1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/pci-ats.h> 15 #include <linux/bitmap.h> 16 #include <linux/slab.h> 17 #include <linux/debugfs.h> 18 #include <linux/scatterlist.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/dma-direct.h> 21 #include <linux/iommu-helper.h> 22 #include <linux/delay.h> 23 #include <linux/amd-iommu.h> 24 #include <linux/notifier.h> 25 #include <linux/export.h> 26 #include <linux/irq.h> 27 #include <linux/msi.h> 28 #include <linux/irqdomain.h> 29 #include <linux/percpu.h> 30 #include <linux/io-pgtable.h> 31 #include <linux/cc_platform.h> 32 #include <asm/irq_remapping.h> 33 #include <asm/io_apic.h> 34 #include <asm/apic.h> 35 #include <asm/hw_irq.h> 36 #include <asm/proto.h> 37 #include <asm/iommu.h> 38 #include <asm/gart.h> 39 #include <asm/dma.h> 40 #include <uapi/linux/iommufd.h> 41 42 #include "amd_iommu.h" 43 #include "../dma-iommu.h" 44 #include "../irq_remapping.h" 45 #include "../iommu-pages.h" 46 47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 48 49 /* Reserved IOVA ranges */ 50 #define MSI_RANGE_START (0xfee00000) 51 #define MSI_RANGE_END (0xfeefffff) 52 #define HT_RANGE_START (0xfd00000000ULL) 53 #define HT_RANGE_END (0xffffffffffULL) 54 55 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL 56 57 static DEFINE_SPINLOCK(pd_bitmap_lock); 58 59 LIST_HEAD(ioapic_map); 60 LIST_HEAD(hpet_map); 61 LIST_HEAD(acpihid_map); 62 63 const struct iommu_ops amd_iommu_ops; 64 static const struct iommu_dirty_ops amd_dirty_ops; 65 66 int amd_iommu_max_glx_val = -1; 67 68 /* 69 * general struct to manage commands send to an IOMMU 70 */ 71 struct iommu_cmd { 72 u32 data[4]; 73 }; 74 75 struct kmem_cache *amd_iommu_irq_cache; 76 77 static void detach_device(struct device *dev); 78 79 static void set_dte_entry(struct amd_iommu *iommu, 80 struct iommu_dev_data *dev_data); 81 82 /**************************************************************************** 83 * 84 * Helper functions 85 * 86 ****************************************************************************/ 87 88 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom) 89 { 90 return (pdom && (pdom->pd_mode == PD_MODE_V2)); 91 } 92 93 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom) 94 { 95 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY); 96 } 97 98 /* 99 * We cannot support PASID w/ existing v1 page table in the same domain 100 * since it will be nested. However, existing domain w/ v2 page table 101 * or passthrough mode can be used for PASID. 102 */ 103 static inline bool pdom_is_sva_capable(struct protection_domain *pdom) 104 { 105 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom); 106 } 107 108 static inline int get_acpihid_device_id(struct device *dev, 109 struct acpihid_map_entry **entry) 110 { 111 struct acpi_device *adev = ACPI_COMPANION(dev); 112 struct acpihid_map_entry *p; 113 114 if (!adev) 115 return -ENODEV; 116 117 list_for_each_entry(p, &acpihid_map, list) { 118 if (acpi_dev_hid_uid_match(adev, p->hid, 119 p->uid[0] ? p->uid : NULL)) { 120 if (entry) 121 *entry = p; 122 return p->devid; 123 } 124 } 125 return -EINVAL; 126 } 127 128 static inline int get_device_sbdf_id(struct device *dev) 129 { 130 int sbdf; 131 132 if (dev_is_pci(dev)) 133 sbdf = get_pci_sbdf_id(to_pci_dev(dev)); 134 else 135 sbdf = get_acpihid_device_id(dev, NULL); 136 137 return sbdf; 138 } 139 140 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu) 141 { 142 struct dev_table_entry *dev_table; 143 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 144 145 BUG_ON(pci_seg == NULL); 146 dev_table = pci_seg->dev_table; 147 BUG_ON(dev_table == NULL); 148 149 return dev_table; 150 } 151 152 static inline u16 get_device_segment(struct device *dev) 153 { 154 u16 seg; 155 156 if (dev_is_pci(dev)) { 157 struct pci_dev *pdev = to_pci_dev(dev); 158 159 seg = pci_domain_nr(pdev->bus); 160 } else { 161 u32 devid = get_acpihid_device_id(dev, NULL); 162 163 seg = PCI_SBDF_TO_SEGID(devid); 164 } 165 166 return seg; 167 } 168 169 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */ 170 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid) 171 { 172 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 173 174 pci_seg->rlookup_table[devid] = iommu; 175 } 176 177 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid) 178 { 179 struct amd_iommu_pci_seg *pci_seg; 180 181 for_each_pci_segment(pci_seg) { 182 if (pci_seg->id == seg) 183 return pci_seg->rlookup_table[devid]; 184 } 185 return NULL; 186 } 187 188 static struct amd_iommu *rlookup_amd_iommu(struct device *dev) 189 { 190 u16 seg = get_device_segment(dev); 191 int devid = get_device_sbdf_id(dev); 192 193 if (devid < 0) 194 return NULL; 195 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid)); 196 } 197 198 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid) 199 { 200 struct iommu_dev_data *dev_data; 201 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 202 203 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 204 if (!dev_data) 205 return NULL; 206 207 spin_lock_init(&dev_data->lock); 208 dev_data->devid = devid; 209 ratelimit_default_init(&dev_data->rs); 210 211 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list); 212 return dev_data; 213 } 214 215 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid) 216 { 217 struct iommu_dev_data *dev_data; 218 struct llist_node *node; 219 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 220 221 if (llist_empty(&pci_seg->dev_data_list)) 222 return NULL; 223 224 node = pci_seg->dev_data_list.first; 225 llist_for_each_entry(dev_data, node, dev_data_list) { 226 if (dev_data->devid == devid) 227 return dev_data; 228 } 229 230 return NULL; 231 } 232 233 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 234 { 235 struct amd_iommu *iommu; 236 struct dev_table_entry *dev_table; 237 u16 devid = pci_dev_id(pdev); 238 239 if (devid == alias) 240 return 0; 241 242 iommu = rlookup_amd_iommu(&pdev->dev); 243 if (!iommu) 244 return 0; 245 246 amd_iommu_set_rlookup_table(iommu, alias); 247 dev_table = get_dev_table(iommu); 248 memcpy(dev_table[alias].data, 249 dev_table[devid].data, 250 sizeof(dev_table[alias].data)); 251 252 return 0; 253 } 254 255 static void clone_aliases(struct amd_iommu *iommu, struct device *dev) 256 { 257 struct pci_dev *pdev; 258 259 if (!dev_is_pci(dev)) 260 return; 261 pdev = to_pci_dev(dev); 262 263 /* 264 * The IVRS alias stored in the alias table may not be 265 * part of the PCI DMA aliases if it's bus differs 266 * from the original device. 267 */ 268 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL); 269 270 pci_for_each_dma_alias(pdev, clone_alias, NULL); 271 } 272 273 static void setup_aliases(struct amd_iommu *iommu, struct device *dev) 274 { 275 struct pci_dev *pdev = to_pci_dev(dev); 276 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 277 u16 ivrs_alias; 278 279 /* For ACPI HID devices, there are no aliases */ 280 if (!dev_is_pci(dev)) 281 return; 282 283 /* 284 * Add the IVRS alias to the pci aliases if it is on the same 285 * bus. The IVRS table may know about a quirk that we don't. 286 */ 287 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)]; 288 if (ivrs_alias != pci_dev_id(pdev) && 289 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 290 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 291 292 clone_aliases(iommu, dev); 293 } 294 295 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid) 296 { 297 struct iommu_dev_data *dev_data; 298 299 dev_data = search_dev_data(iommu, devid); 300 301 if (dev_data == NULL) { 302 dev_data = alloc_dev_data(iommu, devid); 303 if (!dev_data) 304 return NULL; 305 306 if (translation_pre_enabled(iommu)) 307 dev_data->defer_attach = true; 308 } 309 310 return dev_data; 311 } 312 313 /* 314 * Find or create an IOMMU group for a acpihid device. 315 */ 316 static struct iommu_group *acpihid_device_group(struct device *dev) 317 { 318 struct acpihid_map_entry *p, *entry = NULL; 319 int devid; 320 321 devid = get_acpihid_device_id(dev, &entry); 322 if (devid < 0) 323 return ERR_PTR(devid); 324 325 list_for_each_entry(p, &acpihid_map, list) { 326 if ((devid == p->devid) && p->group) 327 entry->group = p->group; 328 } 329 330 if (!entry->group) 331 entry->group = generic_device_group(dev); 332 else 333 iommu_group_ref_get(entry->group); 334 335 return entry->group; 336 } 337 338 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data) 339 { 340 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP); 341 } 342 343 static u32 pdev_get_caps(struct pci_dev *pdev) 344 { 345 int features; 346 u32 flags = 0; 347 348 if (pci_ats_supported(pdev)) 349 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 350 351 if (pci_pri_supported(pdev)) 352 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 353 354 features = pci_pasid_features(pdev); 355 if (features >= 0) { 356 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 357 358 if (features & PCI_PASID_CAP_EXEC) 359 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 360 361 if (features & PCI_PASID_CAP_PRIV) 362 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 363 } 364 365 return flags; 366 } 367 368 static inline int pdev_enable_cap_ats(struct pci_dev *pdev) 369 { 370 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 371 int ret = -EINVAL; 372 373 if (dev_data->ats_enabled) 374 return 0; 375 376 if (amd_iommu_iotlb_sup && 377 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) { 378 ret = pci_enable_ats(pdev, PAGE_SHIFT); 379 if (!ret) { 380 dev_data->ats_enabled = 1; 381 dev_data->ats_qdep = pci_ats_queue_depth(pdev); 382 } 383 } 384 385 return ret; 386 } 387 388 static inline void pdev_disable_cap_ats(struct pci_dev *pdev) 389 { 390 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 391 392 if (dev_data->ats_enabled) { 393 pci_disable_ats(pdev); 394 dev_data->ats_enabled = 0; 395 } 396 } 397 398 static inline int pdev_enable_cap_pri(struct pci_dev *pdev) 399 { 400 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 401 int ret = -EINVAL; 402 403 if (dev_data->pri_enabled) 404 return 0; 405 406 if (!dev_data->ats_enabled) 407 return 0; 408 409 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) { 410 /* 411 * First reset the PRI state of the device. 412 * FIXME: Hardcode number of outstanding requests for now 413 */ 414 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) { 415 dev_data->pri_enabled = 1; 416 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 417 418 ret = 0; 419 } 420 } 421 422 return ret; 423 } 424 425 static inline void pdev_disable_cap_pri(struct pci_dev *pdev) 426 { 427 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 428 429 if (dev_data->pri_enabled) { 430 pci_disable_pri(pdev); 431 dev_data->pri_enabled = 0; 432 } 433 } 434 435 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev) 436 { 437 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 438 int ret = -EINVAL; 439 440 if (dev_data->pasid_enabled) 441 return 0; 442 443 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) { 444 /* Only allow access to user-accessible pages */ 445 ret = pci_enable_pasid(pdev, 0); 446 if (!ret) 447 dev_data->pasid_enabled = 1; 448 } 449 450 return ret; 451 } 452 453 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev) 454 { 455 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 456 457 if (dev_data->pasid_enabled) { 458 pci_disable_pasid(pdev); 459 dev_data->pasid_enabled = 0; 460 } 461 } 462 463 static void pdev_enable_caps(struct pci_dev *pdev) 464 { 465 pdev_enable_cap_ats(pdev); 466 pdev_enable_cap_pasid(pdev); 467 pdev_enable_cap_pri(pdev); 468 } 469 470 static void pdev_disable_caps(struct pci_dev *pdev) 471 { 472 pdev_disable_cap_ats(pdev); 473 pdev_disable_cap_pasid(pdev); 474 pdev_disable_cap_pri(pdev); 475 } 476 477 /* 478 * This function checks if the driver got a valid device from the caller to 479 * avoid dereferencing invalid pointers. 480 */ 481 static bool check_device(struct device *dev) 482 { 483 struct amd_iommu_pci_seg *pci_seg; 484 struct amd_iommu *iommu; 485 int devid, sbdf; 486 487 if (!dev) 488 return false; 489 490 sbdf = get_device_sbdf_id(dev); 491 if (sbdf < 0) 492 return false; 493 devid = PCI_SBDF_TO_DEVID(sbdf); 494 495 iommu = rlookup_amd_iommu(dev); 496 if (!iommu) 497 return false; 498 499 /* Out of our scope? */ 500 pci_seg = iommu->pci_seg; 501 if (devid > pci_seg->last_bdf) 502 return false; 503 504 return true; 505 } 506 507 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev) 508 { 509 struct iommu_dev_data *dev_data; 510 int devid, sbdf; 511 512 if (dev_iommu_priv_get(dev)) 513 return 0; 514 515 sbdf = get_device_sbdf_id(dev); 516 if (sbdf < 0) 517 return sbdf; 518 519 devid = PCI_SBDF_TO_DEVID(sbdf); 520 dev_data = find_dev_data(iommu, devid); 521 if (!dev_data) 522 return -ENOMEM; 523 524 dev_data->dev = dev; 525 setup_aliases(iommu, dev); 526 527 /* 528 * By default we use passthrough mode for IOMMUv2 capable device. 