1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/amba/bus.h> 15 #include <linux/platform_device.h> 16 #include <linux/pci-ats.h> 17 #include <linux/bitmap.h> 18 #include <linux/slab.h> 19 #include <linux/debugfs.h> 20 #include <linux/scatterlist.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-direct.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/iommu-helper.h> 25 #include <linux/delay.h> 26 #include <linux/amd-iommu.h> 27 #include <linux/notifier.h> 28 #include <linux/export.h> 29 #include <linux/irq.h> 30 #include <linux/msi.h> 31 #include <linux/dma-contiguous.h> 32 #include <linux/irqdomain.h> 33 #include <linux/percpu.h> 34 #include <linux/iova.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/io_apic.h> 37 #include <asm/apic.h> 38 #include <asm/hw_irq.h> 39 #include <asm/msidef.h> 40 #include <asm/proto.h> 41 #include <asm/iommu.h> 42 #include <asm/gart.h> 43 #include <asm/dma.h> 44 45 #include "amd_iommu.h" 46 #include "../irq_remapping.h" 47 48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 49 50 #define LOOP_TIMEOUT 100000 51 52 /* IO virtual address start page frame number */ 53 #define IOVA_START_PFN (1) 54 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 55 56 /* Reserved IOVA ranges */ 57 #define MSI_RANGE_START (0xfee00000) 58 #define MSI_RANGE_END (0xfeefffff) 59 #define HT_RANGE_START (0xfd00000000ULL) 60 #define HT_RANGE_END (0xffffffffffULL) 61 62 /* 63 * This bitmap is used to advertise the page sizes our hardware support 64 * to the IOMMU core, which will then use this information to split 65 * physically contiguous memory regions it is mapping into page sizes 66 * that we support. 67 * 68 * 512GB Pages are not supported due to a hardware bug 69 */ 70 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38)) 71 72 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL 73 74 static DEFINE_SPINLOCK(pd_bitmap_lock); 75 76 /* List of all available dev_data structures */ 77 static LLIST_HEAD(dev_data_list); 78 79 LIST_HEAD(ioapic_map); 80 LIST_HEAD(hpet_map); 81 LIST_HEAD(acpihid_map); 82 83 /* 84 * Domain for untranslated devices - only allocated 85 * if iommu=pt passed on kernel cmd line. 86 */ 87 const struct iommu_ops amd_iommu_ops; 88 89 static ATOMIC_NOTIFIER_HEAD(ppr_notifier); 90 int amd_iommu_max_glx_val = -1; 91 92 /* 93 * general struct to manage commands send to an IOMMU 94 */ 95 struct iommu_cmd { 96 u32 data[4]; 97 }; 98 99 struct kmem_cache *amd_iommu_irq_cache; 100 101 static void update_domain(struct protection_domain *domain); 102 static void detach_device(struct device *dev); 103 static void update_and_flush_device_table(struct protection_domain *domain, 104 struct domain_pgtable *pgtable); 105 106 /**************************************************************************** 107 * 108 * Helper functions 109 * 110 ****************************************************************************/ 111 112 static inline u16 get_pci_device_id(struct device *dev) 113 { 114 struct pci_dev *pdev = to_pci_dev(dev); 115 116 return pci_dev_id(pdev); 117 } 118 119 static inline int get_acpihid_device_id(struct device *dev, 120 struct acpihid_map_entry **entry) 121 { 122 struct acpi_device *adev = ACPI_COMPANION(dev); 123 struct acpihid_map_entry *p; 124 125 if (!adev) 126 return -ENODEV; 127 128 list_for_each_entry(p, &acpihid_map, list) { 129 if (acpi_dev_hid_uid_match(adev, p->hid, 130 p->uid[0] ? p->uid : NULL)) { 131 if (entry) 132 *entry = p; 133 return p->devid; 134 } 135 } 136 return -EINVAL; 137 } 138 139 static inline int get_device_id(struct device *dev) 140 { 141 int devid; 142 143 if (dev_is_pci(dev)) 144 devid = get_pci_device_id(dev); 145 else 146 devid = get_acpihid_device_id(dev, NULL); 147 148 return devid; 149 } 150 151 static struct protection_domain *to_pdomain(struct iommu_domain *dom) 152 { 153 return container_of(dom, struct protection_domain, domain); 154 } 155 156 static void amd_iommu_domain_get_pgtable(struct protection_domain *domain, 157 struct domain_pgtable *pgtable) 158 { 159 u64 pt_root = atomic64_read(&domain->pt_root); 160 161 pgtable->root = (u64 *)(pt_root & PAGE_MASK); 162 pgtable->mode = pt_root & 7; /* lowest 3 bits encode pgtable mode */ 163 } 164 165 static u64 amd_iommu_domain_encode_pgtable(u64 *root, int mode) 166 { 167 u64 pt_root; 168 169 /* lowest 3 bits encode pgtable mode */ 170 pt_root = mode & 7; 171 pt_root |= (u64)root; 172 173 return pt_root; 174 } 175 176 static struct iommu_dev_data *alloc_dev_data(u16 devid) 177 { 178 struct iommu_dev_data *dev_data; 179 180 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 181 if (!dev_data) 182 return NULL; 183 184 spin_lock_init(&dev_data->lock); 185 dev_data->devid = devid; 186 ratelimit_default_init(&dev_data->rs); 187 188 llist_add(&dev_data->dev_data_list, &dev_data_list); 189 return dev_data; 190 } 191 192 static struct iommu_dev_data *search_dev_data(u16 devid) 193 { 194 struct iommu_dev_data *dev_data; 195 struct llist_node *node; 196 197 if (llist_empty(&dev_data_list)) 198 return NULL; 199 200 node = dev_data_list.first; 201 llist_for_each_entry(dev_data, node, dev_data_list) { 202 if (dev_data->devid == devid) 203 return dev_data; 204 } 205 206 return NULL; 207 } 208 209 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 210 { 211 u16 devid = pci_dev_id(pdev); 212 213 if (devid == alias) 214 return 0; 215 216 amd_iommu_rlookup_table[alias] = 217 amd_iommu_rlookup_table[devid]; 218 memcpy(amd_iommu_dev_table[alias].data, 219 amd_iommu_dev_table[devid].data, 220 sizeof(amd_iommu_dev_table[alias].data)); 221 222 return 0; 223 } 224 225 static void clone_aliases(struct pci_dev *pdev) 226 { 227 if (!pdev) 228 return; 229 230 /* 231 * The IVRS alias stored in the alias table may not be 232 * part of the PCI DMA aliases if it's bus differs 233 * from the original device. 234 */ 235 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL); 236 237 pci_for_each_dma_alias(pdev, clone_alias, NULL); 238 } 239 240 static struct pci_dev *setup_aliases(struct device *dev) 241 { 242 struct pci_dev *pdev = to_pci_dev(dev); 243 u16 ivrs_alias; 244 245 /* For ACPI HID devices, there are no aliases */ 246 if (!dev_is_pci(dev)) 247 return NULL; 248 249 /* 250 * Add the IVRS alias to the pci aliases if it is on the same 251 * bus. The IVRS table may know about a quirk that we don't. 252 */ 253 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)]; 254 if (ivrs_alias != pci_dev_id(pdev) && 255 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 256 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 257 258 clone_aliases(pdev); 259 260 return pdev; 261 } 262 263 static struct iommu_dev_data *find_dev_data(u16 devid) 264 { 265 struct iommu_dev_data *dev_data; 266 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 267 268 dev_data = search_dev_data(devid); 269 270 if (dev_data == NULL) { 271 dev_data = alloc_dev_data(devid); 272 if (!dev_data) 273 return NULL; 274 275 if (translation_pre_enabled(iommu)) 276 dev_data->defer_attach = true; 277 } 278 279 return dev_data; 280 } 281 282 /* 283 * Find or create an IOMMU group for a acpihid device. 284 */ 285 static struct iommu_group *acpihid_device_group(struct device *dev) 286 { 287 struct acpihid_map_entry *p, *entry = NULL; 288 int devid; 289 290 devid = get_acpihid_device_id(dev, &entry); 291 if (devid < 0) 292 return ERR_PTR(devid); 293 294 list_for_each_entry(p, &acpihid_map, list) { 295 if ((devid == p->devid) && p->group) 296 entry->group = p->group; 297 } 298 299 if (!entry->group) 300 entry->group = generic_device_group(dev); 301 else 302 iommu_group_ref_get(entry->group); 303 304 return entry->group; 305 } 306 307 static bool pci_iommuv2_capable(struct pci_dev *pdev) 308 { 309 static const int caps[] = { 310 PCI_EXT_CAP_ID_PRI, 311 PCI_EXT_CAP_ID_PASID, 312 }; 313 int i, pos; 314 315 if (!pci_ats_supported(pdev)) 316 return false; 317 318 for (i = 0; i < 2; ++i) { 319 pos = pci_find_ext_capability(pdev, caps[i]); 320 if (pos == 0) 321 return false; 322 } 323 324 return true; 325 } 326 327 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum) 328 { 329 struct iommu_dev_data *dev_data; 330 331 dev_data = dev_iommu_priv_get(&pdev->dev); 332 333 return dev_data->errata & (1 << erratum) ? true : false; 334 } 335 336 /* 337 * This function checks if the driver got a valid device from the caller to 338 * avoid dereferencing invalid pointers. 339 */ 340 static bool check_device(struct device *dev) 341 { 342 int devid; 343 344 if (!dev) 345 return false; 346 347 devid = get_device_id(dev); 348 if (devid < 0) 349 return false; 350 351 /* Out of our scope? */ 352 if (devid > amd_iommu_last_bdf) 353 return false; 354 355 if (amd_iommu_rlookup_table[devid] == NULL) 356 return false; 357 358 return true; 359 } 360 361 static int iommu_init_device(struct device *dev) 362 { 363 struct iommu_dev_data *dev_data; 364 int devid; 365 366 if (dev_iommu_priv_get(dev)) 367 return 0; 368 369 devid = get_device_id(dev); 370 if (devid < 0) 371 return devid; 372 373 dev_data = find_dev_data(devid); 374 if (!dev_data) 375 return -ENOMEM; 376 377 dev_data->pdev = setup_aliases(dev); 378 379 /* 380 * By default we use passthrough mode for IOMMUv2 capable device. 381 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 382 * invalid address), we ignore the capability for the device so 383 * it'll be forced to go into translation mode. 384 */ 385 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 386 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { 387 struct amd_iommu *iommu; 388 389 iommu = amd_iommu_rlookup_table[dev_data->devid]; 390 dev_data->iommu_v2 = iommu->is_iommu_v2; 391 } 392 393 dev_iommu_priv_set(dev, dev_data); 394 395 return 0; 396 } 397 398 static void iommu_ignore_device(struct device *dev) 399 { 400 int devid; 401 402 devid = get_device_id(dev); 403 if (devid < 0) 404 return; 405 406 amd_iommu_rlookup_table[devid] = NULL; 407 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); 408 409 setup_aliases(dev); 410 } 411 412 static void amd_iommu_uninit_device(struct device *dev) 413 { 414 struct iommu_dev_data *dev_data; 415 416 dev_data = dev_iommu_priv_get(dev); 417 if (!dev_data) 418 return; 419 420 if (dev_data->domain) 421 detach_device(dev); 422 423 dev_iommu_priv_set(dev, NULL); 424 425 /* 426 * We keep dev_data around for unplugged devices and reuse it when the 427 * device is re-plugged - not doing so would introduce a ton of races. 428 */ 429 } 430 431 /* 432 * Helper function to get the first pte of a large mapping 433 */ 434 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size, 435 unsigned long *count) 436 { 437 unsigned long pte_mask, pg_size, cnt; 438 u64 *fpte; 439 440 pg_size = PTE_PAGE_SIZE(*pte); 441 cnt = PAGE_SIZE_PTE_COUNT(pg_size); 442 pte_mask = ~((cnt << 3) - 1); 443 fpte = (u64 *)(((unsigned long)pte) & pte_mask); 444 445 if (page_size) 446 *page_size = pg_size; 447 448 if (count) 449 *count = cnt; 450 451 return fpte; 452 } 453 454 /**************************************************************************** 455 * 456 * Interrupt handling functions 457 * 458 ****************************************************************************/ 459 460 static void dump_dte_entry(u16 devid) 461 { 462 int i; 463 464 for (i = 0; i < 4; ++i) 465 pr_err("DTE[%d]: %016llx\n", i, 466 amd_iommu_dev_table[devid].data[i]); 467 } 468 469 static void dump_command(unsigned long phys_addr) 470 { 471 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 472 int i; 473 474 for (i = 0; i < 4; ++i) 475 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 476 } 477 478 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id, 479 u64 address, int flags) 480 { 481 struct iommu_dev_data *dev_data = NULL; 482 struct pci_dev *pdev; 483 484 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), 485 devid & 0xff); 486 if (pdev) 487 dev_data = dev_iommu_priv_get(&pdev->dev); 488 489 if (dev_data && __ratelimit(&dev_data->rs)) { 490 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 491 domain_id, address, flags); 492 } else if (printk_ratelimit()) { 493 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 494 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 495 domain_id, address, flags); 496 } 497 498 if (pdev) 499 pci_dev_put(pdev); 500 } 501 502 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 503 { 504 struct device *dev = iommu->iommu.dev; 505 int type, devid, pasid, flags, tag; 506 volatile u32 *event = __evt; 507 int count = 0; 508 u64 address; 509 510 retry: 511 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 512 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 513 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 514 (event[1] & EVENT_DOMID_MASK_LO); 515 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 516 address = (u64)(((u64)event[3]) << 32) | event[2]; 517 518 if (type == 0) { 519 /* Did we hit the erratum? */ 520 if (++count == LOOP_TIMEOUT) { 521 pr_err("No event written to event log\n"); 522 return; 523 } 524 udelay(1); 525 goto retry; 526 } 527 528 if (type == EVENT_TYPE_IO_FAULT) { 529 amd_iommu_report_page_fault(devid, pasid, address, flags); 530 return; 531 } 532 533 switch (type) { 534 case EVENT_TYPE_ILL_DEV: 535 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 536 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 537 pasid, address, flags); 538 dump_dte_entry(devid); 539 break; 540 case EVENT_TYPE_DEV_TAB_ERR: 