOMMU
69  */
70 struct iommu_cmd {
71 	u32 data[4];
72 };
73 
74 struct kmem_cache *amd_iommu_irq_cache;
75 
76 static void detach_device(struct device *dev);
77 
78 static void set_dte_entry(struct amd_iommu *iommu,
79 			  struct iommu_dev_data *dev_data);
80 
81 /****************************************************************************
82  *
83  * Helper functions
84  *
85  ****************************************************************************/
86 
87 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
88 {
89 	return (pdom && (pdom->pd_mode == PD_MODE_V2));
90 }
91 
92 static inline int get_acpihid_device_id(struct device *dev,
93 					struct acpihid_map_entry **entry)
94 {
95 	struct acpi_device *adev = ACPI_COMPANION(dev);
96 	struct acpihid_map_entry *p;
97 
98 	if (!adev)
99 		return -ENODEV;
100 
101 	list_for_each_entry(p, &acpihid_map, list) {
102 		if (acpi_dev_hid_uid_match(adev, p->hid,
103 					   p->uid[0] ? p->uid : NULL)) {
104 			if (entry)
105 				*entry = p;
106 			return p->devid;
107 		}
108 	}
109 	return -EINVAL;
110 }
111 
112 static inline int get_device_sbdf_id(struct device *dev)
113 {
114 	int sbdf;
115 
116 	if (dev_is_pci(dev))
117 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
118 	else
119 		sbdf = get_acpihid_device_id(dev, NULL);
120 
121 	return sbdf;
122 }
123 
124 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
125 {
126 	struct dev_table_entry *dev_table;
127 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
128 
129 	BUG_ON(pci_seg == NULL);
130 	dev_table = pci_seg->dev_table;
131 	BUG_ON(dev_table == NULL);
132 
133 	return dev_table;
134 }
135 
136 static inline u16 get_device_segment(struct device *dev)
137 {
138 	u16 seg;
139 
140 	if (dev_is_pci(dev)) {
141 		struct pci_dev *pdev = to_pci_dev(dev);
142 
143 		seg = pci_domain_nr(pdev->bus);
144 	} else {
145 		u32 devid = get_acpihid_device_id(dev, NULL);
146 
147 		seg = PCI_SBDF_TO_SEGID(devid);
148 	}
149 
150 	return seg;
151 }
152 
153 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
154 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
155 {
156 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
157 
158 	pci_seg->rlookup_table[devid] = iommu;
159 }
160 
161 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
162 {
163 	struct amd_iommu_pci_seg *pci_seg;
164 
165 	for_each_pci_segment(pci_seg) {
166 		if (pci_seg->id == seg)
167 			return pci_seg->rlookup_table[devid];
168 	}
169 	return NULL;
170 }
171 
172 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
173 {
174 	u16 seg = get_device_segment(dev);
175 	int devid = get_device_sbdf_id(dev);
176 
177 	if (devid < 0)
178 		return NULL;
179 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
180 }
181 
182 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
183 {
184 	return container_of(dom, struct protection_domain, domain);
185 }
186 
187 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
188 {
189 	struct iommu_dev_data *dev_data;
190 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
191 
192 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
193 	if (!dev_data)
194 		return NULL;
195 
196 	spin_lock_init(&dev_data->lock);
197 	dev_data->devid = devid;
198 	ratelimit_default_init(&dev_data->rs);
199 
200 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
201 	return dev_data;
202 }
203 
204 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
205 {
206 	struct iommu_dev_data *dev_data;
207 	struct llist_node *node;
208 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
209 
210 	if (llist_empty(&pci_seg->dev_data_list))
211 		return NULL;
212 
213 	node = pci_seg->dev_data_list.first;
214 	llist_for_each_entry(dev_data, node, dev_data_list) {
215 		if (dev_data->devid == devid)
216 			return dev_data;
217 	}
218 
219 	return NULL;
220 }
221 
222 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
223 {
224 	struct amd_iommu *iommu;
225 	struct dev_table_entry *dev_table;
226 	u16 devid = pci_dev_id(pdev);
227 
228 	if (devid == alias)
229 		return 0;
230 
231 	iommu = rlookup_amd_iommu(&pdev->dev);
232 	if (!iommu)
233 		return 0;
234 
235 	amd_iommu_set_rlookup_table(iommu, alias);
236 	dev_table = get_dev_table(iommu);
237 	memcpy(dev_table[alias].data,
238 	       dev_table[devid].data,
239 	       sizeof(dev_table[alias].data));
240 
241 	return 0;
242 }
243 
244 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
245 {
246 	struct pci_dev *pdev;
247 
248 	if (!dev_is_pci(dev))
249 		return;
250 	pdev = to_pci_dev(dev);
251 
252 	/*
253 	 * The IVRS alias stored in the alias table may not be
254 	 * part of the PCI DMA aliases if it's bus differs
255 	 * from the original device.
256 	 */
257 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
258 
259 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
260 }
261 
262 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
263 {
264 	struct pci_dev *pdev = to_pci_dev(dev);
265 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
266 	u16 ivrs_alias;
267 
268 	/* For ACPI HID devices, there are no aliases */
269 	if (!dev_is_pci(dev))
270 		return;
271 
272 	/*
273 	 * Add the IVRS alias to the pci aliases if it is on the same
274 	 * bus. The IVRS table may know about a quirk that we don't.
275 	 */
276 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
277 	if (ivrs_alias != pci_dev_id(pdev) &&
278 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
279 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
280 
281 	clone_aliases(iommu, dev);
282 }
283 
284 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
285 {
286 	struct iommu_dev_data *dev_data;
287 
288 	dev_data = search_dev_data(iommu, devid);
289 
290 	if (dev_data == NULL) {
291 		dev_data = alloc_dev_data(iommu, devid);
292 		if (!dev_data)
293 			return NULL;
294 
295 		if (translation_pre_enabled(iommu))
296 			dev_data->defer_attach = true;
297 	}
298 
299 	return dev_data;
300 }
301 
302 /*
303 * Find or create an IOMMU group for a acpihid device.
304 */
305 static struct iommu_group *acpihid_device_group(struct device *dev)
306 {
307 	struct acpihid_map_entry *p, *entry = NULL;
308 	int devid;
309 
310 	devid = get_acpihid_device_id(dev, &entry);
311 	if (devid < 0)
312 		return ERR_PTR(devid);
313 
314 	list_for_each_entry(p, &acpihid_map, list) {
315 		if ((devid == p->devid) && p->group)
316 			entry->group = p->group;
317 	}
318 
319 	if (!entry->group)
320 		entry->group = generic_device_group(dev);
321 	else
322 		iommu_group_ref_get(entry->group);
323 
324 	return entry->group;
325 }
326 
327 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
328 {
329 	return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
330 }
331 
332 static u32 pdev_get_caps(struct pci_dev *pdev)
333 {
334 	int features;
335 	u32 flags = 0;
336 
337 	if (pci_ats_supported(pdev))
338 		flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
339 
340 	if (pci_pri_supported(pdev))
341 		flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
342 
343 	features = pci_pasid_features(pdev);
344 	if (features >= 0) {
345 		flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
346 
347 		if (features & PCI_PASID_CAP_EXEC)
348 			flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
349 
350 		if (features & PCI_PASID_CAP_PRIV)
351 			flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
352 	}
353 
354 	return flags;
355 }
356 
357 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
358 {
359 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
360 	int ret = -EINVAL;
361 
362 	if (dev_data->ats_enabled)
363 		return 0;
364 
365 	if (amd_iommu_iotlb_sup &&
366 	    (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
367 		ret = pci_enable_ats(pdev, PAGE_SHIFT);
368 		if (!ret) {
369 			dev_data->ats_enabled = 1;
370 			dev_data->ats_qdep    = pci_ats_queue_depth(pdev);
371 		}
372 	}
373 
374 	return ret;
375 }
376 
377 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
378 {
379 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
380 
381 	if (dev_data->ats_enabled) {
382 		pci_disable_ats(pdev);
383 		dev_data->ats_enabled = 0;
384 	}
385 }
386 
387 int amd_iommu_pdev_enable_cap_pri(struct pci_dev *pdev)
388 {
389 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
390 	int ret = -EINVAL;
391 
392 	if (dev_data->pri_enabled)
393 		return 0;
394 
395 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
396 		/*
397 		 * First reset the PRI state of the device.
398 		 * FIXME: Hardcode number of outstanding requests for now
399 		 */
400 		if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
401 			dev_data->pri_enabled = 1;
402 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
403 
404 			ret = 0;
405 		}
406 	}
407 
408 	return ret;
409 }
410 
411 void amd_iommu_pdev_disable_cap_pri(struct pci_dev *pdev)
412 {
413 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
414 
415 	if (dev_data->pri_enabled) {
416 		pci_disable_pri(pdev);
417 		dev_data->pri_enabled = 0;
418 	}
419 }
420 
421 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
422 {
423 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
424 	int ret = -EINVAL;
425 
426 	if (dev_data->pasid_enabled)
427 		return 0;
428 
429 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
430 		/* Only allow access to user-accessible pages */
431 		ret = pci_enable_pasid(pdev, 0);
432 		if (!ret)
433 			dev_data->pasid_enabled = 1;
434 	}
435 
436 	return ret;
437 }
438 
439 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
440 {
441 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
442 
443 	if (dev_data->pasid_enabled) {
444 		pci_disable_pasid(pdev);
445 		dev_data->pasid_enabled = 0;
446 	}
447 }
448 
449 static void pdev_enable_caps(struct pci_dev *pdev)
450 {
451 	pdev_enable_cap_ats(pdev);
452 	pdev_enable_cap_pasid(pdev);
453 	amd_iommu_pdev_enable_cap_pri(pdev);
454 
455 }
456 
457 static void pdev_disable_caps(struct pci_dev *pdev)
458 {
459 	pdev_disable_cap_ats(pdev);
460 	pdev_disable_cap_pasid(pdev);
461 	amd_iommu_pdev_disable_cap_pri(pdev);
462 }
463 
464 /*
465  * This function checks if the driver got a valid device from the caller to
466  * avoid dereferencing invalid pointers.
467  */
468 static bool check_device(struct device *dev)
469 {
470 	struct amd_iommu_pci_seg *pci_seg;
471 	struct amd_iommu *iommu;
472 	int devid, sbdf;
473 
474 	if (!dev)
475 		return false;
476 
477 	sbdf = get_device_sbdf_id(dev);
478 	if (sbdf < 0)
479 		return false;
480 	devid = PCI_SBDF_TO_DEVID(sbdf);
481 
482 	iommu = rlookup_amd_iommu(dev);
483 	if (!iommu)
484 		return false;
485 
486 	/* Out of our scope? */
487 	pci_seg = iommu->pci_seg;
488 	if (devid > pci_seg->last_bdf)
489 		return false;
490 
491 	return true;
492 }
493 
494 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
495 {
496 	struct iommu_dev_data *dev_data;
497 	int devid, sbdf;
498 
499 	if (dev_iommu_priv_get(dev))
500 		return 0;
501 
502 	sbdf = get_device_sbdf_id(dev);
503 	if (sbdf < 0)
504 		return sbdf;
505 
506 	devid = PCI_SBDF_TO_DEVID(sbdf);
507 	dev_data = find_dev_data(iommu, devid);
508 	if (!dev_data)
509 		return -ENOMEM;
510 
511 	dev_data->dev = dev;
512 	setup_aliases(iommu, dev);
513 
514 	/*
515 	 * By default we use passthrough mode for IOMMUv2 capable device.
516 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
517 	 * invalid address), we ignore the capability for the device so
518 	 * it'll be forced to go into translation mode.
519 	 */
520 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
521 	    dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
522 		dev_data->flags = pdev_get_caps(to_pci_dev(dev));
523 	}
524 
525 	dev_iommu_priv_set(dev, dev_data);
526 
527 	return 0;
528 }
529 
530 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
531 {
532 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
533 	struct dev_table_entry *dev_table = get_dev_table(iommu);
534 	int devid, sbdf;
535 
536 	sbdf = get_device_sbdf_id(dev);
537 	if (sbdf < 0)
538 		return;
539 
540 	devid = PCI_SBDF_TO_DEVID(sbdf);
541 	pci_seg->rlookup_table[devid] = NULL;
542 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
543 
544 	setup_aliases(iommu, dev);
545 }
546 
547 static void amd_iommu_uninit_device(struct device *dev)
548 {
549 	struct iommu_dev_data *dev_data;
550 
551 	dev_data = dev_iommu_priv_get(dev);
552 	if (!dev_data)
553 		return;
554 
555 	if (dev_data->domain)
556 		detach_device(dev);
557 
558 	/*
559 	 * We keep dev_data around for unplugged devices and reuse it when the
560 	 * device is re-plugged - not doing so would introduce a ton of races.