529 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 530 * invalid address), we ignore the capability for the device so 531 * it'll be forced to go into translation mode. 532 */ 533 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 534 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) { 535 dev_data->flags = pdev_get_caps(to_pci_dev(dev)); 536 } 537 538 dev_iommu_priv_set(dev, dev_data); 539 540 return 0; 541 } 542 543 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev) 544 { 545 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 546 struct dev_table_entry *dev_table = get_dev_table(iommu); 547 int devid, sbdf; 548 549 sbdf = get_device_sbdf_id(dev); 550 if (sbdf < 0) 551 return; 552 553 devid = PCI_SBDF_TO_DEVID(sbdf); 554 pci_seg->rlookup_table[devid] = NULL; 555 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry)); 556 557 setup_aliases(iommu, dev); 558 } 559 560 static void amd_iommu_uninit_device(struct device *dev) 561 { 562 struct iommu_dev_data *dev_data; 563 564 dev_data = dev_iommu_priv_get(dev); 565 if (!dev_data) 566 return; 567 568 if (dev_data->domain) 569 detach_device(dev); 570 571 /* 572 * We keep dev_data around for unplugged devices and reuse it when the 573 * device is re-plugged - not doing so would introduce a ton of races. 574 */ 575 } 576 577 /**************************************************************************** 578 * 579 * Interrupt handling functions 580 * 581 ****************************************************************************/ 582 583 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid) 584 { 585 int i; 586 struct dev_table_entry *dev_table = get_dev_table(iommu); 587 588 for (i = 0; i < 4; ++i) 589 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]); 590 } 591 592 static void dump_command(unsigned long phys_addr) 593 { 594 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 595 int i; 596 597 for (i = 0; i < 4; ++i) 598 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 599 } 600 601 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event) 602 { 603 struct iommu_dev_data *dev_data = NULL; 604 int devid, vmg_tag, flags; 605 struct pci_dev *pdev; 606 u64 spa; 607 608 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 609 vmg_tag = (event[1]) & 0xFFFF; 610 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 611 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); 612 613 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 614 devid & 0xff); 615 if (pdev) 616 dev_data = dev_iommu_priv_get(&pdev->dev); 617 618 if (dev_data) { 619 if (__ratelimit(&dev_data->rs)) { 620 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 621 vmg_tag, spa, flags); 622 } 623 } else { 624 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 625 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 626 vmg_tag, spa, flags); 627 } 628 629 if (pdev) 630 pci_dev_put(pdev); 631 } 632 633 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event) 634 { 635 struct iommu_dev_data *dev_data = NULL; 636 int devid, flags_rmp, vmg_tag, flags; 637 struct pci_dev *pdev; 638 u64 gpa; 639 640 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 641 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; 642 vmg_tag = (event[1]) & 0xFFFF; 643 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 644 gpa = ((u64)event[3] << 32) | event[2]; 645 646 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 647 devid & 0xff); 648 if (pdev) 649 dev_data = dev_iommu_priv_get(&pdev->dev); 650 651 if (dev_data) { 652 if (__ratelimit(&dev_data->rs)) { 653 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 654 vmg_tag, gpa, flags_rmp, flags); 655 } 656 } else { 657 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 658 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 659 vmg_tag, gpa, flags_rmp, flags); 660 } 661 662 if (pdev) 663 pci_dev_put(pdev); 664 } 665 666 #define IS_IOMMU_MEM_TRANSACTION(flags) \ 667 (((flags) & EVENT_FLAG_I) == 0) 668 669 #define IS_WRITE_REQUEST(flags) \ 670 ((flags) & EVENT_FLAG_RW) 671 672 static void amd_iommu_report_page_fault(struct amd_iommu *iommu, 673 u16 devid, u16 domain_id, 674 u64 address, int flags) 675 { 676 struct iommu_dev_data *dev_data = NULL; 677 struct pci_dev *pdev; 678 679 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 680 devid & 0xff); 681 if (pdev) 682 dev_data = dev_iommu_priv_get(&pdev->dev); 683 684 if (dev_data) { 685 /* 686 * If this is a DMA fault (for which the I(nterrupt) 687 * bit will be unset), allow report_iommu_fault() to 688 * prevent logging it. 689 */ 690 if (IS_IOMMU_MEM_TRANSACTION(flags)) { 691 /* Device not attached to domain properly */ 692 if (dev_data->domain == NULL) { 693 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n"); 694 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n", 695 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), 696 PCI_FUNC(devid), domain_id); 697 goto out; 698 } 699 700 if (!report_iommu_fault(&dev_data->domain->domain, 701 &pdev->dev, address, 702 IS_WRITE_REQUEST(flags) ? 703 IOMMU_FAULT_WRITE : 704 IOMMU_FAULT_READ)) 705 goto out; 706 } 707 708 if (__ratelimit(&dev_data->rs)) { 709 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 710 domain_id, address, flags); 711 } 712 } else { 713 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 714 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 715 domain_id, address, flags); 716 } 717 718 out: 719 if (pdev) 720 pci_dev_put(pdev); 721 } 722 723 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 724 { 725 struct device *dev = iommu->iommu.dev; 726 int type, devid, flags, tag; 727 volatile u32 *event = __evt; 728 int count = 0; 729 u64 address; 730 u32 pasid; 731 732 retry: 733 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 734 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 735 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 736 (event[1] & EVENT_DOMID_MASK_LO); 737 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 738 address = (u64)(((u64)event[3]) << 32) | event[2]; 739 740 if (type == 0) { 741 /* Did we hit the erratum? */ 742 if (++count == LOOP_TIMEOUT) { 743 pr_err("No event written to event log\n"); 744 return; 745 } 746 udelay(1); 747 goto retry; 748 } 749 750 if (type == EVENT_TYPE_IO_FAULT) { 751 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags); 752 return; 753 } 754 755 switch (type) { 756 case EVENT_TYPE_ILL_DEV: 757 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 758 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 759 pasid, address, flags); 760 dump_dte_entry(iommu, devid); 761 break; 762 case EVENT_TYPE_DEV_TAB_ERR: 763 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x " 764 "address=0x%llx flags=0x%04x]\n", 765 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 766 address, flags); 767 break; 768 case EVENT_TYPE_PAGE_TAB_ERR: 769 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 770 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 771 pasid, address, flags); 772 break; 773 case EVENT_TYPE_ILL_CMD: 774 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 775 dump_command(address); 776 break; 777 case EVENT_TYPE_CMD_HARD_ERR: 778 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 779 address, flags); 780 break; 781 case EVENT_TYPE_IOTLB_INV_TO: 782 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n", 783 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 784 address); 785 break; 786 case EVENT_TYPE_INV_DEV_REQ: 787 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 788 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 789 pasid, address, flags); 790 break; 791 case EVENT_TYPE_RMP_FAULT: 792 amd_iommu_report_rmp_fault(iommu, event); 793 break; 794 case EVENT_TYPE_RMP_HW_ERR: 795 amd_iommu_report_rmp_hw_error(iommu, event); 796 break; 797 case EVENT_TYPE_INV_PPR_REQ: 798 pasid = PPR_PASID(*((u64 *)__evt)); 799 tag = event[1] & 0x03FF; 800 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 801 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 802 pasid, address, flags, tag); 803 break; 804 default: 805 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 806 event[0], event[1], event[2], event[3]); 807 } 808 809 /* 810 * To detect the hardware errata 732 we need to clear the 811 * entry back to zero. This issue does not exist on SNP 812 * enabled system. Also this buffer is not writeable on 813 * SNP enabled system. 814 */ 815 if (!amd_iommu_snp_en) 816 memset(__evt, 0, 4 * sizeof(u32)); 817 } 818 819 static void iommu_poll_events(struct amd_iommu *iommu) 820 { 821 u32 head, tail; 822 823 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 824 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 825 826 while (head != tail) { 827 iommu_print_event(iommu, iommu->evt_buf + head); 828 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 829 } 830 831 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 832 } 833 834 #ifdef CONFIG_IRQ_REMAP 835 static int (*iommu_ga_log_notifier)(u32); 836 837 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 838 { 839 iommu_ga_log_notifier = notifier; 840 841 return 0; 842 } 843 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 844 845 static void iommu_poll_ga_log(struct amd_iommu *iommu) 846 { 847 u32 head, tail; 848 849 if (iommu->ga_log == NULL) 850 return; 851 852 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 853 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 854 855 while (head != tail) { 856 volatile u64 *raw; 857 u64 log_entry; 858 859 raw = (u64 *)(iommu->ga_log + head); 860 861 /* Avoid memcpy function-call overhead */ 862 log_entry = *raw; 863 864 /* Update head pointer of hardware ring-buffer */ 865 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 866 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 867 868 /* Handle GA entry */ 869 switch (GA_REQ_TYPE(log_entry)) { 870 case GA_GUEST_NR: 871 if (!iommu_ga_log_notifier) 872 break; 873 874 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 875 __func__, GA_DEVID(log_entry), 876 GA_TAG(log_entry)); 877 878 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 879 pr_err("GA log notifier failed.\n"); 880 break; 881 default: 882 break; 883 } 884 } 885 } 886 887 static void 888 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 889 { 890 if (!irq_remapping_enabled || !dev_is_pci(dev) || 891 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev))) 892 return; 893 894 dev_set_msi_domain(dev, iommu->ir_domain); 895 } 896 897 #else /* CONFIG_IRQ_REMAP */ 898 static inline void 899 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 900 #endif /* !CONFIG_IRQ_REMAP */ 901 902 static void amd_iommu_handle_irq(void *data, const char *evt_type, 903 u32 int_mask, u32 overflow_mask, 904 void (*int_handler)(struct amd_iommu *), 905 void (*overflow_handler)(struct amd_iommu *)) 906 { 907 struct amd_iommu *iommu = (struct amd_iommu *) data; 908 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 909 u32 mask = int_mask | overflow_mask; 910 911 while (status & mask) { 912 /* Enable interrupt sources again */ 913 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET); 914 915 if (int_handler) { 916 pr_devel("Processing IOMMU (ivhd%d) %s Log\n", 917 iommu->index, evt_type); 918 int_handler(iommu); 919 } 920 921 if ((status & overflow_mask) && overflow_handler) 922 overflow_handler(iommu); 923 924 /* 925 * Hardware bug: ERBT1312 926 * When re-enabling interrupt (by writing 1 927 * to clear the bit), the hardware might also try to set 928 * the interrupt bit in the event status register. 929 * In this scenario, the bit will be set, and disable 930 * subsequent interrupts. 931 * 932 * Workaround: The IOMMU driver should read back the 933 * status register and check if the interrupt bits are cleared. 934 * If not, driver will need to go through the interrupt handler 935 * again and re-clear the bits 936 */ 937 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 938 } 939 } 940 941 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data) 942 { 943 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK, 944 MMIO_STATUS_EVT_OVERFLOW_MASK, 945 iommu_poll_events, amd_iommu_restart_event_logging); 946 947 return IRQ_HANDLED; 948 } 949 950 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data) 951 { 952 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK, 953 MMIO_STATUS_PPR_OVERFLOW_MASK, 954 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log); 955 956 return IRQ_HANDLED; 957 } 958 959 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data) 960 { 961 #ifdef CONFIG_IRQ_REMAP 962 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK, 963 MMIO_STATUS_GALOG_OVERFLOW_MASK, 964 iommu_poll_ga_log, amd_iommu_restart_ga_log); 965 #endif 966 967 return IRQ_HANDLED; 968 } 969 970 irqreturn_t amd_iommu_int_thread(int irq, void *data) 971 { 972 amd_iommu_int_thread_evtlog(irq, data); 973 amd_iommu_int_thread_pprlog(irq, data); 974 amd_iommu_int_thread_galog(irq, data); 975 976 return IRQ_HANDLED; 977 } 978 979 irqreturn_t amd_iommu_int_handler(int irq, void *data) 980 { 981 return IRQ_WAKE_THREAD; 982 } 983 984 /**************************************************************************** 985 * 986 * IOMMU command queuing functions 987 * 988 ****************************************************************************/ 989 990 static int wait_on_sem(struct amd_iommu *iommu, u64 data) 991 { 992 int i = 0; 993 994 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { 995 udelay(1); 996 i += 1; 997 } 998 999 if (i == LOOP_TIMEOUT) { 1000 pr_alert("Completion-Wait loop timed out\n"); 1001 return -EIO; 1002 } 1003 1004 return 0; 1005 } 1006 1007 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 1008 struct iommu_cmd *cmd) 1009 { 1010 u8 *target; 1011 u32 tail; 1012 1013 /* Copy command to buffer */ 1014 tail = iommu->cmd_buf_tail; 1015 target = iommu->cmd_buf + tail; 1016 memcpy(target, cmd, sizeof(*cmd)); 1017 1018 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1019 iommu->cmd_buf_tail = tail; 1020 1021 /* Tell the IOMMU about it */ 1022 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 1023 } 1024 1025 static void build_completion_wait(struct iommu_cmd *cmd, 1026 struct amd_iommu *iommu, 1027 u64 data) 1028 { 1029 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); 1030 1031 memset(cmd, 0, sizeof(*cmd)); 1032 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 1033 cmd->data[1] = upper_32_bits(paddr); 1034 cmd->data[2] = lower_32_bits(data); 1035 cmd->data[3] = upper_32_bits(data); 1036 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 1037 } 1038 1039 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 1040 { 1041 memset(cmd, 0, sizeof(*cmd)); 1042 cmd->data[0] = devid; 1043 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 1044 } 1045 1046 /* 1047 * Builds an invalidation address which is suitable for one page or multiple 1048 * pages. Sets the size bit (S) as needed is more than one page is flushed. 