541 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " 542 "address=0x%llx flags=0x%04x]\n", 543 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 544 address, flags); 545 break; 546 case EVENT_TYPE_PAGE_TAB_ERR: 547 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 548 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 549 pasid, address, flags); 550 break; 551 case EVENT_TYPE_ILL_CMD: 552 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 553 dump_command(address); 554 break; 555 case EVENT_TYPE_CMD_HARD_ERR: 556 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 557 address, flags); 558 break; 559 case EVENT_TYPE_IOTLB_INV_TO: 560 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n", 561 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 562 address); 563 break; 564 case EVENT_TYPE_INV_DEV_REQ: 565 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 566 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 567 pasid, address, flags); 568 break; 569 case EVENT_TYPE_INV_PPR_REQ: 570 pasid = PPR_PASID(*((u64 *)__evt)); 571 tag = event[1] & 0x03FF; 572 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 573 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 574 pasid, address, flags, tag); 575 break; 576 default: 577 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 578 event[0], event[1], event[2], event[3]); 579 } 580 581 memset(__evt, 0, 4 * sizeof(u32)); 582 } 583 584 static void iommu_poll_events(struct amd_iommu *iommu) 585 { 586 u32 head, tail; 587 588 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 589 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 590 591 while (head != tail) { 592 iommu_print_event(iommu, iommu->evt_buf + head); 593 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 594 } 595 596 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 597 } 598 599 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) 600 { 601 struct amd_iommu_fault fault; 602 603 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { 604 pr_err_ratelimited("Unknown PPR request received\n"); 605 return; 606 } 607 608 fault.address = raw[1]; 609 fault.pasid = PPR_PASID(raw[0]); 610 fault.device_id = PPR_DEVID(raw[0]); 611 fault.tag = PPR_TAG(raw[0]); 612 fault.flags = PPR_FLAGS(raw[0]); 613 614 atomic_notifier_call_chain(&ppr_notifier, 0, &fault); 615 } 616 617 static void iommu_poll_ppr_log(struct amd_iommu *iommu) 618 { 619 u32 head, tail; 620 621 if (iommu->ppr_log == NULL) 622 return; 623 624 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 625 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 626 627 while (head != tail) { 628 volatile u64 *raw; 629 u64 entry[2]; 630 int i; 631 632 raw = (u64 *)(iommu->ppr_log + head); 633 634 /* 635 * Hardware bug: Interrupt may arrive before the entry is 636 * written to memory. If this happens we need to wait for the 637 * entry to arrive. 638 */ 639 for (i = 0; i < LOOP_TIMEOUT; ++i) { 640 if (PPR_REQ_TYPE(raw[0]) != 0) 641 break; 642 udelay(1); 643 } 644 645 /* Avoid memcpy function-call overhead */ 646 entry[0] = raw[0]; 647 entry[1] = raw[1]; 648 649 /* 650 * To detect the hardware bug we need to clear the entry 651 * back to zero. 652 */ 653 raw[0] = raw[1] = 0UL; 654 655 /* Update head pointer of hardware ring-buffer */ 656 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; 657 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 658 659 /* Handle PPR entry */ 660 iommu_handle_ppr_entry(iommu, entry); 661 662 /* Refresh ring-buffer information */ 663 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 664 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 665 } 666 } 667 668 #ifdef CONFIG_IRQ_REMAP 669 static int (*iommu_ga_log_notifier)(u32); 670 671 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 672 { 673 iommu_ga_log_notifier = notifier; 674 675 return 0; 676 } 677 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 678 679 static void iommu_poll_ga_log(struct amd_iommu *iommu) 680 { 681 u32 head, tail, cnt = 0; 682 683 if (iommu->ga_log == NULL) 684 return; 685 686 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 687 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 688 689 while (head != tail) { 690 volatile u64 *raw; 691 u64 log_entry; 692 693 raw = (u64 *)(iommu->ga_log + head); 694 cnt++; 695 696 /* Avoid memcpy function-call overhead */ 697 log_entry = *raw; 698 699 /* Update head pointer of hardware ring-buffer */ 700 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 701 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 702 703 /* Handle GA entry */ 704 switch (GA_REQ_TYPE(log_entry)) { 705 case GA_GUEST_NR: 706 if (!iommu_ga_log_notifier) 707 break; 708 709 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 710 __func__, GA_DEVID(log_entry), 711 GA_TAG(log_entry)); 712 713 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 714 pr_err("GA log notifier failed.\n"); 715 break; 716 default: 717 break; 718 } 719 } 720 } 721 #endif /* CONFIG_IRQ_REMAP */ 722 723 #define AMD_IOMMU_INT_MASK \ 724 (MMIO_STATUS_EVT_INT_MASK | \ 725 MMIO_STATUS_PPR_INT_MASK | \ 726 MMIO_STATUS_GALOG_INT_MASK) 727 728 irqreturn_t amd_iommu_int_thread(int irq, void *data) 729 { 730 struct amd_iommu *iommu = (struct amd_iommu *) data; 731 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 732 733 while (status & AMD_IOMMU_INT_MASK) { 734 /* Enable EVT and PPR and GA interrupts again */ 735 writel(AMD_IOMMU_INT_MASK, 736 iommu->mmio_base + MMIO_STATUS_OFFSET); 737 738 if (status & MMIO_STATUS_EVT_INT_MASK) { 739 pr_devel("Processing IOMMU Event Log\n"); 740 iommu_poll_events(iommu); 741 } 742 743 if (status & MMIO_STATUS_PPR_INT_MASK) { 744 pr_devel("Processing IOMMU PPR Log\n"); 745 iommu_poll_ppr_log(iommu); 746 } 747 748 #ifdef CONFIG_IRQ_REMAP 749 if (status & MMIO_STATUS_GALOG_INT_MASK) { 750 pr_devel("Processing IOMMU GA Log\n"); 751 iommu_poll_ga_log(iommu); 752 } 753 #endif 754 755 /* 756 * Hardware bug: ERBT1312 757 * When re-enabling interrupt (by writing 1 758 * to clear the bit), the hardware might also try to set 759 * the interrupt bit in the event status register. 760 * In this scenario, the bit will be set, and disable 761 * subsequent interrupts. 762 * 763 * Workaround: The IOMMU driver should read back the 764 * status register and check if the interrupt bits are cleared. 765 * If not, driver will need to go through the interrupt handler 766 * again and re-clear the bits 767 */ 768 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 769 } 770 return IRQ_HANDLED; 771 } 772 773 irqreturn_t amd_iommu_int_handler(int irq, void *data) 774 { 775 return IRQ_WAKE_THREAD; 776 } 777 778 /**************************************************************************** 779 * 780 * IOMMU command queuing functions 781 * 782 ****************************************************************************/ 783 784 static int wait_on_sem(volatile u64 *sem) 785 { 786 int i = 0; 787 788 while (*sem == 0 && i < LOOP_TIMEOUT) { 789 udelay(1); 790 i += 1; 791 } 792 793 if (i == LOOP_TIMEOUT) { 794 pr_alert("Completion-Wait loop timed out\n"); 795 return -EIO; 796 } 797 798 return 0; 799 } 800 801 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 802 struct iommu_cmd *cmd) 803 { 804 u8 *target; 805 u32 tail; 806 807 /* Copy command to buffer */ 808 tail = iommu->cmd_buf_tail; 809 target = iommu->cmd_buf + tail; 810 memcpy(target, cmd, sizeof(*cmd)); 811 812 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 813 iommu->cmd_buf_tail = tail; 814 815 /* Tell the IOMMU about it */ 816 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 817 } 818 819 static void build_completion_wait(struct iommu_cmd *cmd, u64 address) 820 { 821 u64 paddr = iommu_virt_to_phys((void *)address); 822 823 WARN_ON(address & 0x7ULL); 824 825 memset(cmd, 0, sizeof(*cmd)); 826 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 827 cmd->data[1] = upper_32_bits(paddr); 828 cmd->data[2] = 1; 829 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 830 } 831 832 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 833 { 834 memset(cmd, 0, sizeof(*cmd)); 835 cmd->data[0] = devid; 836 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 837 } 838 839 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 840 size_t size, u16 domid, int pde) 841 { 842 u64 pages; 843 bool s; 844 845 pages = iommu_num_pages(address, size, PAGE_SIZE); 846 s = false; 847 848 if (pages > 1) { 849 /* 850 * If we have to flush more than one page, flush all 851 * TLB entries for this domain 852 */ 853 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 854 s = true; 855 } 856 857 address &= PAGE_MASK; 858 859 memset(cmd, 0, sizeof(*cmd)); 860 cmd->data[1] |= domid; 861 cmd->data[2] = lower_32_bits(address); 862 cmd->data[3] = upper_32_bits(address); 863 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 864 if (s) /* size bit - we flush more than one 4kb page */ 865 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 866 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ 867 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 868 } 869 870 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 871 u64 address, size_t size) 872 { 873 u64 pages; 874 bool s; 875 876 pages = iommu_num_pages(address, size, PAGE_SIZE); 877 s = false; 878 879 if (pages > 1) { 880 /* 881 * If we have to flush more than one page, flush all 882 * TLB entries for this domain 883 */ 884 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 885 s = true; 886 } 887 888 address &= PAGE_MASK; 889 890 memset(cmd, 0, sizeof(*cmd)); 891 cmd->data[0] = devid; 892 cmd->data[0] |= (qdep & 0xff) << 24; 893 cmd->data[1] = devid; 894 cmd->data[2] = lower_32_bits(address); 895 cmd->data[3] = upper_32_bits(address); 896 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 897 if (s) 898 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 899 } 900 901 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid, 902 u64 address, bool size) 903 { 904 memset(cmd, 0, sizeof(*cmd)); 905 906 address &= ~(0xfffULL); 907 908 cmd->data[0] = pasid; 909 cmd->data[1] = domid; 910 cmd->data[2] = lower_32_bits(address); 911 cmd->data[3] = upper_32_bits(address); 912 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 913 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 914 if (size) 915 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 916 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 917 } 918 919 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid, 920 int qdep, u64 address, bool size) 921 { 922 memset(cmd, 0, sizeof(*cmd)); 923 924 address &= ~(0xfffULL); 925 926 cmd->data[0] = devid; 927 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 928 cmd->data[0] |= (qdep & 0xff) << 24; 929 cmd->data[1] = devid; 930 cmd->data[1] |= (pasid & 0xff) << 16; 931 cmd->data[2] = lower_32_bits(address); 932 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 933 cmd->data[3] = upper_32_bits(address); 934 if (size) 935 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 936 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 937 } 938 939 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid, 940 int status, int tag, bool gn) 941 { 942 memset(cmd, 0, sizeof(*cmd)); 943 944 cmd->data[0] = devid; 945 if (gn) { 946 cmd->data[1] = pasid; 947 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 948 } 949 cmd->data[3] = tag & 0x1ff; 950 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 951 952 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 953 } 954 955 static void build_inv_all(struct iommu_cmd *cmd) 956 { 957 memset(cmd, 0, sizeof(*cmd)); 958 CMD_SET_TYPE(cmd, CMD_INV_ALL); 959 } 960 961 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 962 { 963 memset(cmd, 0, sizeof(*cmd)); 964 cmd->data[0] = devid; 965 CMD_SET_TYPE(cmd, CMD_INV_IRT); 966 } 967 968 /* 969 * Writes the command to the IOMMUs command buffer and informs the 970 * hardware about the new command. 971 */ 972 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 973 struct iommu_cmd *cmd, 974 bool sync) 975 { 976 unsigned int count = 0; 977 u32 left, next_tail; 978 979 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 980 again: 981 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 982 983 if (left <= 0x20) { 984 /* Skip udelay() the first time around */ 985 if (count++) { 986 if (count == LOOP_TIMEOUT) { 987 pr_err("Command buffer timeout\n"); 988 return -EIO; 989 } 990 991 udelay(1); 992 } 993 994 /* Update head and recheck remaining space */ 995 iommu->cmd_buf_head = readl(iommu->mmio_base + 996 MMIO_CMD_HEAD_OFFSET); 997 998 goto again; 999 } 1000 1001 copy_cmd_to_buffer(iommu, cmd); 1002 1003 /* Do we need to make sure all commands are processed? */ 1004 iommu->need_sync = sync; 1005 1006 return 0; 1007 } 1008 1009 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1010 struct iommu_cmd *cmd, 1011 bool sync) 1012 { 1013 unsigned long flags; 1014 int ret; 1015 1016 raw_spin_lock_irqsave(&iommu->lock, flags); 1017 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1018 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1019 1020 return ret; 1021 } 1022 1023 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1024 { 1025 return iommu_queue_command_sync(iommu, cmd, true); 1026 } 1027 1028 /* 1029 * This function queues a completion wait command into the command 1030 * buffer of an IOMMU 1031 */ 1032 static int iommu_completion_wait(struct amd_iommu *iommu) 1033 { 1034 struct iommu_cmd cmd; 1035 unsigned long flags; 1036 int ret; 1037 1038 if (!iommu->need_sync) 1039 return 0; 1040 1041 1042 build_completion_wait(&cmd, (u64)&iommu->cmd_sem); 1043 1044 raw_spin_lock_irqsave(&iommu->lock, flags); 1045 1046 iommu->cmd_sem = 0; 1047 1048 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1049 if (ret) 1050 goto out_unlock; 1051 1052 ret = wait_on_sem(&iommu->cmd_sem); 1053 1054 out_unlock: 1055 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1056 1057 return ret; 1058 } 1059 1060 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1061 { 1062 struct iommu_cmd cmd; 1063 1064 build_inv_dte(&cmd, devid); 1065 1066 return iommu_queue_command(iommu, &cmd); 1067 } 1068 1069 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1070 { 1071 u32 devid; 1072 1073 for (devid = 0; devid <= 0xffff; ++devid) 1074 iommu_flush_dte(iommu, devid); 1075 1076 iommu_completion_wait(iommu); 1077 } 1078 1079 /* 1080 * This function uses heavy locking and may disable irqs for some time. But 1081 * this is no issue because it is only called during resume. 