561 	 */
562 }
563 
564 /****************************************************************************
565  *
566  * Interrupt handling functions
567  *
568  ****************************************************************************/
569 
570 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
571 {
572 	int i;
573 	struct dev_table_entry *dev_table = get_dev_table(iommu);
574 
575 	for (i = 0; i < 4; ++i)
576 		pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
577 }
578 
579 static void dump_command(unsigned long phys_addr)
580 {
581 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
582 	int i;
583 
584 	for (i = 0; i < 4; ++i)
585 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
586 }
587 
588 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
589 {
590 	struct iommu_dev_data *dev_data = NULL;
591 	int devid, vmg_tag, flags;
592 	struct pci_dev *pdev;
593 	u64 spa;
594 
595 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
596 	vmg_tag = (event[1]) & 0xFFFF;
597 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
598 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
599 
600 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
601 					   devid & 0xff);
602 	if (pdev)
603 		dev_data = dev_iommu_priv_get(&pdev->dev);
604 
605 	if (dev_data) {
606 		if (__ratelimit(&dev_data->rs)) {
607 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
608 				vmg_tag, spa, flags);
609 		}
610 	} else {
611 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
612 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
613 			vmg_tag, spa, flags);
614 	}
615 
616 	if (pdev)
617 		pci_dev_put(pdev);
618 }
619 
620 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
621 {
622 	struct iommu_dev_data *dev_data = NULL;
623 	int devid, flags_rmp, vmg_tag, flags;
624 	struct pci_dev *pdev;
625 	u64 gpa;
626 
627 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
628 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
629 	vmg_tag   = (event[1]) & 0xFFFF;
630 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
631 	gpa       = ((u64)event[3] << 32) | event[2];
632 
633 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
634 					   devid & 0xff);
635 	if (pdev)
636 		dev_data = dev_iommu_priv_get(&pdev->dev);
637 
638 	if (dev_data) {
639 		if (__ratelimit(&dev_data->rs)) {
640 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
641 				vmg_tag, gpa, flags_rmp, flags);
642 		}
643 	} else {
644 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
645 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
646 			vmg_tag, gpa, flags_rmp, flags);
647 	}
648 
649 	if (pdev)
650 		pci_dev_put(pdev);
651 }
652 
653 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
654 	(((flags) & EVENT_FLAG_I) == 0)
655 
656 #define IS_WRITE_REQUEST(flags)			\
657 	((flags) & EVENT_FLAG_RW)
658 
659 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
660 					u16 devid, u16 domain_id,
661 					u64 address, int flags)
662 {
663 	struct iommu_dev_data *dev_data = NULL;
664 	struct pci_dev *pdev;
665 
666 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
667 					   devid & 0xff);
668 	if (pdev)
669 		dev_data = dev_iommu_priv_get(&pdev->dev);
670 
671 	if (dev_data) {
672 		/*
673 		 * If this is a DMA fault (for which the I(nterrupt)
674 		 * bit will be unset), allow report_iommu_fault() to
675 		 * prevent logging it.
676 		 */
677 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
678 			/* Device not attached to domain properly */
679 			if (dev_data->domain == NULL) {
680 				pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
681 				pr_err_ratelimited("  device=%04x:%02x:%02x.%x domain=0x%04x\n",
682 						   iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
683 						   PCI_FUNC(devid), domain_id);
684 				goto out;
685 			}
686 
687 			if (!report_iommu_fault(&dev_data->domain->domain,
688 						&pdev->dev, address,
689 						IS_WRITE_REQUEST(flags) ?
690 							IOMMU_FAULT_WRITE :
691 							IOMMU_FAULT_READ))
692 				goto out;
693 		}
694 
695 		if (__ratelimit(&dev_data->rs)) {
696 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
697 				domain_id, address, flags);
698 		}
699 	} else {
700 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
701 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
702 			domain_id, address, flags);
703 	}
704 
705 out:
706 	if (pdev)
707 		pci_dev_put(pdev);
708 }
709 
710 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
711 {
712 	struct device *dev = iommu->iommu.dev;
713 	int type, devid, flags, tag;
714 	volatile u32 *event = __evt;
715 	int count = 0;
716 	u64 address;
717 	u32 pasid;
718 
719 retry:
720 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
721 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
722 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
723 		  (event[1] & EVENT_DOMID_MASK_LO);
724 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
725 	address = (u64)(((u64)event[3]) << 32) | event[2];
726 
727 	if (type == 0) {
728 		/* Did we hit the erratum? */
729 		if (++count == LOOP_TIMEOUT) {
730 			pr_err("No event written to event log\n");
731 			return;
732 		}
733 		udelay(1);
734 		goto retry;
735 	}
736 
737 	if (type == EVENT_TYPE_IO_FAULT) {
738 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
739 		return;
740 	}
741 
742 	switch (type) {
743 	case EVENT_TYPE_ILL_DEV:
744 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
745 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
746 			pasid, address, flags);
747 		dump_dte_entry(iommu, devid);
748 		break;
749 	case EVENT_TYPE_DEV_TAB_ERR:
750 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
751 			"address=0x%llx flags=0x%04x]\n",
752 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
753 			address, flags);
754 		break;
755 	case EVENT_TYPE_PAGE_TAB_ERR:
756 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
757 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
758 			pasid, address, flags);
759 		break;
760 	case EVENT_TYPE_ILL_CMD:
761 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
762 		dump_command(address);
763 		break;
764 	case EVENT_TYPE_CMD_HARD_ERR:
765 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
766 			address, flags);
767 		break;
768 	case EVENT_TYPE_IOTLB_INV_TO:
769 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
770 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
771 			address);
772 		break;
773 	case EVENT_TYPE_INV_DEV_REQ:
774 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
775 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
776 			pasid, address, flags);
777 		break;
778 	case EVENT_TYPE_RMP_FAULT:
779 		amd_iommu_report_rmp_fault(iommu, event);
780 		break;
781 	case EVENT_TYPE_RMP_HW_ERR:
782 		amd_iommu_report_rmp_hw_error(iommu, event);
783 		break;
784 	case EVENT_TYPE_INV_PPR_REQ:
785 		pasid = PPR_PASID(*((u64 *)__evt));
786 		tag = event[1] & 0x03FF;
787 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
788 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
789 			pasid, address, flags, tag);
790 		break;
791 	default:
792 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
793 			event[0], event[1], event[2], event[3]);
794 	}
795 
796 	/*
797 	 * To detect the hardware errata 732 we need to clear the
798 	 * entry back to zero. This issue does not exist on SNP
799 	 * enabled system. Also this buffer is not writeable on
800 	 * SNP enabled system.
801 	 */
802 	if (!amd_iommu_snp_en)
803 		memset(__evt, 0, 4 * sizeof(u32));
804 }
805 
806 static void iommu_poll_events(struct amd_iommu *iommu)
807 {
808 	u32 head, tail;
809 
810 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
811 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
812 
813 	while (head != tail) {
814 		iommu_print_event(iommu, iommu->evt_buf + head);
815 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
816 	}
817 
818 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
819 }
820 
821 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
822 {
823 	u32 head, tail;
824 
825 	if (iommu->ppr_log == NULL)
826 		return;
827 
828 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
829 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
830 
831 	while (head != tail) {
832 		volatile u64 *raw;
833 		u64 entry[2];
834 		int i;
835 
836 		raw = (u64 *)(iommu->ppr_log + head);
837 
838 		/*
839 		 * Hardware bug: Interrupt may arrive before the entry is
840 		 * written to memory. If this happens we need to wait for the
841 		 * entry to arrive.
842 		 */
843 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
844 			if (PPR_REQ_TYPE(raw[0]) != 0)
845 				break;
846 			udelay(1);
847 		}
848 
849 		/* Avoid memcpy function-call overhead */
850 		entry[0] = raw[0];
851 		entry[1] = raw[1];
852 
853 		/*
854 		 * To detect the hardware errata 733 we need to clear the
855 		 * entry back to zero. This issue does not exist on SNP
856 		 * enabled system. Also this buffer is not writeable on
857 		 * SNP enabled system.
858 		 */
859 		if (!amd_iommu_snp_en)
860 			raw[0] = raw[1] = 0UL;
861 
862 		/* Update head pointer of hardware ring-buffer */
863 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
864 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
865 
866 		/* TODO: PPR Handler will be added when we add IOPF support */
867 
868 		/* Refresh ring-buffer information */
869 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
870 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
871 	}
872 }
873 
874 #ifdef CONFIG_IRQ_REMAP
875 static int (*iommu_ga_log_notifier)(u32);
876 
877 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
878 {
879 	iommu_ga_log_notifier = notifier;
880 
881 	return 0;
882 }
883 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
884 
885 static void iommu_poll_ga_log(struct amd_iommu *iommu)
886 {
887 	u32 head, tail;
888 
889 	if (iommu->ga_log == NULL)
890 		return;
891 
892 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
893 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
894 
895 	while (head != tail) {
896 		volatile u64 *raw;
897 		u64 log_entry;
898 
899 		raw = (u64 *)(iommu->ga_log + head);
900 
901 		/* Avoid memcpy function-call overhead */
902 		log_entry = *raw;
903 
904 		/* Update head pointer of hardware ring-buffer */
905 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
906 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
907 
908 		/* Handle GA entry */
909 		switch (GA_REQ_TYPE(log_entry)) {
910 		case GA_GUEST_NR:
911 			if (!iommu_ga_log_notifier)
912 				break;
913 
914 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
915 				 __func__, GA_DEVID(log_entry),
916 				 GA_TAG(log_entry));
917 
918 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
919 				pr_err("GA log notifier failed.\n");
920 			break;
921 		default:
922 			break;
923 		}
924 	}
925 }
926 
927 static void
928 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
929 {
930 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
931 	    !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
932 		return;
933 
934 	dev_set_msi_domain(dev, iommu->ir_domain);
935 }
936 
937 #else /* CONFIG_IRQ_REMAP */
938 static inline void
939 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
940 #endif /* !CONFIG_IRQ_REMAP */
941 
942 static void amd_iommu_handle_irq(void *data, const char *evt_type,
943 				 u32 int_mask, u32 overflow_mask,
944 				 void (*int_handler)(struct amd_iommu *),
945 				 void (*overflow_handler)(struct amd_iommu *))
946 {
947 	struct amd_iommu *iommu = (struct amd_iommu *) data;
948 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
949 	u32 mask = int_mask | overflow_mask;
950 
951 	while (status & mask) {
952 		/* Enable interrupt sources again */
953 		writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
954 
955 		if (int_handler) {
956 			pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
957 				 iommu->index, evt_type);
958 			int_handler(iommu);
959 		}
960 
961 		if ((status & overflow_mask) && overflow_handler)
962 			overflow_handler(iommu);
963 
964 		/*
965 		 * Hardware bug: ERBT1312
966 		 * When re-enabling interrupt (by writing 1
967 		 * to clear the bit), the hardware might also try to set
968 		 * the interrupt bit in the event status register.
969 		 * In this scenario, the bit will be set, and disable
970 		 * subsequent interrupts.
971 		 *
972 		 * Workaround: The IOMMU driver should read back the
973 		 * status register and check if the interrupt bits are cleared.
974 		 * If not, driver will need to go through the interrupt handler
975 		 * again and re-clear the bits
976 		 */
977 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
978 	}
979 }
980 
981 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
982 {
983 	amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
984 			     MMIO_STATUS_EVT_OVERFLOW_MASK,
985 			     iommu_poll_events, amd_iommu_restart_event_logging);
986 
987 	return IRQ_HANDLED;
988 }
989 
990 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
991 {
992 	amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
993 			     MMIO_STATUS_PPR_OVERFLOW_MASK,
994 			     iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
995 
996 	return IRQ_HANDLED;
997 }
998 
999 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1000 {
1001 #ifdef CONFIG_IRQ_REMAP
1002 	amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1003 			     MMIO_STATUS_GALOG_OVERFLOW_MASK,
1004 			     iommu_poll_ga_log, amd_iommu_restart_ga_log);
1005 #endif
1006 
1007 	return IRQ_HANDLED;
1008 }
1009 
1010 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1011 {
1012 	amd_iommu_int_thread_evtlog(irq, data);
1013 	amd_iommu_int_thread_pprlog(irq, data);
1014 	amd_iommu_int_thread_galog(irq, data);
1015 
1016 	return IRQ_HANDLED;
1017 }
1018 
1019 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1020 {
1021 	return IRQ_WAKE_THREAD;
1022 }
1023 
1024 /****************************************************************************
1025  *
1026  * IOMMU command queuing functions
1027  *
1028  ****************************************************************************/
1029 
1030 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1031 {
1032 	int i = 0;
1033 
1034 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1035 		udelay(1);
1036 		i += 1;
1037 	}
1038 
1039 	if (i == LOOP_TIMEOUT) {
1040 		pr_alert("Completion-Wait loop timed out\n");
1041 		return -EIO;
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1048 			       struct iommu_cmd *cmd)
1049 {
1050 	u8 *target;
1051 	u32 tail;
1052 
1053 	/* Copy command to buffer */
1054 	tail = iommu->cmd_buf_tail;
1055 	target = iommu->cmd_buf + tail;
1056 	memcpy(target, cmd, sizeof(*cmd));
1057 
1058 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1059 	iommu->cmd_buf_tail = tail;
1060 
1061 	/* Tell the IOMMU about it */
1062 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1063 }
1064 
1065 static void build_completion_wait(struct iommu_cmd *cmd,
1066 				  struct amd_iommu *iommu,
1067 				  u64 data)
1068 {
1069 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1070 
1071 	memset(cmd, 0, sizeof(*cmd));
1072 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1073 	cmd->data[1] = upper_32_bits(paddr);
1074 	cmd->data[2] = lower_32_bits(data);
1075 	cmd->data[3] = upper_32_bits(data);
1076 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1077 }
1078 
1079 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1080 {
1081 	memset(cmd, 0, sizeof(*cmd));
1082 	cmd->data[0] = devid;
1083 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1084 }
1085 
1086 /*
1087  * Builds an invalidation address which is suitable for one page or multiple
1088  * pages. Sets the size bit (S) as needed is more than one page is flushed.
1089  */
1090 static inline u64 build_inv_address(u64 address, size_t size)
1091 {
1092 	u64 pages, end, msb_diff;
1093 
1094 	pages = iommu_num_pages(address, size, PAGE_SIZE);
1095 
1096 	if (pages == 1)
1097 		return address & PAGE_MASK;
1098 
1099 	end = address + size - 1;
1100 
1101 	/*
1102 	 * msb_diff would hold the index of the most significant bit that
1103 	 * flipped between the start and end.