1049 */ 1050 static inline u64 build_inv_address(u64 address, size_t size) 1051 { 1052 u64 pages, end, msb_diff; 1053 1054 pages = iommu_num_pages(address, size, PAGE_SIZE); 1055 1056 if (pages == 1) 1057 return address & PAGE_MASK; 1058 1059 end = address + size - 1; 1060 1061 /* 1062 * msb_diff would hold the index of the most significant bit that 1063 * flipped between the start and end. 1064 */ 1065 msb_diff = fls64(end ^ address) - 1; 1066 1067 /* 1068 * Bits 63:52 are sign extended. If for some reason bit 51 is different 1069 * between the start and the end, invalidate everything. 1070 */ 1071 if (unlikely(msb_diff > 51)) { 1072 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 1073 } else { 1074 /* 1075 * The msb-bit must be clear on the address. Just set all the 1076 * lower bits. 1077 */ 1078 address |= (1ull << msb_diff) - 1; 1079 } 1080 1081 /* Clear bits 11:0 */ 1082 address &= PAGE_MASK; 1083 1084 /* Set the size bit - we flush more than one 4kb page */ 1085 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; 1086 } 1087 1088 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 1089 size_t size, u16 domid, 1090 ioasid_t pasid, bool gn) 1091 { 1092 u64 inv_address = build_inv_address(address, size); 1093 1094 memset(cmd, 0, sizeof(*cmd)); 1095 1096 cmd->data[1] |= domid; 1097 cmd->data[2] = lower_32_bits(inv_address); 1098 cmd->data[3] = upper_32_bits(inv_address); 1099 /* PDE bit - we want to flush everything, not only the PTEs */ 1100 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1101 if (gn) { 1102 cmd->data[0] |= pasid; 1103 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1104 } 1105 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1106 } 1107 1108 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 1109 u64 address, size_t size, 1110 ioasid_t pasid, bool gn) 1111 { 1112 u64 inv_address = build_inv_address(address, size); 1113 1114 memset(cmd, 0, sizeof(*cmd)); 1115 1116 cmd->data[0] = devid; 1117 cmd->data[0] |= (qdep & 0xff) << 24; 1118 cmd->data[1] = devid; 1119 cmd->data[2] = lower_32_bits(inv_address); 1120 cmd->data[3] = upper_32_bits(inv_address); 1121 if (gn) { 1122 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 1123 cmd->data[1] |= (pasid & 0xff) << 16; 1124 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1125 } 1126 1127 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1128 } 1129 1130 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1131 int status, int tag, u8 gn) 1132 { 1133 memset(cmd, 0, sizeof(*cmd)); 1134 1135 cmd->data[0] = devid; 1136 if (gn) { 1137 cmd->data[1] = pasid; 1138 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 1139 } 1140 cmd->data[3] = tag & 0x1ff; 1141 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 1142 1143 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 1144 } 1145 1146 static void build_inv_all(struct iommu_cmd *cmd) 1147 { 1148 memset(cmd, 0, sizeof(*cmd)); 1149 CMD_SET_TYPE(cmd, CMD_INV_ALL); 1150 } 1151 1152 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 1153 { 1154 memset(cmd, 0, sizeof(*cmd)); 1155 cmd->data[0] = devid; 1156 CMD_SET_TYPE(cmd, CMD_INV_IRT); 1157 } 1158 1159 /* 1160 * Writes the command to the IOMMUs command buffer and informs the 1161 * hardware about the new command. 1162 */ 1163 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 1164 struct iommu_cmd *cmd, 1165 bool sync) 1166 { 1167 unsigned int count = 0; 1168 u32 left, next_tail; 1169 1170 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1171 again: 1172 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1173 1174 if (left <= 0x20) { 1175 /* Skip udelay() the first time around */ 1176 if (count++) { 1177 if (count == LOOP_TIMEOUT) { 1178 pr_err("Command buffer timeout\n"); 1179 return -EIO; 1180 } 1181 1182 udelay(1); 1183 } 1184 1185 /* Update head and recheck remaining space */ 1186 iommu->cmd_buf_head = readl(iommu->mmio_base + 1187 MMIO_CMD_HEAD_OFFSET); 1188 1189 goto again; 1190 } 1191 1192 copy_cmd_to_buffer(iommu, cmd); 1193 1194 /* Do we need to make sure all commands are processed? */ 1195 iommu->need_sync = sync; 1196 1197 return 0; 1198 } 1199 1200 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1201 struct iommu_cmd *cmd, 1202 bool sync) 1203 { 1204 unsigned long flags; 1205 int ret; 1206 1207 raw_spin_lock_irqsave(&iommu->lock, flags); 1208 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1209 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1210 1211 return ret; 1212 } 1213 1214 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1215 { 1216 return iommu_queue_command_sync(iommu, cmd, true); 1217 } 1218 1219 /* 1220 * This function queues a completion wait command into the command 1221 * buffer of an IOMMU 1222 */ 1223 static int iommu_completion_wait(struct amd_iommu *iommu) 1224 { 1225 struct iommu_cmd cmd; 1226 unsigned long flags; 1227 int ret; 1228 u64 data; 1229 1230 if (!iommu->need_sync) 1231 return 0; 1232 1233 data = atomic64_add_return(1, &iommu->cmd_sem_val); 1234 build_completion_wait(&cmd, iommu, data); 1235 1236 raw_spin_lock_irqsave(&iommu->lock, flags); 1237 1238 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1239 if (ret) 1240 goto out_unlock; 1241 1242 ret = wait_on_sem(iommu, data); 1243 1244 out_unlock: 1245 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1246 1247 return ret; 1248 } 1249 1250 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1251 { 1252 struct iommu_cmd cmd; 1253 1254 build_inv_dte(&cmd, devid); 1255 1256 return iommu_queue_command(iommu, &cmd); 1257 } 1258 1259 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1260 { 1261 u32 devid; 1262 u16 last_bdf = iommu->pci_seg->last_bdf; 1263 1264 for (devid = 0; devid <= last_bdf; ++devid) 1265 iommu_flush_dte(iommu, devid); 1266 1267 iommu_completion_wait(iommu); 1268 } 1269 1270 /* 1271 * This function uses heavy locking and may disable irqs for some time. But 1272 * this is no issue because it is only called during resume. 1273 */ 1274 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1275 { 1276 u32 dom_id; 1277 u16 last_bdf = iommu->pci_seg->last_bdf; 1278 1279 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) { 1280 struct iommu_cmd cmd; 1281 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1282 dom_id, IOMMU_NO_PASID, false); 1283 iommu_queue_command(iommu, &cmd); 1284 } 1285 1286 iommu_completion_wait(iommu); 1287 } 1288 1289 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1290 { 1291 struct iommu_cmd cmd; 1292 1293 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1294 dom_id, IOMMU_NO_PASID, false); 1295 iommu_queue_command(iommu, &cmd); 1296 1297 iommu_completion_wait(iommu); 1298 } 1299 1300 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1301 { 1302 struct iommu_cmd cmd; 1303 1304 build_inv_all(&cmd); 1305 1306 iommu_queue_command(iommu, &cmd); 1307 iommu_completion_wait(iommu); 1308 } 1309 1310 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1311 { 1312 struct iommu_cmd cmd; 1313 1314 build_inv_irt(&cmd, devid); 1315 1316 iommu_queue_command(iommu, &cmd); 1317 } 1318 1319 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1320 { 1321 u32 devid; 1322 u16 last_bdf = iommu->pci_seg->last_bdf; 1323 1324 if (iommu->irtcachedis_enabled) 1325 return; 1326 1327 for (devid = 0; devid <= last_bdf; devid++) 1328 iommu_flush_irt(iommu, devid); 1329 1330 iommu_completion_wait(iommu); 1331 } 1332 1333 void amd_iommu_flush_all_caches(struct amd_iommu *iommu) 1334 { 1335 if (check_feature(FEATURE_IA)) { 1336 amd_iommu_flush_all(iommu); 1337 } else { 1338 amd_iommu_flush_dte_all(iommu); 1339 amd_iommu_flush_irt_all(iommu); 1340 amd_iommu_flush_tlb_all(iommu); 1341 } 1342 } 1343 1344 /* 1345 * Command send function for flushing on-device TLB 1346 */ 1347 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address, 1348 size_t size, ioasid_t pasid, bool gn) 1349 { 1350 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 1351 struct iommu_cmd cmd; 1352 int qdep = dev_data->ats_qdep; 1353 1354 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, 1355 size, pasid, gn); 1356 1357 return iommu_queue_command(iommu, &cmd); 1358 } 1359 1360 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1361 { 1362 struct amd_iommu *iommu = data; 1363 1364 return iommu_flush_dte(iommu, alias); 1365 } 1366 1367 /* 1368 * Command send function for invalidating a device table entry 1369 */ 1370 static int device_flush_dte(struct iommu_dev_data *dev_data) 1371 { 1372 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 1373 struct pci_dev *pdev = NULL; 1374 struct amd_iommu_pci_seg *pci_seg; 1375 u16 alias; 1376 int ret; 1377 1378 if (dev_is_pci(dev_data->dev)) 1379 pdev = to_pci_dev(dev_data->dev); 1380 1381 if (pdev) 1382 ret = pci_for_each_dma_alias(pdev, 1383 device_flush_dte_alias, iommu); 1384 else 1385 ret = iommu_flush_dte(iommu, dev_data->devid); 1386 if (ret) 1387 return ret; 1388 1389 pci_seg = iommu->pci_seg; 1390 alias = pci_seg->alias_table[dev_data->devid]; 1391 if (alias != dev_data->devid) { 1392 ret = iommu_flush_dte(iommu, alias); 1393 if (ret) 1394 return ret; 1395 } 1396 1397 if (dev_data->ats_enabled) { 1398 /* Invalidate the entire contents of an IOTLB */ 1399 ret = device_flush_iotlb(dev_data, 0, ~0UL, 1400 IOMMU_NO_PASID, false); 1401 } 1402 1403 return ret; 1404 } 1405 1406 static int domain_flush_pages_v2(struct protection_domain *pdom, 1407 u64 address, size_t size) 1408 { 1409 struct iommu_dev_data *dev_data; 1410 struct iommu_cmd cmd; 1411 int ret = 0; 1412 1413 list_for_each_entry(dev_data, &pdom->dev_list, list) { 1414 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 1415 u16 domid = dev_data->gcr3_info.domid; 1416 1417 build_inv_iommu_pages(&cmd, address, size, 1418 domid, IOMMU_NO_PASID, true); 1419 1420 ret |= iommu_queue_command(iommu, &cmd); 1421 } 1422 1423 return ret; 1424 } 1425 1426 static int domain_flush_pages_v1(struct protection_domain *pdom, 1427 u64 address, size_t size) 1428 { 1429 struct iommu_cmd cmd; 1430 int ret = 0, i; 1431 1432 build_inv_iommu_pages(&cmd, address, size, 1433 pdom->id, IOMMU_NO_PASID, false); 1434 1435 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1436 if (!pdom->dev_iommu[i]) 1437 continue; 1438 1439 /* 1440 * Devices of this domain are behind this IOMMU 1441 * We need a TLB flush 1442 */ 1443 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1444 } 1445 1446 return ret; 1447 } 1448 1449 /* 1450 * TLB invalidation function which is called from the mapping functions. 1451 * It flushes range of PTEs of the domain. 1452 */ 1453 static void __domain_flush_pages(struct protection_domain *domain, 1454 u64 address, size_t size) 1455 { 1456 struct iommu_dev_data *dev_data; 1457 int ret = 0; 1458 ioasid_t pasid = IOMMU_NO_PASID; 1459 bool gn = false; 1460 1461 if (pdom_is_v2_pgtbl_mode(domain)) { 1462 gn = true; 1463 ret = domain_flush_pages_v2(domain, address, size); 1464 } else { 1465 ret = domain_flush_pages_v1(domain, address, size); 1466 } 1467 1468 list_for_each_entry(dev_data, &domain->dev_list, list) { 1469 1470 if (!dev_data->ats_enabled) 1471 continue; 1472 1473 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn); 1474 } 1475 1476 WARN_ON(ret); 1477 } 1478 1479 void amd_iommu_domain_flush_pages(struct protection_domain *domain, 1480 u64 address, size_t size) 1481 { 1482 if (likely(!amd_iommu_np_cache)) { 1483 __domain_flush_pages(domain, address, size); 1484 1485 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */ 1486 amd_iommu_domain_flush_complete(domain); 1487 1488 return; 1489 } 1490 1491 /* 1492 * When NpCache is on, we infer that we run in a VM and use a vIOMMU. 