1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/idr.h>
22 #include <linux/iommu-helper.h>
23 #include <linux/delay.h>
24 #include <linux/amd-iommu.h>
25 #include <linux/notifier.h>
26 #include <linux/export.h>
27 #include <linux/irq.h>
28 #include <linux/irqchip/irq-msi-lib.h>
29 #include <linux/msi.h>
30 #include <linux/irqdomain.h>
31 #include <linux/percpu.h>
32 #include <linux/io-pgtable.h>
33 #include <linux/cc_platform.h>
34 #include <asm/irq_remapping.h>
35 #include <asm/io_apic.h>
36 #include <asm/apic.h>
37 #include <asm/hw_irq.h>
38 #include <asm/proto.h>
39 #include <asm/iommu.h>
40 #include <asm/gart.h>
41 #include <asm/dma.h>
42 #include <uapi/linux/iommufd.h>
43
44 #include "amd_iommu.h"
45 #include "../dma-iommu.h"
46 #include "../irq_remapping.h"
47 #include "../iommu-pages.h"
48
49 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
50
51 /* Reserved IOVA ranges */
52 #define MSI_RANGE_START (0xfee00000)
53 #define MSI_RANGE_END (0xfeefffff)
54 #define HT_RANGE_START (0xfd00000000ULL)
55 #define HT_RANGE_END (0xffffffffffULL)
56
57 LIST_HEAD(ioapic_map);
58 LIST_HEAD(hpet_map);
59 LIST_HEAD(acpihid_map);
60
61 const struct iommu_ops amd_iommu_ops;
62 static const struct iommu_dirty_ops amd_dirty_ops;
63
64 int amd_iommu_max_glx_val = -1;
65
66 /*
67 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
68 * to know which ones are already in use.
69 */
70 DEFINE_IDA(pdom_ids);
71
72 static int amd_iommu_attach_device(struct iommu_domain *dom,
73 struct device *dev);
74
75 static void set_dte_entry(struct amd_iommu *iommu,
76 struct iommu_dev_data *dev_data);
77
78 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid);
79
80 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid);
81
82 /****************************************************************************
83 *
84 * Helper functions
85 *
86 ****************************************************************************/
87
amd_iommu_atomic128_set(__int128 * ptr,__int128 val)88 static __always_inline void amd_iommu_atomic128_set(__int128 *ptr, __int128 val)
89 {
90 /*
91 * Note:
92 * We use arch_cmpxchg128_local() because:
93 * - Need cmpxchg16b instruction mainly for 128-bit store to DTE
94 * (not necessary for cmpxchg since this function is already
95 * protected by a spin_lock for this DTE).
96 * - Neither need LOCK_PREFIX nor try loop because of the spin_lock.
97 */
98 arch_cmpxchg128_local(ptr, *ptr, val);
99 }
100
write_dte_upper128(struct dev_table_entry * ptr,struct dev_table_entry * new)101 static void write_dte_upper128(struct dev_table_entry *ptr, struct dev_table_entry *new)
102 {
103 struct dev_table_entry old;
104
105 old.data128[1] = ptr->data128[1];
106 /*
107 * Preserve DTE_DATA2_INTR_MASK. This needs to be
108 * done here since it requires to be inside
109 * spin_lock(&dev_data->dte_lock) context.
110 */
111 new->data[2] &= ~DTE_DATA2_INTR_MASK;
112 new->data[2] |= old.data[2] & DTE_DATA2_INTR_MASK;
113
114 amd_iommu_atomic128_set(&ptr->data128[1], new->data128[1]);
115 }
116
write_dte_lower128(struct dev_table_entry * ptr,struct dev_table_entry * new)117 static void write_dte_lower128(struct dev_table_entry *ptr, struct dev_table_entry *new)
118 {
119 amd_iommu_atomic128_set(&ptr->data128[0], new->data128[0]);
120 }
121
122 /*
123 * Note:
124 * IOMMU reads the entire Device Table entry in a single 256-bit transaction
125 * but the driver is programming DTE using 2 128-bit cmpxchg. So, the driver
126 * need to ensure the following:
127 * - DTE[V|GV] bit is being written last when setting.
128 * - DTE[V|GV] bit is being written first when clearing.
129 *
130 * This function is used only by code, which updates DMA translation part of the DTE.
131 * So, only consider control bits related to DMA when updating the entry.