1104 	 */
1105 	msb_diff = fls64(end ^ address) - 1;
1106 
1107 	/*
1108 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1109 	 * between the start and the end, invalidate everything.
1110 	 */
1111 	if (unlikely(msb_diff > 51)) {
1112 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1113 	} else {
1114 		/*
1115 		 * The msb-bit must be clear on the address. Just set all the
1116 		 * lower bits.
1117 		 */
1118 		address |= (1ull << msb_diff) - 1;
1119 	}
1120 
1121 	/* Clear bits 11:0 */
1122 	address &= PAGE_MASK;
1123 
1124 	/* Set the size bit - we flush more than one 4kb page */
1125 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1126 }
1127 
1128 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1129 				  size_t size, u16 domid,
1130 				  ioasid_t pasid, bool gn)
1131 {
1132 	u64 inv_address = build_inv_address(address, size);
1133 
1134 	memset(cmd, 0, sizeof(*cmd));
1135 
1136 	cmd->data[1] |= domid;
1137 	cmd->data[2]  = lower_32_bits(inv_address);
1138 	cmd->data[3]  = upper_32_bits(inv_address);
1139 	/* PDE bit - we want to flush everything, not only the PTEs */
1140 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1141 	if (gn) {
1142 		cmd->data[0] |= pasid;
1143 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1144 	}
1145 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1146 }
1147 
1148 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1149 				  u64 address, size_t size,
1150 				  ioasid_t pasid, bool gn)
1151 {
1152 	u64 inv_address = build_inv_address(address, size);
1153 
1154 	memset(cmd, 0, sizeof(*cmd));
1155 
1156 	cmd->data[0]  = devid;
1157 	cmd->data[0] |= (qdep & 0xff) << 24;
1158 	cmd->data[1]  = devid;
1159 	cmd->data[2]  = lower_32_bits(inv_address);
1160 	cmd->data[3]  = upper_32_bits(inv_address);
1161 	if (gn) {
1162 		cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1163 		cmd->data[1] |= (pasid & 0xff) << 16;
1164 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1165 	}
1166 
1167 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1168 }
1169 
1170 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1171 			       int status, int tag, u8 gn)
1172 {
1173 	memset(cmd, 0, sizeof(*cmd));
1174 
1175 	cmd->data[0]  = devid;
1176 	if (gn) {
1177 		cmd->data[1]  = pasid;
1178 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1179 	}
1180 	cmd->data[3]  = tag & 0x1ff;
1181 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1182 
1183 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1184 }
1185 
1186 static void build_inv_all(struct iommu_cmd *cmd)
1187 {
1188 	memset(cmd, 0, sizeof(*cmd));
1189 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1190 }
1191 
1192 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1193 {
1194 	memset(cmd, 0, sizeof(*cmd));
1195 	cmd->data[0] = devid;
1196 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1197 }
1198 
1199 /*
1200  * Writes the command to the IOMMUs command buffer and informs the
1201  * hardware about the new command.
1202  */
1203 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1204 				      struct iommu_cmd *cmd,
1205 				      bool sync)
1206 {
1207 	unsigned int count = 0;
1208 	u32 left, next_tail;
1209 
1210 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1211 again:
1212 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1213 
1214 	if (left <= 0x20) {
1215 		/* Skip udelay() the first time around */
1216 		if (count++) {
1217 			if (count == LOOP_TIMEOUT) {
1218 				pr_err("Command buffer timeout\n");
1219 				return -EIO;
1220 			}
1221 
1222 			udelay(1);
1223 		}
1224 
1225 		/* Update head and recheck remaining space */
1226 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1227 					    MMIO_CMD_HEAD_OFFSET);
1228 
1229 		goto again;
1230 	}
1231 
1232 	copy_cmd_to_buffer(iommu, cmd);
1233 
1234 	/* Do we need to make sure all commands are processed? */
1235 	iommu->need_sync = sync;
1236 
1237 	return 0;
1238 }
1239 
1240 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1241 				    struct iommu_cmd *cmd,
1242 				    bool sync)
1243 {
1244 	unsigned long flags;
1245 	int ret;
1246 
1247 	raw_spin_lock_irqsave(&iommu->lock, flags);
1248 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1249 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1250 
1251 	return ret;
1252 }
1253 
1254 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1255 {
1256 	return iommu_queue_command_sync(iommu, cmd, true);
1257 }
1258 
1259 /*
1260  * This function queues a completion wait command into the command
1261  * buffer of an IOMMU
1262  */
1263 static int iommu_completion_wait(struct amd_iommu *iommu)
1264 {
1265 	struct iommu_cmd cmd;
1266 	unsigned long flags;
1267 	int ret;
1268 	u64 data;
1269 
1270 	if (!iommu->need_sync)
1271 		return 0;
1272 
1273 	data = atomic64_add_return(1, &iommu->cmd_sem_val);
1274 	build_completion_wait(&cmd, iommu, data);
1275 
1276 	raw_spin_lock_irqsave(&iommu->lock, flags);
1277 
1278 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1279 	if (ret)
1280 		goto out_unlock;
1281 
1282 	ret = wait_on_sem(iommu, data);
1283 
1284 out_unlock:
1285 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1286 
1287 	return ret;
1288 }
1289 
1290 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1291 {
1292 	struct iommu_cmd cmd;
1293 
1294 	build_inv_dte(&cmd, devid);
1295 
1296 	return iommu_queue_command(iommu, &cmd);
1297 }
1298 
1299 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1300 {
1301 	u32 devid;
1302 	u16 last_bdf = iommu->pci_seg->last_bdf;
1303 
1304 	for (devid = 0; devid <= last_bdf; ++devid)
1305 		iommu_flush_dte(iommu, devid);
1306 
1307 	iommu_completion_wait(iommu);
1308 }
1309 
1310 /*
1311  * This function uses heavy locking and may disable irqs for some time. But
1312  * this is no issue because it is only called during resume.
1313  */
1314 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1315 {
1316 	u32 dom_id;
1317 	u16 last_bdf = iommu->pci_seg->last_bdf;
1318 
1319 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1320 		struct iommu_cmd cmd;
1321 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1322 				      dom_id, IOMMU_NO_PASID, false);
1323 		iommu_queue_command(iommu, &cmd);
1324 	}
1325 
1326 	iommu_completion_wait(iommu);
1327 }
1328 
1329 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1330 {
1331 	struct iommu_cmd cmd;
1332 
1333 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1334 			      dom_id, IOMMU_NO_PASID, false);
1335 	iommu_queue_command(iommu, &cmd);
1336 
1337 	iommu_completion_wait(iommu);
1338 }
1339 
1340 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1341 {
1342 	struct iommu_cmd cmd;
1343 
1344 	build_inv_all(&cmd);
1345 
1346 	iommu_queue_command(iommu, &cmd);
1347 	iommu_completion_wait(iommu);
1348 }
1349 
1350 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1351 {
1352 	struct iommu_cmd cmd;
1353 
1354 	build_inv_irt(&cmd, devid);
1355 
1356 	iommu_queue_command(iommu, &cmd);
1357 }
1358 
1359 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1360 {
1361 	u32 devid;
1362 	u16 last_bdf = iommu->pci_seg->last_bdf;
1363 
1364 	if (iommu->irtcachedis_enabled)
1365 		return;
1366 
1367 	for (devid = 0; devid <= last_bdf; devid++)
1368 		iommu_flush_irt(iommu, devid);
1369 
1370 	iommu_completion_wait(iommu);
1371 }
1372 
1373 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1374 {
1375 	if (check_feature(FEATURE_IA)) {
1376 		amd_iommu_flush_all(iommu);
1377 	} else {
1378 		amd_iommu_flush_dte_all(iommu);
1379 		amd_iommu_flush_irt_all(iommu);
1380 		amd_iommu_flush_tlb_all(iommu);
1381 	}
1382 }
1383 
1384 /*
1385  * Command send function for flushing on-device TLB
1386  */
1387 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1388 			      size_t size, ioasid_t pasid, bool gn)
1389 {
1390 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1391 	struct iommu_cmd cmd;
1392 	int qdep = dev_data->ats_qdep;
1393 
1394 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1395 			      size, pasid, gn);
1396 
1397 	return iommu_queue_command(iommu, &cmd);
1398 }
1399 
1400 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1401 {
1402 	struct amd_iommu *iommu = data;
1403 
1404 	return iommu_flush_dte(iommu, alias);
1405 }
1406 
1407 /*
1408  * Command send function for invalidating a device table entry
1409  */
1410 static int device_flush_dte(struct iommu_dev_data *dev_data)
1411 {
1412 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1413 	struct pci_dev *pdev = NULL;
1414 	struct amd_iommu_pci_seg *pci_seg;
1415 	u16 alias;
1416 	int ret;
1417 
1418 	if (dev_is_pci(dev_data->dev))
1419 		pdev = to_pci_dev(dev_data->dev);
1420 
1421 	if (pdev)
1422 		ret = pci_for_each_dma_alias(pdev,
1423 					     device_flush_dte_alias, iommu);
1424 	else
1425 		ret = iommu_flush_dte(iommu, dev_data->devid);
1426 	if (ret)
1427 		return ret;
1428 
1429 	pci_seg = iommu->pci_seg;
1430 	alias = pci_seg->alias_table[dev_data->devid];
1431 	if (alias != dev_data->devid) {
1432 		ret = iommu_flush_dte(iommu, alias);
1433 		if (ret)
1434 			return ret;
1435 	}
1436 
1437 	if (dev_data->ats_enabled) {
1438 		/* Invalidate the entire contents of an IOTLB */
1439 		ret = device_flush_iotlb(dev_data, 0, ~0UL,
1440 					 IOMMU_NO_PASID, false);
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 static int domain_flush_pages_v2(struct protection_domain *pdom,
1447 				 u64 address, size_t size)
1448 {
1449 	struct iommu_dev_data *dev_data;
1450 	struct iommu_cmd cmd;
1451 	int ret = 0;
1452 
1453 	list_for_each_entry(dev_data, &pdom->dev_list, list) {
1454 		struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1455 		u16 domid = dev_data->gcr3_info.domid;
1456 
1457 		build_inv_iommu_pages(&cmd, address, size,
1458 				      domid, IOMMU_NO_PASID, true);
1459 
1460 		ret |= iommu_queue_command(iommu, &cmd);
1461 	}
1462 
1463 	return ret;
1464 }
1465 
1466 static int domain_flush_pages_v1(struct protection_domain *pdom,
1467 				 u64 address, size_t size)
1468 {
1469 	struct iommu_cmd cmd;
1470 	int ret = 0, i;
1471 
1472 	build_inv_iommu_pages(&cmd, address, size,
1473 			      pdom->id, IOMMU_NO_PASID, false);
1474 
1475 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1476 		if (!pdom->dev_iommu[i])
1477 			continue;
1478 
1479 		/*
1480 		 * Devices of this domain are behind this IOMMU
1481 		 * We need a TLB flush
1482 		 */
1483 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1484 	}
1485 
1486 	return ret;
1487 }
1488 
1489 /*
1490  * TLB invalidation function which is called from the mapping functions.
1491  * It flushes range of PTEs of the domain.
1492  */
1493 static void __domain_flush_pages(struct protection_domain *domain,
1494 				 u64 address, size_t size)
1495 {
1496 	struct iommu_dev_data *dev_data;
1497 	int ret = 0;
1498 	ioasid_t pasid = IOMMU_NO_PASID;
1499 	bool gn = false;
1500 
1501 	if (pdom_is_v2_pgtbl_mode(domain)) {
1502 		gn = true;
1503 		ret = domain_flush_pages_v2(domain, address, size);
1504 	} else {
1505 		ret = domain_flush_pages_v1(domain, address, size);
1506 	}
1507 
1508 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1509 
1510 		if (!dev_data->ats_enabled)
1511 			continue;
1512 
1513 		ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1514 	}
1515 
1516 	WARN_ON(ret);
1517 }
1518 
1519 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1520 				  u64 address, size_t size)
1521 {
1522 	if (likely(!amd_iommu_np_cache)) {
1523 		__domain_flush_pages(domain, address, size);
1524 
1525 		/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1526 		amd_iommu_domain_flush_complete(domain);
1527 
1528 		return;
1529 	}
1530 
1531 	/*
1532 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1533 	 * In such setups it is best to avoid flushes of ranges which are not
1534 	 * naturally aligned, since it would lead to flushes of unmodified
1535 	 * PTEs. Such flushes would require the hypervisor to do more work than
1536 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1537 	 * until you cover the range. Each iteration flushes the smaller
1538 	 * between the natural alignment of the address that we flush and the
1539 	 * greatest naturally aligned region that fits in the range.
1540 	 */
1541 	while (size != 0) {
1542 		int addr_alignment = __ffs(address);
1543 		int size_alignment = __fls(size);
1544 		int min_alignment;
1545 		size_t flush_size;
1546 
1547 		/*
1548 		 * size is always non-zero, but address might be zero, causing
1549 		 * addr_alignment to be negative. As the casting of the
1550 		 * argument in __ffs(address) to long might trim the high bits
1551 		 * of the address on x86-32, cast to long when doing the check.