1493 * In such setups it is best to avoid flushes of ranges which are not 1494 * naturally aligned, since it would lead to flushes of unmodified 1495 * PTEs. Such flushes would require the hypervisor to do more work than 1496 * necessary. Therefore, perform repeated flushes of aligned ranges 1497 * until you cover the range. Each iteration flushes the smaller 1498 * between the natural alignment of the address that we flush and the 1499 * greatest naturally aligned region that fits in the range. 1500 */ 1501 while (size != 0) { 1502 int addr_alignment = __ffs(address); 1503 int size_alignment = __fls(size); 1504 int min_alignment; 1505 size_t flush_size; 1506 1507 /* 1508 * size is always non-zero, but address might be zero, causing 1509 * addr_alignment to be negative. As the casting of the 1510 * argument in __ffs(address) to long might trim the high bits 1511 * of the address on x86-32, cast to long when doing the check. 1512 */ 1513 if (likely((unsigned long)address != 0)) 1514 min_alignment = min(addr_alignment, size_alignment); 1515 else 1516 min_alignment = size_alignment; 1517 1518 flush_size = 1ul << min_alignment; 1519 1520 __domain_flush_pages(domain, address, flush_size); 1521 address += flush_size; 1522 size -= flush_size; 1523 } 1524 1525 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */ 1526 amd_iommu_domain_flush_complete(domain); 1527 } 1528 1529 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1530 static void amd_iommu_domain_flush_all(struct protection_domain *domain) 1531 { 1532 amd_iommu_domain_flush_pages(domain, 0, 1533 CMD_INV_IOMMU_ALL_PAGES_ADDRESS); 1534 } 1535 1536 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data, 1537 ioasid_t pasid, u64 address, size_t size) 1538 { 1539 struct iommu_cmd cmd; 1540 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 1541 1542 build_inv_iommu_pages(&cmd, address, size, 1543 dev_data->gcr3_info.domid, pasid, true); 1544 iommu_queue_command(iommu, &cmd); 1545 1546 if (dev_data->ats_enabled) 1547 device_flush_iotlb(dev_data, address, size, pasid, true); 1548 1549 iommu_completion_wait(iommu); 1550 } 1551 1552 void amd_iommu_dev_flush_pasid_all(struct iommu_dev_data *dev_data, 1553 ioasid_t pasid) 1554 { 1555 amd_iommu_dev_flush_pasid_pages(dev_data, 0, 1556 CMD_INV_IOMMU_ALL_PAGES_ADDRESS, pasid); 1557 } 1558 1559 void amd_iommu_domain_flush_complete(struct protection_domain *domain) 1560 { 1561 int i; 1562 1563 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1564 if (domain && !domain->dev_iommu[i]) 1565 continue; 1566 1567 /* 1568 * Devices of this domain are behind this IOMMU 1569 * We need to wait for completion of all commands. 1570 */ 1571 iommu_completion_wait(amd_iommus[i]); 1572 } 1573 } 1574 1575 /* Flush the not present cache if it exists */ 1576 static void domain_flush_np_cache(struct protection_domain *domain, 1577 dma_addr_t iova, size_t size) 1578 { 1579 if (unlikely(amd_iommu_np_cache)) { 1580 unsigned long flags; 1581 1582 spin_lock_irqsave(&domain->lock, flags); 1583 amd_iommu_domain_flush_pages(domain, iova, size); 1584 spin_unlock_irqrestore(&domain->lock, flags); 1585 } 1586 } 1587 1588 1589 /* 1590 * This function flushes the DTEs for all devices in domain 1591 */ 1592 static void domain_flush_devices(struct protection_domain *domain) 1593 { 1594 struct iommu_dev_data *dev_data; 1595 1596 list_for_each_entry(dev_data, &domain->dev_list, list) 1597 device_flush_dte(dev_data); 1598 } 1599 1600 static void update_device_table(struct protection_domain *domain) 1601 { 1602 struct iommu_dev_data *dev_data; 1603 1604 list_for_each_entry(dev_data, &domain->dev_list, list) { 1605 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev); 1606 1607 set_dte_entry(iommu, dev_data); 1608 clone_aliases(iommu, dev_data->dev); 1609 } 1610 } 1611 1612 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) 1613 { 1614 update_device_table(domain); 1615 domain_flush_devices(domain); 1616 } 1617 1618 void amd_iommu_domain_update(struct protection_domain *domain) 1619 { 1620 /* Update device table */ 1621 amd_iommu_update_and_flush_device_table(domain); 1622 1623 /* Flush domain TLB(s) and wait for completion */ 1624 amd_iommu_domain_flush_all(domain); 1625 } 1626 1627 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag) 1628 { 1629 struct iommu_dev_data *dev_data; 1630 struct amd_iommu *iommu; 1631 struct iommu_cmd cmd; 1632 1633 dev_data = dev_iommu_priv_get(dev); 1634 iommu = get_amd_iommu_from_dev(dev); 1635 1636 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 1637 tag, dev_data->pri_tlp); 1638 1639 return iommu_queue_command(iommu, &cmd); 1640 } 1641 1642 /**************************************************************************** 1643 * 1644 * The next functions belong to the domain allocation. A domain is 1645 * allocated for every IOMMU as the default domain. If device isolation 1646 * is enabled, every device get its own domain. The most important thing 1647 * about domains is the page table mapping the DMA address space they 1648 * contain. 1649 * 1650 ****************************************************************************/ 1651 1652 static u16 domain_id_alloc(void) 1653 { 1654 unsigned long flags; 1655 int id; 1656 1657 spin_lock_irqsave(&pd_bitmap_lock, flags); 1658 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1659 BUG_ON(id == 0); 1660 if (id > 0 && id < MAX_DOMAIN_ID) 1661 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1662 else 1663 id = 0; 1664 spin_unlock_irqrestore(&pd_bitmap_lock, flags); 1665 1666 return id; 1667 } 1668 1669 static void domain_id_free(int id) 1670 { 1671 unsigned long flags; 1672 1673 spin_lock_irqsave(&pd_bitmap_lock, flags); 1674 if (id > 0 && id < MAX_DOMAIN_ID) 1675 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1676 spin_unlock_irqrestore(&pd_bitmap_lock, flags); 1677 } 1678 1679 static void free_gcr3_tbl_level1(u64 *tbl) 1680 { 1681 u64 *ptr; 1682 int i; 1683 1684 for (i = 0; i < 512; ++i) { 1685 if (!(tbl[i] & GCR3_VALID)) 1686 continue; 1687 1688 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1689 1690 iommu_free_page(ptr); 1691 } 1692 } 1693 1694 static void free_gcr3_tbl_level2(u64 *tbl) 1695 { 1696 u64 *ptr; 1697 int i; 1698 1699 for (i = 0; i < 512; ++i) { 1700 if (!(tbl[i] & GCR3_VALID)) 1701 continue; 1702 1703 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1704 1705 free_gcr3_tbl_level1(ptr); 1706 } 1707 } 1708 1709 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info) 1710 { 1711 if (gcr3_info->glx == 2) 1712 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl); 1713 else if (gcr3_info->glx == 1) 1714 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl); 1715 else 1716 WARN_ON_ONCE(gcr3_info->glx != 0); 1717 1718 gcr3_info->glx = 0; 1719 1720 /* Free per device domain ID */ 1721 domain_id_free(gcr3_info->domid); 1722 1723 iommu_free_page(gcr3_info->gcr3_tbl); 1724 gcr3_info->gcr3_tbl = NULL; 1725 } 1726 1727 /* 1728 * Number of GCR3 table levels required. Level must be 4-Kbyte 1729 * page and can contain up to 512 entries. 1730 */ 1731 static int get_gcr3_levels(int pasids) 1732 { 1733 int levels; 1734 1735 if (pasids == -1) 1736 return amd_iommu_max_glx_val; 1737 1738 levels = get_count_order(pasids); 1739 1740 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels; 1741 } 1742 1743 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info, 1744 struct amd_iommu *iommu, int pasids) 1745 { 1746 int levels = get_gcr3_levels(pasids); 1747 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE; 1748 1749 if (levels > amd_iommu_max_glx_val) 1750 return -EINVAL; 1751 1752 if (gcr3_info->gcr3_tbl) 1753 return -EBUSY; 1754 1755 /* Allocate per device domain ID */ 1756 gcr3_info->domid = domain_id_alloc(); 1757 1758 gcr3_info->gcr3_tbl = iommu_alloc_page_node(nid, GFP_ATOMIC); 1759 if (gcr3_info->gcr3_tbl == NULL) { 1760 domain_id_free(gcr3_info->domid); 1761 return -ENOMEM; 1762 } 1763 1764 gcr3_info->glx = levels; 1765 1766 return 0; 1767 } 1768 1769 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info, 1770 ioasid_t pasid, bool alloc) 1771 { 1772 int index; 1773 u64 *pte; 1774 u64 *root = gcr3_info->gcr3_tbl; 1775 int level = gcr3_info->glx; 1776 1777 while (true) { 1778 1779 index = (pasid >> (9 * level)) & 0x1ff; 1780 pte = &root[index]; 1781 1782 if (level == 0) 1783 break; 1784 1785 if (!(*pte & GCR3_VALID)) { 1786 if (!alloc) 1787 return NULL; 1788 1789 root = (void *)get_zeroed_page(GFP_ATOMIC); 1790 if (root == NULL) 1791 return NULL; 1792 1793 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 1794 } 1795 1796 root = iommu_phys_to_virt(*pte & PAGE_MASK); 1797 1798 level -= 1; 1799 } 1800 1801 return pte; 1802 } 1803 1804 static int update_gcr3(struct iommu_dev_data *dev_data, 1805 ioasid_t pasid, unsigned long gcr3, bool set) 1806 { 1807 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1808 u64 *pte; 1809 1810 pte = __get_gcr3_pte(gcr3_info, pasid, true); 1811 if (pte == NULL) 1812 return -ENOMEM; 1813 1814 if (set) 1815 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID; 1816 else 1817 *pte = 0; 1818 1819 amd_iommu_dev_flush_pasid_all(dev_data, pasid); 1820 return 0; 1821 } 1822 1823 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid, 1824 unsigned long gcr3) 1825 { 1826 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1827 int ret; 1828 1829 iommu_group_mutex_assert(dev_data->dev); 1830 1831 ret = update_gcr3(dev_data, pasid, gcr3, true); 1832 if (ret) 1833 return ret; 1834 1835 gcr3_info->pasid_cnt++; 1836 return ret; 1837 } 1838 1839 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid) 1840 { 1841 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1842 int ret; 1843 1844 iommu_group_mutex_assert(dev_data->dev); 1845 1846 ret = update_gcr3(dev_data, pasid, 0, false); 1847 if (ret) 1848 return ret; 1849 1850 gcr3_info->pasid_cnt--; 1851 return ret; 1852 } 1853 1854 static void set_dte_entry(struct amd_iommu *iommu, 1855 struct iommu_dev_data *dev_data) 1856 { 1857 u64 pte_root = 0; 1858 u64 flags = 0; 1859 u32 old_domid; 1860 u16 devid = dev_data->devid; 1861 u16 domid; 1862 struct protection_domain *domain = dev_data->domain; 1863 struct dev_table_entry *dev_table = get_dev_table(iommu); 1864 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1865 1866 if (gcr3_info && gcr3_info->gcr3_tbl) 1867 domid = dev_data->gcr3_info.domid; 1868 else 1869 domid = domain->id; 1870 1871 if (domain->iop.mode != PAGE_MODE_NONE) 1872 pte_root = iommu_virt_to_phys(domain->iop.root); 1873 1874 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) 1875 << DEV_ENTRY_MODE_SHIFT; 1876 1877 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V; 1878 1879 /* 1880 * When SNP is enabled, Only set TV bit when IOMMU 1881 * page translation is in use. 1882 */ 1883 if (!amd_iommu_snp_en || (domid != 0)) 1884 pte_root |= DTE_FLAG_TV; 1885 1886 flags = dev_table[devid].data[1]; 1887 1888 if (dev_data->ats_enabled) 1889 flags |= DTE_FLAG_IOTLB; 1890 1891 if (dev_data->ppr) 1892 pte_root |= 1ULL << DEV_ENTRY_PPR; 1893 1894 if (domain->dirty_tracking) 1895 pte_root |= DTE_FLAG_HAD; 1896 1897 if (gcr3_info && gcr3_info->gcr3_tbl) { 1898 u64 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl); 1899 u64 glx = gcr3_info->glx; 1900 u64 tmp; 1901 1902 pte_root |= DTE_FLAG_GV; 1903 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1904 1905 /* First mask out possible old values for GCR3 table */ 1906 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1907 flags &= ~tmp; 1908 1909 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1910 flags &= ~tmp; 1911 1912 /* Encode GCR3 table into DTE */ 1913 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1914 pte_root |= tmp; 1915 1916 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1917 flags |= tmp; 1918 1919 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1920 flags |= tmp; 1921 1922 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) { 1923 dev_table[devid].data[2] |= 1924 ((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT); 1925 } 1926 1927 /* GIOV is supported with V2 page table mode only */ 1928 if (pdom_is_v2_pgtbl_mode(domain)) 1929 pte_root |= DTE_FLAG_GIOV; 1930 } 1931 1932 flags &= ~DEV_DOMID_MASK; 1933 flags |= domid; 1934 1935 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK; 1936 dev_table[devid].data[1] = flags; 1937 dev_table[devid].data[0] = pte_root; 1938 1939 /* 1940 * A kdump kernel might be replacing a domain ID that was copied from 1941 * the previous kernel--if so, it needs to flush the translation cache 1942 * entries for the old domain ID that is being overwritten 1943 */ 1944 if (old_domid) { 1945 amd_iommu_flush_tlb_domid(iommu, old_domid); 1946 } 1947 } 1948 1949 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid) 1950 { 1951 struct dev_table_entry *dev_table = get_dev_table(iommu); 1952 1953 /* remove entry from the device table seen by the hardware */ 1954 dev_table[devid].data[0] = DTE_FLAG_V; 1955 1956 if (!amd_iommu_snp_en) 1957 dev_table[devid].data[0] |= DTE_FLAG_TV; 1958 1959 dev_table[devid].data[1] &= DTE_FLAG_MASK; 1960 1961 amd_iommu_apply_erratum_63(iommu, devid); 1962 } 1963 1964 /* Update and flush DTE for the given device */ 1965 void amd_iommu_dev_update_dte(struct iommu_dev_data *dev_data, bool set) 1966 { 1967 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 1968 1969 if (set) 1970 set_dte_entry(iommu, dev_data); 1971 else 1972 clear_dte_entry(iommu, dev_data->devid); 1973 1974 clone_aliases(iommu, dev_data->dev); 1975 device_flush_dte(dev_data); 1976 iommu_completion_wait(iommu); 1977 } 1978 1979 /* 1980 * If domain is SVA capable then initialize GCR3 table. Also if domain is 1981 * in v2 page table mode then update GCR3[0]. 