1082 */ 1083 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1084 { 1085 u32 dom_id; 1086 1087 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { 1088 struct iommu_cmd cmd; 1089 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1090 dom_id, 1); 1091 iommu_queue_command(iommu, &cmd); 1092 } 1093 1094 iommu_completion_wait(iommu); 1095 } 1096 1097 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1098 { 1099 struct iommu_cmd cmd; 1100 1101 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1102 dom_id, 1); 1103 iommu_queue_command(iommu, &cmd); 1104 1105 iommu_completion_wait(iommu); 1106 } 1107 1108 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1109 { 1110 struct iommu_cmd cmd; 1111 1112 build_inv_all(&cmd); 1113 1114 iommu_queue_command(iommu, &cmd); 1115 iommu_completion_wait(iommu); 1116 } 1117 1118 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1119 { 1120 struct iommu_cmd cmd; 1121 1122 build_inv_irt(&cmd, devid); 1123 1124 iommu_queue_command(iommu, &cmd); 1125 } 1126 1127 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1128 { 1129 u32 devid; 1130 1131 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++) 1132 iommu_flush_irt(iommu, devid); 1133 1134 iommu_completion_wait(iommu); 1135 } 1136 1137 void iommu_flush_all_caches(struct amd_iommu *iommu) 1138 { 1139 if (iommu_feature(iommu, FEATURE_IA)) { 1140 amd_iommu_flush_all(iommu); 1141 } else { 1142 amd_iommu_flush_dte_all(iommu); 1143 amd_iommu_flush_irt_all(iommu); 1144 amd_iommu_flush_tlb_all(iommu); 1145 } 1146 } 1147 1148 /* 1149 * Command send function for flushing on-device TLB 1150 */ 1151 static int device_flush_iotlb(struct iommu_dev_data *dev_data, 1152 u64 address, size_t size) 1153 { 1154 struct amd_iommu *iommu; 1155 struct iommu_cmd cmd; 1156 int qdep; 1157 1158 qdep = dev_data->ats.qdep; 1159 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1160 1161 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); 1162 1163 return iommu_queue_command(iommu, &cmd); 1164 } 1165 1166 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1167 { 1168 struct amd_iommu *iommu = data; 1169 1170 return iommu_flush_dte(iommu, alias); 1171 } 1172 1173 /* 1174 * Command send function for invalidating a device table entry 1175 */ 1176 static int device_flush_dte(struct iommu_dev_data *dev_data) 1177 { 1178 struct amd_iommu *iommu; 1179 u16 alias; 1180 int ret; 1181 1182 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1183 1184 if (dev_data->pdev) 1185 ret = pci_for_each_dma_alias(dev_data->pdev, 1186 device_flush_dte_alias, iommu); 1187 else 1188 ret = iommu_flush_dte(iommu, dev_data->devid); 1189 if (ret) 1190 return ret; 1191 1192 alias = amd_iommu_alias_table[dev_data->devid]; 1193 if (alias != dev_data->devid) { 1194 ret = iommu_flush_dte(iommu, alias); 1195 if (ret) 1196 return ret; 1197 } 1198 1199 if (dev_data->ats.enabled) 1200 ret = device_flush_iotlb(dev_data, 0, ~0UL); 1201 1202 return ret; 1203 } 1204 1205 /* 1206 * TLB invalidation function which is called from the mapping functions. 1207 * It invalidates a single PTE if the range to flush is within a single 1208 * page. Otherwise it flushes the whole TLB of the IOMMU. 1209 */ 1210 static void __domain_flush_pages(struct protection_domain *domain, 1211 u64 address, size_t size, int pde) 1212 { 1213 struct iommu_dev_data *dev_data; 1214 struct iommu_cmd cmd; 1215 int ret = 0, i; 1216 1217 build_inv_iommu_pages(&cmd, address, size, domain->id, pde); 1218 1219 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1220 if (!domain->dev_iommu[i]) 1221 continue; 1222 1223 /* 1224 * Devices of this domain are behind this IOMMU 1225 * We need a TLB flush 1226 */ 1227 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1228 } 1229 1230 list_for_each_entry(dev_data, &domain->dev_list, list) { 1231 1232 if (!dev_data->ats.enabled) 1233 continue; 1234 1235 ret |= device_flush_iotlb(dev_data, address, size); 1236 } 1237 1238 WARN_ON(ret); 1239 } 1240 1241 static void domain_flush_pages(struct protection_domain *domain, 1242 u64 address, size_t size) 1243 { 1244 __domain_flush_pages(domain, address, size, 0); 1245 } 1246 1247 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1248 static void domain_flush_tlb_pde(struct protection_domain *domain) 1249 { 1250 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); 1251 } 1252 1253 static void domain_flush_complete(struct protection_domain *domain) 1254 { 1255 int i; 1256 1257 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1258 if (domain && !domain->dev_iommu[i]) 1259 continue; 1260 1261 /* 1262 * Devices of this domain are behind this IOMMU 1263 * We need to wait for completion of all commands. 1264 */ 1265 iommu_completion_wait(amd_iommus[i]); 1266 } 1267 } 1268 1269 /* Flush the not present cache if it exists */ 1270 static void domain_flush_np_cache(struct protection_domain *domain, 1271 dma_addr_t iova, size_t size) 1272 { 1273 if (unlikely(amd_iommu_np_cache)) { 1274 unsigned long flags; 1275 1276 spin_lock_irqsave(&domain->lock, flags); 1277 domain_flush_pages(domain, iova, size); 1278 domain_flush_complete(domain); 1279 spin_unlock_irqrestore(&domain->lock, flags); 1280 } 1281 } 1282 1283 1284 /* 1285 * This function flushes the DTEs for all devices in domain 1286 */ 1287 static void domain_flush_devices(struct protection_domain *domain) 1288 { 1289 struct iommu_dev_data *dev_data; 1290 1291 list_for_each_entry(dev_data, &domain->dev_list, list) 1292 device_flush_dte(dev_data); 1293 } 1294 1295 /**************************************************************************** 1296 * 1297 * The functions below are used the create the page table mappings for 1298 * unity mapped regions. 1299 * 1300 ****************************************************************************/ 1301 1302 static void free_page_list(struct page *freelist) 1303 { 1304 while (freelist != NULL) { 1305 unsigned long p = (unsigned long)page_address(freelist); 1306 freelist = freelist->freelist; 1307 free_page(p); 1308 } 1309 } 1310 1311 static struct page *free_pt_page(unsigned long pt, struct page *freelist) 1312 { 1313 struct page *p = virt_to_page((void *)pt); 1314 1315 p->freelist = freelist; 1316 1317 return p; 1318 } 1319 1320 #define DEFINE_FREE_PT_FN(LVL, FN) \ 1321 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \ 1322 { \ 1323 unsigned long p; \ 1324 u64 *pt; \ 1325 int i; \ 1326 \ 1327 pt = (u64 *)__pt; \ 1328 \ 1329 for (i = 0; i < 512; ++i) { \ 1330 /* PTE present? */ \ 1331 if (!IOMMU_PTE_PRESENT(pt[i])) \ 1332 continue; \ 1333 \ 1334 /* Large PTE? */ \ 1335 if (PM_PTE_LEVEL(pt[i]) == 0 || \ 1336 PM_PTE_LEVEL(pt[i]) == 7) \ 1337 continue; \ 1338 \ 1339 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \ 1340 freelist = FN(p, freelist); \ 1341 } \ 1342 \ 1343 return free_pt_page((unsigned long)pt, freelist); \ 1344 } 1345 1346 DEFINE_FREE_PT_FN(l2, free_pt_page) 1347 DEFINE_FREE_PT_FN(l3, free_pt_l2) 1348 DEFINE_FREE_PT_FN(l4, free_pt_l3) 1349 DEFINE_FREE_PT_FN(l5, free_pt_l4) 1350 DEFINE_FREE_PT_FN(l6, free_pt_l5) 1351 1352 static struct page *free_sub_pt(unsigned long root, int mode, 1353 struct page *freelist) 1354 { 1355 switch (mode) { 1356 case PAGE_MODE_NONE: 1357 case PAGE_MODE_7_LEVEL: 1358 break; 1359 case PAGE_MODE_1_LEVEL: 1360 freelist = free_pt_page(root, freelist); 1361 break; 1362 case PAGE_MODE_2_LEVEL: 1363 freelist = free_pt_l2(root, freelist); 1364 break; 1365 case PAGE_MODE_3_LEVEL: 1366 freelist = free_pt_l3(root, freelist); 1367 break; 1368 case PAGE_MODE_4_LEVEL: 1369 freelist = free_pt_l4(root, freelist); 1370 break; 1371 case PAGE_MODE_5_LEVEL: 1372 freelist = free_pt_l5(root, freelist); 1373 break; 1374 case PAGE_MODE_6_LEVEL: 1375 freelist = free_pt_l6(root, freelist); 1376 break; 1377 default: 1378 BUG(); 1379 } 1380 1381 return freelist; 1382 } 1383 1384 static void free_pagetable(struct domain_pgtable *pgtable) 1385 { 1386 struct page *freelist = NULL; 1387 unsigned long root; 1388 1389 if (pgtable->mode == PAGE_MODE_NONE) 1390 return; 1391 1392 BUG_ON(pgtable->mode < PAGE_MODE_NONE || 1393 pgtable->mode > PAGE_MODE_6_LEVEL); 1394 1395 root = (unsigned long)pgtable->root; 1396 freelist = free_sub_pt(root, pgtable->mode, freelist); 1397 1398 free_page_list(freelist); 1399 } 1400 1401 /* 1402 * This function is used to add another level to an IO page table. Adding 1403 * another level increases the size of the address space by 9 bits to a size up 1404 * to 64 bits. 1405 */ 1406 static bool increase_address_space(struct protection_domain *domain, 1407 unsigned long address, 1408 gfp_t gfp) 1409 { 1410 struct domain_pgtable pgtable; 1411 unsigned long flags; 1412 bool ret = true; 1413 u64 *pte, root; 1414 1415 spin_lock_irqsave(&domain->lock, flags); 1416 1417 amd_iommu_domain_get_pgtable(domain, &pgtable); 1418 1419 if (address <= PM_LEVEL_SIZE(pgtable.mode)) 1420 goto out; 1421 1422 ret = false; 1423 if (WARN_ON_ONCE(pgtable.mode == PAGE_MODE_6_LEVEL)) 1424 goto out; 1425 1426 pte = (void *)get_zeroed_page(gfp); 1427 if (!pte) 1428 goto out; 1429 1430 *pte = PM_LEVEL_PDE(pgtable.mode, iommu_virt_to_phys(pgtable.root)); 1431 1432 pgtable.root = pte; 1433 pgtable.mode += 1; 1434 update_and_flush_device_table(domain, &pgtable); 1435 domain_flush_complete(domain); 1436 1437 /* 1438 * Device Table needs to be updated and flushed before the new root can 1439 * be published. 1440 */ 1441 root = amd_iommu_domain_encode_pgtable(pte, pgtable.mode); 1442 atomic64_set(&domain->pt_root, root); 1443 1444 ret = true; 1445 1446 out: 1447 spin_unlock_irqrestore(&domain->lock, flags); 1448 1449 return ret; 1450 } 1451 1452 static u64 *alloc_pte(struct protection_domain *domain, 1453 unsigned long address, 1454 unsigned long page_size, 1455 u64 **pte_page, 1456 gfp_t gfp, 1457 bool *updated) 1458 { 1459 struct domain_pgtable pgtable; 1460 int level, end_lvl; 1461 u64 *pte, *page; 1462 1463 BUG_ON(!is_power_of_2(page_size)); 1464 1465 amd_iommu_domain_get_pgtable(domain, &pgtable); 1466 1467 while (address > PM_LEVEL_SIZE(pgtable.mode)) { 1468 /* 1469 * Return an error if there is no memory to update the 1470 * page-table. 1471 */ 1472 if (!increase_address_space(domain, address, gfp)) 1473 return NULL; 1474 1475 /* Read new values to check if update was successful */ 1476 amd_iommu_domain_get_pgtable(domain, &pgtable); 1477 } 1478 1479 1480 level = pgtable.mode - 1; 1481 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)]; 1482 address = PAGE_SIZE_ALIGN(address, page_size); 1483 end_lvl = PAGE_SIZE_LEVEL(page_size); 1484 1485 while (level > end_lvl) { 1486 u64 __pte, __npte; 1487 int pte_level; 1488 1489 __pte = *pte; 1490 pte_level = PM_PTE_LEVEL(__pte); 1491 1492 /* 1493 * If we replace a series of large PTEs, we need 1494 * to tear down all of them. 1495 */ 1496 if (IOMMU_PTE_PRESENT(__pte) && 1497 pte_level == PAGE_MODE_7_LEVEL) { 1498 unsigned long count, i; 1499 u64 *lpte; 1500 1501 lpte = first_pte_l7(pte, NULL, &count); 1502 1503 /* 1504 * Unmap the replicated PTEs that still match the 1505 * original large mapping 1506 */ 1507 for (i = 0; i < count; ++i) 1508 cmpxchg64(&lpte[i], __pte, 0ULL); 1509 1510 *updated = true; 1511 continue; 1512 } 1513 1514 if (!IOMMU_PTE_PRESENT(__pte) || 1515 pte_level == PAGE_MODE_NONE) { 1516 page = (u64 *)get_zeroed_page(gfp); 1517 1518 if (!page) 1519 return NULL; 1520 1521 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page)); 1522 1523 /* pte could have been changed somewhere. */ 1524 if (cmpxchg64(pte, __pte, __npte) != __pte) 1525 free_page((unsigned long)page); 1526 else if (IOMMU_PTE_PRESENT(__pte)) 1527 *updated = true; 1528 1529 continue; 1530 } 1531 1532 /* No level skipping support yet */ 1533 if (pte_level != level) 1534 return NULL; 1535 1536 level -= 1; 1537 1538 pte = IOMMU_PTE_PAGE(__pte); 1539 1540 if (pte_page && level == end_lvl) 1541 *pte_page = pte; 1542 1543 pte = &pte[PM_LEVEL_INDEX(level, address)]; 1544 } 1545 1546 return pte; 1547 } 1548 1549 /* 1550 * This function checks if there is a PTE for a given dma address. If 1551 * there is one, it returns the pointer to it. 1552 */ 1553 static u64 *fetch_pte(struct protection_domain *domain, 1554 unsigned long address, 1555 unsigned long *page_size) 1556 { 1557 struct domain_pgtable pgtable; 1558 int level; 1559 u64 *pte; 1560 1561 *page_size = 0; 1562 1563 amd_iommu_domain_get_pgtable(domain, &pgtable); 1564 1565 if (address > PM_LEVEL_SIZE(pgtable.mode)) 1566 return NULL; 1567 1568 level = pgtable.mode - 1; 1569 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)]; 1570 *page_size = PTE_LEVEL_PAGE_SIZE(level); 1571 1572 while (level > 0) { 1573 1574 /* Not Present */ 1575 if (!IOMMU_PTE_PRESENT(*pte)) 1576 return NULL; 1577 1578 /* Large PTE */ 1579 if (PM_PTE_LEVEL(*pte) == 7 || 1580 PM_PTE_LEVEL(*pte) == 0) 1581 break; 1582 1583 /* No level skipping support yet */ 1584 if (PM_PTE_LEVEL(*pte) != level) 1585 return NULL; 1586 1587 level -= 1; 1588 1589 /* Walk to the next level */ 1590 pte = IOMMU_PTE_PAGE(*pte); 1591 pte = &pte[PM_LEVEL_INDEX(level, address)]; 1592 *page_size = PTE_LEVEL_PAGE_SIZE(level); 1593 } 1594 1595 /* 1596 * If we have a series of large PTEs, make 1597 * sure to return a pointer to the first one. 1598 */ 1599 if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL) 1600 pte = first_pte_l7(pte, page_size, NULL); 1601 1602 return pte; 1603 } 1604 1605 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist) 1606 { 1607 unsigned long pt; 1608 int mode; 1609 1610 while (cmpxchg64(pte, pteval, 0) != pteval) { 1611 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n"); 1612 pteval = *pte; 1613 } 1614 1615 if (!IOMMU_PTE_PRESENT(pteval)) 1616 return freelist; 1617 1618 pt = (unsigned long)IOMMU_PTE_PAGE(pteval); 1619 mode = IOMMU_PTE_MODE(pteval); 1620 1621 return free_sub_pt(pt, mode, freelist); 1622 } 1623 1624 /* 1625 * Generic mapping functions. It maps a physical address into a DMA 1626 * address space. It allocates the page table pages if necessary. 