1552 		 */
1553 		if (likely((unsigned long)address != 0))
1554 			min_alignment = min(addr_alignment, size_alignment);
1555 		else
1556 			min_alignment = size_alignment;
1557 
1558 		flush_size = 1ul << min_alignment;
1559 
1560 		__domain_flush_pages(domain, address, flush_size);
1561 		address += flush_size;
1562 		size -= flush_size;
1563 	}
1564 
1565 	/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1566 	amd_iommu_domain_flush_complete(domain);
1567 }
1568 
1569 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1570 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1571 {
1572 	amd_iommu_domain_flush_pages(domain, 0,
1573 				     CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1574 }
1575 
1576 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1577 				     ioasid_t pasid, u64 address, size_t size)
1578 {
1579 	struct iommu_cmd cmd;
1580 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1581 
1582 	build_inv_iommu_pages(&cmd, address, size,
1583 			      dev_data->gcr3_info.domid, pasid, true);
1584 	iommu_queue_command(iommu, &cmd);
1585 
1586 	if (dev_data->ats_enabled)
1587 		device_flush_iotlb(dev_data, address, size, pasid, true);
1588 
1589 	iommu_completion_wait(iommu);
1590 }
1591 
1592 void amd_iommu_dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1593 				   ioasid_t pasid)
1594 {
1595 	amd_iommu_dev_flush_pasid_pages(dev_data, 0,
1596 					CMD_INV_IOMMU_ALL_PAGES_ADDRESS, pasid);
1597 }
1598 
1599 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1600 {
1601 	int i;
1602 
1603 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1604 		if (domain && !domain->dev_iommu[i])
1605 			continue;
1606 
1607 		/*
1608 		 * Devices of this domain are behind this IOMMU
1609 		 * We need to wait for completion of all commands.
1610 		 */
1611 		iommu_completion_wait(amd_iommus[i]);
1612 	}
1613 }
1614 
1615 /* Flush the not present cache if it exists */
1616 static void domain_flush_np_cache(struct protection_domain *domain,
1617 		dma_addr_t iova, size_t size)
1618 {
1619 	if (unlikely(amd_iommu_np_cache)) {
1620 		unsigned long flags;
1621 
1622 		spin_lock_irqsave(&domain->lock, flags);
1623 		amd_iommu_domain_flush_pages(domain, iova, size);
1624 		spin_unlock_irqrestore(&domain->lock, flags);
1625 	}
1626 }
1627 
1628 
1629 /*
1630  * This function flushes the DTEs for all devices in domain
1631  */
1632 static void domain_flush_devices(struct protection_domain *domain)
1633 {
1634 	struct iommu_dev_data *dev_data;
1635 
1636 	list_for_each_entry(dev_data, &domain->dev_list, list)
1637 		device_flush_dte(dev_data);
1638 }
1639 
1640 static void update_device_table(struct protection_domain *domain)
1641 {
1642 	struct iommu_dev_data *dev_data;
1643 
1644 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1645 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1646 
1647 		set_dte_entry(iommu, dev_data);
1648 		clone_aliases(iommu, dev_data->dev);
1649 	}
1650 }
1651 
1652 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1653 {
1654 	update_device_table(domain);
1655 	domain_flush_devices(domain);
1656 }
1657 
1658 void amd_iommu_domain_update(struct protection_domain *domain)
1659 {
1660 	/* Update device table */
1661 	amd_iommu_update_and_flush_device_table(domain);
1662 
1663 	/* Flush domain TLB(s) and wait for completion */
1664 	amd_iommu_domain_flush_all(domain);
1665 }
1666 
1667 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
1668 			   int status, int tag)
1669 {
1670 	struct iommu_dev_data *dev_data;
1671 	struct amd_iommu *iommu;
1672 	struct iommu_cmd cmd;
1673 
1674 	dev_data = dev_iommu_priv_get(&pdev->dev);
1675 	iommu    = get_amd_iommu_from_dev(&pdev->dev);
1676 
1677 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1678 			   tag, dev_data->pri_tlp);
1679 
1680 	return iommu_queue_command(iommu, &cmd);
1681 }
1682 
1683 /****************************************************************************
1684  *
1685  * The next functions belong to the domain allocation. A domain is
1686  * allocated for every IOMMU as the default domain. If device isolation
1687  * is enabled, every device get its own domain. The most important thing
1688  * about domains is the page table mapping the DMA address space they
1689  * contain.
1690  *
1691  ****************************************************************************/
1692 
1693 static u16 domain_id_alloc(void)
1694 {
1695 	unsigned long flags;
1696 	int id;
1697 
1698 	spin_lock_irqsave(&pd_bitmap_lock, flags);
1699 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1700 	BUG_ON(id == 0);
1701 	if (id > 0 && id < MAX_DOMAIN_ID)
1702 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1703 	else
1704 		id = 0;
1705 	spin_unlock_irqrestore(&pd_bitmap_lock, flags);
1706 
1707 	return id;
1708 }
1709 
1710 static void domain_id_free(int id)
1711 {
1712 	unsigned long flags;
1713 
1714 	spin_lock_irqsave(&pd_bitmap_lock, flags);
1715 	if (id > 0 && id < MAX_DOMAIN_ID)
1716 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1717 	spin_unlock_irqrestore(&pd_bitmap_lock, flags);
1718 }
1719 
1720 static void free_gcr3_tbl_level1(u64 *tbl)
1721 {
1722 	u64 *ptr;
1723 	int i;
1724 
1725 	for (i = 0; i < 512; ++i) {
1726 		if (!(tbl[i] & GCR3_VALID))
1727 			continue;
1728 
1729 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1730 
1731 		free_page((unsigned long)ptr);
1732 	}
1733 }
1734 
1735 static void free_gcr3_tbl_level2(u64 *tbl)
1736 {
1737 	u64 *ptr;
1738 	int i;
1739 
1740 	for (i = 0; i < 512; ++i) {
1741 		if (!(tbl[i] & GCR3_VALID))
1742 			continue;
1743 
1744 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1745 
1746 		free_gcr3_tbl_level1(ptr);
1747 	}
1748 }
1749 
1750 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1751 {
1752 	if (gcr3_info->glx == 2)
1753 		free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1754 	else if (gcr3_info->glx == 1)
1755 		free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1756 	else
1757 		WARN_ON_ONCE(gcr3_info->glx != 0);
1758 
1759 	gcr3_info->glx = 0;
1760 
1761 	/* Free per device domain ID */
1762 	domain_id_free(gcr3_info->domid);
1763 
1764 	free_page((unsigned long)gcr3_info->gcr3_tbl);
1765 	gcr3_info->gcr3_tbl = NULL;
1766 }
1767 
1768 /*
1769  * Number of GCR3 table levels required. Level must be 4-Kbyte
1770  * page and can contain up to 512 entries.
1771  */
1772 static int get_gcr3_levels(int pasids)
1773 {
1774 	int levels;
1775 
1776 	if (pasids == -1)
1777 		return amd_iommu_max_glx_val;
1778 
1779 	levels = get_count_order(pasids);
1780 
1781 	return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1782 }
1783 
1784 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1785 			    struct amd_iommu *iommu, int pasids)
1786 {
1787 	int levels = get_gcr3_levels(pasids);
1788 	int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1789 
1790 	if (levels > amd_iommu_max_glx_val)
1791 		return -EINVAL;
1792 
1793 	if (gcr3_info->gcr3_tbl)
1794 		return -EBUSY;
1795 
1796 	/* Allocate per device domain ID */
1797 	gcr3_info->domid = domain_id_alloc();
1798 
1799 	gcr3_info->gcr3_tbl = alloc_pgtable_page(nid, GFP_ATOMIC);
1800 	if (gcr3_info->gcr3_tbl == NULL) {
1801 		domain_id_free(gcr3_info->domid);
1802 		return -ENOMEM;
1803 	}
1804 
1805 	gcr3_info->glx = levels;
1806 
1807 	return 0;
1808 }
1809 
1810 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1811 			   ioasid_t pasid, bool alloc)
1812 {
1813 	int index;
1814 	u64 *pte;
1815 	u64 *root = gcr3_info->gcr3_tbl;
1816 	int level = gcr3_info->glx;
1817 
1818 	while (true) {
1819 
1820 		index = (pasid >> (9 * level)) & 0x1ff;
1821 		pte   = &root[index];
1822 
1823 		if (level == 0)
1824 			break;
1825 
1826 		if (!(*pte & GCR3_VALID)) {
1827 			if (!alloc)
1828 				return NULL;
1829 
1830 			root = (void *)get_zeroed_page(GFP_ATOMIC);
1831 			if (root == NULL)
1832 				return NULL;
1833 
1834 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
1835 		}
1836 
1837 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
1838 
1839 		level -= 1;
1840 	}
1841 
1842 	return pte;
1843 }
1844 
1845 static int update_gcr3(struct iommu_dev_data *dev_data,
1846 		       ioasid_t pasid, unsigned long gcr3, bool set)
1847 {
1848 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1849 	u64 *pte;
1850 
1851 	pte = __get_gcr3_pte(gcr3_info, pasid, true);
1852 	if (pte == NULL)
1853 		return -ENOMEM;
1854 
1855 	if (set)
1856 		*pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1857 	else
1858 		*pte = 0;
1859 
1860 	amd_iommu_dev_flush_pasid_all(dev_data, pasid);
1861 	return 0;
1862 }
1863 
1864 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1865 		       unsigned long gcr3)
1866 {
1867 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1868 	int ret;
1869 
1870 	iommu_group_mutex_assert(dev_data->dev);
1871 
1872 	ret = update_gcr3(dev_data, pasid, gcr3, true);
1873 	if (ret)
1874 		return ret;
1875 
1876 	gcr3_info->pasid_cnt++;
1877 	return ret;
1878 }
1879 
1880 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1881 {
1882 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1883 	int ret;
1884 
1885 	iommu_group_mutex_assert(dev_data->dev);
1886 
1887 	ret = update_gcr3(dev_data, pasid, 0, false);
1888 	if (ret)
1889 		return ret;
1890 
1891 	gcr3_info->pasid_cnt--;
1892 	return ret;
1893 }
1894 
1895 static void set_dte_entry(struct amd_iommu *iommu,
1896 			  struct iommu_dev_data *dev_data)
1897 {
1898 	u64 pte_root = 0;
1899 	u64 flags = 0;
1900 	u32 old_domid;
1901 	u16 devid = dev_data->devid;
1902 	u16 domid;
1903 	struct protection_domain *domain = dev_data->domain;
1904 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1905 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1906 
1907 	if (gcr3_info && gcr3_info->gcr3_tbl)
1908 		domid = dev_data->gcr3_info.domid;
1909 	else
1910 		domid = domain->id;
1911 
1912 	if (domain->iop.mode != PAGE_MODE_NONE)
1913 		pte_root = iommu_virt_to_phys(domain->iop.root);
1914 
1915 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1916 		    << DEV_ENTRY_MODE_SHIFT;
1917 
1918 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1919 
1920 	/*
1921 	 * When SNP is enabled, Only set TV bit when IOMMU
1922 	 * page translation is in use.