1982 */ 1983 static int init_gcr3_table(struct iommu_dev_data *dev_data, 1984 struct protection_domain *pdom) 1985 { 1986 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 1987 int max_pasids = dev_data->max_pasids; 1988 int ret = 0; 1989 1990 /* 1991 * If domain is in pt mode then setup GCR3 table only if device 1992 * is PASID capable 1993 */ 1994 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data)) 1995 return ret; 1996 1997 /* 1998 * By default, setup GCR3 table to support MAX PASIDs 1999 * supported by the device/IOMMU. 2000 */ 2001 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu, 2002 max_pasids > 0 ? max_pasids : 1); 2003 if (ret) 2004 return ret; 2005 2006 /* Setup GCR3[0] only if domain is setup with v2 page table mode */ 2007 if (!pdom_is_v2_pgtbl_mode(pdom)) 2008 return ret; 2009 2010 ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true); 2011 if (ret) 2012 free_gcr3_table(&dev_data->gcr3_info); 2013 2014 return ret; 2015 } 2016 2017 static void destroy_gcr3_table(struct iommu_dev_data *dev_data, 2018 struct protection_domain *pdom) 2019 { 2020 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 2021 2022 if (pdom_is_v2_pgtbl_mode(pdom)) 2023 update_gcr3(dev_data, 0, 0, false); 2024 2025 if (gcr3_info->gcr3_tbl == NULL) 2026 return; 2027 2028 free_gcr3_table(gcr3_info); 2029 } 2030 2031 static int do_attach(struct iommu_dev_data *dev_data, 2032 struct protection_domain *domain) 2033 { 2034 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2035 struct pci_dev *pdev; 2036 int ret = 0; 2037 2038 /* Update data structures */ 2039 dev_data->domain = domain; 2040 list_add(&dev_data->list, &domain->dev_list); 2041 2042 /* Update NUMA Node ID */ 2043 if (domain->nid == NUMA_NO_NODE) 2044 domain->nid = dev_to_node(dev_data->dev); 2045 2046 /* Do reference counting */ 2047 domain->dev_iommu[iommu->index] += 1; 2048 domain->dev_cnt += 1; 2049 2050 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL; 2051 if (pdom_is_sva_capable(domain)) { 2052 ret = init_gcr3_table(dev_data, domain); 2053 if (ret) 2054 return ret; 2055 2056 if (pdev) { 2057 pdev_enable_caps(pdev); 2058 2059 /* 2060 * Device can continue to function even if IOPF 2061 * enablement failed. Hence in error path just 2062 * disable device PRI support. 2063 */ 2064 if (amd_iommu_iopf_add_device(iommu, dev_data)) 2065 pdev_disable_cap_pri(pdev); 2066 } 2067 } else if (pdev) { 2068 pdev_enable_cap_ats(pdev); 2069 } 2070 2071 /* Update device table */ 2072 amd_iommu_dev_update_dte(dev_data, true); 2073 2074 return ret; 2075 } 2076 2077 static void do_detach(struct iommu_dev_data *dev_data) 2078 { 2079 struct protection_domain *domain = dev_data->domain; 2080 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2081 2082 /* Clear GCR3 table */ 2083 if (pdom_is_sva_capable(domain)) 2084 destroy_gcr3_table(dev_data, domain); 2085 2086 /* Update data structures */ 2087 dev_data->domain = NULL; 2088 list_del(&dev_data->list); 2089 2090 /* Clear DTE and flush the entry */ 2091 amd_iommu_dev_update_dte(dev_data, false); 2092 2093 /* Flush IOTLB and wait for the flushes to finish */ 2094 amd_iommu_domain_flush_all(domain); 2095 2096 /* decrease reference counters - needs to happen after the flushes */ 2097 domain->dev_iommu[iommu->index] -= 1; 2098 domain->dev_cnt -= 1; 2099 } 2100 2101 /* 2102 * If a device is not yet associated with a domain, this function makes the 2103 * device visible in the domain 2104 */ 2105 static int attach_device(struct device *dev, 2106 struct protection_domain *domain) 2107 { 2108 struct iommu_dev_data *dev_data; 2109 unsigned long flags; 2110 int ret = 0; 2111 2112 spin_lock_irqsave(&domain->lock, flags); 2113 2114 dev_data = dev_iommu_priv_get(dev); 2115 2116 spin_lock(&dev_data->lock); 2117 2118 if (dev_data->domain != NULL) { 2119 ret = -EBUSY; 2120 goto out; 2121 } 2122 2123 ret = do_attach(dev_data, domain); 2124 2125 out: 2126 spin_unlock(&dev_data->lock); 2127 2128 spin_unlock_irqrestore(&domain->lock, flags); 2129 2130 return ret; 2131 } 2132 2133 /* 2134 * Removes a device from a protection domain (with devtable_lock held) 2135 */ 2136 static void detach_device(struct device *dev) 2137 { 2138 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2139 struct protection_domain *domain = dev_data->domain; 2140 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2141 unsigned long flags; 2142 bool ppr = dev_data->ppr; 2143 2144 spin_lock_irqsave(&domain->lock, flags); 2145 2146 spin_lock(&dev_data->lock); 2147 2148 /* 2149 * First check if the device is still attached. It might already 2150 * be detached from its domain because the generic 2151 * iommu_detach_group code detached it and we try again here in 2152 * our alias handling. 2153 */ 2154 if (WARN_ON(!dev_data->domain)) 2155 goto out; 2156 2157 if (ppr) { 2158 iopf_queue_flush_dev(dev); 2159 2160 /* Updated here so that it gets reflected in DTE */ 2161 dev_data->ppr = false; 2162 } 2163 2164 do_detach(dev_data); 2165 2166 /* Remove IOPF handler */ 2167 if (ppr) 2168 amd_iommu_iopf_remove_device(iommu, dev_data); 2169 2170 if (dev_is_pci(dev)) 2171 pdev_disable_caps(to_pci_dev(dev)); 2172 2173 out: 2174 spin_unlock(&dev_data->lock); 2175 2176 spin_unlock_irqrestore(&domain->lock, flags); 2177 } 2178 2179 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 2180 { 2181 struct iommu_device *iommu_dev; 2182 struct amd_iommu *iommu; 2183 struct iommu_dev_data *dev_data; 2184 int ret; 2185 2186 if (!check_device(dev)) 2187 return ERR_PTR(-ENODEV); 2188 2189 iommu = rlookup_amd_iommu(dev); 2190 if (!iommu) 2191 return ERR_PTR(-ENODEV); 2192 2193 /* Not registered yet? */ 2194 if (!iommu->iommu.ops) 2195 return ERR_PTR(-ENODEV); 2196 2197 if (dev_iommu_priv_get(dev)) 2198 return &iommu->iommu; 2199 2200 ret = iommu_init_device(iommu, dev); 2201 if (ret) { 2202 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 2203 iommu_dev = ERR_PTR(ret); 2204 iommu_ignore_device(iommu, dev); 2205 } else { 2206 amd_iommu_set_pci_msi_domain(dev, iommu); 2207 iommu_dev = &iommu->iommu; 2208 } 2209 2210 /* 2211 * If IOMMU and device supports PASID then it will contain max 2212 * supported PASIDs, else it will be zero. 2213 */ 2214 dev_data = dev_iommu_priv_get(dev); 2215 if (amd_iommu_pasid_supported() && dev_is_pci(dev) && 2216 pdev_pasid_supported(dev_data)) { 2217 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids, 2218 pci_max_pasids(to_pci_dev(dev))); 2219 } 2220 2221 iommu_completion_wait(iommu); 2222 2223 return iommu_dev; 2224 } 2225 2226 static void amd_iommu_release_device(struct device *dev) 2227 { 2228 struct amd_iommu *iommu; 2229 2230 if (!check_device(dev)) 2231 return; 2232 2233 iommu = rlookup_amd_iommu(dev); 2234 if (!iommu) 2235 return; 2236 2237 amd_iommu_uninit_device(dev); 2238 iommu_completion_wait(iommu); 2239 } 2240 2241 static struct iommu_group *amd_iommu_device_group(struct device *dev) 2242 { 2243 if (dev_is_pci(dev)) 2244 return pci_device_group(dev); 2245 2246 return acpihid_device_group(dev); 2247 } 2248 2249 /***************************************************************************** 2250 * 2251 * The following functions belong to the exported interface of AMD IOMMU 2252 * 2253 * This interface allows access to lower level functions of the IOMMU 2254 * like protection domain handling and assignement of devices to domains 2255 * which is not possible with the dma_ops interface. 2256 * 2257 *****************************************************************************/ 2258 2259 static void cleanup_domain(struct protection_domain *domain) 2260 { 2261 struct iommu_dev_data *entry; 2262 2263 lockdep_assert_held(&domain->lock); 2264 2265 if (!domain->dev_cnt) 2266 return; 2267 2268 while (!list_empty(&domain->dev_list)) { 2269 entry = list_first_entry(&domain->dev_list, 2270 struct iommu_dev_data, list); 2271 BUG_ON(!entry->domain); 2272 do_detach(entry); 2273 } 2274 WARN_ON(domain->dev_cnt != 0); 2275 } 2276 2277 void protection_domain_free(struct protection_domain *domain) 2278 { 2279 if (!domain) 2280 return; 2281 2282 if (domain->iop.pgtbl_cfg.tlb) 2283 free_io_pgtable_ops(&domain->iop.iop.ops); 2284 2285 if (domain->iop.root) 2286 iommu_free_page(domain->iop.root); 2287 2288 if (domain->id) 2289 domain_id_free(domain->id); 2290 2291 kfree(domain); 2292 } 2293 2294 static int protection_domain_init_v1(struct protection_domain *domain, int mode) 2295 { 2296 u64 *pt_root = NULL; 2297 2298 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); 2299 2300 if (mode != PAGE_MODE_NONE) { 2301 pt_root = iommu_alloc_page(GFP_KERNEL); 2302 if (!pt_root) 2303 return -ENOMEM; 2304 } 2305 2306 domain->pd_mode = PD_MODE_V1; 2307 amd_iommu_domain_set_pgtable(domain, pt_root, mode); 2308 2309 return 0; 2310 } 2311 2312 static int protection_domain_init_v2(struct protection_domain *pdom) 2313 { 2314 pdom->pd_mode = PD_MODE_V2; 2315 pdom->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2; 2316 2317 return 0; 2318 } 2319 2320 struct protection_domain *protection_domain_alloc(unsigned int type) 2321 { 2322 struct io_pgtable_ops *pgtbl_ops; 2323 struct protection_domain *domain; 2324 int pgtable; 2325 int ret; 2326 2327 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2328 if (!domain) 2329 return NULL; 2330 2331 domain->id = domain_id_alloc(); 2332 if (!domain->id) 2333 goto out_err; 2334 2335 spin_lock_init(&domain->lock); 2336 INIT_LIST_HEAD(&domain->dev_list); 2337 INIT_LIST_HEAD(&domain->dev_data_list); 2338 domain->nid = NUMA_NO_NODE; 2339 2340 switch (type) { 2341 /* No need to allocate io pgtable ops in passthrough mode */ 2342 case IOMMU_DOMAIN_IDENTITY: 2343 case IOMMU_DOMAIN_SVA: 2344 return domain; 2345 case IOMMU_DOMAIN_DMA: 2346 pgtable = amd_iommu_pgtable; 2347 break; 2348 /* 2349 * Force IOMMU v1 page table when allocating 2350 * domain for pass-through devices. 2351 */ 2352 case IOMMU_DOMAIN_UNMANAGED: 2353 pgtable = AMD_IOMMU_V1; 2354 break; 2355 default: 2356 goto out_err; 2357 } 2358 2359 switch (pgtable) { 2360 case AMD_IOMMU_V1: 2361 ret = protection_domain_init_v1(domain, DEFAULT_PGTABLE_LEVEL); 2362 break; 2363 case AMD_IOMMU_V2: 2364 ret = protection_domain_init_v2(domain); 2365 break; 2366 default: 2367 ret = -EINVAL; 2368 break; 2369 } 2370 2371 if (ret) 2372 goto out_err; 2373 2374 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain); 2375 if (!pgtbl_ops) 2376 goto out_err; 2377 2378 return domain; 2379 out_err: 2380 protection_domain_free(domain); 2381 return NULL; 2382 } 2383 2384 static inline u64 dma_max_address(void) 2385 { 2386 if (amd_iommu_pgtable == AMD_IOMMU_V1) 2387 return ~0ULL; 2388 2389 /* V2 with 4/5 level page table */ 2390 return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1); 2391 } 2392 2393 static bool amd_iommu_hd_support(struct amd_iommu *iommu) 2394 { 2395 return iommu && (iommu->features & FEATURE_HDSUP); 2396 } 2397 2398 static struct iommu_domain *do_iommu_domain_alloc(unsigned int type, 2399 struct device *dev, u32 flags) 2400 { 2401 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING; 2402 struct protection_domain *domain; 2403 struct amd_iommu *iommu = NULL; 2404 2405 if (dev) 2406 iommu = get_amd_iommu_from_dev(dev); 2407 2408 /* 2409 * Since DTE[Mode]=0 is prohibited on SNP-enabled system, 2410 * default to use IOMMU_DOMAIN_DMA[_FQ]. 2411 */ 2412 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY)) 2413 return ERR_PTR(-EINVAL); 2414 2415 if (dirty_tracking && !amd_iommu_hd_support(iommu)) 2416 return ERR_PTR(-EOPNOTSUPP); 2417 2418 domain = protection_domain_alloc(type); 2419 if (!domain) 2420 return ERR_PTR(-ENOMEM); 2421 2422 domain->domain.geometry.aperture_start = 0; 2423 domain->domain.geometry.aperture_end = dma_max_address(); 2424 domain->domain.geometry.force_aperture = true; 2425 2426 if (iommu) { 2427 domain->domain.type = type; 2428 domain->domain.pgsize_bitmap = iommu->iommu.ops->pgsize_bitmap; 2429 domain->domain.ops = iommu->iommu.ops->default_domain_ops; 2430 2431 if (dirty_tracking) 2432 domain->domain.dirty_ops = &amd_dirty_ops; 2433 } 2434 2435 return &domain->domain; 2436 } 2437 2438 static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type) 2439 { 2440 struct iommu_domain *domain; 2441 2442 domain = do_iommu_domain_alloc(type, NULL, 0); 2443 if (IS_ERR(domain)) 2444 return NULL; 2445 2446 return domain; 2447 } 2448 2449 static struct iommu_domain * 2450 amd_iommu_domain_alloc_user(struct device *dev, u32 flags, 2451 struct iommu_domain *parent, 2452 const struct iommu_user_data *user_data) 2453 2454 { 2455 unsigned int type = IOMMU_DOMAIN_UNMANAGED; 2456 2457 if ((flags & ~IOMMU_HWPT_ALLOC_DIRTY_TRACKING) || parent || user_data) 2458 return ERR_PTR(-EOPNOTSUPP); 2459 2460 return do_iommu_domain_alloc(type, dev, flags); 2461 } 2462 2463 void amd_iommu_domain_free(struct iommu_domain *dom) 2464 { 2465 struct protection_domain *domain; 2466 unsigned long flags; 2467 2468 if (!dom) 2469 return; 2470 2471 domain = to_pdomain(dom); 2472 2473 spin_lock_irqsave(&domain->lock, flags); 2474 2475 cleanup_domain(domain); 2476 2477 spin_unlock_irqrestore(&domain->lock, flags); 2478 2479 protection_domain_free(domain); 2480 } 2481 2482 static int amd_iommu_attach_device(struct iommu_domain *dom, 2483 struct device *dev) 2484 { 2485 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2486 struct protection_domain *domain = to_pdomain(dom); 2487 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2488 int ret; 2489 2490 /* 2491 * Skip attach device to domain if new domain is same as 2492 * devices current domain 2493 */ 2494 if (dev_data->domain == domain) 2495 return 0; 2496 2497 dev_data->defer_attach = false; 2498 2499 /* 2500 * Restrict to devices with compatible IOMMU hardware support 2501 * when enforcement of dirty tracking is enabled. 