132 */
update_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * new)133 static void update_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
134 struct dev_table_entry *new)
135 {
136 unsigned long flags;
137 struct dev_table_entry *dev_table = get_dev_table(iommu);
138 struct dev_table_entry *ptr = &dev_table[dev_data->devid];
139
140 spin_lock_irqsave(&dev_data->dte_lock, flags);
141
142 if (!(ptr->data[0] & DTE_FLAG_V)) {
143 /* Existing DTE is not valid. */
144 write_dte_upper128(ptr, new);
145 write_dte_lower128(ptr, new);
146 iommu_flush_dte_sync(iommu, dev_data->devid);
147 } else if (!(new->data[0] & DTE_FLAG_V)) {
148 /* Existing DTE is valid. New DTE is not valid. */
149 write_dte_lower128(ptr, new);
150 write_dte_upper128(ptr, new);
151 iommu_flush_dte_sync(iommu, dev_data->devid);
152 } else if (!FIELD_GET(DTE_FLAG_GV, ptr->data[0])) {
153 /*
154 * Both DTEs are valid.
155 * Existing DTE has no guest page table.
156 */
157 write_dte_upper128(ptr, new);
158 write_dte_lower128(ptr, new);
159 iommu_flush_dte_sync(iommu, dev_data->devid);
160 } else if (!FIELD_GET(DTE_FLAG_GV, new->data[0])) {
161 /*
162 * Both DTEs are valid.
163 * Existing DTE has guest page table,
164 * new DTE has no guest page table,
165 */
166 write_dte_lower128(ptr, new);
167 write_dte_upper128(ptr, new);
168 iommu_flush_dte_sync(iommu, dev_data->devid);
169 } else if (FIELD_GET(DTE_GPT_LEVEL_MASK, ptr->data[2]) !=
170 FIELD_GET(DTE_GPT_LEVEL_MASK, new->data[2])) {
171 /*
172 * Both DTEs are valid and have guest page table,
173 * but have different number of levels. So, we need
174 * to upadte both upper and lower 128-bit value, which
175 * require disabling and flushing.
176 */
177 struct dev_table_entry clear = {};
178
179 /* First disable DTE */
180 write_dte_lower128(ptr, &clear);
181 iommu_flush_dte_sync(iommu, dev_data->devid);
182
183 /* Then update DTE */
184 write_dte_upper128(ptr, new);
185 write_dte_lower128(ptr, new);
186 iommu_flush_dte_sync(iommu, dev_data->devid);
187 } else {
188 /*
189 * Both DTEs are valid and have guest page table,
190 * and same number of levels. We just need to only
191 * update the lower 128-bit. So no need to disable DTE.
192 */
193 write_dte_lower128(ptr, new);
194 }
195
196 spin_unlock_irqrestore(&dev_data->dte_lock, flags);
197 }
198
get_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * dte)199 static void get_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
200 struct dev_table_entry *dte)
201 {
202 unsigned long flags;
203 struct dev_table_entry *ptr;
204 struct dev_table_entry *dev_table = get_dev_table(iommu);
205
206 ptr = &dev_table[dev_data->devid];
207
208 spin_lock_irqsave(&dev_data->dte_lock, flags);
209 dte->data128[0] = ptr->data128[0];
210 dte->data128[1] = ptr->data128[1];
211 spin_unlock_irqrestore(&dev_data->dte_lock, flags);
212 }
213
pdom_is_v2_pgtbl_mode(struct protection_domain * pdom)214 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
215 {
216 return (pdom && (pdom->pd_mode == PD_MODE_V2));
217 }
218
pdom_is_in_pt_mode(struct protection_domain * pdom)219 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
220 {
221 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
222 }
223
224 /*
225 * We cannot support PASID w/ existing v1 page table in the same domain
226 * since it will be nested. However, existing domain w/ v2 page table
227 * or passthrough mode can be used for PASID.