1627 * In the future it can be extended to a generic mapping function 1628 * supporting all features of AMD IOMMU page tables like level skipping 1629 * and full 64 bit address spaces. 1630 */ 1631 static int iommu_map_page(struct protection_domain *dom, 1632 unsigned long bus_addr, 1633 unsigned long phys_addr, 1634 unsigned long page_size, 1635 int prot, 1636 gfp_t gfp) 1637 { 1638 struct page *freelist = NULL; 1639 bool updated = false; 1640 u64 __pte, *pte; 1641 int ret, i, count; 1642 1643 BUG_ON(!IS_ALIGNED(bus_addr, page_size)); 1644 BUG_ON(!IS_ALIGNED(phys_addr, page_size)); 1645 1646 ret = -EINVAL; 1647 if (!(prot & IOMMU_PROT_MASK)) 1648 goto out; 1649 1650 count = PAGE_SIZE_PTE_COUNT(page_size); 1651 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated); 1652 1653 ret = -ENOMEM; 1654 if (!pte) 1655 goto out; 1656 1657 for (i = 0; i < count; ++i) 1658 freelist = free_clear_pte(&pte[i], pte[i], freelist); 1659 1660 if (freelist != NULL) 1661 updated = true; 1662 1663 if (count > 1) { 1664 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size); 1665 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC; 1666 } else 1667 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC; 1668 1669 if (prot & IOMMU_PROT_IR) 1670 __pte |= IOMMU_PTE_IR; 1671 if (prot & IOMMU_PROT_IW) 1672 __pte |= IOMMU_PTE_IW; 1673 1674 for (i = 0; i < count; ++i) 1675 pte[i] = __pte; 1676 1677 ret = 0; 1678 1679 out: 1680 if (updated) { 1681 unsigned long flags; 1682 1683 spin_lock_irqsave(&dom->lock, flags); 1684 /* 1685 * Flush domain TLB(s) and wait for completion. Any Device-Table 1686 * Updates and flushing already happened in 1687 * increase_address_space(). 1688 */ 1689 domain_flush_tlb_pde(dom); 1690 domain_flush_complete(dom); 1691 spin_unlock_irqrestore(&dom->lock, flags); 1692 } 1693 1694 /* Everything flushed out, free pages now */ 1695 free_page_list(freelist); 1696 1697 return ret; 1698 } 1699 1700 static unsigned long iommu_unmap_page(struct protection_domain *dom, 1701 unsigned long bus_addr, 1702 unsigned long page_size) 1703 { 1704 unsigned long long unmapped; 1705 unsigned long unmap_size; 1706 u64 *pte; 1707 1708 BUG_ON(!is_power_of_2(page_size)); 1709 1710 unmapped = 0; 1711 1712 while (unmapped < page_size) { 1713 1714 pte = fetch_pte(dom, bus_addr, &unmap_size); 1715 1716 if (pte) { 1717 int i, count; 1718 1719 count = PAGE_SIZE_PTE_COUNT(unmap_size); 1720 for (i = 0; i < count; i++) 1721 pte[i] = 0ULL; 1722 } 1723 1724 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size; 1725 unmapped += unmap_size; 1726 } 1727 1728 BUG_ON(unmapped && !is_power_of_2(unmapped)); 1729 1730 return unmapped; 1731 } 1732 1733 /**************************************************************************** 1734 * 1735 * The next functions belong to the domain allocation. A domain is 1736 * allocated for every IOMMU as the default domain. If device isolation 1737 * is enabled, every device get its own domain. The most important thing 1738 * about domains is the page table mapping the DMA address space they 1739 * contain. 1740 * 1741 ****************************************************************************/ 1742 1743 static u16 domain_id_alloc(void) 1744 { 1745 int id; 1746 1747 spin_lock(&pd_bitmap_lock); 1748 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1749 BUG_ON(id == 0); 1750 if (id > 0 && id < MAX_DOMAIN_ID) 1751 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1752 else 1753 id = 0; 1754 spin_unlock(&pd_bitmap_lock); 1755 1756 return id; 1757 } 1758 1759 static void domain_id_free(int id) 1760 { 1761 spin_lock(&pd_bitmap_lock); 1762 if (id > 0 && id < MAX_DOMAIN_ID) 1763 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1764 spin_unlock(&pd_bitmap_lock); 1765 } 1766 1767 static void free_gcr3_tbl_level1(u64 *tbl) 1768 { 1769 u64 *ptr; 1770 int i; 1771 1772 for (i = 0; i < 512; ++i) { 1773 if (!(tbl[i] & GCR3_VALID)) 1774 continue; 1775 1776 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1777 1778 free_page((unsigned long)ptr); 1779 } 1780 } 1781 1782 static void free_gcr3_tbl_level2(u64 *tbl) 1783 { 1784 u64 *ptr; 1785 int i; 1786 1787 for (i = 0; i < 512; ++i) { 1788 if (!(tbl[i] & GCR3_VALID)) 1789 continue; 1790 1791 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1792 1793 free_gcr3_tbl_level1(ptr); 1794 } 1795 } 1796 1797 static void free_gcr3_table(struct protection_domain *domain) 1798 { 1799 if (domain->glx == 2) 1800 free_gcr3_tbl_level2(domain->gcr3_tbl); 1801 else if (domain->glx == 1) 1802 free_gcr3_tbl_level1(domain->gcr3_tbl); 1803 else 1804 BUG_ON(domain->glx != 0); 1805 1806 free_page((unsigned long)domain->gcr3_tbl); 1807 } 1808 1809 static void set_dte_entry(u16 devid, struct protection_domain *domain, 1810 struct domain_pgtable *pgtable, 1811 bool ats, bool ppr) 1812 { 1813 u64 pte_root = 0; 1814 u64 flags = 0; 1815 u32 old_domid; 1816 1817 if (pgtable->mode != PAGE_MODE_NONE) 1818 pte_root = iommu_virt_to_phys(pgtable->root); 1819 1820 pte_root |= (pgtable->mode & DEV_ENTRY_MODE_MASK) 1821 << DEV_ENTRY_MODE_SHIFT; 1822 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV; 1823 1824 flags = amd_iommu_dev_table[devid].data[1]; 1825 1826 if (ats) 1827 flags |= DTE_FLAG_IOTLB; 1828 1829 if (ppr) { 1830 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 1831 1832 if (iommu_feature(iommu, FEATURE_EPHSUP)) 1833 pte_root |= 1ULL << DEV_ENTRY_PPR; 1834 } 1835 1836 if (domain->flags & PD_IOMMUV2_MASK) { 1837 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); 1838 u64 glx = domain->glx; 1839 u64 tmp; 1840 1841 pte_root |= DTE_FLAG_GV; 1842 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1843 1844 /* First mask out possible old values for GCR3 table */ 1845 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1846 flags &= ~tmp; 1847 1848 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1849 flags &= ~tmp; 1850 1851 /* Encode GCR3 table into DTE */ 1852 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1853 pte_root |= tmp; 1854 1855 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1856 flags |= tmp; 1857 1858 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1859 flags |= tmp; 1860 } 1861 1862 flags &= ~DEV_DOMID_MASK; 1863 flags |= domain->id; 1864 1865 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK; 1866 amd_iommu_dev_table[devid].data[1] = flags; 1867 amd_iommu_dev_table[devid].data[0] = pte_root; 1868 1869 /* 1870 * A kdump kernel might be replacing a domain ID that was copied from 1871 * the previous kernel--if so, it needs to flush the translation cache 1872 * entries for the old domain ID that is being overwritten 1873 */ 1874 if (old_domid) { 1875 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 1876 1877 amd_iommu_flush_tlb_domid(iommu, old_domid); 1878 } 1879 } 1880 1881 static void clear_dte_entry(u16 devid) 1882 { 1883 /* remove entry from the device table seen by the hardware */ 1884 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV; 1885 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK; 1886 1887 amd_iommu_apply_erratum_63(devid); 1888 } 1889 1890 static void do_attach(struct iommu_dev_data *dev_data, 1891 struct protection_domain *domain) 1892 { 1893 struct domain_pgtable pgtable; 1894 struct amd_iommu *iommu; 1895 bool ats; 1896 1897 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1898 ats = dev_data->ats.enabled; 1899 1900 /* Update data structures */ 1901 dev_data->domain = domain; 1902 list_add(&dev_data->list, &domain->dev_list); 1903 1904 /* Do reference counting */ 1905 domain->dev_iommu[iommu->index] += 1; 1906 domain->dev_cnt += 1; 1907 1908 /* Update device table */ 1909 amd_iommu_domain_get_pgtable(domain, &pgtable); 1910 set_dte_entry(dev_data->devid, domain, &pgtable, 1911 ats, dev_data->iommu_v2); 1912 clone_aliases(dev_data->pdev); 1913 1914 device_flush_dte(dev_data); 1915 } 1916 1917 static void do_detach(struct iommu_dev_data *dev_data) 1918 { 1919 struct protection_domain *domain = dev_data->domain; 1920 struct amd_iommu *iommu; 1921 1922 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1923 1924 /* Update data structures */ 1925 dev_data->domain = NULL; 1926 list_del(&dev_data->list); 1927 clear_dte_entry(dev_data->devid); 1928 clone_aliases(dev_data->pdev); 1929 1930 /* Flush the DTE entry */ 1931 device_flush_dte(dev_data); 1932 1933 /* Flush IOTLB */ 1934 domain_flush_tlb_pde(domain); 1935 1936 /* Wait for the flushes to finish */ 1937 domain_flush_complete(domain); 1938 1939 /* decrease reference counters - needs to happen after the flushes */ 1940 domain->dev_iommu[iommu->index] -= 1; 1941 domain->dev_cnt -= 1; 1942 } 1943 1944 static void pdev_iommuv2_disable(struct pci_dev *pdev) 1945 { 1946 pci_disable_ats(pdev); 1947 pci_disable_pri(pdev); 1948 pci_disable_pasid(pdev); 1949 } 1950 1951 /* FIXME: Change generic reset-function to do the same */ 1952 static int pri_reset_while_enabled(struct pci_dev *pdev) 1953 { 1954 u16 control; 1955 int pos; 1956 1957 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 1958 if (!pos) 1959 return -EINVAL; 1960 1961 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control); 1962 control |= PCI_PRI_CTRL_RESET; 1963 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control); 1964 1965 return 0; 1966 } 1967 1968 static int pdev_iommuv2_enable(struct pci_dev *pdev) 1969 { 1970 bool reset_enable; 1971 int reqs, ret; 1972 1973 /* FIXME: Hardcode number of outstanding requests for now */ 1974 reqs = 32; 1975 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE)) 1976 reqs = 1; 1977 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET); 1978 1979 /* Only allow access to user-accessible pages */ 1980 ret = pci_enable_pasid(pdev, 0); 1981 if (ret) 1982 goto out_err; 1983 1984 /* First reset the PRI state of the device */ 1985 ret = pci_reset_pri(pdev); 1986 if (ret) 1987 goto out_err; 1988 1989 /* Enable PRI */ 1990 ret = pci_enable_pri(pdev, reqs); 1991 if (ret) 1992 goto out_err; 1993 1994 if (reset_enable) { 1995 ret = pri_reset_while_enabled(pdev); 1996 if (ret) 1997 goto out_err; 1998 } 1999 2000 ret = pci_enable_ats(pdev, PAGE_SHIFT); 2001 if (ret) 2002 goto out_err; 2003 2004 return 0; 2005 2006 out_err: 2007 pci_disable_pri(pdev); 2008 pci_disable_pasid(pdev); 2009 2010 return ret; 2011 } 2012 2013 /* 2014 * If a device is not yet associated with a domain, this function makes the 2015 * device visible in the domain 2016 */ 2017 static int attach_device(struct device *dev, 2018 struct protection_domain *domain) 2019 { 2020 struct iommu_dev_data *dev_data; 2021 struct pci_dev *pdev; 2022 unsigned long flags; 2023 int ret; 2024 2025 spin_lock_irqsave(&domain->lock, flags); 2026 2027 dev_data = dev_iommu_priv_get(dev); 2028 2029 spin_lock(&dev_data->lock); 2030 2031 ret = -EBUSY; 2032 if (dev_data->domain != NULL) 2033 goto out; 2034 2035 if (!dev_is_pci(dev)) 2036 goto skip_ats_check; 2037 2038 pdev = to_pci_dev(dev); 2039 if (domain->flags & PD_IOMMUV2_MASK) { 2040 struct iommu_domain *def_domain = iommu_get_dma_domain(dev); 2041 2042 ret = -EINVAL; 2043 if (def_domain->type != IOMMU_DOMAIN_IDENTITY) 2044 goto out; 2045 2046 if (dev_data->iommu_v2) { 2047 if (pdev_iommuv2_enable(pdev) != 0) 2048 goto out; 2049 2050 dev_data->ats.enabled = true; 2051 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 2052 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 2053 } 2054 } else if (amd_iommu_iotlb_sup && 2055 pci_enable_ats(pdev, PAGE_SHIFT) == 0) { 2056 dev_data->ats.enabled = true; 2057 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 2058 } 2059 2060 skip_ats_check: 2061 ret = 0; 2062 2063 do_attach(dev_data, domain); 2064 2065 /* 2066 * We might boot into a crash-kernel here. The crashed kernel 2067 * left the caches in the IOMMU dirty. So we have to flush 2068 * here to evict all dirty stuff. 