2502 */ 2503 if (dom->dirty_ops && !amd_iommu_hd_support(iommu)) 2504 return -EINVAL; 2505 2506 if (dev_data->domain) 2507 detach_device(dev); 2508 2509 ret = attach_device(dev, domain); 2510 2511 #ifdef CONFIG_IRQ_REMAP 2512 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2513 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2514 dev_data->use_vapic = 1; 2515 else 2516 dev_data->use_vapic = 0; 2517 } 2518 #endif 2519 2520 iommu_completion_wait(iommu); 2521 2522 return ret; 2523 } 2524 2525 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom, 2526 unsigned long iova, size_t size) 2527 { 2528 struct protection_domain *domain = to_pdomain(dom); 2529 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2530 2531 if (ops->map_pages) 2532 domain_flush_np_cache(domain, iova, size); 2533 return 0; 2534 } 2535 2536 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova, 2537 phys_addr_t paddr, size_t pgsize, size_t pgcount, 2538 int iommu_prot, gfp_t gfp, size_t *mapped) 2539 { 2540 struct protection_domain *domain = to_pdomain(dom); 2541 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2542 int prot = 0; 2543 int ret = -EINVAL; 2544 2545 if ((domain->pd_mode == PD_MODE_V1) && 2546 (domain->iop.mode == PAGE_MODE_NONE)) 2547 return -EINVAL; 2548 2549 if (iommu_prot & IOMMU_READ) 2550 prot |= IOMMU_PROT_IR; 2551 if (iommu_prot & IOMMU_WRITE) 2552 prot |= IOMMU_PROT_IW; 2553 2554 if (ops->map_pages) { 2555 ret = ops->map_pages(ops, iova, paddr, pgsize, 2556 pgcount, prot, gfp, mapped); 2557 } 2558 2559 return ret; 2560 } 2561 2562 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, 2563 struct iommu_iotlb_gather *gather, 2564 unsigned long iova, size_t size) 2565 { 2566 /* 2567 * AMD's IOMMU can flush as many pages as necessary in a single flush. 2568 * Unless we run in a virtual machine, which can be inferred according 2569 * to whether "non-present cache" is on, it is probably best to prefer 2570 * (potentially) too extensive TLB flushing (i.e., more misses) over 2571 * mutliple TLB flushes (i.e., more flushes). For virtual machines the 2572 * hypervisor needs to synchronize the host IOMMU PTEs with those of 2573 * the guest, and the trade-off is different: unnecessary TLB flushes 2574 * should be avoided. 2575 */ 2576 if (amd_iommu_np_cache && 2577 iommu_iotlb_gather_is_disjoint(gather, iova, size)) 2578 iommu_iotlb_sync(domain, gather); 2579 2580 iommu_iotlb_gather_add_range(gather, iova, size); 2581 } 2582 2583 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova, 2584 size_t pgsize, size_t pgcount, 2585 struct iommu_iotlb_gather *gather) 2586 { 2587 struct protection_domain *domain = to_pdomain(dom); 2588 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2589 size_t r; 2590 2591 if ((domain->pd_mode == PD_MODE_V1) && 2592 (domain->iop.mode == PAGE_MODE_NONE)) 2593 return 0; 2594 2595 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0; 2596 2597 if (r) 2598 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r); 2599 2600 return r; 2601 } 2602 2603 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2604 dma_addr_t iova) 2605 { 2606 struct protection_domain *domain = to_pdomain(dom); 2607 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2608 2609 return ops->iova_to_phys(ops, iova); 2610 } 2611 2612 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap) 2613 { 2614 switch (cap) { 2615 case IOMMU_CAP_CACHE_COHERENCY: 2616 return true; 2617 case IOMMU_CAP_NOEXEC: 2618 return false; 2619 case IOMMU_CAP_PRE_BOOT_PROTECTION: 2620 return amdr_ivrs_remap_support; 2621 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY: 2622 return true; 2623 case IOMMU_CAP_DEFERRED_FLUSH: 2624 return true; 2625 case IOMMU_CAP_DIRTY_TRACKING: { 2626 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2627 2628 return amd_iommu_hd_support(iommu); 2629 } 2630 default: 2631 break; 2632 } 2633 2634 return false; 2635 } 2636 2637 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain, 2638 bool enable) 2639 { 2640 struct protection_domain *pdomain = to_pdomain(domain); 2641 struct dev_table_entry *dev_table; 2642 struct iommu_dev_data *dev_data; 2643 bool domain_flush = false; 2644 struct amd_iommu *iommu; 2645 unsigned long flags; 2646 u64 pte_root; 2647 2648 spin_lock_irqsave(&pdomain->lock, flags); 2649 if (!(pdomain->dirty_tracking ^ enable)) { 2650 spin_unlock_irqrestore(&pdomain->lock, flags); 2651 return 0; 2652 } 2653 2654 list_for_each_entry(dev_data, &pdomain->dev_list, list) { 2655 iommu = get_amd_iommu_from_dev_data(dev_data); 2656 2657 dev_table = get_dev_table(iommu); 2658 pte_root = dev_table[dev_data->devid].data[0]; 2659 2660 pte_root = (enable ? pte_root | DTE_FLAG_HAD : 2661 pte_root & ~DTE_FLAG_HAD); 2662 2663 /* Flush device DTE */ 2664 dev_table[dev_data->devid].data[0] = pte_root; 2665 device_flush_dte(dev_data); 2666 domain_flush = true; 2667 } 2668 2669 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */ 2670 if (domain_flush) 2671 amd_iommu_domain_flush_all(pdomain); 2672 2673 pdomain->dirty_tracking = enable; 2674 spin_unlock_irqrestore(&pdomain->lock, flags); 2675 2676 return 0; 2677 } 2678 2679 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain, 2680 unsigned long iova, size_t size, 2681 unsigned long flags, 2682 struct iommu_dirty_bitmap *dirty) 2683 { 2684 struct protection_domain *pdomain = to_pdomain(domain); 2685 struct io_pgtable_ops *ops = &pdomain->iop.iop.ops; 2686 unsigned long lflags; 2687 2688 if (!ops || !ops->read_and_clear_dirty) 2689 return -EOPNOTSUPP; 2690 2691 spin_lock_irqsave(&pdomain->lock, lflags); 2692 if (!pdomain->dirty_tracking && dirty->bitmap) { 2693 spin_unlock_irqrestore(&pdomain->lock, lflags); 2694 return -EINVAL; 2695 } 2696 spin_unlock_irqrestore(&pdomain->lock, lflags); 2697 2698 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty); 2699 } 2700 2701 static void amd_iommu_get_resv_regions(struct device *dev, 2702 struct list_head *head) 2703 { 2704 struct iommu_resv_region *region; 2705 struct unity_map_entry *entry; 2706 struct amd_iommu *iommu; 2707 struct amd_iommu_pci_seg *pci_seg; 2708 int devid, sbdf; 2709 2710 sbdf = get_device_sbdf_id(dev); 2711 if (sbdf < 0) 2712 return; 2713 2714 devid = PCI_SBDF_TO_DEVID(sbdf); 2715 iommu = get_amd_iommu_from_dev(dev); 2716 pci_seg = iommu->pci_seg; 2717 2718 list_for_each_entry(entry, &pci_seg->unity_map, list) { 2719 int type, prot = 0; 2720 size_t length; 2721 2722 if (devid < entry->devid_start || devid > entry->devid_end) 2723 continue; 2724 2725 type = IOMMU_RESV_DIRECT; 2726 length = entry->address_end - entry->address_start; 2727 if (entry->prot & IOMMU_PROT_IR) 2728 prot |= IOMMU_READ; 2729 if (entry->prot & IOMMU_PROT_IW) 2730 prot |= IOMMU_WRITE; 2731 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2732 /* Exclusion range */ 2733 type = IOMMU_RESV_RESERVED; 2734 2735 region = iommu_alloc_resv_region(entry->address_start, 2736 length, prot, type, 2737 GFP_KERNEL); 2738 if (!region) { 2739 dev_err(dev, "Out of memory allocating dm-regions\n"); 2740 return; 2741 } 2742 list_add_tail(®ion->list, head); 2743 } 2744 2745 region = iommu_alloc_resv_region(MSI_RANGE_START, 2746 MSI_RANGE_END - MSI_RANGE_START + 1, 2747 0, IOMMU_RESV_MSI, GFP_KERNEL); 2748 if (!region) 2749 return; 2750 list_add_tail(®ion->list, head); 2751 2752 region = iommu_alloc_resv_region(HT_RANGE_START, 2753 HT_RANGE_END - HT_RANGE_START + 1, 2754 0, IOMMU_RESV_RESERVED, GFP_KERNEL); 2755 if (!region) 2756 return; 2757 list_add_tail(®ion->list, head); 2758 } 2759 2760 bool amd_iommu_is_attach_deferred(struct device *dev) 2761 { 2762 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2763 2764 return dev_data->defer_attach; 2765 } 2766 2767 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2768 { 2769 struct protection_domain *dom = to_pdomain(domain); 2770 unsigned long flags; 2771 2772 spin_lock_irqsave(&dom->lock, flags); 2773 amd_iommu_domain_flush_all(dom); 2774 spin_unlock_irqrestore(&dom->lock, flags); 2775 } 2776 2777 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2778 struct iommu_iotlb_gather *gather) 2779 { 2780 struct protection_domain *dom = to_pdomain(domain); 2781 unsigned long flags; 2782 2783 spin_lock_irqsave(&dom->lock, flags); 2784 amd_iommu_domain_flush_pages(dom, gather->start, 2785 gather->end - gather->start + 1); 2786 spin_unlock_irqrestore(&dom->lock, flags); 2787 } 2788 2789 static int amd_iommu_def_domain_type(struct device *dev) 2790 { 2791 struct iommu_dev_data *dev_data; 2792 2793 dev_data = dev_iommu_priv_get(dev); 2794 if (!dev_data) 2795 return 0; 2796 2797 /* Always use DMA domain for untrusted device */ 2798 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 2799 return IOMMU_DOMAIN_DMA; 2800 2801 /* 2802 * Do not identity map IOMMUv2 capable devices when: 2803 * - memory encryption is active, because some of those devices 2804 * (AMD GPUs) don't have the encryption bit in their DMA-mask 2805 * and require remapping. 2806 * - SNP is enabled, because it prohibits DTE[Mode]=0. 2807 */ 2808 if (pdev_pasid_supported(dev_data) && 2809 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) && 2810 !amd_iommu_snp_en) { 2811 return IOMMU_DOMAIN_IDENTITY; 2812 } 2813 2814 return 0; 2815 } 2816 2817 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain) 2818 { 2819 /* IOMMU_PTE_FC is always set */ 2820 return true; 2821 } 2822 2823 static const struct iommu_dirty_ops amd_dirty_ops = { 2824 .set_dirty_tracking = amd_iommu_set_dirty_tracking, 2825 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty, 2826 }; 2827 2828 static int amd_iommu_dev_enable_feature(struct device *dev, 2829 enum iommu_dev_features feat) 2830 { 2831 int ret = 0; 2832 2833 switch (feat) { 2834 case IOMMU_DEV_FEAT_IOPF: 2835 case IOMMU_DEV_FEAT_SVA: 2836 break; 2837 default: 2838 ret = -EINVAL; 2839 break; 2840 } 2841 return ret; 2842 } 2843 2844 static int amd_iommu_dev_disable_feature(struct device *dev, 2845 enum iommu_dev_features feat) 2846 { 2847 int ret = 0; 2848 2849 switch (feat) { 2850 case IOMMU_DEV_FEAT_IOPF: 2851 case IOMMU_DEV_FEAT_SVA: 2852 break; 2853 default: 2854 ret = -EINVAL; 2855 break; 2856 } 2857 return ret; 2858 } 2859 2860 const struct iommu_ops amd_iommu_ops = { 2861 .capable = amd_iommu_capable, 2862 .domain_alloc = amd_iommu_domain_alloc, 2863 .domain_alloc_user = amd_iommu_domain_alloc_user, 2864 .domain_alloc_sva = amd_iommu_domain_alloc_sva, 2865 .probe_device = amd_iommu_probe_device, 2866 .release_device = amd_iommu_release_device, 2867 .device_group = amd_iommu_device_group, 2868 .get_resv_regions = amd_iommu_get_resv_regions, 2869 .is_attach_deferred = amd_iommu_is_attach_deferred, 2870 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 2871 .def_domain_type = amd_iommu_def_domain_type, 2872 .dev_enable_feat = amd_iommu_dev_enable_feature, 2873 .dev_disable_feat = amd_iommu_dev_disable_feature, 2874 .remove_dev_pasid = amd_iommu_remove_dev_pasid, 2875 .page_response = amd_iommu_page_response, 2876 .default_domain_ops = &(const struct iommu_domain_ops) { 2877 .attach_dev = amd_iommu_attach_device, 2878 .map_pages = amd_iommu_map_pages, 2879 .unmap_pages = amd_iommu_unmap_pages, 2880 .iotlb_sync_map = amd_iommu_iotlb_sync_map, 2881 .iova_to_phys = amd_iommu_iova_to_phys, 2882 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2883 .iotlb_sync = amd_iommu_iotlb_sync, 2884 .free = amd_iommu_domain_free, 2885 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency, 2886 } 2887 }; 2888 2889 #ifdef CONFIG_IRQ_REMAP 2890 2891 /***************************************************************************** 2892 * 2893 * Interrupt Remapping Implementation 2894 * 2895 *****************************************************************************/ 2896 2897 static struct irq_chip amd_ir_chip; 2898 static DEFINE_SPINLOCK(iommu_table_lock); 2899 2900 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid) 2901 { 2902 int ret; 2903 u64 data; 2904 unsigned long flags; 2905 struct iommu_cmd cmd, cmd2; 2906 2907 if (iommu->irtcachedis_enabled) 2908 return; 2909 2910 build_inv_irt(&cmd, devid); 2911 data = atomic64_add_return(1, &iommu->cmd_sem_val); 2912 build_completion_wait(&cmd2, iommu, data); 2913 2914 