228 */
pdom_is_sva_capable(struct protection_domain * pdom)229 static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
230 {
231 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
232 }
233
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)234 static inline int get_acpihid_device_id(struct device *dev,
235 struct acpihid_map_entry **entry)
236 {
237 struct acpi_device *adev = ACPI_COMPANION(dev);
238 struct acpihid_map_entry *p, *p1 = NULL;
239 int hid_count = 0;
240 bool fw_bug;
241
242 if (!adev)
243 return -ENODEV;
244
245 list_for_each_entry(p, &acpihid_map, list) {
246 if (acpi_dev_hid_uid_match(adev, p->hid,
247 p->uid[0] ? p->uid : NULL)) {
248 p1 = p;
249 fw_bug = false;
250 hid_count = 1;
251 break;
252 }
253
254 /*
255 * Count HID matches w/o UID, raise FW_BUG but allow exactly one match
256 */
257 if (acpi_dev_hid_match(adev, p->hid)) {
258 p1 = p;
259 hid_count++;
260 fw_bug = true;
261 }
262 }
263
264 if (!p1)
265 return -EINVAL;
266 if (fw_bug)
267 dev_err_once(dev, FW_BUG "No ACPI device matched UID, but %d device%s matched HID.\n",
268 hid_count, hid_count > 1 ? "s" : "");
269 if (hid_count > 1)
270 return -EINVAL;
271 if (entry)
272 *entry = p1;
273
274 return p1->devid;
275 }
276
get_device_sbdf_id(struct device * dev)277 static inline int get_device_sbdf_id(struct device *dev)
278 {
279 int sbdf;
280
281 if (dev_is_pci(dev))
282 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
283 else
284 sbdf = get_acpihid_device_id(dev, NULL);
285
286 return sbdf;
287 }
288
get_dev_table(struct amd_iommu * iommu)289 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
290 {
291 struct dev_table_entry *dev_table;
292 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
293
294 BUG_ON(pci_seg == NULL);
295 dev_table = pci_seg->dev_table;
296 BUG_ON(dev_table == NULL);
297
298 return dev_table;
299 }
300
get_device_segment(struct device * dev)301 static inline u16 get_device_segment(struct device *dev)
302 {
303 u16 seg;
304
305 if (dev_is_pci(dev)) {
306 struct pci_dev *pdev = to_pci_dev(dev);
307
308 seg = pci_domain_nr(pdev->bus);
309 } else {
310 u32 devid = get_acpihid_device_id(dev, NULL);
311
312 seg = PCI_SBDF_TO_SEGID(devid);
313 }
314
315 return seg;
316 }
317
318 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)319 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
320 {
321 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
322
323 pci_seg->rlookup_table[devid] = iommu;
324 }
325
__rlookup_amd_iommu(u16 seg,u16 devid)326 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
327 {
328 struct amd_iommu_pci_seg *pci_seg;
329
330 for_each_pci_segment(pci_seg) {
331 if (pci_seg->id == seg)
332 return pci_seg->rlookup_table[devid];
333 }
334 return NULL;
335 }
336
rlookup_amd_iommu(struct device * dev)337 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
338 {
339 u16 seg = get_device_segment(dev);
340 int devid = get_device_sbdf_id(dev);
341
342 if (devid < 0)
343 return NULL;
344 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
345 }
346
alloc_dev_data(struct amd_iommu * iommu,u16 devid)347 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
348 {
349 struct iommu_dev_data *dev_data;
350 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
351
352 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
353 if (!dev_data)
354 return NULL;
355
356 mutex_init(&dev_data->mutex);
357 spin_lock_init(&dev_data->dte_lock);
358 dev_data->devid = devid;
359 ratelimit_default_init(&dev_data->rs);
360
361 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
362 return dev_data;
363 }
364
search_dev_data(struct amd_iommu * iommu,u16 devid)365 struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
366 {
367 struct iommu_dev_data *dev_data;
368 struct llist_node *node;
369 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
370
371 if (llist_empty(&pci_seg->dev_data_list))
372 return NULL;
373
374 node = pci_seg->dev_data_list.first;
375 llist_for_each_entry(dev_data, node, dev_data_list) {
376 if (dev_data->devid == devid)
377 return dev_data;
378 }
379
380 return NULL;
381 }
382
clone_alias(struct pci_dev * pdev,u16 alias,void * data)383 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
384 {
385 struct dev_table_entry new;
386 struct amd_iommu *iommu;
387 struct iommu_dev_data *dev_data, *alias_data;
388 u16 devid = pci_dev_id(pdev);
389 int ret = 0;
390
391 if (devid == alias)
392 return 0;
393
394 iommu = rlookup_amd_iommu(&pdev->dev);
395 if (!iommu)
396 return 0;
397
398 /* Copy the data from pdev */
399 dev_data = dev_iommu_priv_get(&pdev->dev);
400 if (!dev_data) {
401 pr_err("%s : Failed to get dev_data for 0x%x\n", __func__, devid);
402 ret = -EINVAL;
403 goto out;
404 }
405 get_dte256(iommu, dev_data, &new);
406
407 /* Setup alias */
408 alias_data = find_dev_data(iommu, alias);
409 if (!alias_data) {
410 pr_err("%s : Failed to get alias dev_data for 0x%x\n", __func__, alias);
411 ret = -EINVAL;
412 goto out;
413 }
414 update_dte256(iommu, alias_data, &new);
415
416 amd_iommu_set_rlookup_table(iommu, alias);
417 out:
418 return ret;
419 }
420
clone_aliases(struct amd_iommu * iommu,struct device * dev)421 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
422 {
423 struct pci_dev *pdev;
424
425 if (!dev_is_pci(dev))
426 return;
427 pdev = to_pci_dev(dev);
428
429 /*
430 * The IVRS alias stored in the alias table may not be
431 * part of the PCI DMA aliases if it's bus differs
432 * from the original device.