2069 */ 2070 domain_flush_tlb_pde(domain); 2071 2072 domain_flush_complete(domain); 2073 2074 out: 2075 spin_unlock(&dev_data->lock); 2076 2077 spin_unlock_irqrestore(&domain->lock, flags); 2078 2079 return ret; 2080 } 2081 2082 /* 2083 * Removes a device from a protection domain (with devtable_lock held) 2084 */ 2085 static void detach_device(struct device *dev) 2086 { 2087 struct protection_domain *domain; 2088 struct iommu_dev_data *dev_data; 2089 unsigned long flags; 2090 2091 dev_data = dev_iommu_priv_get(dev); 2092 domain = dev_data->domain; 2093 2094 spin_lock_irqsave(&domain->lock, flags); 2095 2096 spin_lock(&dev_data->lock); 2097 2098 /* 2099 * First check if the device is still attached. It might already 2100 * be detached from its domain because the generic 2101 * iommu_detach_group code detached it and we try again here in 2102 * our alias handling. 2103 */ 2104 if (WARN_ON(!dev_data->domain)) 2105 goto out; 2106 2107 do_detach(dev_data); 2108 2109 if (!dev_is_pci(dev)) 2110 goto out; 2111 2112 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) 2113 pdev_iommuv2_disable(to_pci_dev(dev)); 2114 else if (dev_data->ats.enabled) 2115 pci_disable_ats(to_pci_dev(dev)); 2116 2117 dev_data->ats.enabled = false; 2118 2119 out: 2120 spin_unlock(&dev_data->lock); 2121 2122 spin_unlock_irqrestore(&domain->lock, flags); 2123 } 2124 2125 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 2126 { 2127 struct iommu_device *iommu_dev; 2128 struct amd_iommu *iommu; 2129 int ret, devid; 2130 2131 if (!check_device(dev)) 2132 return ERR_PTR(-ENODEV); 2133 2134 devid = get_device_id(dev); 2135 if (devid < 0) 2136 return ERR_PTR(devid); 2137 2138 iommu = amd_iommu_rlookup_table[devid]; 2139 2140 if (dev_iommu_priv_get(dev)) 2141 return &iommu->iommu; 2142 2143 ret = iommu_init_device(dev); 2144 if (ret) { 2145 if (ret != -ENOTSUPP) 2146 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 2147 iommu_dev = ERR_PTR(ret); 2148 iommu_ignore_device(dev); 2149 } else { 2150 iommu_dev = &iommu->iommu; 2151 } 2152 2153 iommu_completion_wait(iommu); 2154 2155 return iommu_dev; 2156 } 2157 2158 static void amd_iommu_probe_finalize(struct device *dev) 2159 { 2160 struct iommu_domain *domain; 2161 2162 /* Domains are initialized for this device - have a look what we ended up with */ 2163 domain = iommu_get_domain_for_dev(dev); 2164 if (domain->type == IOMMU_DOMAIN_DMA) 2165 iommu_setup_dma_ops(dev, IOVA_START_PFN << PAGE_SHIFT, 0); 2166 } 2167 2168 static void amd_iommu_release_device(struct device *dev) 2169 { 2170 int devid = get_device_id(dev); 2171 struct amd_iommu *iommu; 2172 2173 if (!check_device(dev)) 2174 return; 2175 2176 iommu = amd_iommu_rlookup_table[devid]; 2177 2178 amd_iommu_uninit_device(dev); 2179 iommu_completion_wait(iommu); 2180 } 2181 2182 static struct iommu_group *amd_iommu_device_group(struct device *dev) 2183 { 2184 if (dev_is_pci(dev)) 2185 return pci_device_group(dev); 2186 2187 return acpihid_device_group(dev); 2188 } 2189 2190 static int amd_iommu_domain_get_attr(struct iommu_domain *domain, 2191 enum iommu_attr attr, void *data) 2192 { 2193 switch (domain->type) { 2194 case IOMMU_DOMAIN_UNMANAGED: 2195 return -ENODEV; 2196 case IOMMU_DOMAIN_DMA: 2197 switch (attr) { 2198 case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE: 2199 *(int *)data = !amd_iommu_unmap_flush; 2200 return 0; 2201 default: 2202 return -ENODEV; 2203 } 2204 break; 2205 default: 2206 return -EINVAL; 2207 } 2208 } 2209 2210 /***************************************************************************** 2211 * 2212 * The next functions belong to the dma_ops mapping/unmapping code. 2213 * 2214 *****************************************************************************/ 2215 2216 static void update_device_table(struct protection_domain *domain, 2217 struct domain_pgtable *pgtable) 2218 { 2219 struct iommu_dev_data *dev_data; 2220 2221 list_for_each_entry(dev_data, &domain->dev_list, list) { 2222 set_dte_entry(dev_data->devid, domain, pgtable, 2223 dev_data->ats.enabled, dev_data->iommu_v2); 2224 clone_aliases(dev_data->pdev); 2225 } 2226 } 2227 2228 static void update_and_flush_device_table(struct protection_domain *domain, 2229 struct domain_pgtable *pgtable) 2230 { 2231 update_device_table(domain, pgtable); 2232 domain_flush_devices(domain); 2233 } 2234 2235 static void update_domain(struct protection_domain *domain) 2236 { 2237 struct domain_pgtable pgtable; 2238 2239 /* Update device table */ 2240 amd_iommu_domain_get_pgtable(domain, &pgtable); 2241 update_and_flush_device_table(domain, &pgtable); 2242 2243 /* Flush domain TLB(s) and wait for completion */ 2244 domain_flush_tlb_pde(domain); 2245 domain_flush_complete(domain); 2246 } 2247 2248 int __init amd_iommu_init_api(void) 2249 { 2250 int ret, err = 0; 2251 2252 ret = iova_cache_get(); 2253 if (ret) 2254 return ret; 2255 2256 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops); 2257 if (err) 2258 return err; 2259 #ifdef CONFIG_ARM_AMBA 2260 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops); 2261 if (err) 2262 return err; 2263 #endif 2264 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops); 2265 if (err) 2266 return err; 2267 2268 return 0; 2269 } 2270 2271 int __init amd_iommu_init_dma_ops(void) 2272 { 2273 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0; 2274 2275 if (amd_iommu_unmap_flush) 2276 pr_info("IO/TLB flush on unmap enabled\n"); 2277 else 2278 pr_info("Lazy IO/TLB flushing enabled\n"); 2279 2280 return 0; 2281 2282 } 2283 2284 /***************************************************************************** 2285 * 2286 * The following functions belong to the exported interface of AMD IOMMU 2287 * 2288 * This interface allows access to lower level functions of the IOMMU 2289 * like protection domain handling and assignement of devices to domains 2290 * which is not possible with the dma_ops interface. 2291 * 2292 *****************************************************************************/ 2293 2294 static void cleanup_domain(struct protection_domain *domain) 2295 { 2296 struct iommu_dev_data *entry; 2297 unsigned long flags; 2298 2299 spin_lock_irqsave(&domain->lock, flags); 2300 2301 while (!list_empty(&domain->dev_list)) { 2302 entry = list_first_entry(&domain->dev_list, 2303 struct iommu_dev_data, list); 2304 BUG_ON(!entry->domain); 2305 do_detach(entry); 2306 } 2307 2308 spin_unlock_irqrestore(&domain->lock, flags); 2309 } 2310 2311 static void protection_domain_free(struct protection_domain *domain) 2312 { 2313 struct domain_pgtable pgtable; 2314 2315 if (!domain) 2316 return; 2317 2318 if (domain->id) 2319 domain_id_free(domain->id); 2320 2321 amd_iommu_domain_get_pgtable(domain, &pgtable); 2322 atomic64_set(&domain->pt_root, 0); 2323 free_pagetable(&pgtable); 2324 2325 kfree(domain); 2326 } 2327 2328 static int protection_domain_init(struct protection_domain *domain, int mode) 2329 { 2330 u64 *pt_root = NULL, root; 2331 2332 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); 2333 2334 spin_lock_init(&domain->lock); 2335 domain->id = domain_id_alloc(); 2336 if (!domain->id) 2337 return -ENOMEM; 2338 INIT_LIST_HEAD(&domain->dev_list); 2339 2340 if (mode != PAGE_MODE_NONE) { 2341 pt_root = (void *)get_zeroed_page(GFP_KERNEL); 2342 if (!pt_root) 2343 return -ENOMEM; 2344 } 2345 2346 root = amd_iommu_domain_encode_pgtable(pt_root, mode); 2347 atomic64_set(&domain->pt_root, root); 2348 2349 return 0; 2350 } 2351 2352 static struct protection_domain *protection_domain_alloc(int mode) 2353 { 2354 struct protection_domain *domain; 2355 2356 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2357 if (!domain) 2358 return NULL; 2359 2360 if (protection_domain_init(domain, mode)) 2361 goto out_err; 2362 2363 return domain; 2364 2365 out_err: 2366 kfree(domain); 2367 2368 return NULL; 2369 } 2370 2371 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) 2372 { 2373 struct protection_domain *domain; 2374 int mode = DEFAULT_PGTABLE_LEVEL; 2375 2376 if (type == IOMMU_DOMAIN_IDENTITY) 2377 mode = PAGE_MODE_NONE; 2378 2379 domain = protection_domain_alloc(mode); 2380 if (!domain) 2381 return NULL; 2382 2383 domain->domain.geometry.aperture_start = 0; 2384 domain->domain.geometry.aperture_end = ~0ULL; 2385 domain->domain.geometry.force_aperture = true; 2386 2387 if (type == IOMMU_DOMAIN_DMA && 2388 iommu_get_dma_cookie(&domain->domain) == -ENOMEM) 2389 goto free_domain; 2390 2391 return &domain->domain; 2392 2393 free_domain: 2394 protection_domain_free(domain); 2395 2396 return NULL; 2397 } 2398 2399 static void amd_iommu_domain_free(struct iommu_domain *dom) 2400 { 2401 struct protection_domain *domain; 2402 2403 domain = to_pdomain(dom); 2404 2405 if (domain->dev_cnt > 0) 2406 cleanup_domain(domain); 2407 2408 BUG_ON(domain->dev_cnt != 0); 2409 2410 if (!dom) 2411 return; 2412 2413 if (dom->type == IOMMU_DOMAIN_DMA) 2414 iommu_put_dma_cookie(&domain->domain); 2415 2416 if (domain->flags & PD_IOMMUV2_MASK) 2417 free_gcr3_table(domain); 2418 2419 protection_domain_free(domain); 2420 } 2421 2422 static void amd_iommu_detach_device(struct iommu_domain *dom, 2423 struct device *dev) 2424 { 2425 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2426 struct amd_iommu *iommu; 2427 int devid; 2428 2429 if (!check_device(dev)) 2430 return; 2431 2432 devid = get_device_id(dev); 2433 if (devid < 0) 2434 return; 2435 2436 if (dev_data->domain != NULL) 2437 detach_device(dev); 2438 2439 iommu = amd_iommu_rlookup_table[devid]; 2440 if (!iommu) 2441 return; 2442 2443 #ifdef CONFIG_IRQ_REMAP 2444 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && 2445 (dom->type == IOMMU_DOMAIN_UNMANAGED)) 2446 dev_data->use_vapic = 0; 2447 #endif 2448 2449 iommu_completion_wait(iommu); 2450 } 2451 2452 static int amd_iommu_attach_device(struct iommu_domain *dom, 2453 struct device *dev) 2454 { 2455 struct protection_domain *domain = to_pdomain(dom); 2456 struct iommu_dev_data *dev_data; 2457 struct amd_iommu *iommu; 2458 int ret; 2459 2460 if (!check_device(dev)) 2461 return -EINVAL; 2462 2463 dev_data = dev_iommu_priv_get(dev); 2464 dev_data->defer_attach = false; 2465 2466 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2467 if (!iommu) 2468 return -EINVAL; 2469 2470 if (dev_data->domain) 2471 detach_device(dev); 2472 2473 ret = attach_device(dev, domain); 2474 2475 #ifdef CONFIG_IRQ_REMAP 2476 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2477 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2478 dev_data->use_vapic = 1; 2479 else 2480 dev_data->use_vapic = 0; 2481 } 2482 #endif 2483 2484 iommu_completion_wait(iommu); 2485 2486 return ret; 2487 } 2488 2489 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, 2490 phys_addr_t paddr, size_t page_size, int iommu_prot, 2491 gfp_t gfp) 2492 { 2493 struct protection_domain *domain = to_pdomain(dom); 2494 struct domain_pgtable pgtable; 2495 int prot = 0; 2496 int ret; 2497 2498 amd_iommu_domain_get_pgtable(domain, &pgtable); 2499 if (pgtable.mode == PAGE_MODE_NONE) 2500 return -EINVAL; 2501 2502 if (iommu_prot & IOMMU_READ) 2503 prot |= IOMMU_PROT_IR; 2504 if (iommu_prot & IOMMU_WRITE) 2505 prot |= IOMMU_PROT_IW; 2506 2507 ret = iommu_map_page(domain, iova, paddr, page_size, prot, gfp); 2508 2509 domain_flush_np_cache(domain, iova, page_size); 2510 2511 return ret; 2512 } 2513 2514 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, 2515 size_t page_size, 2516 struct iommu_iotlb_gather *gather) 2517 { 2518 struct protection_domain *domain = to_pdomain(dom); 2519 struct domain_pgtable pgtable; 2520 2521 amd_iommu_domain_get_pgtable(domain, &pgtable); 2522 if (pgtable.mode == PAGE_MODE_NONE) 2523 return 0; 2524 2525 return iommu_unmap_page(domain, iova, page_size); 2526 } 2527 2528 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2529 dma_addr_t iova) 2530 { 2531 struct protection_domain *domain = to_pdomain(dom); 2532 unsigned long offset_mask, pte_pgsize; 2533 struct domain_pgtable pgtable; 2534 u64 *pte, __pte; 2535 2536 amd_iommu_domain_get_pgtable(domain, &pgtable); 2537 if (pgtable.mode == PAGE_MODE_NONE) 2538 return iova; 2539 2540 pte = fetch_pte(domain, iova, &pte_pgsize); 2541 2542 if (!pte || !IOMMU_PTE_PRESENT(*pte)) 2543 return 0; 2544 2545 offset_mask = pte_pgsize - 1; 2546 __pte = __sme_clr(*pte & PM_ADDR_MASK); 2547 2548 return (__pte & ~offset_mask) | (iova & offset_mask); 2549 } 2550 2551 static bool amd_iommu_capable(enum iommu_cap cap) 2552 { 2553 switch (cap) { 2554 case IOMMU_CAP_CACHE_COHERENCY: 2555 return true; 2556 case IOMMU_CAP_INTR_REMAP: 2557 return (irq_remapping_enabled == 1); 2558 case IOMMU_CAP_NOEXEC: 2559 return false; 2560 default: 2561 break; 2562 } 2563 2564 return false; 2565 } 2566 2567 static void amd_iommu_get_resv_regions(struct device *dev, 2568 struct list_head *head) 2569 { 2570 struct iommu_resv_region *region; 2571 struct unity_map_entry *entry; 2572 int devid; 2573 2574 devid = get_device_id(dev); 2575 if (devid < 0) 2576 return; 2577 2578 list_for_each_entry(entry, &amd_iommu_unity_map, list) { 2579 int type, prot = 0; 2580 size_t length; 2581 2582 if (devid < entry->devid_start || devid > entry->devid_end) 2583 continue; 2584 2585 type = IOMMU_RESV_DIRECT; 2586 length = entry->address_end - entry->address_start; 2587 if (entry->prot & IOMMU_PROT_IR) 2588 prot |= IOMMU_READ; 2589 if (entry->prot & IOMMU_PROT_IW) 2590 prot |= IOMMU_WRITE; 2591 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2592 /* Exclusion range */ 2593 type = IOMMU_RESV_RESERVED; 2594 2595 region = iommu_alloc_resv_region(entry->address_start, 2596 length, prot, type); 2597 if (!region) { 2598 dev_err(dev, "Out of memory allocating dm-regions\n"); 2599 return; 2600 } 2601 list_add_tail(®ion->list, head); 2602 } 2603 2604 region = iommu_alloc_resv_region(MSI_RANGE_START, 2605 MSI_RANGE_END - MSI_RANGE_START + 1, 2606 0, IOMMU_RESV_MSI); 2607 if (!region) 2608 return; 2609 list_add_tail(®ion->list, head); 2610 2611 region = iommu_alloc_resv_region(HT_RANGE_START, 2612 HT_RANGE_END - HT_RANGE_START + 1, 2613 0, IOMMU_RESV_RESERVED); 2614 if (!region) 2615 return; 2616 list_add_tail(®ion->list, head); 2617 } 2618 2619 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain, 2620 struct device *dev) 2621 { 2622 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2623 2624 return dev_data->defer_attach; 2625 } 2626 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); 2627 2628 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2629 { 2630 struct protection_domain *dom = to_pdomain(domain); 2631 unsigned long flags; 2632 2633 spin_lock_irqsave(&dom->lock, flags); 2634 domain_flush_tlb_pde(dom); 2635 domain_flush_complete(dom); 2636 spin_unlock_irqrestore(&dom->lock, flags); 2637 } 2638 2639 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2640 struct iommu_iotlb_gather *gather) 2641 { 2642 amd_iommu_flush_iotlb_all(domain); 2643 } 2644 2645 static int amd_iommu_def_domain_type(struct device *dev) 2646 { 2647 struct iommu_dev_data *dev_data; 2648 2649 dev_data = dev_iommu_priv_get(dev); 2650 if (!dev_data) 2651 return 0; 2652 2653 if (dev_data->iommu_v2) 2654 return IOMMU_DOMAIN_IDENTITY; 2655 2656 return 0; 2657 } 2658 2659 const struct iommu_ops amd_iommu_ops = { 2660 .capable = amd_iommu_capable, 2661 .domain_alloc = amd_iommu_domain_alloc, 2662 .domain_free = amd_iommu_domain_free, 2663 .attach_dev = amd_iommu_attach_device, 2664 .detach_dev = amd_iommu_detach_device, 2665 .map = amd_iommu_map, 2666 .unmap = amd_iommu_unmap, 2667 .iova_to_phys = amd_iommu_iova_to_phys, 2668 .probe_device = amd_iommu_probe_device, 2669 .release_device = amd_iommu_release_device, 2670 .probe_finalize = amd_iommu_probe_finalize, 2671 .device_group = amd_iommu_device_group, 2672 .domain_get_attr = amd_iommu_domain_get_attr, 2673 .get_resv_regions = amd_iommu_get_resv_regions, 2674 .put_resv_regions = generic_iommu_put_resv_regions, 2675 .is_attach_deferred = amd_iommu_is_attach_deferred, 2676 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 2677 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2678 .iotlb_sync = amd_iommu_iotlb_sync, 2679 .def_domain_type = amd_iommu_def_domain_type, 2680 }; 2681 2682 /***************************************************************************** 2683 * 2684 * The next functions do a basic initialization of IOMMU for pass through 2685 * mode 2686 * 2687 * In passthrough mode the IOMMU is initialized and enabled but not used for 2688 * DMA-API translation. 2689 * 2690 *****************************************************************************/ 2691 2692 /* IOMMUv2 specific functions */ 2693 int amd_iommu_register_ppr_notifier(struct notifier_block *nb) 2694 { 2695 return atomic_notifier_chain_register(&ppr_notifier, nb); 2696 } 2697 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); 2698 2699 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) 2700 { 2701 return atomic_notifier_chain_unregister(&ppr_notifier, nb); 2702 } 2703 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); 2704 2705 void amd_iommu_domain_direct_map(struct iommu_domain *dom) 2706 { 2707 struct protection_domain *domain = to_pdomain(dom); 2708 struct domain_pgtable pgtable; 2709 unsigned long flags; 2710 2711 spin_lock_irqsave(&domain->lock, flags); 2712 2713 /* First save pgtable configuration*/ 2714 amd_iommu_domain_get_pgtable(domain, &pgtable); 2715 2716 /* Update data structure */ 2717 atomic64_set(&domain->pt_root, 0); 2718 2719 /* Make changes visible to IOMMUs */ 2720 update_domain(domain); 2721 2722 /* Page-table is not visible to IOMMU anymore, so free it */ 2723 free_pagetable(&pgtable); 2724 2725 spin_unlock_irqrestore(&domain->lock, flags); 2726 } 2727 EXPORT_SYMBOL(amd_iommu_domain_direct_map); 2728 2729 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) 2730 { 2731 struct protection_domain *domain = to_pdomain(dom); 2732 unsigned long flags; 2733 int levels, ret; 2734 2735 if (pasids <= 0 || pasids > (PASID_MASK + 1)) 2736 return -EINVAL; 2737 2738 /* Number of GCR3 table levels required */ 2739 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) 2740 levels += 1; 2741 2742 if (levels > amd_iommu_max_glx_val) 2743 return -EINVAL; 2744 2745 spin_lock_irqsave(&domain->lock, flags); 2746 2747 /* 2748 * Save us all sanity checks whether devices already in the 2749 * domain support IOMMUv2. Just force that the domain has no 2750 * devices attached when it is switched into IOMMUv2 mode. 2751 */ 2752 ret = -EBUSY; 2753 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) 2754 goto out; 2755 2756 ret = -ENOMEM; 2757 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); 2758 if (domain->gcr3_tbl == NULL) 2759 goto out; 2760 2761 domain->glx = levels; 2762 domain->flags |= PD_IOMMUV2_MASK; 2763 2764 update_domain(domain); 2765 2766 ret = 0; 2767 2768 out: 2769 spin_unlock_irqrestore(&domain->lock, flags); 2770 2771 return ret; 2772 } 2773 EXPORT_SYMBOL(amd_iommu_domain_enable_v2); 2774 2775 static int __flush_pasid(struct protection_domain *domain, int pasid, 2776 u64 address, bool size) 2777 { 2778 struct iommu_dev_data *dev_data; 2779 struct iommu_cmd cmd; 2780 int i, ret; 2781 2782 if (!(domain->flags & PD_IOMMUV2_MASK)) 2783 return -EINVAL; 2784 2785 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); 2786 2787 /* 2788 * IOMMU TLB needs to be flushed before Device TLB to 2789 * prevent device TLB refill from IOMMU TLB 2790 */ 2791 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 2792 if (domain->dev_iommu[i] == 0) 2793 continue; 2794 2795 ret = iommu_queue_command(amd_iommus[i], &cmd); 2796 if (ret != 0) 2797 goto out; 2798 } 2799 2800 /* Wait until IOMMU TLB flushes are complete */ 2801 domain_flush_complete(domain); 2802 2803 /* Now flush device TLBs */ 2804 list_for_each_entry(dev_data, &domain->dev_list, list) { 2805 struct amd_iommu *iommu; 2806 int qdep; 2807 2808 /* 2809 There might be non-IOMMUv2 capable devices in an IOMMUv2 2810 * domain. 2811 */ 2812 if (!dev_data->ats.enabled) 2813 continue; 2814 2815 qdep = dev_data->ats.qdep; 2816 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2817 2818 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, 2819 qdep, address, size); 2820 2821 ret = iommu_queue_command(iommu, &cmd); 2822 if (ret != 0) 2823 goto out; 2824 } 2825 2826 /* Wait until all device TLBs are flushed */ 2827 domain_flush_complete(domain); 2828 2829 ret = 0; 2830 2831 out: 2832 2833 return ret; 2834 } 2835 2836 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid, 2837 u64 address) 2838 { 2839 return __flush_pasid(domain, pasid, address, false); 2840 } 2841 2842 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid, 2843 u64 address) 2844 { 2845 struct protection_domain *domain = to_pdomain(dom); 2846 unsigned long flags; 2847 int ret; 2848 2849 spin_lock_irqsave(&domain->lock, flags); 2850 ret = __amd_iommu_flush_page(domain, pasid, address); 2851 spin_unlock_irqrestore(&domain->lock, flags); 2852 2853 return ret; 2854 } 2855 EXPORT_SYMBOL(amd_iommu_flush_page); 2856 2857 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid) 2858 { 2859 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 2860 true); 2861 } 2862 2863 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid) 2864 { 2865 struct protection_domain *domain = to_pdomain(dom); 2866 unsigned long flags; 2867 int ret; 2868 2869 spin_lock_irqsave(&domain->lock, flags); 2870 ret = __amd_iommu_flush_tlb(domain, pasid); 2871 spin_unlock_irqrestore(&domain->lock, flags); 2872 2873 return ret; 2874 } 2875 EXPORT_SYMBOL(amd_iommu_flush_tlb); 2876 2877 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc) 2878 { 2879 int index; 2880 u64 *pte; 2881 2882 while (true) { 2883 2884 index = (pasid >> (9 * level)) & 0x1ff; 2885 pte = &root[index]; 2886 2887 if (level == 0) 2888 break; 2889 2890 if (!(*pte & GCR3_VALID)) { 2891 if (!alloc) 2892 return NULL; 2893 2894 root = (void *)get_zeroed_page(GFP_ATOMIC); 2895 if (root == NULL) 2896 return NULL; 2897 2898 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 2899 } 2900 2901 root = iommu_phys_to_virt(*pte & PAGE_MASK); 2902 2903 level -= 1; 2904 } 2905 2906 return pte; 2907 } 2908 2909 static int __set_gcr3(struct protection_domain *domain, int pasid, 2910 unsigned long cr3) 2911 { 2912 struct domain_pgtable pgtable; 2913 u64 *pte; 2914 2915 amd_iommu_domain_get_pgtable(domain, &pgtable); 2916 if (pgtable.mode != PAGE_MODE_NONE) 2917 return -EINVAL; 2918 2919 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); 2920 if (pte == NULL) 2921 return -ENOMEM; 2922 2923 *pte = (cr3 & PAGE_MASK) | GCR3_VALID; 2924 2925 return __amd_iommu_flush_tlb(domain, pasid); 2926 } 2927 2928 static int __clear_gcr3(struct protection_domain *domain, int pasid) 2929 { 2930 struct domain_pgtable pgtable; 2931 u64 *pte; 2932 2933 amd_iommu_domain_get_pgtable(domain, &pgtable); 2934 if (pgtable.mode != PAGE_MODE_NONE) 2935 return -EINVAL; 2936 2937 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); 2938 if (pte == NULL) 2939 return 0; 2940 2941 *pte = 0; 2942 2943 return __amd_iommu_flush_tlb(domain, pasid); 2944 } 2945 2946 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid, 2947 unsigned long cr3) 2948 { 2949 struct protection_domain *domain = to_pdomain(dom); 2950 unsigned long flags; 2951 int ret; 2952 2953 spin_lock_irqsave(&domain->lock, flags); 2954 ret = __set_gcr3(domain, pasid, cr3); 2955 spin_unlock_irqrestore(&domain->lock, flags); 2956 2957 return ret; 2958 } 2959 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); 2960 2961 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid) 2962 { 2963 struct protection_domain *domain = to_pdomain(dom); 2964 unsigned long flags; 2965 int ret; 2966 2967 spin_lock_irqsave(&domain->lock, flags); 2968 ret = __clear_gcr3(domain, pasid); 2969 spin_unlock_irqrestore(&domain->lock, flags); 2970 2971 return ret; 2972 } 2973 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); 2974 2975 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid, 2976 int status, int tag) 2977 { 2978 struct iommu_dev_data *dev_data; 2979 struct amd_iommu *iommu; 2980 struct iommu_cmd cmd; 2981 2982 dev_data = dev_iommu_priv_get(&pdev->dev); 2983 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2984 2985 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 2986 tag, dev_data->pri_tlp); 2987 2988 return iommu_queue_command(iommu, &cmd); 2989 } 2990 EXPORT_SYMBOL(amd_iommu_complete_ppr); 2991 2992 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev) 2993 { 2994 struct protection_domain *pdomain; 2995 struct iommu_dev_data *dev_data; 2996 struct device *dev = &pdev->dev; 2997 struct iommu_domain *io_domain; 2998 2999 if (!check_device(dev)) 3000 return NULL; 3001 3002 dev_data = dev_iommu_priv_get(&pdev->dev); 3003 pdomain = dev_data->domain; 3004 io_domain = iommu_get_domain_for_dev(dev); 3005 3006 if (pdomain == NULL && dev_data->defer_attach) { 3007 dev_data->defer_attach = false; 3008 pdomain = to_pdomain(io_domain); 3009 attach_device(dev, pdomain); 3010 } 3011 3012 if (pdomain == NULL) 3013 return NULL; 3014 3015 if (io_domain->type != IOMMU_DOMAIN_DMA) 3016 return NULL; 3017 3018 /* Only return IOMMUv2 domains */ 3019 if (!