raw_spin_lock_irqsave(&iommu->lock, flags); 2915 ret = __iommu_queue_command_sync(iommu, &cmd, true); 2916 if (ret) 2917 goto out; 2918 ret = __iommu_queue_command_sync(iommu, &cmd2, false); 2919 if (ret) 2920 goto out; 2921 wait_on_sem(iommu, data); 2922 out: 2923 raw_spin_unlock_irqrestore(&iommu->lock, flags); 2924 } 2925 2926 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid, 2927 struct irq_remap_table *table) 2928 { 2929 u64 dte; 2930 struct dev_table_entry *dev_table = get_dev_table(iommu); 2931 2932 dte = dev_table[devid].data[2]; 2933 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 2934 dte |= iommu_virt_to_phys(table->table); 2935 dte |= DTE_IRQ_REMAP_INTCTL; 2936 dte |= DTE_INTTABLEN; 2937 dte |= DTE_IRQ_REMAP_ENABLE; 2938 2939 dev_table[devid].data[2] = dte; 2940 } 2941 2942 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid) 2943 { 2944 struct irq_remap_table *table; 2945 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2946 2947 if (WARN_ONCE(!pci_seg->rlookup_table[devid], 2948 "%s: no iommu for devid %x:%x\n", 2949 __func__, pci_seg->id, devid)) 2950 return NULL; 2951 2952 table = pci_seg->irq_lookup_table[devid]; 2953 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n", 2954 __func__, pci_seg->id, devid)) 2955 return NULL; 2956 2957 return table; 2958 } 2959 2960 static struct irq_remap_table *__alloc_irq_table(void) 2961 { 2962 struct irq_remap_table *table; 2963 2964 table = kzalloc(sizeof(*table), GFP_KERNEL); 2965 if (!table) 2966 return NULL; 2967 2968 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 2969 if (!table->table) { 2970 kfree(table); 2971 return NULL; 2972 } 2973 raw_spin_lock_init(&table->lock); 2974 2975 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 2976 memset(table->table, 0, 2977 MAX_IRQS_PER_TABLE * sizeof(u32)); 2978 else 2979 memset(table->table, 0, 2980 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 2981 return table; 2982 } 2983 2984 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 2985 struct irq_remap_table *table) 2986 { 2987 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2988 2989 pci_seg->irq_lookup_table[devid] = table; 2990 set_dte_irq_entry(iommu, devid, table); 2991 iommu_flush_dte(iommu, devid); 2992 } 2993 2994 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 2995 void *data) 2996 { 2997 struct irq_remap_table *table = data; 2998 struct amd_iommu_pci_seg *pci_seg; 2999 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev); 3000 3001 if (!iommu) 3002 return -EINVAL; 3003 3004 pci_seg = iommu->pci_seg; 3005 pci_seg->irq_lookup_table[alias] = table; 3006 set_dte_irq_entry(iommu, alias, table); 3007 iommu_flush_dte(pci_seg->rlookup_table[alias], alias); 3008 3009 return 0; 3010 } 3011 3012 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu, 3013 u16 devid, struct pci_dev *pdev) 3014 { 3015 struct irq_remap_table *table = NULL; 3016 struct irq_remap_table *new_table = NULL; 3017 struct amd_iommu_pci_seg *pci_seg; 3018 unsigned long flags; 3019 u16 alias; 3020 3021 spin_lock_irqsave(&iommu_table_lock, flags); 3022 3023 pci_seg = iommu->pci_seg; 3024 table = pci_seg->irq_lookup_table[devid]; 3025 if (table) 3026 goto out_unlock; 3027 3028 alias = pci_seg->alias_table[devid]; 3029 table = pci_seg->irq_lookup_table[alias]; 3030 if (table) { 3031 set_remap_table_entry(iommu, devid, table); 3032 goto out_wait; 3033 } 3034 spin_unlock_irqrestore(&iommu_table_lock, flags); 3035 3036 /* Nothing there yet, allocate new irq remapping table */ 3037 new_table = __alloc_irq_table(); 3038 if (!new_table) 3039 return NULL; 3040 3041 spin_lock_irqsave(&iommu_table_lock, flags); 3042 3043 table = pci_seg->irq_lookup_table[devid]; 3044 if (table) 3045 goto out_unlock; 3046 3047 table = pci_seg->irq_lookup_table[alias]; 3048 if (table) { 3049 set_remap_table_entry(iommu, devid, table); 3050 goto out_wait; 3051 } 3052 3053 table = new_table; 3054 new_table = NULL; 3055 3056 if (pdev) 3057 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 3058 table); 3059 else 3060 set_remap_table_entry(iommu, devid, table); 3061 3062 if (devid != alias) 3063 set_remap_table_entry(iommu, alias, table); 3064 3065 out_wait: 3066 iommu_completion_wait(iommu); 3067 3068 out_unlock: 3069 spin_unlock_irqrestore(&iommu_table_lock, flags); 3070 3071 if (new_table) { 3072 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 3073 kfree(new_table); 3074 } 3075 return table; 3076 } 3077 3078 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count, 3079 bool align, struct pci_dev *pdev) 3080 { 3081 struct irq_remap_table *table; 3082 int index, c, alignment = 1; 3083 unsigned long flags; 3084 3085 table = alloc_irq_table(iommu, devid, pdev); 3086 if (!table) 3087 return -ENODEV; 3088 3089 if (align) 3090 alignment = roundup_pow_of_two(count); 3091 3092 raw_spin_lock_irqsave(&table->lock, flags); 3093 3094 /* Scan table for free entries */ 3095 for (index = ALIGN(table->min_index, alignment), c = 0; 3096 index < MAX_IRQS_PER_TABLE;) { 3097 if (!iommu->irte_ops->is_allocated(table, index)) { 3098 c += 1; 3099 } else { 3100 c = 0; 3101 index = ALIGN(index + 1, alignment); 3102 continue; 3103 } 3104 3105 if (c == count) { 3106 for (; c != 0; --c) 3107 iommu->irte_ops->set_allocated(table, index - c + 1); 3108 3109 index -= count - 1; 3110 goto out; 3111 } 3112 3113 index++; 3114 } 3115 3116 index = -ENOSPC; 3117 3118 out: 3119 raw_spin_unlock_irqrestore(&table->lock, flags); 3120 3121 return index; 3122 } 3123 3124 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 3125 struct irte_ga *irte) 3126 { 3127 struct irq_remap_table *table; 3128 struct irte_ga *entry; 3129 unsigned long flags; 3130 u128 old; 3131 3132 table = get_irq_table(iommu, devid); 3133 if (!table) 3134 return -ENOMEM; 3135 3136 raw_spin_lock_irqsave(&table->lock, flags); 3137 3138 entry = (struct irte_ga *)table->table; 3139 entry = &entry[index]; 3140 3141 /* 3142 * We use cmpxchg16 to atomically update the 128-bit IRTE, 3143 * and it cannot be updated by the hardware or other processors 3144 * behind us, so the return value of cmpxchg16 should be the 3145 * same as the old value. 3146 */ 3147 old = entry->irte; 3148 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte)); 3149 3150 raw_spin_unlock_irqrestore(&table->lock, flags); 3151 3152 return 0; 3153 } 3154 3155 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 3156 struct irte_ga *irte) 3157 { 3158 bool ret; 3159 3160 ret = __modify_irte_ga(iommu, devid, index, irte); 3161 if (ret) 3162 return ret; 3163 3164 iommu_flush_irt_and_complete(iommu, devid); 3165 3166 return 0; 3167 } 3168 3169 static int modify_irte(struct amd_iommu *iommu, 3170 u16 devid, int index, union irte *irte) 3171 { 3172 struct irq_remap_table *table; 3173 unsigned long flags; 3174 3175 table = get_irq_table(iommu, devid); 3176 if (!table) 3177 return -ENOMEM; 3178 3179 raw_spin_lock_irqsave(&table->lock, flags); 3180 table->table[index] = irte->val; 3181 raw_spin_unlock_irqrestore(&table->lock, flags); 3182 3183 iommu_flush_irt_and_complete(iommu, devid); 3184 3185 return 0; 3186 } 3187 3188 static void free_irte(struct amd_iommu *iommu, u16 devid, int index) 3189 { 3190 struct irq_remap_table *table; 3191 unsigned long flags; 3192 3193 table = get_irq_table(iommu, devid); 3194 if (!table) 3195 return; 3196 3197 raw_spin_lock_irqsave(&table->lock, flags); 3198 iommu->irte_ops->clear_allocated(table, index); 3199 raw_spin_unlock_irqrestore(&table->lock, flags); 3200 3201 iommu_flush_irt_and_complete(iommu, devid); 3202 } 3203 3204 static void irte_prepare(void *entry, 3205 u32 delivery_mode, bool dest_mode, 3206 u8 vector, u32 dest_apicid, int devid) 3207 { 3208 union irte *irte = (union irte *) entry; 3209 3210 irte->val = 0; 3211 irte->fields.vector = vector; 3212 irte->fields.int_type = delivery_mode; 3213 irte->fields.destination = dest_apicid; 3214 irte->fields.dm = dest_mode; 3215 irte->fields.valid = 1; 3216 } 3217 3218 static void irte_ga_prepare(void *entry, 3219 u32 delivery_mode, bool dest_mode, 3220 u8 vector, u32 dest_apicid, int devid) 3221 { 3222 struct irte_ga *irte = (struct irte_ga *) entry; 3223 3224 irte->lo.val = 0; 3225 irte->hi.val = 0; 3226 irte->lo.fields_remap.int_type = delivery_mode; 3227 irte->lo.fields_remap.dm = dest_mode; 3228 irte->hi.fields.vector = vector; 3229 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3230 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3231 irte->lo.fields_remap.valid = 1; 3232 } 3233 3234 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3235 { 3236 union irte *irte = (union irte *) entry; 3237 3238 irte->fields.valid = 1; 3239 modify_irte(iommu, devid, index, irte); 3240 } 3241 3242 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3243 { 3244 struct irte_ga *irte = (struct irte_ga *) entry; 3245 3246 irte->lo.fields_remap.valid = 1; 3247 modify_irte_ga(iommu, devid, index, irte); 3248 } 3249 3250 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3251 { 3252 union irte *irte = (union irte *) entry; 3253 3254 irte->fields.valid = 0; 3255 modify_irte(iommu, devid, index, irte); 3256 } 3257 3258 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3259 { 3260 struct irte_ga *irte = (struct irte_ga *) entry; 3261 3262 irte->lo.fields_remap.valid = 0; 3263 modify_irte_ga(iommu, devid, index, irte); 3264 } 3265 3266 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3267 u8 vector, u32 dest_apicid) 3268 { 3269 union irte *irte = (union irte *) entry; 3270 3271 irte->fields.vector = vector; 3272 irte->fields.destination = dest_apicid; 3273 modify_irte(iommu, devid, index, irte); 3274 } 3275 3276 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3277 u8 vector, u32 dest_apicid) 3278 { 3279 struct irte_ga *irte = (struct irte_ga *) entry; 3280 3281 if (!irte->lo.fields_remap.guest_mode) { 3282 irte->hi.fields.vector = vector; 3283 irte->lo.fields_remap.destination = 3284 APICID_TO_IRTE_DEST_LO(dest_apicid); 3285 irte->hi.fields.destination = 3286 APICID_TO_IRTE_DEST_HI(dest_apicid); 3287 modify_irte_ga(iommu, devid, index, irte); 3288 } 3289 } 3290 3291 #define IRTE_ALLOCATED (~1U) 3292 static void irte_set_allocated(struct irq_remap_table *table, int index) 3293 { 3294 table->table[index] = IRTE_ALLOCATED; 3295 } 3296 3297 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3298 { 3299 struct irte_ga *ptr = (struct irte_ga *)table->table; 3300 struct irte_ga *irte = &ptr[index]; 3301 3302 memset(&irte->lo.val, 0, sizeof(u64)); 3303 memset(&irte->hi.val, 0, sizeof(u64)); 3304 irte->hi.fields.vector = 0xff; 3305 } 3306 3307 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3308 { 3309 union irte *ptr = (union irte *)table->table; 3310 union irte *irte = &ptr[index]; 3311 3312 return irte->val != 0; 3313 } 3314 3315 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3316 { 3317 struct irte_ga *ptr = (struct irte_ga *)table->table; 3318 struct irte_ga *irte = &ptr[index]; 3319 3320 return irte->hi.fields.vector != 0; 3321 } 3322 3323 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3324 { 3325 table->table[index] = 0; 3326 } 3327 3328 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3329 { 3330 struct irte_ga *ptr = (struct irte_ga *)table->table; 3331 struct irte_ga *irte = &ptr[index]; 3332 3333 memset(&irte->lo.val, 0, sizeof(u64)); 3334 memset(&irte->hi.val, 0, sizeof(u64)); 3335 } 3336 3337 static int get_devid(struct irq_alloc_info *info) 3338 { 3339 switch (info->type) { 3340 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3341 return get_ioapic_devid(info->devid); 3342 case X86_IRQ_ALLOC_TYPE_HPET: 3343 return get_hpet_devid(info->devid); 3344 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3345 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3346 return get_device_sbdf_id(msi_desc_to_dev(info->desc)); 3347 default: 3348 WARN_ON_ONCE(1); 3349 return -1; 3350 } 3351 } 3352 3353 struct irq_remap_ops amd_iommu_irq_ops = { 3354 .prepare = amd_iommu_prepare, 3355 .enable = amd_iommu_enable, 3356 .disable = amd_iommu_disable, 3357 .reenable = amd_iommu_reenable, 3358 .enable_faulting = amd_iommu_enable_faulting, 3359 }; 3360 3361 static void fill_msi_msg(struct msi_msg *msg, u32 index) 3362 { 3363 msg->data = index; 3364 msg->address_lo = 0; 3365 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 3366 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 3367 } 3368 3369 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3370 struct irq_cfg *irq_cfg, 3371 struct irq_alloc_info *info, 3372 int devid, int index, int sub_handle) 3373 { 3374 struct irq_2_irte *irte_info = &data->irq_2_irte; 3375 struct amd_iommu *iommu = data->iommu; 3376 3377 if (!iommu) 3378 return; 3379 3380 data->irq_2_irte.devid = devid; 3381 data->irq_2_irte.index = index + sub_handle; 3382 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED, 3383 apic->dest_mode_logical, irq_cfg->vector, 3384 irq_cfg->dest_apicid, devid); 3385 3386 switch (info->type) { 3387 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3388 case X86_IRQ_ALLOC_TYPE_HPET: 3389 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3390 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3391 fill_msi_msg(&data->msi_entry, irte_info->index); 3392 break; 3393 3394 default: 3395 BUG_ON(1); 3396 break; 3397 } 3398 } 3399 3400 struct amd_irte_ops irte_32_ops = { 3401 .prepare = irte_prepare, 3402 .activate = irte_activate, 3403 .deactivate = irte_deactivate, 3404 .set_affinity = irte_set_affinity, 3405 .set_allocated = irte_set_allocated, 3406 .is_allocated = irte_is_allocated, 3407 .clear_allocated = irte_clear_allocated, 3408 }; 3409 3410 struct amd_irte_ops irte_128_ops = { 3411 .prepare = irte_ga_prepare, 3412 .activate = irte_ga_activate, 3413 .deactivate = irte_ga_deactivate, 3414 .set_affinity = irte_ga_set_affinity, 3415 .set_allocated = irte_ga_set_allocated, 3416 .is_allocated = irte_ga_is_allocated, 3417 .clear_allocated = irte_ga_clear_allocated, 3418 }; 3419 3420 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3421 unsigned int nr_irqs, void *arg) 3422 { 3423 struct irq_alloc_info *info = arg; 3424 struct irq_data *irq_data; 3425 struct amd_ir_data *data = NULL; 3426 struct amd_iommu *iommu; 3427 struct irq_cfg *cfg; 3428 int i, ret, devid, seg, sbdf; 3429 int index; 3430 3431 if (!info) 3432 return -EINVAL; 3433 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI) 3434 return -EINVAL; 3435 3436 sbdf = get_devid(info); 3437 if (sbdf < 0) 3438 return -EINVAL; 3439 3440 seg = PCI_SBDF_TO_SEGID(sbdf); 3441 devid = PCI_SBDF_TO_DEVID(sbdf); 3442 iommu = __rlookup_amd_iommu(seg, devid); 3443 if (!iommu) 3444 return -EINVAL; 3445 3446 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3447 if (ret < 0) 3448 return ret; 3449 3450 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3451 struct irq_remap_table *table; 3452 3453 table = alloc_irq_table(iommu, devid, NULL); 3454 if (table) { 3455 if (!table->min_index) { 3456 /* 3457 * Keep the first 32 indexes free for IOAPIC 3458 * interrupts. 