1923 	 */
1924 	if (!amd_iommu_snp_en || (domid != 0))
1925 		pte_root |= DTE_FLAG_TV;
1926 
1927 	flags = dev_table[devid].data[1];
1928 
1929 	if (dev_data->ats_enabled)
1930 		flags |= DTE_FLAG_IOTLB;
1931 
1932 	if (dev_data->ppr)
1933 		pte_root |= 1ULL << DEV_ENTRY_PPR;
1934 
1935 	if (domain->dirty_tracking)
1936 		pte_root |= DTE_FLAG_HAD;
1937 
1938 	if (gcr3_info && gcr3_info->gcr3_tbl) {
1939 		u64 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
1940 		u64 glx  = gcr3_info->glx;
1941 		u64 tmp;
1942 
1943 		pte_root |= DTE_FLAG_GV;
1944 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1945 
1946 		/* First mask out possible old values for GCR3 table */
1947 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1948 		flags    &= ~tmp;
1949 
1950 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1951 		flags    &= ~tmp;
1952 
1953 		/* Encode GCR3 table into DTE */
1954 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1955 		pte_root |= tmp;
1956 
1957 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1958 		flags    |= tmp;
1959 
1960 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1961 		flags    |= tmp;
1962 
1963 		if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1964 			dev_table[devid].data[2] |=
1965 				((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1966 		}
1967 
1968 		/* GIOV is supported with V2 page table mode only */
1969 		if (pdom_is_v2_pgtbl_mode(domain))
1970 			pte_root |= DTE_FLAG_GIOV;
1971 	}
1972 
1973 	flags &= ~DEV_DOMID_MASK;
1974 	flags |= domid;
1975 
1976 	old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1977 	dev_table[devid].data[1]  = flags;
1978 	dev_table[devid].data[0]  = pte_root;
1979 
1980 	/*
1981 	 * A kdump kernel might be replacing a domain ID that was copied from
1982 	 * the previous kernel--if so, it needs to flush the translation cache
1983 	 * entries for the old domain ID that is being overwritten
1984 	 */
1985 	if (old_domid) {
1986 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1987 	}
1988 }
1989 
1990 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1991 {
1992 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1993 
1994 	/* remove entry from the device table seen by the hardware */
1995 	dev_table[devid].data[0]  = DTE_FLAG_V;
1996 
1997 	if (!amd_iommu_snp_en)
1998 		dev_table[devid].data[0] |= DTE_FLAG_TV;
1999 
2000 	dev_table[devid].data[1] &= DTE_FLAG_MASK;
2001 
2002 	amd_iommu_apply_erratum_63(iommu, devid);
2003 }
2004 
2005 static int do_attach(struct iommu_dev_data *dev_data,
2006 		     struct protection_domain *domain)
2007 {
2008 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2009 	int ret = 0;
2010 
2011 	/* Update data structures */
2012 	dev_data->domain = domain;
2013 	list_add(&dev_data->list, &domain->dev_list);
2014 
2015 	/* Update NUMA Node ID */
2016 	if (domain->nid == NUMA_NO_NODE)
2017 		domain->nid = dev_to_node(dev_data->dev);
2018 
2019 	/* Do reference counting */
2020 	domain->dev_iommu[iommu->index] += 1;
2021 	domain->dev_cnt                 += 1;
2022 
2023 	/* Init GCR3 table and update device table */
2024 	if (domain->pd_mode == PD_MODE_V2) {
2025 		/* By default, setup GCR3 table to support single PASID */
2026 		ret = setup_gcr3_table(&dev_data->gcr3_info, iommu, 1);
2027 		if (ret)
2028 			return ret;
2029 
2030 		ret = update_gcr3(dev_data, 0,
2031 				  iommu_virt_to_phys(domain->iop.pgd), true);
2032 		if (ret) {
2033 			free_gcr3_table(&dev_data->gcr3_info);
2034 			return ret;
2035 		}
2036 	}
2037 
2038 	/* Update device table */
2039 	set_dte_entry(iommu, dev_data);
2040 	clone_aliases(iommu, dev_data->dev);
2041 
2042 	device_flush_dte(dev_data);
2043 
2044 	return ret;
2045 }
2046 
2047 static void do_detach(struct iommu_dev_data *dev_data)
2048 {
2049 	struct protection_domain *domain = dev_data->domain;
2050 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2051 
2052 	/* Clear GCR3 table */
2053 	if (domain->pd_mode == PD_MODE_V2) {
2054 		update_gcr3(dev_data, 0, 0, false);
2055 		free_gcr3_table(&dev_data->gcr3_info);
2056 	}
2057 
2058 	/* Update data structures */
2059 	dev_data->domain = NULL;
2060 	list_del(&dev_data->list);
2061 	clear_dte_entry(iommu, dev_data->devid);
2062 	clone_aliases(iommu, dev_data->dev);
2063 
2064 	/* Flush the DTE entry */
2065 	device_flush_dte(dev_data);
2066 
2067 	/* Flush IOTLB and wait for the flushes to finish */
2068 	amd_iommu_domain_flush_all(domain);
2069 
2070 	/* decrease reference counters - needs to happen after the flushes */
2071 	domain->dev_iommu[iommu->index] -= 1;
2072 	domain->dev_cnt                 -= 1;
2073 }
2074 
2075 /*
2076  * If a device is not yet associated with a domain, this function makes the
2077  * device visible in the domain
2078  */
2079 static int attach_device(struct device *dev,
2080 			 struct protection_domain *domain)
2081 {
2082 	struct iommu_dev_data *dev_data;
2083 	unsigned long flags;
2084 	int ret = 0;
2085 
2086 	spin_lock_irqsave(&domain->lock, flags);
2087 
2088 	dev_data = dev_iommu_priv_get(dev);
2089 
2090 	spin_lock(&dev_data->lock);
2091 
2092 	if (dev_data->domain != NULL) {
2093 		ret = -EBUSY;
2094 		goto out;
2095 	}
2096 
2097 	if (dev_is_pci(dev))
2098 		pdev_enable_caps(to_pci_dev(dev));
2099 
2100 	ret = do_attach(dev_data, domain);
2101 
2102 out:
2103 	spin_unlock(&dev_data->lock);
2104 
2105 	spin_unlock_irqrestore(&domain->lock, flags);
2106 
2107 	return ret;
2108 }
2109 
2110 /*
2111  * Removes a device from a protection domain (with devtable_lock held)
2112  */
2113 static void detach_device(struct device *dev)
2114 {
2115 	struct protection_domain *domain;
2116 	struct iommu_dev_data *dev_data;
2117 	unsigned long flags;
2118 
2119 	dev_data = dev_iommu_priv_get(dev);
2120 	domain   = dev_data->domain;
2121 
2122 	spin_lock_irqsave(&domain->lock, flags);
2123 
2124 	spin_lock(&dev_data->lock);
2125 
2126 	/*
2127 	 * First check if the device is still attached. It might already
2128 	 * be detached from its domain because the generic
2129 	 * iommu_detach_group code detached it and we try again here in
2130 	 * our alias handling.
2131 	 */
2132 	if (WARN_ON(!dev_data->domain))
2133 		goto out;
2134 
2135 	do_detach(dev_data);
2136 
2137 	if (dev_is_pci(dev))
2138 		pdev_disable_caps(to_pci_dev(dev));
2139 
2140 out:
2141 	spin_unlock(&dev_data->lock);
2142 
2143 	spin_unlock_irqrestore(&domain->lock, flags);
2144 }
2145 
2146 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2147 {
2148 	struct iommu_device *iommu_dev;
2149 	struct amd_iommu *iommu;
2150 	int ret;
2151 
2152 	if (!check_device(dev))
2153 		return ERR_PTR(-ENODEV);
2154 
2155 	iommu = rlookup_amd_iommu(dev);
2156 	if (!iommu)
2157 		return ERR_PTR(-ENODEV);
2158 
2159 	/* Not registered yet? */
2160 	if (!iommu->iommu.ops)
2161 		return ERR_PTR(-ENODEV);
2162 
2163 	if (dev_iommu_priv_get(dev))
2164 		return &iommu->iommu;
2165 
2166 	ret = iommu_init_device(iommu, dev);
2167 	if (ret) {
2168 		dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2169 		iommu_dev = ERR_PTR(ret);
2170 		iommu_ignore_device(iommu, dev);
2171 	} else {
2172 		amd_iommu_set_pci_msi_domain(dev, iommu);
2173 		iommu_dev = &iommu->iommu;
2174 	}
2175 
2176 	iommu_completion_wait(iommu);
2177 
2178 	return iommu_dev;
2179 }
2180 
2181 static void amd_iommu_probe_finalize(struct device *dev)
2182 {
2183 	/* Domains are initialized for this device - have a look what we ended up with */
2184 	set_dma_ops(dev, NULL);
2185 	iommu_setup_dma_ops(dev, 0, U64_MAX);
2186 }
2187 
2188 static void amd_iommu_release_device(struct device *dev)
2189 {
2190 	struct amd_iommu *iommu;
2191 
2192 	if (!check_device(dev))
2193 		return;
2194 
2195 	iommu = rlookup_amd_iommu(dev);
2196 	if (!iommu)
2197 		return;
2198 
2199 	amd_iommu_uninit_device(dev);
2200 	iommu_completion_wait(iommu);
2201 }
2202 
2203 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2204 {
2205 	if (dev_is_pci(dev))
2206 		return pci_device_group(dev);
2207 
2208 	return acpihid_device_group(dev);
2209 }
2210 
2211 /*****************************************************************************
2212  *
2213  * The following functions belong to the exported interface of AMD IOMMU
2214  *
2215  * This interface allows access to lower level functions of the IOMMU
2216  * like protection domain handling and assignement of devices to domains
2217  * which is not possible with the dma_ops interface.
2218  *
2219  *****************************************************************************/
2220 
2221 static void cleanup_domain(struct protection_domain *domain)
2222 {
2223 	struct iommu_dev_data *entry;
2224 
2225 	lockdep_assert_held(&domain->lock);
2226 
2227 	if (!domain->dev_cnt)
2228 		return;
2229 
2230 	while (!list_empty(&domain->dev_list)) {
2231 		entry = list_first_entry(&domain->dev_list,
2232 					 struct iommu_dev_data, list);
2233 		BUG_ON(!entry->domain);
2234 		do_detach(entry);
2235 	}
2236 	WARN_ON(domain->dev_cnt != 0);
2237 }
2238 
2239 static void protection_domain_free(struct protection_domain *domain)
2240 {
2241 	if (!domain)
2242 		return;
2243 
2244 	if (domain->iop.pgtbl_cfg.tlb)
2245 		free_io_pgtable_ops(&domain->iop.iop.ops);
2246 
2247 	if (domain->iop.root)
2248 		free_page((unsigned long)domain->iop.root);
2249 
2250 	if (domain->id)
2251 		domain_id_free(domain->id);
2252 
2253 	kfree(domain);
2254 }
2255 
2256 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2257 {
2258 	u64 *pt_root = NULL;
2259 
2260 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2261 
2262 	if (mode != PAGE_MODE_NONE) {
2263 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2264 		if (!pt_root)
2265 			return -ENOMEM;
2266 	}
2267 
2268 	domain->pd_mode = PD_MODE_V1;
2269 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2270 
2271 	return 0;
2272 }
2273 
2274 static int protection_domain_init_v2(struct protection_domain *pdom)
2275 {
2276 	pdom->pd_mode = PD_MODE_V2;
2277 	pdom->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
2278 
2279 	return 0;
2280 }
2281 
2282 static struct protection_domain *protection_domain_alloc(unsigned int type)
2283 {
2284 	struct io_pgtable_ops *pgtbl_ops;
2285 	struct protection_domain *domain;
2286 	int pgtable;
2287 	int ret;
2288 
2289 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2290 	if (!domain)
2291 		return NULL;
2292 
2293 	domain->id = domain_id_alloc();
2294 	if (!domain->id)
2295 		goto out_err;
2296 
2297 	spin_lock_init(&domain->lock);
2298 	INIT_LIST_HEAD(&domain->dev_list);
2299 	domain->nid = NUMA_NO_NODE;
2300 
2301 	switch (type) {
2302 	/* No need to allocate io pgtable ops in passthrough mode */
2303 	case IOMMU_DOMAIN_IDENTITY:
2304 		return domain;
2305 	case IOMMU_DOMAIN_DMA:
2306 		pgtable = amd_iommu_pgtable;
2307 		break;
2308 	/*
2309 	 * Force IOMMU v1 page table when allocating
2310 	 * domain for pass-through devices.
2311 	 */
2312 	case IOMMU_DOMAIN_UNMANAGED:
2313 		pgtable = AMD_IOMMU_V1;
2314 		break;
2315 	default:
2316 		goto out_err;
2317 	}
2318 
2319 	switch (pgtable) {
2320 	case AMD_IOMMU_V1:
2321 		ret = protection_domain_init_v1(domain, DEFAULT_PGTABLE_LEVEL);
2322 		break;
2323 	case AMD_IOMMU_V2:
2324 		ret = protection_domain_init_v2(domain);
2325 		break;
2326 	default:
2327 		ret = -EINVAL;
2328 		break;
2329 	}
2330 
2331 	if (ret)
2332 		goto out_err;
2333 
2334 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2335 	if (!pgtbl_ops)
2336 		goto out_err;
2337 
2338 	return domain;
2339 out_err:
2340 	protection_domain_free(domain);
2341 	return NULL;
2342 }
2343 
2344 static inline u64 dma_max_address(void)
2345 {
2346 	if (amd_iommu_pgtable == AMD_IOMMU_V1)
2347 		return ~0ULL;
2348 
2349 	/* V2 with 4/5 level page table */
2350 	return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2351 }
2352 
2353 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2354 {
2355 	return iommu && (iommu->features & FEATURE_HDSUP);
2356 }
2357 
2358 static struct iommu_domain *do_iommu_domain_alloc(unsigned int type,
2359 						  struct device *dev, u32 flags)
2360 {
2361 	bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2362 	struct protection_domain *domain;
2363 	struct amd_iommu *iommu = NULL;
2364 
2365 	if (dev)
2366 		iommu = get_amd_iommu_from_dev(dev);
2367 
2368 	/*
2369 	 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2370 	 * default to use IOMMU_DOMAIN_DMA[_FQ].
2371 	 */
2372 	if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2373 		return ERR_PTR(-EINVAL);
2374 
2375 	if (dirty_tracking && !amd_iommu_hd_support(iommu))
2376 		return ERR_PTR(-EOPNOTSUPP);
2377 
2378 	domain = protection_domain_alloc(type);
2379 	if (!domain)
2380 		return ERR_PTR(-ENOMEM);
2381 
2382 	domain->domain.geometry.aperture_start = 0;
2383 	domain->domain.geometry.aperture_end   = dma_max_address();
2384 	domain->domain.geometry.force_aperture = true;
2385 
2386 	if (iommu) {
2387 		domain->domain.type = type;
2388 		domain->domain.pgsize_bitmap = iommu->iommu.ops->pgsize_bitmap;
2389 		domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2390 
2391 		if (dirty_tracking)
2392 			domain->domain.dirty_ops = &amd_dirty_ops;
2393 	}
2394 
2395 	return &domain->domain;
2396 }
2397 
2398 static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type)
2399 {
2400 	struct iommu_domain *domain;
2401 
2402 	domain = do_iommu_domain_alloc(type, NULL, 0);
2403 	if (IS_ERR(domain))
2404 		return NULL;
2405 
2406 	return domain;
2407 }
2408 
2409 static struct iommu_domain *
2410 amd_iommu_domain_alloc_user(struct device *dev, u32 flags,
2411 			    struct iommu_domain *parent,
2412 			    const struct iommu_user_data *user_data)
2413 
2414 {
2415 	unsigned int type = IOMMU_DOMAIN_UNMANAGED;
2416 
2417 	if ((flags & ~IOMMU_HWPT_ALLOC_DIRTY_TRACKING) || parent || user_data)
2418 		return ERR_PTR(-EOPNOTSUPP);
2419 
2420 	return do_iommu_domain_alloc(type, dev, flags);
2421 }
2422 
2423 static void amd_iommu_domain_free(struct iommu_domain *dom)
2424 {
2425 	struct protection_domain *domain;
2426 	unsigned long flags;
2427 
2428 	if (!dom)
2429 		return;
2430 
2431 	domain = to_pdomain(dom);
2432 
2433 	spin_lock_irqsave(&domain->lock, flags);
2434 
2435 	cleanup_domain(domain);
2436 
2437 	spin_unlock_irqrestore(&domain->lock, flags);
2438 
2439 	protection_domain_free(domain);
2440 }
2441 
2442 static int amd_iommu_attach_device(struct iommu_domain *dom,
2443 				   struct device *dev)
2444 {
2445 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2446 	struct protection_domain *domain = to_pdomain(dom);
2447 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2448 	int ret;
2449 
2450 	/*
2451 	 * Skip attach device to domain if new domain is same as
2452 	 * devices current domain
2453 	 */
2454 	if (dev_data->domain == domain)
2455 		return 0;
2456 
2457 	dev_data->defer_attach = false;
2458 
2459 	/*
2460 	 * Restrict to devices with compatible IOMMU hardware support
2461 	 * when enforcement of dirty tracking is enabled.