(pdomain->flags & PD_IOMMUV2_MASK)) 3020 return NULL; 3021 3022 return &pdomain->domain; 3023 } 3024 EXPORT_SYMBOL(amd_iommu_get_v2_domain); 3025 3026 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum) 3027 { 3028 struct iommu_dev_data *dev_data; 3029 3030 if (!amd_iommu_v2_supported()) 3031 return; 3032 3033 dev_data = dev_iommu_priv_get(&pdev->dev); 3034 dev_data->errata |= (1 << erratum); 3035 } 3036 EXPORT_SYMBOL(amd_iommu_enable_device_erratum); 3037 3038 int amd_iommu_device_info(struct pci_dev *pdev, 3039 struct amd_iommu_device_info *info) 3040 { 3041 int max_pasids; 3042 int pos; 3043 3044 if (pdev == NULL || info == NULL) 3045 return -EINVAL; 3046 3047 if (!amd_iommu_v2_supported()) 3048 return -EINVAL; 3049 3050 memset(info, 0, sizeof(*info)); 3051 3052 if (pci_ats_supported(pdev)) 3053 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 3054 3055 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 3056 if (pos) 3057 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 3058 3059 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); 3060 if (pos) { 3061 int features; 3062 3063 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); 3064 max_pasids = min(max_pasids, (1 << 20)); 3065 3066 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 3067 info->max_pasids = min(pci_max_pasids(pdev), max_pasids); 3068 3069 features = pci_pasid_features(pdev); 3070 if (features & PCI_PASID_CAP_EXEC) 3071 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 3072 if (features & PCI_PASID_CAP_PRIV) 3073 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 3074 } 3075 3076 return 0; 3077 } 3078 EXPORT_SYMBOL(amd_iommu_device_info); 3079 3080 #ifdef CONFIG_IRQ_REMAP 3081 3082 /***************************************************************************** 3083 * 3084 * Interrupt Remapping Implementation 3085 * 3086 *****************************************************************************/ 3087 3088 static struct irq_chip amd_ir_chip; 3089 static DEFINE_SPINLOCK(iommu_table_lock); 3090 3091 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table) 3092 { 3093 u64 dte; 3094 3095 dte = amd_iommu_dev_table[devid].data[2]; 3096 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 3097 dte |= iommu_virt_to_phys(table->table); 3098 dte |= DTE_IRQ_REMAP_INTCTL; 3099 dte |= DTE_IRQ_TABLE_LEN; 3100 dte |= DTE_IRQ_REMAP_ENABLE; 3101 3102 amd_iommu_dev_table[devid].data[2] = dte; 3103 } 3104 3105 static struct irq_remap_table *get_irq_table(u16 devid) 3106 { 3107 struct irq_remap_table *table; 3108 3109 if (WARN_ONCE(!amd_iommu_rlookup_table[devid], 3110 "%s: no iommu for devid %x\n", __func__, devid)) 3111 return NULL; 3112 3113 table = irq_lookup_table[devid]; 3114 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid)) 3115 return NULL; 3116 3117 return table; 3118 } 3119 3120 static struct irq_remap_table *__alloc_irq_table(void) 3121 { 3122 struct irq_remap_table *table; 3123 3124 table = kzalloc(sizeof(*table), GFP_KERNEL); 3125 if (!table) 3126 return NULL; 3127 3128 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 3129 if (!table->table) { 3130 kfree(table); 3131 return NULL; 3132 } 3133 raw_spin_lock_init(&table->lock); 3134 3135 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3136 memset(table->table, 0, 3137 MAX_IRQS_PER_TABLE * sizeof(u32)); 3138 else 3139 memset(table->table, 0, 3140 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 3141 return table; 3142 } 3143 3144 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 3145 struct irq_remap_table *table) 3146 { 3147 irq_lookup_table[devid] = table; 3148 set_dte_irq_entry(devid, table); 3149 iommu_flush_dte(iommu, devid); 3150 } 3151 3152 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 3153 void *data) 3154 { 3155 struct irq_remap_table *table = data; 3156 3157 irq_lookup_table[alias] = table; 3158 set_dte_irq_entry(alias, table); 3159 3160 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias); 3161 3162 return 0; 3163 } 3164 3165 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev) 3166 { 3167 struct irq_remap_table *table = NULL; 3168 struct irq_remap_table *new_table = NULL; 3169 struct amd_iommu *iommu; 3170 unsigned long flags; 3171 u16 alias; 3172 3173 spin_lock_irqsave(&iommu_table_lock, flags); 3174 3175 iommu = amd_iommu_rlookup_table[devid]; 3176 if (!iommu) 3177 goto out_unlock; 3178 3179 table = irq_lookup_table[devid]; 3180 if (table) 3181 goto out_unlock; 3182 3183 alias = amd_iommu_alias_table[devid]; 3184 table = irq_lookup_table[alias]; 3185 if (table) { 3186 set_remap_table_entry(iommu, devid, table); 3187 goto out_wait; 3188 } 3189 spin_unlock_irqrestore(&iommu_table_lock, flags); 3190 3191 /* Nothing there yet, allocate new irq remapping table */ 3192 new_table = __alloc_irq_table(); 3193 if (!new_table) 3194 return NULL; 3195 3196 spin_lock_irqsave(&iommu_table_lock, flags); 3197 3198 table = irq_lookup_table[devid]; 3199 if (table) 3200 goto out_unlock; 3201 3202 table = irq_lookup_table[alias]; 3203 if (table) { 3204 set_remap_table_entry(iommu, devid, table); 3205 goto out_wait; 3206 } 3207 3208 table = new_table; 3209 new_table = NULL; 3210 3211 if (pdev) 3212 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 3213 table); 3214 else 3215 set_remap_table_entry(iommu, devid, table); 3216 3217 if (devid != alias) 3218 set_remap_table_entry(iommu, alias, table); 3219 3220 out_wait: 3221 iommu_completion_wait(iommu); 3222 3223 out_unlock: 3224 spin_unlock_irqrestore(&iommu_table_lock, flags); 3225 3226 if (new_table) { 3227 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 3228 kfree(new_table); 3229 } 3230 return table; 3231 } 3232 3233 static int alloc_irq_index(u16 devid, int count, bool align, 3234 struct pci_dev *pdev) 3235 { 3236 struct irq_remap_table *table; 3237 int index, c, alignment = 1; 3238 unsigned long flags; 3239 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 3240 3241 if (!iommu) 3242 return -ENODEV; 3243 3244 table = alloc_irq_table(devid, pdev); 3245 if (!table) 3246 return -ENODEV; 3247 3248 if (align) 3249 alignment = roundup_pow_of_two(count); 3250 3251 raw_spin_lock_irqsave(&table->lock, flags); 3252 3253 /* Scan table for free entries */ 3254 for (index = ALIGN(table->min_index, alignment), c = 0; 3255 index < MAX_IRQS_PER_TABLE;) { 3256 if (!iommu->irte_ops->is_allocated(table, index)) { 3257 c += 1; 3258 } else { 3259 c = 0; 3260 index = ALIGN(index + 1, alignment); 3261 continue; 3262 } 3263 3264 if (c == count) { 3265 for (; c != 0; --c) 3266 iommu->irte_ops->set_allocated(table, index - c + 1); 3267 3268 index -= count - 1; 3269 goto out; 3270 } 3271 3272 index++; 3273 } 3274 3275 index = -ENOSPC; 3276 3277 out: 3278 raw_spin_unlock_irqrestore(&table->lock, flags); 3279 3280 return index; 3281 } 3282 3283 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte, 3284 struct amd_ir_data *data) 3285 { 3286 struct irq_remap_table *table; 3287 struct amd_iommu *iommu; 3288 unsigned long flags; 3289 struct irte_ga *entry; 3290 3291 iommu = amd_iommu_rlookup_table[devid]; 3292 if (iommu == NULL) 3293 return -EINVAL; 3294 3295 table = get_irq_table(devid); 3296 if (!table) 3297 return -ENOMEM; 3298 3299 raw_spin_lock_irqsave(&table->lock, flags); 3300 3301 entry = (struct irte_ga *)table->table; 3302 entry = &entry[index]; 3303 entry->lo.fields_remap.valid = 0; 3304 entry->hi.val = irte->hi.val; 3305 entry->lo.val = irte->lo.val; 3306 entry->lo.fields_remap.valid = 1; 3307 if (data) 3308 data->ref = entry; 3309 3310 raw_spin_unlock_irqrestore(&table->lock, flags); 3311 3312 iommu_flush_irt(iommu, devid); 3313 iommu_completion_wait(iommu); 3314 3315 return 0; 3316 } 3317 3318 static int modify_irte(u16 devid, int index, union irte *irte) 3319 { 3320 struct irq_remap_table *table; 3321 struct amd_iommu *iommu; 3322 unsigned long flags; 3323 3324 iommu = amd_iommu_rlookup_table[devid]; 3325 if (iommu == NULL) 3326 return -EINVAL; 3327 3328 table = get_irq_table(devid); 3329 if (!table) 3330 return -ENOMEM; 3331 3332 raw_spin_lock_irqsave(&table->lock, flags); 3333 table->table[index] = irte->val; 3334 raw_spin_unlock_irqrestore(&table->lock, flags); 3335 3336 iommu_flush_irt(iommu, devid); 3337 iommu_completion_wait(iommu); 3338 3339 return 0; 3340 } 3341 3342 static void free_irte(u16 devid, int index) 3343 { 3344 struct irq_remap_table *table; 3345 struct amd_iommu *iommu; 3346 unsigned long flags; 3347 3348 iommu = amd_iommu_rlookup_table[devid]; 3349 if (iommu == NULL) 3350 return; 3351 3352 table = get_irq_table(devid); 3353 if (!table) 3354 return; 3355 3356 raw_spin_lock_irqsave(&table->lock, flags); 3357 iommu->irte_ops->clear_allocated(table, index); 3358 raw_spin_unlock_irqrestore(&table->lock, flags); 3359 3360 iommu_flush_irt(iommu, devid); 3361 iommu_completion_wait(iommu); 3362 } 3363 3364 static void irte_prepare(void *entry, 3365 u32 delivery_mode, u32 dest_mode, 3366 u8 vector, u32 dest_apicid, int devid) 3367 { 3368 union irte *irte = (union irte *) entry; 3369 3370 irte->val = 0; 3371 irte->fields.vector = vector; 3372 irte->fields.int_type = delivery_mode; 3373 irte->fields.destination = dest_apicid; 3374 irte->fields.dm = dest_mode; 3375 irte->fields.valid = 1; 3376 } 3377 3378 static void irte_ga_prepare(void *entry, 3379 u32 delivery_mode, u32 dest_mode, 3380 u8 vector, u32 dest_apicid, int devid) 3381 { 3382 struct irte_ga *irte = (struct irte_ga *) entry; 3383 3384 irte->lo.val = 0; 3385 irte->hi.val = 0; 3386 irte->lo.fields_remap.int_type = delivery_mode; 3387 irte->lo.fields_remap.dm = dest_mode; 3388 irte->hi.fields.vector = vector; 3389 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3390 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3391 irte->lo.fields_remap.valid = 1; 3392 } 3393 3394 static void irte_activate(void *entry, u16 devid, u16 index) 3395 { 3396 union irte *irte = (union irte *) entry; 3397 3398 irte->fields.valid = 1; 3399 modify_irte(devid, index, irte); 3400 } 3401 3402 static void irte_ga_activate(void *entry, u16 devid, u16 index) 3403 { 3404 struct irte_ga *irte = (struct irte_ga *) entry; 3405 3406 irte->lo.fields_remap.valid = 1; 3407 modify_irte_ga(devid, index, irte, NULL); 3408 } 3409 3410 static void irte_deactivate(void *entry, u16 devid, u16 index) 3411 { 3412 union irte *irte = (union irte *) entry; 3413 3414 irte->fields.valid = 0; 3415 modify_irte(devid, index, irte); 3416 } 3417 3418 static void irte_ga_deactivate(void *entry, u16 devid, u16 index) 3419 { 3420 struct irte_ga *irte = (struct irte_ga *) entry; 3421 3422 irte->lo.fields_remap.valid = 0; 3423 modify_irte_ga(devid, index, irte, NULL); 3424 } 3425 3426 static void irte_set_affinity(void *entry, u16 devid, u16 index, 3427 u8 vector, u32 dest_apicid) 3428 { 3429 union irte *irte = (union irte *) entry; 3430 3431 irte->fields.vector = vector; 3432 irte->fields.destination = dest_apicid; 3433 modify_irte(devid, index, irte); 3434 } 3435 3436 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index, 3437 u8 vector, u32 dest_apicid) 3438 { 3439 struct irte_ga *irte = (struct irte_ga *) entry; 3440 3441 if (!irte->lo.fields_remap.guest_mode) { 3442 irte->hi.fields.vector = vector; 3443 irte->lo.fields_remap.destination = 3444 APICID_TO_IRTE_DEST_LO(dest_apicid); 3445 irte->hi.fields.destination = 3446 APICID_TO_IRTE_DEST_HI(dest_apicid); 3447 modify_irte_ga(devid, index, irte, NULL); 3448 } 3449 } 3450 3451 #define IRTE_ALLOCATED (~1U) 3452 static void irte_set_allocated(struct irq_remap_table *table, int index) 3453 { 3454 table->table[index] = IRTE_ALLOCATED; 3455 } 3456 3457 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3458 { 3459 struct irte_ga *ptr = (struct irte_ga *)table->table; 3460 struct irte_ga *irte = &ptr[index]; 3461 3462 memset(&irte->lo.val, 0, sizeof(u64)); 3463 memset(&irte->hi.val, 0, sizeof(u64)); 3464 irte->hi.fields.vector = 0xff; 3465 } 3466 3467 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3468 { 3469 union irte *ptr = (union irte *)table->table; 3470 union irte *irte = &ptr[index]; 3471 3472 return irte->val != 0; 3473 } 3474 3475 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3476 { 3477 struct irte_ga *ptr = (struct irte_ga *)table->table; 3478 struct irte_ga *irte = &ptr[index]; 3479 3480 return irte->hi.fields.vector != 0; 3481 } 3482 3483 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3484 { 3485 table->table[index] = 0; 3486 } 3487 3488 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3489 { 3490 struct irte_ga *ptr = (struct irte_ga *)table->table; 3491 struct irte_ga *irte = &ptr[index]; 3492 3493 memset(&irte->lo.val, 0, sizeof(u64)); 3494 memset(&irte->hi.val, 0, sizeof(u64)); 3495 } 3496 3497 static int get_devid(struct irq_alloc_info *info) 3498 { 3499 int devid = -1; 3500 3501 switch (info->type) { 3502 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3503 devid = get_ioapic_devid(info->ioapic_id); 3504 break; 3505 case X86_IRQ_ALLOC_TYPE_HPET: 3506 devid = get_hpet_devid(info->hpet_id); 3507 break; 3508 case X86_IRQ_ALLOC_TYPE_MSI: 3509 case X86_IRQ_ALLOC_TYPE_MSIX: 3510 devid = get_device_id(&info->msi_dev->dev); 3511 break; 3512 default: 3513 BUG_ON(1); 3514 break; 3515 } 3516 3517 return devid; 3518 } 3519 3520 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info) 3521 { 3522 struct amd_iommu *iommu; 3523 int devid; 3524 3525 if (!info) 3526 return NULL; 3527 3528 devid = get_devid(info); 3529 if (devid >= 0) { 3530 iommu = amd_iommu_rlookup_table[devid]; 3531 if (iommu) 3532 return iommu->ir_domain; 3533 } 3534 3535 return NULL; 3536 } 3537 3538 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info) 3539 { 3540 struct amd_iommu *iommu; 3541 int devid; 3542 3543 if (!info) 3544 return NULL; 3545 3546 switch (info->type) { 3547 case X86_IRQ_ALLOC_TYPE_MSI: 3548 case X86_IRQ_ALLOC_TYPE_MSIX: 3549 devid = get_device_id(&info->msi_dev->dev); 3550 if (devid < 0) 3551 return NULL; 3552 3553 iommu = amd_iommu_rlookup_table[devid]; 3554 if (iommu) 3555 return iommu->msi_domain; 3556 break; 3557 default: 3558 break; 3559 } 3560 3561 return NULL; 3562 } 3563 3564 struct irq_remap_ops amd_iommu_irq_ops = { 3565 .prepare = amd_iommu_prepare, 3566 .enable = amd_iommu_enable, 3567 .disable = amd_iommu_disable, 3568 .reenable = amd_iommu_reenable, 3569 .enable_faulting = amd_iommu_enable_faulting, 3570 .get_ir_irq_domain = get_ir_irq_domain, 3571 .get_irq_domain = get_irq_domain, 3572 }; 3573 3574 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3575 struct irq_cfg *irq_cfg, 3576 struct irq_alloc_info *info, 3577 int devid, int index, int sub_handle) 3578 { 3579 struct irq_2_irte *irte_info = &data->irq_2_irte; 3580 struct msi_msg *msg = &data->msi_entry; 3581 struct IO_APIC_route_entry *entry; 3582 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 3583 3584 if (!iommu) 3585 return; 3586 3587 data->irq_2_irte.devid = devid; 3588 data->irq_2_irte.index = index + sub_handle; 3589 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode, 3590 apic->irq_dest_mode, irq_cfg->vector, 3591 