3459 */ 3460 table->min_index = 32; 3461 for (i = 0; i < 32; ++i) 3462 iommu->irte_ops->set_allocated(table, i); 3463 } 3464 WARN_ON(table->min_index != 32); 3465 index = info->ioapic.pin; 3466 } else { 3467 index = -ENOMEM; 3468 } 3469 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3470 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3471 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3472 3473 index = alloc_irq_index(iommu, devid, nr_irqs, align, 3474 msi_desc_to_pci_dev(info->desc)); 3475 } else { 3476 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL); 3477 } 3478 3479 if (index < 0) { 3480 pr_warn("Failed to allocate IRTE\n"); 3481 ret = index; 3482 goto out_free_parent; 3483 } 3484 3485 for (i = 0; i < nr_irqs; i++) { 3486 irq_data = irq_domain_get_irq_data(domain, virq + i); 3487 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3488 if (!cfg) { 3489 ret = -EINVAL; 3490 goto out_free_data; 3491 } 3492 3493 ret = -ENOMEM; 3494 data = kzalloc(sizeof(*data), GFP_KERNEL); 3495 if (!data) 3496 goto out_free_data; 3497 3498 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3499 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3500 else 3501 data->entry = kzalloc(sizeof(struct irte_ga), 3502 GFP_KERNEL); 3503 if (!data->entry) { 3504 kfree(data); 3505 goto out_free_data; 3506 } 3507 3508 data->iommu = iommu; 3509 irq_data->hwirq = (devid << 16) + i; 3510 irq_data->chip_data = data; 3511 irq_data->chip = &amd_ir_chip; 3512 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3513 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3514 } 3515 3516 return 0; 3517 3518 out_free_data: 3519 for (i--; i >= 0; i--) { 3520 irq_data = irq_domain_get_irq_data(domain, virq + i); 3521 if (irq_data) 3522 kfree(irq_data->chip_data); 3523 } 3524 for (i = 0; i < nr_irqs; i++) 3525 free_irte(iommu, devid, index + i); 3526 out_free_parent: 3527 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3528 return ret; 3529 } 3530 3531 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3532 unsigned int nr_irqs) 3533 { 3534 struct irq_2_irte *irte_info; 3535 struct irq_data *irq_data; 3536 struct amd_ir_data *data; 3537 int i; 3538 3539 for (i = 0; i < nr_irqs; i++) { 3540 irq_data = irq_domain_get_irq_data(domain, virq + i); 3541 if (irq_data && irq_data->chip_data) { 3542 data = irq_data->chip_data; 3543 irte_info = &data->irq_2_irte; 3544 free_irte(data->iommu, irte_info->devid, irte_info->index); 3545 kfree(data->entry); 3546 kfree(data); 3547 } 3548 } 3549 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3550 } 3551 3552 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3553 struct amd_ir_data *ir_data, 3554 struct irq_2_irte *irte_info, 3555 struct irq_cfg *cfg); 3556 3557 static int irq_remapping_activate(struct irq_domain *domain, 3558 struct irq_data *irq_data, bool reserve) 3559 { 3560 struct amd_ir_data *data = irq_data->chip_data; 3561 struct irq_2_irte *irte_info = &data->irq_2_irte; 3562 struct amd_iommu *iommu = data->iommu; 3563 struct irq_cfg *cfg = irqd_cfg(irq_data); 3564 3565 if (!iommu) 3566 return 0; 3567 3568 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid, 3569 irte_info->index); 3570 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3571 return 0; 3572 } 3573 3574 static void irq_remapping_deactivate(struct irq_domain *domain, 3575 struct irq_data *irq_data) 3576 { 3577 struct amd_ir_data *data = irq_data->chip_data; 3578 struct irq_2_irte *irte_info = &data->irq_2_irte; 3579 struct amd_iommu *iommu = data->iommu; 3580 3581 if (iommu) 3582 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid, 3583 irte_info->index); 3584 } 3585 3586 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, 3587 enum irq_domain_bus_token bus_token) 3588 { 3589 struct amd_iommu *iommu; 3590 int devid = -1; 3591 3592 if (!amd_iommu_irq_remap) 3593 return 0; 3594 3595 if (x86_fwspec_is_ioapic(fwspec)) 3596 devid = get_ioapic_devid(fwspec->param[0]); 3597 else if (x86_fwspec_is_hpet(fwspec)) 3598 devid = get_hpet_devid(fwspec->param[0]); 3599 3600 if (devid < 0) 3601 return 0; 3602 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff)); 3603 3604 return iommu && iommu->ir_domain == d; 3605 } 3606 3607 static const struct irq_domain_ops amd_ir_domain_ops = { 3608 .select = irq_remapping_select, 3609 .alloc = irq_remapping_alloc, 3610 .free = irq_remapping_free, 3611 .activate = irq_remapping_activate, 3612 .deactivate = irq_remapping_deactivate, 3613 }; 3614 3615 int amd_iommu_activate_guest_mode(void *data) 3616 { 3617 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3618 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3619 u64 valid; 3620 3621 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry) 3622 return 0; 3623 3624 valid = entry->lo.fields_vapic.valid; 3625 3626 entry->lo.val = 0; 3627 entry->hi.val = 0; 3628 3629 entry->lo.fields_vapic.valid = valid; 3630 entry->lo.fields_vapic.guest_mode = 1; 3631 entry->lo.fields_vapic.ga_log_intr = 1; 3632 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3633 entry->hi.fields.vector = ir_data->ga_vector; 3634 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3635 3636 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3637 ir_data->irq_2_irte.index, entry); 3638 } 3639 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3640 3641 int amd_iommu_deactivate_guest_mode(void *data) 3642 { 3643 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3644 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3645 struct irq_cfg *cfg = ir_data->cfg; 3646 u64 valid; 3647 3648 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3649 !entry || !entry->lo.fields_vapic.guest_mode) 3650 return 0; 3651 3652 valid = entry->lo.fields_remap.valid; 3653 3654 entry->lo.val = 0; 3655 entry->hi.val = 0; 3656 3657 entry->lo.fields_remap.valid = valid; 3658 entry->lo.fields_remap.dm = apic->dest_mode_logical; 3659 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED; 3660 entry->hi.fields.vector = cfg->vector; 3661 entry->lo.fields_remap.destination = 3662 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3663 entry->hi.fields.destination = 3664 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3665 3666 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3667 ir_data->irq_2_irte.index, entry); 3668 } 3669 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3670 3671 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3672 { 3673 int ret; 3674 struct amd_iommu_pi_data *pi_data = vcpu_info; 3675 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3676 struct amd_ir_data *ir_data = data->chip_data; 3677 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3678 struct iommu_dev_data *dev_data; 3679 3680 if (ir_data->iommu == NULL) 3681 return -EINVAL; 3682 3683 dev_data = search_dev_data(ir_data->iommu, irte_info->devid); 3684 3685 /* Note: 3686 * This device has never been set up for guest mode. 3687 * we should not modify the IRTE 3688 */ 3689 if (!dev_data || !dev_data->use_vapic) 3690 return 0; 3691 3692 ir_data->cfg = irqd_cfg(data); 3693 pi_data->ir_data = ir_data; 3694 3695 /* Note: 3696 * SVM tries to set up for VAPIC mode, but we are in 3697 * legacy mode. So, we force legacy mode instead. 3698 */ 3699 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3700 pr_debug("%s: Fall back to using intr legacy remap\n", 3701 __func__); 3702 pi_data->is_guest_mode = false; 3703 } 3704 3705 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3706 if (pi_data->is_guest_mode) { 3707 ir_data->ga_root_ptr = (pi_data->base >> 12); 3708 ir_data->ga_vector = vcpu_pi_info->vector; 3709 ir_data->ga_tag = pi_data->ga_tag; 3710 ret = amd_iommu_activate_guest_mode(ir_data); 3711 if (!ret) 3712 ir_data->cached_ga_tag = pi_data->ga_tag; 3713 } else { 3714 ret = amd_iommu_deactivate_guest_mode(ir_data); 3715 3716 /* 3717 * This communicates the ga_tag back to the caller 3718 * so that it can do all the necessary clean up. 3719 */ 3720 if (!ret) 3721 ir_data->cached_ga_tag = 0; 3722 } 3723 3724 return ret; 3725 } 3726 3727 3728 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3729 struct amd_ir_data *ir_data, 3730 struct irq_2_irte *irte_info, 3731 struct irq_cfg *cfg) 3732 { 3733 3734 /* 3735 * Atomically updates the IRTE with the new destination, vector 3736 * and flushes the interrupt entry cache. 3737 */ 3738 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid, 3739 irte_info->index, cfg->vector, 3740 cfg->dest_apicid); 3741 } 3742 3743 static int amd_ir_set_affinity(struct irq_data *data, 3744 const struct cpumask *mask, bool force) 3745 { 3746 struct amd_ir_data *ir_data = data->chip_data; 3747 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3748 struct irq_cfg *cfg = irqd_cfg(data); 3749 struct irq_data *parent = data->parent_data; 3750 struct amd_iommu *iommu = ir_data->iommu; 3751 int ret; 3752 3753 if (!iommu) 3754 return -ENODEV; 3755 3756 ret = parent->chip->irq_set_affinity(parent, mask, force); 3757 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3758 return ret; 3759 3760 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3761 /* 3762 * After this point, all the interrupts will start arriving 3763 * at the new destination. So, time to cleanup the previous 3764 * vector allocation. 3765 */ 3766 vector_schedule_cleanup(cfg); 3767 3768 return IRQ_SET_MASK_OK_DONE; 3769 } 3770 3771 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3772 { 3773 struct amd_ir_data *ir_data = irq_data->chip_data; 3774 3775 *msg = ir_data->msi_entry; 3776 } 3777 3778 static struct irq_chip amd_ir_chip = { 3779 .name = "AMD-IR", 3780 .irq_ack = apic_ack_irq, 3781 .irq_set_affinity = amd_ir_set_affinity, 3782 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3783 .irq_compose_msi_msg = ir_compose_msi_msg, 3784 }; 3785 3786 static const struct msi_parent_ops amdvi_msi_parent_ops = { 3787 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI, 3788 .prefix = "IR-", 3789 .init_dev_msi_info = msi_parent_init_dev_msi_info, 3790 }; 3791 3792 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3793 { 3794 struct fwnode_handle *fn; 3795 3796 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3797 if (!fn) 3798 return -ENOMEM; 3799 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0, 3800 fn, &amd_ir_domain_ops, iommu); 3801 if (!iommu->ir_domain) { 3802 irq_domain_free_fwnode(fn); 3803 return -ENOMEM; 3804 } 3805 3806 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI); 3807 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT | 3808 IRQ_DOMAIN_FLAG_ISOLATED_MSI; 3809 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops; 3810 3811 return 0; 3812 } 3813 3814 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 3815 { 3816 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3817 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3818 3819 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3820 !entry || !entry->lo.fields_vapic.guest_mode) 3821 return 0; 3822 3823 if (!ir_data->iommu) 3824 return -ENODEV; 3825 3826 if (cpu >= 0) { 3827 entry->lo.fields_vapic.destination = 3828 APICID_TO_IRTE_DEST_LO(cpu); 3829 entry->hi.fields.destination = 3830 APICID_TO_IRTE_DEST_HI(cpu); 3831 } 3832 entry->lo.fields_vapic.is_run = is_run; 3833 3834 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3835 ir_data->irq_2_irte.index, entry); 3836 } 3837 EXPORT_SYMBOL(amd_iommu_update_ga); 3838 #endif 3839