2462 	 */
2463 	if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2464 		return -EINVAL;
2465 
2466 	if (dev_data->domain)
2467 		detach_device(dev);
2468 
2469 	ret = attach_device(dev, domain);
2470 
2471 #ifdef CONFIG_IRQ_REMAP
2472 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2473 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2474 			dev_data->use_vapic = 1;
2475 		else
2476 			dev_data->use_vapic = 0;
2477 	}
2478 #endif
2479 
2480 	iommu_completion_wait(iommu);
2481 
2482 	return ret;
2483 }
2484 
2485 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2486 				    unsigned long iova, size_t size)
2487 {
2488 	struct protection_domain *domain = to_pdomain(dom);
2489 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2490 
2491 	if (ops->map_pages)
2492 		domain_flush_np_cache(domain, iova, size);
2493 	return 0;
2494 }
2495 
2496 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2497 			       phys_addr_t paddr, size_t pgsize, size_t pgcount,
2498 			       int iommu_prot, gfp_t gfp, size_t *mapped)
2499 {
2500 	struct protection_domain *domain = to_pdomain(dom);
2501 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2502 	int prot = 0;
2503 	int ret = -EINVAL;
2504 
2505 	if ((domain->pd_mode == PD_MODE_V1) &&
2506 	    (domain->iop.mode == PAGE_MODE_NONE))
2507 		return -EINVAL;
2508 
2509 	if (iommu_prot & IOMMU_READ)
2510 		prot |= IOMMU_PROT_IR;
2511 	if (iommu_prot & IOMMU_WRITE)
2512 		prot |= IOMMU_PROT_IW;
2513 
2514 	if (ops->map_pages) {
2515 		ret = ops->map_pages(ops, iova, paddr, pgsize,
2516 				     pgcount, prot, gfp, mapped);
2517 	}
2518 
2519 	return ret;
2520 }
2521 
2522 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2523 					    struct iommu_iotlb_gather *gather,
2524 					    unsigned long iova, size_t size)
2525 {
2526 	/*
2527 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2528 	 * Unless we run in a virtual machine, which can be inferred according
2529 	 * to whether "non-present cache" is on, it is probably best to prefer
2530 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2531 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2532 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2533 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2534 	 * should be avoided.
2535 	 */
2536 	if (amd_iommu_np_cache &&
2537 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2538 		iommu_iotlb_sync(domain, gather);
2539 
2540 	iommu_iotlb_gather_add_range(gather, iova, size);
2541 }
2542 
2543 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2544 				    size_t pgsize, size_t pgcount,
2545 				    struct iommu_iotlb_gather *gather)
2546 {
2547 	struct protection_domain *domain = to_pdomain(dom);
2548 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2549 	size_t r;
2550 
2551 	if ((domain->pd_mode == PD_MODE_V1) &&
2552 	    (domain->iop.mode == PAGE_MODE_NONE))
2553 		return 0;
2554 
2555 	r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2556 
2557 	if (r)
2558 		amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2559 
2560 	return r;
2561 }
2562 
2563 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2564 					  dma_addr_t iova)
2565 {
2566 	struct protection_domain *domain = to_pdomain(dom);
2567 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2568 
2569 	return ops->iova_to_phys(ops, iova);
2570 }
2571 
2572 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2573 {
2574 	switch (cap) {
2575 	case IOMMU_CAP_CACHE_COHERENCY:
2576 		return true;
2577 	case IOMMU_CAP_NOEXEC:
2578 		return false;
2579 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2580 		return amdr_ivrs_remap_support;
2581 	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2582 		return true;
2583 	case IOMMU_CAP_DEFERRED_FLUSH:
2584 		return true;
2585 	case IOMMU_CAP_DIRTY_TRACKING: {
2586 		struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2587 
2588 		return amd_iommu_hd_support(iommu);
2589 	}
2590 	default:
2591 		break;
2592 	}
2593 
2594 	return false;
2595 }
2596 
2597 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2598 					bool enable)
2599 {
2600 	struct protection_domain *pdomain = to_pdomain(domain);
2601 	struct dev_table_entry *dev_table;
2602 	struct iommu_dev_data *dev_data;
2603 	bool domain_flush = false;
2604 	struct amd_iommu *iommu;
2605 	unsigned long flags;
2606 	u64 pte_root;
2607 
2608 	spin_lock_irqsave(&pdomain->lock, flags);
2609 	if (!(pdomain->dirty_tracking ^ enable)) {
2610 		spin_unlock_irqrestore(&pdomain->lock, flags);
2611 		return 0;
2612 	}
2613 
2614 	list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2615 		iommu = get_amd_iommu_from_dev_data(dev_data);
2616 
2617 		dev_table = get_dev_table(iommu);
2618 		pte_root = dev_table[dev_data->devid].data[0];
2619 
2620 		pte_root = (enable ? pte_root | DTE_FLAG_HAD :
2621 				     pte_root & ~DTE_FLAG_HAD);
2622 
2623 		/* Flush device DTE */
2624 		dev_table[dev_data->devid].data[0] = pte_root;
2625 		device_flush_dte(dev_data);
2626 		domain_flush = true;
2627 	}
2628 
2629 	/* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2630 	if (domain_flush)
2631 		amd_iommu_domain_flush_all(pdomain);
2632 
2633 	pdomain->dirty_tracking = enable;
2634 	spin_unlock_irqrestore(&pdomain->lock, flags);
2635 
2636 	return 0;
2637 }
2638 
2639 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2640 					  unsigned long iova, size_t size,
2641 					  unsigned long flags,
2642 					  struct iommu_dirty_bitmap *dirty)
2643 {
2644 	struct protection_domain *pdomain = to_pdomain(domain);
2645 	struct io_pgtable_ops *ops = &pdomain->iop.iop.ops;
2646 	unsigned long lflags;
2647 
2648 	if (!ops || !ops->read_and_clear_dirty)
2649 		return -EOPNOTSUPP;
2650 
2651 	spin_lock_irqsave(&pdomain->lock, lflags);
2652 	if (!pdomain->dirty_tracking && dirty->bitmap) {
2653 		spin_unlock_irqrestore(&pdomain->lock, lflags);
2654 		return -EINVAL;
2655 	}
2656 	spin_unlock_irqrestore(&pdomain->lock, lflags);
2657 
2658 	return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2659 }
2660 
2661 static void amd_iommu_get_resv_regions(struct device *dev,
2662 				       struct list_head *head)
2663 {
2664 	struct iommu_resv_region *region;
2665 	struct unity_map_entry *entry;
2666 	struct amd_iommu *iommu;
2667 	struct amd_iommu_pci_seg *pci_seg;
2668 	int devid, sbdf;
2669 
2670 	sbdf = get_device_sbdf_id(dev);
2671 	if (sbdf < 0)
2672 		return;
2673 
2674 	devid = PCI_SBDF_TO_DEVID(sbdf);
2675 	iommu = get_amd_iommu_from_dev(dev);
2676 	pci_seg = iommu->pci_seg;
2677 
2678 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2679 		int type, prot = 0;
2680 		size_t length;
2681 
2682 		if (devid < entry->devid_start || devid > entry->devid_end)
2683 			continue;
2684 
2685 		type   = IOMMU_RESV_DIRECT;
2686 		length = entry->address_end - entry->address_start;
2687 		if (entry->prot & IOMMU_PROT_IR)
2688 			prot |= IOMMU_READ;
2689 		if (entry->prot & IOMMU_PROT_IW)
2690 			prot |= IOMMU_WRITE;
2691 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2692 			/* Exclusion range */
2693 			type = IOMMU_RESV_RESERVED;
2694 
2695 		region = iommu_alloc_resv_region(entry->address_start,
2696 						 length, prot, type,
2697 						 GFP_KERNEL);
2698 		if (!region) {
2699 			dev_err(dev, "Out of memory allocating dm-regions\n");
2700 			return;
2701 		}
2702 		list_add_tail(&region->list, head);
2703 	}
2704 
2705 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2706 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2707 					 0, IOMMU_RESV_MSI, GFP_KERNEL);
2708 	if (!region)
2709 		return;
2710 	list_add_tail(&region->list, head);
2711 
2712 	region = iommu_alloc_resv_region(HT_RANGE_START,
2713 					 HT_RANGE_END - HT_RANGE_START + 1,
2714 					 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2715 	if (!region)
2716 		return;
2717 	list_add_tail(&region->list, head);
2718 }
2719 
2720 bool amd_iommu_is_attach_deferred(struct device *dev)
2721 {
2722 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2723 
2724 	return dev_data->defer_attach;
2725 }
2726 
2727 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2728 {
2729 	struct protection_domain *dom = to_pdomain(domain);
2730 	unsigned long flags;
2731 
2732 	spin_lock_irqsave(&dom->lock, flags);
2733 	amd_iommu_domain_flush_all(dom);
2734 	spin_unlock_irqrestore(&dom->lock, flags);
2735 }
2736 
2737 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2738 				 struct iommu_iotlb_gather *gather)
2739 {
2740 	struct protection_domain *dom = to_pdomain(domain);
2741 	unsigned long flags;
2742 
2743 	spin_lock_irqsave(&dom->lock, flags);
2744 	amd_iommu_domain_flush_pages(dom, gather->start,
2745 				     gather->end - gather->start + 1);
2746 	spin_unlock_irqrestore(&dom->lock, flags);
2747 }
2748 
2749 static int amd_iommu_def_domain_type(struct device *dev)
2750 {
2751 	struct iommu_dev_data *dev_data;
2752 
2753 	dev_data = dev_iommu_priv_get(dev);
2754 	if (!dev_data)
2755 		return 0;
2756 
2757 	/*
2758 	 * Do not identity map IOMMUv2 capable devices when:
2759 	 *  - memory encryption is active, because some of those devices
2760 	 *    (AMD GPUs) don't have the encryption bit in their DMA-mask
2761 	 *    and require remapping.
2762 	 *  - SNP is enabled, because it prohibits DTE[Mode]=0.