irq_cfg->dest_apicid, devid); 3592 3593 switch (info->type) { 3594 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3595 /* Setup IOAPIC entry */ 3596 entry = info->ioapic_entry; 3597 info->ioapic_entry = NULL; 3598 memset(entry, 0, sizeof(*entry)); 3599 entry->vector = index; 3600 entry->mask = 0; 3601 entry->trigger = info->ioapic_trigger; 3602 entry->polarity = info->ioapic_polarity; 3603 /* Mask level triggered irqs. */ 3604 if (info->ioapic_trigger) 3605 entry->mask = 1; 3606 break; 3607 3608 case X86_IRQ_ALLOC_TYPE_HPET: 3609 case X86_IRQ_ALLOC_TYPE_MSI: 3610 case X86_IRQ_ALLOC_TYPE_MSIX: 3611 msg->address_hi = MSI_ADDR_BASE_HI; 3612 msg->address_lo = MSI_ADDR_BASE_LO; 3613 msg->data = irte_info->index; 3614 break; 3615 3616 default: 3617 BUG_ON(1); 3618 break; 3619 } 3620 } 3621 3622 struct amd_irte_ops irte_32_ops = { 3623 .prepare = irte_prepare, 3624 .activate = irte_activate, 3625 .deactivate = irte_deactivate, 3626 .set_affinity = irte_set_affinity, 3627 .set_allocated = irte_set_allocated, 3628 .is_allocated = irte_is_allocated, 3629 .clear_allocated = irte_clear_allocated, 3630 }; 3631 3632 struct amd_irte_ops irte_128_ops = { 3633 .prepare = irte_ga_prepare, 3634 .activate = irte_ga_activate, 3635 .deactivate = irte_ga_deactivate, 3636 .set_affinity = irte_ga_set_affinity, 3637 .set_allocated = irte_ga_set_allocated, 3638 .is_allocated = irte_ga_is_allocated, 3639 .clear_allocated = irte_ga_clear_allocated, 3640 }; 3641 3642 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3643 unsigned int nr_irqs, void *arg) 3644 { 3645 struct irq_alloc_info *info = arg; 3646 struct irq_data *irq_data; 3647 struct amd_ir_data *data = NULL; 3648 struct irq_cfg *cfg; 3649 int i, ret, devid; 3650 int index; 3651 3652 if (!info) 3653 return -EINVAL; 3654 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI && 3655 info->type != X86_IRQ_ALLOC_TYPE_MSIX) 3656 return -EINVAL; 3657 3658 /* 3659 * With IRQ remapping enabled, don't need contiguous CPU vectors 3660 * to support multiple MSI interrupts. 3661 */ 3662 if (info->type == X86_IRQ_ALLOC_TYPE_MSI) 3663 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 3664 3665 devid = get_devid(info); 3666 if (devid < 0) 3667 return -EINVAL; 3668 3669 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3670 if (ret < 0) 3671 return ret; 3672 3673 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3674 struct irq_remap_table *table; 3675 struct amd_iommu *iommu; 3676 3677 table = alloc_irq_table(devid, NULL); 3678 if (table) { 3679 if (!table->min_index) { 3680 /* 3681 * Keep the first 32 indexes free for IOAPIC 3682 * interrupts. 3683 */ 3684 table->min_index = 32; 3685 iommu = amd_iommu_rlookup_table[devid]; 3686 for (i = 0; i < 32; ++i) 3687 iommu->irte_ops->set_allocated(table, i); 3688 } 3689 WARN_ON(table->min_index != 32); 3690 index = info->ioapic_pin; 3691 } else { 3692 index = -ENOMEM; 3693 } 3694 } else if (info->type == X86_IRQ_ALLOC_TYPE_MSI || 3695 info->type == X86_IRQ_ALLOC_TYPE_MSIX) { 3696 bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI); 3697 3698 index = alloc_irq_index(devid, nr_irqs, align, info->msi_dev); 3699 } else { 3700 index = alloc_irq_index(devid, nr_irqs, false, NULL); 3701 } 3702 3703 if (index < 0) { 3704 pr_warn("Failed to allocate IRTE\n"); 3705 ret = index; 3706 goto out_free_parent; 3707 } 3708 3709 for (i = 0; i < nr_irqs; i++) { 3710 irq_data = irq_domain_get_irq_data(domain, virq + i); 3711 cfg = irqd_cfg(irq_data); 3712 if (!irq_data || !cfg) { 3713 ret = -EINVAL; 3714 goto out_free_data; 3715 } 3716 3717 ret = -ENOMEM; 3718 data = kzalloc(sizeof(*data), GFP_KERNEL); 3719 if (!data) 3720 goto out_free_data; 3721 3722 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3723 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3724 else 3725 data->entry = kzalloc(sizeof(struct irte_ga), 3726 GFP_KERNEL); 3727 if (!data->entry) { 3728 kfree(data); 3729 goto out_free_data; 3730 } 3731 3732 irq_data->hwirq = (devid << 16) + i; 3733 irq_data->chip_data = data; 3734 irq_data->chip = &amd_ir_chip; 3735 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3736 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3737 } 3738 3739 return 0; 3740 3741 out_free_data: 3742 for (i--; i >= 0; i--) { 3743 irq_data = irq_domain_get_irq_data(domain, virq + i); 3744 if (irq_data) 3745 kfree(irq_data->chip_data); 3746 } 3747 for (i = 0; i < nr_irqs; i++) 3748 free_irte(devid, index + i); 3749 out_free_parent: 3750 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3751 return ret; 3752 } 3753 3754 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3755 unsigned int nr_irqs) 3756 { 3757 struct irq_2_irte *irte_info; 3758 struct irq_data *irq_data; 3759 struct amd_ir_data *data; 3760 int i; 3761 3762 for (i = 0; i < nr_irqs; i++) { 3763 irq_data = irq_domain_get_irq_data(domain, virq + i); 3764 if (irq_data && irq_data->chip_data) { 3765 data = irq_data->chip_data; 3766 irte_info = &data->irq_2_irte; 3767 free_irte(irte_info->devid, irte_info->index); 3768 kfree(data->entry); 3769 kfree(data); 3770 } 3771 } 3772 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3773 } 3774 3775 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3776 struct amd_ir_data *ir_data, 3777 struct irq_2_irte *irte_info, 3778 struct irq_cfg *cfg); 3779 3780 static int irq_remapping_activate(struct irq_domain *domain, 3781 struct irq_data *irq_data, bool reserve) 3782 { 3783 struct amd_ir_data *data = irq_data->chip_data; 3784 struct irq_2_irte *irte_info = &data->irq_2_irte; 3785 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3786 struct irq_cfg *cfg = irqd_cfg(irq_data); 3787 3788 if (!iommu) 3789 return 0; 3790 3791 iommu->irte_ops->activate(data->entry, irte_info->devid, 3792 irte_info->index); 3793 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3794 return 0; 3795 } 3796 3797 static void irq_remapping_deactivate(struct irq_domain *domain, 3798 struct irq_data *irq_data) 3799 { 3800 struct amd_ir_data *data = irq_data->chip_data; 3801 struct irq_2_irte *irte_info = &data->irq_2_irte; 3802 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3803 3804 if (iommu) 3805 iommu->irte_ops->deactivate(data->entry, irte_info->devid, 3806 irte_info->index); 3807 } 3808 3809 static const struct irq_domain_ops amd_ir_domain_ops = { 3810 .alloc = irq_remapping_alloc, 3811 .free = irq_remapping_free, 3812 .activate = irq_remapping_activate, 3813 .deactivate = irq_remapping_deactivate, 3814 }; 3815 3816 int amd_iommu_activate_guest_mode(void *data) 3817 { 3818 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3819 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3820 3821 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3822 !entry || entry->lo.fields_vapic.guest_mode) 3823 return 0; 3824 3825 entry->lo.val = 0; 3826 entry->hi.val = 0; 3827 3828 entry->lo.fields_vapic.guest_mode = 1; 3829 entry->lo.fields_vapic.ga_log_intr = 1; 3830 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3831 entry->hi.fields.vector = ir_data->ga_vector; 3832 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3833 3834 return modify_irte_ga(ir_data->irq_2_irte.devid, 3835 ir_data->irq_2_irte.index, entry, ir_data); 3836 } 3837 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3838 3839 int amd_iommu_deactivate_guest_mode(void *data) 3840 { 3841 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3842 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3843 struct irq_cfg *cfg = ir_data->cfg; 3844 3845 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3846 !entry || !entry->lo.fields_vapic.guest_mode) 3847 return 0; 3848 3849 entry->lo.val = 0; 3850 entry->hi.val = 0; 3851 3852 entry->lo.fields_remap.dm = apic->irq_dest_mode; 3853 entry->lo.fields_remap.int_type = apic->irq_delivery_mode; 3854 entry->hi.fields.vector = cfg->vector; 3855 entry->lo.fields_remap.destination = 3856 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3857 entry->hi.fields.destination = 3858 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3859 3860 return modify_irte_ga(ir_data->irq_2_irte.devid, 3861 ir_data->irq_2_irte.index, entry, ir_data); 3862 } 3863 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3864 3865 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3866 { 3867 int ret; 3868 struct amd_iommu *iommu; 3869 struct amd_iommu_pi_data *pi_data = vcpu_info; 3870 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3871 struct amd_ir_data *ir_data = data->chip_data; 3872 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3873 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid); 3874 3875 /* Note: 3876 * This device has never been set up for guest mode. 3877 * we should not modify the IRTE 3878 */ 3879 if (!dev_data || !dev_data->use_vapic) 3880 return 0; 3881 3882 ir_data->cfg = irqd_cfg(data); 3883 pi_data->ir_data = ir_data; 3884 3885 /* Note: 3886 * SVM tries to set up for VAPIC mode, but we are in 3887 * legacy mode. So, we force legacy mode instead. 3888 */ 3889 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3890 pr_debug("%s: Fall back to using intr legacy remap\n", 3891 __func__); 3892 pi_data->is_guest_mode = false; 3893 } 3894 3895 iommu = amd_iommu_rlookup_table[irte_info->devid]; 3896 if (iommu == NULL) 3897 return -EINVAL; 3898 3899 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3900 if (pi_data->is_guest_mode) { 3901 ir_data->ga_root_ptr = (pi_data->base >> 12); 3902 ir_data->ga_vector = vcpu_pi_info->vector; 3903 ir_data->ga_tag = pi_data->ga_tag; 3904 ret = amd_iommu_activate_guest_mode(ir_data); 3905 if (!ret) 3906 ir_data->cached_ga_tag = pi_data->ga_tag; 3907 } else { 3908 ret = amd_iommu_deactivate_guest_mode(ir_data); 3909 3910 /* 3911 * This communicates the ga_tag back to the caller 3912 * so that it can do all the necessary clean up. 3913 */ 3914 if (!ret) 3915 ir_data->cached_ga_tag = 0; 3916 } 3917 3918 return ret; 3919 } 3920 3921 3922 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3923 struct amd_ir_data *ir_data, 3924 struct irq_2_irte *irte_info, 3925 struct irq_cfg *cfg) 3926 { 3927 3928 /* 3929 * Atomically updates the IRTE with the new destination, vector 3930 * and flushes the interrupt entry cache. 3931 */ 3932 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid, 3933 irte_info->index, cfg->vector, 3934 cfg->dest_apicid); 3935 } 3936 3937 static int amd_ir_set_affinity(struct irq_data *data, 3938 const struct cpumask *mask, bool force) 3939 { 3940 struct amd_ir_data *ir_data = data->chip_data; 3941 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3942 struct irq_cfg *cfg = irqd_cfg(data); 3943 struct irq_data *parent = data->parent_data; 3944 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3945 int ret; 3946 3947 if (!iommu) 3948 return -ENODEV; 3949 3950 ret = parent->chip->irq_set_affinity(parent, mask, force); 3951 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3952 return ret; 3953 3954 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3955 /* 3956 * After this point, all the interrupts will start arriving 3957 * at the new destination. So, time to cleanup the previous 3958 * vector allocation. 3959 */ 3960 send_cleanup_vector(cfg); 3961 3962 return IRQ_SET_MASK_OK_DONE; 3963 } 3964 3965 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3966 { 3967 struct amd_ir_data *ir_data = irq_data->chip_data; 3968 3969 *msg = ir_data->msi_entry; 3970 } 3971 3972 static struct irq_chip amd_ir_chip = { 3973 .name = "AMD-IR", 3974 .irq_ack = apic_ack_irq, 3975 .irq_set_affinity = amd_ir_set_affinity, 3976 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3977 .irq_compose_msi_msg = ir_compose_msi_msg, 3978 }; 3979 3980 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3981 { 3982 struct fwnode_handle *fn; 3983 3984 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3985 if (!fn) 3986 return -ENOMEM; 3987 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu); 3988 irq_domain_free_fwnode(fn); 3989 if (!iommu->ir_domain) 3990 return -ENOMEM; 3991 3992 iommu->ir_domain->parent = arch_get_ir_parent_domain(); 3993 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, 3994 "AMD-IR-MSI", 3995 iommu->index); 3996 return 0; 3997 } 3998 3999 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 4000 { 4001 unsigned long flags; 4002 struct amd_iommu *iommu; 4003 struct irq_remap_table *table; 4004 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 4005 int devid = ir_data->irq_2_irte.devid; 4006 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 4007 struct irte_ga *ref = (struct irte_ga *) ir_data->ref; 4008 4009 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 4010 !ref || !entry || !entry->lo.fields_vapic.guest_mode) 4011 return 0; 4012 4013 iommu = amd_iommu_rlookup_table[devid]; 4014 if (!iommu) 4015 return -ENODEV; 4016 4017 table = get_irq_table(devid); 4018 if (!table) 4019 return -ENODEV; 4020 4021 raw_spin_lock_irqsave(&table->lock, flags); 4022 4023 if (ref->lo.fields_vapic.guest_mode) { 4024 if (cpu >= 0) { 4025 ref->lo.fields_vapic.destination = 4026 APICID_TO_IRTE_DEST_LO(cpu); 4027 ref->hi.fields.destination = 4028 APICID_TO_IRTE_DEST_HI(cpu); 4029 } 4030 ref->lo.fields_vapic.is_run = is_run; 4031 barrier(); 4032 } 4033 4034 raw_spin_unlock_irqrestore(&table->lock, flags); 4035 4036 iommu_flush_irt(iommu, devid); 4037 iommu_completion_wait(iommu); 4038 return 0; 4039 } 4040 EXPORT_SYMBOL(amd_iommu_update_ga); 4041 #endif 4042