2763 	 */
2764 	if (pdev_pasid_supported(dev_data) &&
2765 	    !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2766 	    !amd_iommu_snp_en) {
2767 		return IOMMU_DOMAIN_IDENTITY;
2768 	}
2769 
2770 	return 0;
2771 }
2772 
2773 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2774 {
2775 	/* IOMMU_PTE_FC is always set */
2776 	return true;
2777 }
2778 
2779 static const struct iommu_dirty_ops amd_dirty_ops = {
2780 	.set_dirty_tracking = amd_iommu_set_dirty_tracking,
2781 	.read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2782 };
2783 
2784 const struct iommu_ops amd_iommu_ops = {
2785 	.capable = amd_iommu_capable,
2786 	.domain_alloc = amd_iommu_domain_alloc,
2787 	.domain_alloc_user = amd_iommu_domain_alloc_user,
2788 	.probe_device = amd_iommu_probe_device,
2789 	.release_device = amd_iommu_release_device,
2790 	.probe_finalize = amd_iommu_probe_finalize,
2791 	.device_group = amd_iommu_device_group,
2792 	.get_resv_regions = amd_iommu_get_resv_regions,
2793 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2794 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2795 	.def_domain_type = amd_iommu_def_domain_type,
2796 	.default_domain_ops = &(const struct iommu_domain_ops) {
2797 		.attach_dev	= amd_iommu_attach_device,
2798 		.map_pages	= amd_iommu_map_pages,
2799 		.unmap_pages	= amd_iommu_unmap_pages,
2800 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2801 		.iova_to_phys	= amd_iommu_iova_to_phys,
2802 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2803 		.iotlb_sync	= amd_iommu_iotlb_sync,
2804 		.free		= amd_iommu_domain_free,
2805 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2806 	}
2807 };
2808 
2809 #ifdef CONFIG_IRQ_REMAP
2810 
2811 /*****************************************************************************
2812  *
2813  * Interrupt Remapping Implementation
2814  *
2815  *****************************************************************************/
2816 
2817 static struct irq_chip amd_ir_chip;
2818 static DEFINE_SPINLOCK(iommu_table_lock);
2819 
2820 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2821 {
2822 	int ret;
2823 	u64 data;
2824 	unsigned long flags;
2825 	struct iommu_cmd cmd, cmd2;
2826 
2827 	if (iommu->irtcachedis_enabled)
2828 		return;
2829 
2830 	build_inv_irt(&cmd, devid);
2831 	data = atomic64_add_return(1, &iommu->cmd_sem_val);
2832 	build_completion_wait(&cmd2, iommu, data);
2833 
2834 	raw_spin_lock_irqsave(&iommu->lock, flags);
2835 	ret = __iommu_queue_command_sync(iommu, &cmd, true);
2836 	if (ret)
2837 		goto out;
2838 	ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2839 	if (ret)
2840 		goto out;
2841 	wait_on_sem(iommu, data);
2842 out:
2843 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
2844 }
2845 
2846 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2847 			      struct irq_remap_table *table)
2848 {
2849 	u64 dte;
2850 	struct dev_table_entry *dev_table = get_dev_table(iommu);
2851 
2852 	dte	= dev_table[devid].data[2];
2853 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2854 	dte	|= iommu_virt_to_phys(table->table);
2855 	dte	|= DTE_IRQ_REMAP_INTCTL;
2856 	dte	|= DTE_INTTABLEN;
2857 	dte	|= DTE_IRQ_REMAP_ENABLE;
2858 
2859 	dev_table[devid].data[2] = dte;
2860 }
2861 
2862 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2863 {
2864 	struct irq_remap_table *table;
2865 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2866 
2867 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2868 		      "%s: no iommu for devid %x:%x\n",
2869 		      __func__, pci_seg->id, devid))
2870 		return NULL;
2871 
2872 	table = pci_seg->irq_lookup_table[devid];
2873 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2874 		      __func__, pci_seg->id, devid))
2875 		return NULL;
2876 
2877 	return table;
2878 }
2879 
2880 static struct irq_remap_table *__alloc_irq_table(void)
2881 {
2882 	struct irq_remap_table *table;
2883 
2884 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2885 	if (!table)
2886 		return NULL;
2887 
2888 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2889 	if (!table->table) {
2890 		kfree(table);
2891 		return NULL;
2892 	}
2893 	raw_spin_lock_init(&table->lock);
2894 
2895 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2896 		memset(table->table, 0,
2897 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2898 	else
2899 		memset(table->table, 0,
2900 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2901 	return table;
2902 }
2903 
2904 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2905 				  struct irq_remap_table *table)
2906 {
2907 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2908 
2909 	pci_seg->irq_lookup_table[devid] = table;
2910 	set_dte_irq_entry(iommu, devid, table);
2911 	iommu_flush_dte(iommu, devid);
2912 }
2913 
2914 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2915 				       void *data)
2916 {
2917 	struct irq_remap_table *table = data;
2918 	struct amd_iommu_pci_seg *pci_seg;
2919 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2920 
2921 	if (!iommu)
2922 		return -EINVAL;
2923 
2924 	pci_seg = iommu->pci_seg;
2925 	pci_seg->irq_lookup_table[alias] = table;
2926 	set_dte_irq_entry(iommu, alias, table);
2927 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2928 
2929 	return 0;
2930 }
2931 
2932 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2933 					       u16 devid, struct pci_dev *pdev)
2934 {
2935 	struct irq_remap_table *table = NULL;
2936 	struct irq_remap_table *new_table = NULL;
2937 	struct amd_iommu_pci_seg *pci_seg;
2938 	unsigned long flags;
2939 	u16 alias;
2940 
2941 	spin_lock_irqsave(&iommu_table_lock, flags);
2942 
2943 	pci_seg = iommu->pci_seg;
2944 	table = pci_seg->irq_lookup_table[devid];
2945 	if (table)
2946 		goto out_unlock;
2947 
2948 	alias = pci_seg->alias_table[devid];
2949 	table = pci_seg->irq_lookup_table[alias];
2950 	if (table) {
2951 		set_remap_table_entry(iommu, devid, table);
2952 		goto out_wait;
2953 	}
2954 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2955 
2956 	/* Nothing there yet, allocate new irq remapping table */
2957 	new_table = __alloc_irq_table();
2958 	if (!new_table)
2959 		return NULL;
2960 
2961 	spin_lock_irqsave(&iommu_table_lock, flags);
2962 
2963 	table = pci_seg->irq_lookup_table[devid];
2964 	if (table)
2965 		goto out_unlock;
2966 
2967 	table = pci_seg->irq_lookup_table[alias];
2968 	if (table) {
2969 		set_remap_table_entry(iommu, devid, table);
2970 		goto out_wait;
2971 	}
2972 
2973 	table = new_table;
2974 	new_table = NULL;
2975 
2976 	if (pdev)
2977 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2978 				       table);
2979 	else
2980 		set_remap_table_entry(iommu, devid, table);
2981 
2982 	if (devid != alias)
2983 		set_remap_table_entry(iommu, alias, table);
2984 
2985 out_wait:
2986 	iommu_completion_wait(iommu);
2987 
2988 out_unlock:
2989 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2990 
2991 	if (new_table) {
2992 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2993 		kfree(new_table);
2994 	}
2995 	return table;
2996 }
2997 
2998 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
2999 			   bool align, struct pci_dev *pdev)
3000 {
3001 	struct irq_remap_table *table;
3002 	int index, c, alignment = 1;
3003 	unsigned long flags;
3004 
3005 	table = alloc_irq_table(iommu, devid, pdev);
3006 	if (!table)
3007 		return -ENODEV;
3008 
3009 	if (align)
3010 		alignment = roundup_pow_of_two(count);
3011 
3012 	raw_spin_lock_irqsave(&table->lock, flags);
3013 
3014 	/* Scan table for free entries */
3015 	for (index = ALIGN(table->min_index, alignment), c = 0;
3016 	     index < MAX_IRQS_PER_TABLE;) {
3017 		if (!iommu->irte_ops->is_allocated(table, index)) {
3018 			c += 1;
3019 		} else {
3020 			c     = 0;
3021 			index = ALIGN(index + 1, alignment);
3022 			continue;
3023 		}
3024 
3025 		if (c == count)	{
3026 			for (; c != 0; --c)
3027 				iommu->irte_ops->set_allocated(table, index - c + 1);
3028 
3029 			index -= count - 1;
3030 			goto out;
3031 		}
3032 
3033 		index++;
3034 	}
3035 
3036 	index = -ENOSPC;
3037 
3038 out:
3039 	raw_spin_unlock_irqrestore(&table->lock, flags);
3040 
3041 	return index;
3042 }
3043 
3044 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3045 			    struct irte_ga *irte)
3046 {
3047 	struct irq_remap_table *table;
3048 	struct irte_ga *entry;
3049 	unsigned long flags;
3050 	u128 old;
3051 
3052 	table = get_irq_table(iommu, devid);
3053 	if (!table)
3054 		return -ENOMEM;
3055 
3056 	raw_spin_lock_irqsave(&table->lock, flags);
3057 
3058 	entry = (struct irte_ga *)table->table;
3059 	entry = &entry[index];
3060 
3061 	/*
3062 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3063 	 * and it cannot be updated by the hardware or other processors
3064 	 * behind us, so the return value of cmpxchg16 should be the
3065 	 * same as the old value.
3066 	 */
3067 	old = entry->irte;
3068 	WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3069 
3070 	raw_spin_unlock_irqrestore(&table->lock, flags);
3071 
3072 	return 0;
3073 }
3074 
3075 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3076 			  struct irte_ga *irte)
3077 {
3078 	bool ret;
3079 
3080 	ret = __modify_irte_ga(iommu, devid, index, irte);
3081 	if (ret)
3082 		return ret;
3083 
3084 	iommu_flush_irt_and_complete(iommu, devid);
3085 
3086 	return 0;
3087 }
3088 
3089 static int modify_irte(struct amd_iommu *iommu,
3090 		       u16 devid, int index, union irte *irte)
3091 {
3092 	struct irq_remap_table *table;
3093 	unsigned long flags;
3094 
3095 	table = get_irq_table(iommu, devid);
3096 	if (!table)
3097 		return -ENOMEM;
3098 
3099 	raw_spin_lock_irqsave(&table->lock, flags);
3100 	table->table[index] = irte->val;
3101 	raw_spin_unlock_irqrestore(&table->lock, flags);
3102 
3103 	iommu_flush_irt_and_complete(iommu, devid);
3104 
3105 	return 0;
3106 }
3107 
3108 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3109 {
3110 	struct irq_remap_table *table;
3111 	unsigned long flags;
3112 
3113 	table = get_irq_table(iommu, devid);
3114 	if (!table)
3115 		return;
3116 
3117 	raw_spin_lock_irqsave(&table->lock, flags);
3118 	iommu->irte_ops->clear_allocated(table, index);
3119 	raw_spin_unlock_irqrestore(&table->lock, flags);
3120 
3121 	iommu_flush_irt_and_complete(iommu, devid);
3122 }
3123 
3124 static void irte_prepare(void *entry,
3125 			 u32 delivery_mode, bool dest_mode,
3126 			 u8 vector, u32 dest_apicid, int devid)
3127 {
3128 	union irte *irte = (union irte *) entry;
3129 
3130 	irte->val                = 0;
3131 	irte->fields.vector      = vector;
3132 	irte->fields.int_type    = delivery_mode;
3133 	irte->fields.destination = dest_apicid;
3134 	irte->fields.dm          = dest_mode;
3135 	irte->fields.valid       = 1;
3136 }
3137 
3138 static void irte_ga_prepare(void *entry,
3139 			    u32 delivery_mode, bool dest_mode,
3140 			    u8 vector, u32 dest_apicid, int devid)
3141 {
3142 	struct irte_ga *irte = (struct irte_ga *) entry;
3143 
3144 	irte->lo.val                      = 0;
3145 	irte->hi.val                      = 0;
3146 	irte->lo.fields_remap.int_type    = delivery_mode;
3147 	irte->lo.fields_remap.dm          = dest_mode;
3148 	irte->hi.fields.vector            = vector;
3149 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3150 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3151 	irte->lo.fields_remap.valid       = 1;
3152 }
3153 
3154 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3155 {
3156 	union irte *irte = (union irte *) entry;
3157 
3158 	irte->fields.valid = 1;
3159 	modify_irte(iommu, devid, index, irte);
3160 }
3161 
3162 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3163 {
3164 	struct irte_ga *irte = (struct irte_ga *) entry;
3165 
3166 	irte->lo.fields_remap.valid = 1;
3167 	modify_irte_ga(iommu, devid, index, irte);
3168 }
3169 
3170 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3171 {
3172 	union irte *irte = (union irte *) entry;
3173 
3174 	irte->fields.valid = 0;
3175 	modify_irte(iommu, devid, index, irte);
3176 }
3177 
3178 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3179 {
3180 	struct irte_ga *irte = (struct irte_ga *) entry;
3181 
3182 	irte->lo.fields_remap.valid = 0;
3183 	modify_irte_ga(iommu, devid, index, irte);
3184 }
3185 
3186 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3187 			      u8 vector, u32 dest_apicid)
3188 {
3189 	union irte *irte = (union irte *) entry;
3190 
3191 	irte->fields.vector = vector;
3192 	irte->fields.destination = dest_apicid;
3193 	modify_irte(iommu, devid, index, irte);
3194 }
3195 
3196 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3197 				 u8 vector, u32 dest_apicid)
3198 {
3199 	struct irte_ga *irte = (struct irte_ga *) entry;
3200 
3201 	if (!irte->lo.fields_remap.guest_mode) {
3202 		irte->hi.fields.vector = vector;
3203 		irte->lo.fields_remap.destination =
3204 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3205 		irte->hi.fields.destination =
3206 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3207 		modify_irte_ga(iommu, devid, index, irte);
3208 	}
3209 }
3210 
3211 #define IRTE_ALLOCATED (~1U)
3212 static void irte_set_allocated(struct irq_remap_table *table, int index)
3213 {
3214 	table->table[index] = IRTE_ALLOCATED;
3215 }
3216 
3217 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3218 {
3219 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3220 	struct irte_ga *irte = &ptr[index];
3221 
3222 	memset(&irte->lo.val, 0, sizeof(u64));
3223 	memset(&irte->hi.val, 0, sizeof(u64));
3224 	irte->hi.fields.vector = 0xff;
3225 }
3226 
3227 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3228 {
3229 	union irte *ptr = (union irte *)table->table;
3230 	union irte *irte = &ptr[index];
3231 
3232 	return irte->val != 0;
3233 }
3234 
3235 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3236 {
3237 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3238 	struct irte_ga *irte = &ptr[index];
3239 
3240 	return irte->hi.fields.vector != 0;
3241 }
3242 
3243 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3244 {
3245 	table->table[index] = 0;
3246 }
3247 
3248 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3249 {
3250 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3251 	struct irte_ga *irte = &ptr[index];
3252 
3253 	memset(&irte->lo.val, 0, sizeof(u64));
3254 	memset(&irte->hi.val, 0, sizeof(u64));
3255 }
3256 
3257 static int get_devid(struct irq_alloc_info *info)
3258 {
3259 	switch (info->type) {
3260 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3261 		return get_ioapic_devid(info->devid);
3262 	case X86_IRQ_ALLOC_TYPE_HPET:
3263 		return get_hpet_devid(info->devid);
3264 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3265 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3266 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3267 	default:
3268 		WARN_ON_ONCE(1);
3269 		return -1;
3270 	}
3271 }
3272 
3273 struct irq_remap_ops amd_iommu_irq_ops = {
3274 	.prepare		= amd_iommu_prepare,
3275 	.enable			= amd_iommu_enable,
3276 	.disable		= amd_iommu_disable,
3277 	.reenable		= amd_iommu_reenable,
3278 	.enable_faulting	= amd_iommu_enable_faulting,
3279 };
3280 
3281 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3282 {
3283 	msg->data = index;
3284 	msg->address_lo = 0;
3285 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3286 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3287 }
3288 
3289 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3290 				       struct irq_cfg *irq_cfg,
3291 				       struct irq_alloc_info *info,
3292 				       int devid, int index, int sub_handle)
3293 {
3294 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3295 	struct amd_iommu *iommu = data->iommu;
3296 
3297 	if (!iommu)
3298 		return;
3299 
3300 	data->irq_2_irte.devid = devid;
3301 	data->irq_2_irte.index = index + sub_handle;
3302 	iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3303 				 apic->dest_mode_logical, irq_cfg->vector,
3304 				 irq_cfg->dest_apicid, devid);
3305 
3306 	switch (info->type) {
3307 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3308 	case X86_IRQ_ALLOC_TYPE_HPET:
3309 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3310 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3311 		fill_msi_msg(&data->msi_entry, irte_info->index);
3312 		break;
3313 
3314 	default:
3315 		BUG_ON(1);
3316 		break;
3317 	}
3318 }
3319 
3320 struct amd_irte_ops irte_32_ops = {
3321 	.prepare = irte_prepare,
3322 	.activate = irte_activate,
3323 	.deactivate = irte_deactivate,
3324 	.set_affinity = irte_set_affinity,
3325 	.set_allocated = irte_set_allocated,
3326 	.is_allocated = irte_is_allocated,
3327 	.clear_allocated = irte_clear_allocated,
3328 };
3329 
3330 struct amd_irte_ops irte_128_ops = {
3331 	.prepare = irte_ga_prepare,
3332 	.activate = irte_ga_activate,
3333 	.deactivate = irte_ga_deactivate,
3334 	.set_affinity = irte_ga_set_affinity,
3335 	.set_allocated = irte_ga_set_allocated,
3336 	.is_allocated = irte_ga_is_allocated,
3337 	.clear_allocated = irte_ga_clear_allocated,
3338 };
3339 
3340 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3341 			       unsigned int nr_irqs, void *arg)
3342 {
3343 	struct irq_alloc_info *info = arg;
3344 	struct irq_data *irq_data;
3345 	struct amd_ir_data *data = NULL;
3346 	struct amd_iommu *iommu;
3347 	struct irq_cfg *cfg;
3348 	int i, ret, devid, seg, sbdf;
3349 	int index;
3350 
3351 	if (!info)
3352 		return -EINVAL;
3353 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3354 		return -EINVAL;
3355 
3356 	sbdf = get_devid(info);
3357 	if (sbdf < 0)
3358 		return -EINVAL;
3359 
3360 	seg = PCI_SBDF_TO_SEGID(sbdf);
3361 	devid = PCI_SBDF_TO_DEVID(sbdf);
3362 	iommu = __rlookup_amd_iommu(seg, devid);
3363 	if (!iommu)
3364 		return -EINVAL;
3365 
3366 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3367 	if (ret < 0)
3368 		return ret;
3369 
3370 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3371 		struct irq_remap_table *table;
3372 
3373 		table = alloc_irq_table(iommu, devid, NULL);
3374 		if (table) {
3375 			if (!table->min_index) {
3376 				/*
3377 				 * Keep the first 32 indexes free for IOAPIC
3378 				 * interrupts.
3379 				 */
3380 				table->min_index = 32;
3381 				for (i = 0; i < 32; ++i)
3382 					iommu->irte_ops->set_allocated(table, i);
3383 			}
3384 			WARN_ON(table->min_index != 32);
3385 			index = info->ioapic.pin;
3386 		} else {
3387 			index = -ENOMEM;
3388 		}
3389 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3390 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3391 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3392 
3393 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3394 					msi_desc_to_pci_dev(info->desc));
3395 	} else {
3396 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3397 	}
3398 
3399 	if (index < 0) {
3400 		pr_warn("Failed to allocate IRTE\n");
3401 		ret = index;
3402 		goto out_free_parent;
3403 	}
3404 
3405 	for (i = 0; i < nr_irqs; i++) {
3406 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3407 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3408 		if (!cfg) {
3409 			ret = -EINVAL;
3410 			goto out_free_data;
3411 		}
3412 
3413 		ret = -ENOMEM;
3414 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3415 		if (!data)
3416 			goto out_free_data;
3417 
3418 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3419 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3420 		else
3421 			data->entry = kzalloc(sizeof(struct irte_ga),
3422 						     GFP_KERNEL);
3423 		if (!data->entry) {
3424 			kfree(data);
3425 			goto out_free_data;
3426 		}
3427 
3428 		data->iommu = iommu;
3429 		irq_data->hwirq = (devid << 16) + i;
3430 		irq_data->chip_data = data;
3431 		irq_data->chip = &amd_ir_chip;
3432 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3433 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3434 	}
3435 
3436 	return 0;
3437 
3438 out_free_data:
3439 	for (i--; i >= 0; i--) {
3440 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3441 		if (irq_data)
3442 			kfree(irq_data->chip_data);
3443 	}
3444 	for (i = 0; i < nr_irqs; i++)
3445 		free_irte(iommu, devid, index + i);
3446 out_free_parent:
3447 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3448 	return ret;
3449 }
3450 
3451 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3452 			       unsigned int nr_irqs)
3453 {
3454 	struct irq_2_irte *irte_info;
3455 	struct irq_data *irq_data;
3456 	struct amd_ir_data *data;
3457 	int i;
3458 
3459 	for (i = 0; i < nr_irqs; i++) {
3460 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3461 		if (irq_data && irq_data->chip_data) {
3462 			data = irq_data->chip_data;
3463 			irte_info = &data->irq_2_irte;
3464 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3465 			kfree(data->entry);
3466 			kfree(data);
3467 		}
3468 	}
3469 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3470 }
3471 
3472 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3473 			       struct amd_ir_data *ir_data,
3474 			       struct irq_2_irte *irte_info,
3475 			       struct irq_cfg *cfg);
3476 
3477 static int irq_remapping_activate(struct irq_domain *domain,
3478 				  struct irq_data *irq_data, bool reserve)
3479 {
3480 	struct amd_ir_data *data = irq_data->chip_data;
3481 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3482 	struct amd_iommu *iommu = data->iommu;
3483 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3484 
3485 	if (!iommu)
3486 		return 0;
3487 
3488 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3489 				  irte_info->index);
3490 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3491 	return 0;
3492 }
3493 
3494 static void irq_remapping_deactivate(struct irq_domain *domain,
3495 				     struct irq_data *irq_data)
3496 {
3497 	struct amd_ir_data *data = irq_data->chip_data;
3498 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3499 	struct amd_iommu *iommu = data->iommu;
3500 
3501 	if (iommu)
3502 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3503 					    irte_info->index);
3504 }
3505 
3506 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3507 				enum irq_domain_bus_token bus_token)
3508 {
3509 	struct amd_iommu *iommu;
3510 	int devid = -1;
3511 
3512 	if (!amd_iommu_irq_remap)
3513 		return 0;
3514 
3515 	if (x86_fwspec_is_ioapic(fwspec))
3516 		devid = get_ioapic_devid(fwspec->param[0]);
3517 	else if (x86_fwspec_is_hpet(fwspec))
3518 		devid = get_hpet_devid(fwspec->param[0]);
3519 
3520 	if (devid < 0)
3521 		return 0;
3522 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3523 
3524 	return iommu && iommu->ir_domain == d;
3525 }
3526 
3527 static const struct irq_domain_ops amd_ir_domain_ops = {
3528 	.select = irq_remapping_select,
3529 	.alloc = irq_remapping_alloc,
3530 	.free = irq_remapping_free,
3531 	.activate = irq_remapping_activate,
3532 	.deactivate = irq_remapping_deactivate,
3533 };
3534 
3535 int amd_iommu_activate_guest_mode(void *data)
3536 {
3537 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3538 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3539 	u64 valid;
3540 
3541 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3542 		return 0;
3543 
3544 	valid = entry->lo.fields_vapic.valid;
3545 
3546 	entry->lo.val = 0;
3547 	entry->hi.val = 0;
3548 
3549 	entry->lo.fields_vapic.valid       = valid;
3550 	entry->lo.fields_vapic.guest_mode  = 1;
3551 	entry->lo.fields_vapic.ga_log_intr = 1;
3552 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3553 	entry->hi.fields.vector            = ir_data->ga_vector;
3554 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3555 
3556 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3557 			      ir_data->irq_2_irte.index, entry);
3558 }
3559 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3560 
3561 int amd_iommu_deactivate_guest_mode(void *data)
3562 {
3563 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3564 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3565 	struct irq_cfg *cfg = ir_data->cfg;
3566 	u64 valid;
3567 
3568 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3569 	    !entry || !entry->lo.fields_vapic.guest_mode)
3570 		return 0;
3571 
3572 	valid = entry->lo.fields_remap.valid;
3573 
3574 	entry->lo.val = 0;
3575 	entry->hi.val = 0;
3576 
3577 	entry->lo.fields_remap.valid       = valid;
3578 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3579 	entry->lo.fields_remap.int_type    = APIC_DELIVERY_MODE_FIXED;
3580 	entry->hi.fields.vector            = cfg->vector;
3581 	entry->lo.fields_remap.destination =
3582 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3583 	entry->hi.fields.destination =
3584 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3585 
3586 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3587 			      ir_data->irq_2_irte.index, entry);
3588 }
3589 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3590 
3591 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3592 {
3593 	int ret;
3594 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3595 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3596 	struct amd_ir_data *ir_data = data->chip_data;
3597 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3598 	struct iommu_dev_data *dev_data;
3599 
3600 	if (ir_data->iommu == NULL)
3601 		return -EINVAL;
3602 
3603 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3604 
3605 	/* Note:
3606 	 * This device has never been set up for guest mode.
3607 	 * we should not modify the IRTE
3608 	 */
3609 	if (!dev_data || !dev_data->use_vapic)
3610 		return 0;
3611 
3612 	ir_data->cfg = irqd_cfg(data);
3613 	pi_data->ir_data = ir_data;
3614 
3615 	/* Note:
3616 	 * SVM tries to set up for VAPIC mode, but we are in
3617 	 * legacy mode. So, we force legacy mode instead.
3618 	 */
3619 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3620 		pr_debug("%s: Fall back to using intr legacy remap\n",
3621 			 __func__);
3622 		pi_data->is_guest_mode = false;
3623 	}
3624 
3625 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3626 	if (pi_data->is_guest_mode) {
3627 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3628 		ir_data->ga_vector = vcpu_pi_info->vector;
3629 		ir_data->ga_tag = pi_data->ga_tag;
3630 		ret = amd_iommu_activate_guest_mode(ir_data);
3631 		if (!ret)
3632 			ir_data->cached_ga_tag = pi_data->ga_tag;
3633 	} else {
3634 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3635 
3636 		/*
3637 		 * This communicates the ga_tag back to the caller
3638 		 * so that it can do all the necessary clean up.
3639 		 */
3640 		if (!ret)
3641 			ir_data->cached_ga_tag = 0;
3642 	}
3643 
3644 	return ret;
3645 }
3646 
3647 
3648 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3649 			       struct amd_ir_data *ir_data,
3650 			       struct irq_2_irte *irte_info,
3651 			       struct irq_cfg *cfg)
3652 {
3653 
3654 	/*
3655 	 * Atomically updates the IRTE with the new destination, vector
3656 	 * and flushes the interrupt entry cache.
3657 	 */
3658 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3659 				      irte_info->index, cfg->vector,
3660 				      cfg->dest_apicid);
3661 }
3662 
3663 static int amd_ir_set_affinity(struct irq_data *data,
3664 			       const struct cpumask *mask, bool force)
3665 {
3666 	struct amd_ir_data *ir_data = data->chip_data;
3667 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3668 	struct irq_cfg *cfg = irqd_cfg(data);
3669 	struct irq_data *parent = data->parent_data;
3670 	struct amd_iommu *iommu = ir_data->iommu;
3671 	int ret;
3672 
3673 	if (!iommu)
3674 		return -ENODEV;
3675 
3676 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3677 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3678 		return ret;
3679 
3680 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3681 	/*
3682 	 * After this point, all the interrupts will start arriving
3683 	 * at the new destination. So, time to cleanup the previous
3684 	 * vector allocation.
3685 	 */
3686 	vector_schedule_cleanup(cfg);
3687 
3688 	return IRQ_SET_MASK_OK_DONE;
3689 }
3690 
3691 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3692 {
3693 	struct amd_ir_data *ir_data = irq_data->chip_data;
3694 
3695 	*msg = ir_data->msi_entry;
3696 }
3697 
3698 static struct irq_chip amd_ir_chip = {
3699 	.name			= "AMD-IR",
3700 	.irq_ack		= apic_ack_irq,
3701 	.irq_set_affinity	= amd_ir_set_affinity,
3702 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3703 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3704 };
3705 
3706 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3707 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
3708 				  MSI_FLAG_MULTI_PCI_MSI |
3709 				  MSI_FLAG_PCI_IMS,
3710 	.prefix			= "IR-",
3711 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3712 };
3713 
3714 static const struct msi_parent_ops virt_amdvi_msi_parent_ops = {
3715 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
3716 				  MSI_FLAG_MULTI_PCI_MSI,
3717 	.prefix			= "vIR-",
3718 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3719 };
3720 
3721 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3722 {
3723 	struct fwnode_handle *fn;
3724 
3725 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3726 	if (!fn)
3727 		return -ENOMEM;
3728 	iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3729 						       fn, &amd_ir_domain_ops, iommu);
3730 	if (!iommu->ir_domain) {
3731 		irq_domain_free_fwnode(fn);
3732 		return -ENOMEM;
3733 	}
3734 
3735 	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_AMDVI);
3736 	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3737 				   IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3738 
3739 	if (amd_iommu_np_cache)
3740 		iommu->ir_domain->msi_parent_ops = &virt_amdvi_msi_parent_ops;
3741 	else
3742 		iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3743 
3744 	return 0;
3745 }
3746 
3747 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3748 {
3749 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3750 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3751 
3752 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3753 	    !entry || !entry->lo.fields_vapic.guest_mode)
3754 		return 0;
3755 
3756 	if (!ir_data->iommu)
3757 		return -ENODEV;
3758 
3759 	if (cpu >= 0) {
3760 		entry->lo.fields_vapic.destination =
3761 					APICID_TO_IRTE_DEST_LO(cpu);
3762 		entry->hi.fields.destination =
3763 					APICID_TO_IRTE_DEST_HI(cpu);
3764 	}
3765 	entry->lo.fields_vapic.is_run = is_run;
3766 
3767 	return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3768 				ir_data->irq_2_irte.index, entry);
3769 }
3770 EXPORT_SYMBOL(amd_iommu_update_ga);
3771 #endif
3772