433 */
434 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
435
436 pci_for_each_dma_alias(pdev, clone_alias, NULL);
437 }
438
setup_aliases(struct amd_iommu * iommu,struct device * dev)439 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
440 {
441 struct pci_dev *pdev = to_pci_dev(dev);
442 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
443 u16 ivrs_alias;
444
445 /* For ACPI HID devices, there are no aliases */
446 if (!dev_is_pci(dev))
447 return;
448
449 /*
450 * Add the IVRS alias to the pci aliases if it is on the same
451 * bus. The IVRS table may know about a quirk that we don't.
452 */
453 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
454 if (ivrs_alias != pci_dev_id(pdev) &&
455 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
456 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
457
458 clone_aliases(iommu, dev);
459 }
460
find_dev_data(struct amd_iommu * iommu,u16 devid)461 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
462 {
463 struct iommu_dev_data *dev_data;
464
465 dev_data = search_dev_data(iommu, devid);
466
467 if (dev_data == NULL) {
468 dev_data = alloc_dev_data(iommu, devid);
469 if (!dev_data)
470 return NULL;
471
472 if (translation_pre_enabled(iommu))
473 dev_data->defer_attach = true;
474 }
475
476 return dev_data;
477 }
478
479 /*
480 * Find or create an IOMMU group for a acpihid device.
481 */
acpihid_device_group(struct device * dev)482 static struct iommu_group *acpihid_device_group(struct device *dev)
483 {
484 struct acpihid_map_entry *p, *entry = NULL;
485 int devid;
486
487 devid = get_acpihid_device_id(dev, &entry);
488 if (devid < 0)
489 return ERR_PTR(devid);
490
491 list_for_each_entry(p, &acpihid_map, list) {
492 if ((devid == p->devid) && p->group)
493 entry->group = p->group;
494 }
495
496 if (!entry->group)
497 entry->group = generic_device_group(dev);
498 else
499 iommu_group_ref_get(entry->group);
500
501 return entry->group;
502 }
503
pdev_pasid_supported(struct iommu_dev_data * dev_data)504 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
505 {
506 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
507 }
508
pdev_get_caps(struct pci_dev * pdev)509 static u32 pdev_get_caps(struct pci_dev *pdev)
510 {
511 int features;
512 u32 flags = 0;
513
514 if (pci_ats_supported(pdev))
515 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
516
517 if (pci_pri_supported(pdev))
518 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
519
520 features = pci_pasid_features(pdev);
521 if (features >= 0) {
522 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
523
524 if (features & PCI_PASID_CAP_EXEC)
525 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
526
527 if (features & PCI_PASID_CAP_PRIV)
528 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
529 }
530
531 return flags;
532 }
533
pdev_enable_cap_ats(struct pci_dev * pdev)534 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
535 {
536 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
537 int ret = -EINVAL;
538
539 if (dev_data->ats_enabled)
540 return 0;
541
542 if (amd_iommu_iotlb_sup &&
543 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
544 ret = pci_enable_ats(pdev, PAGE_SHIFT);
545 if (!ret) {
546 dev_data->ats_enabled = 1;
547 dev_data->ats_qdep = pci_ats_queue_depth(pdev);
548 }
549 }
550
551 return ret;
552 }
553
pdev_disable_cap_ats(struct pci_dev * pdev)554 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
555 {
556 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
557
558 if (dev_data->ats_enabled) {
559 pci_disable_ats(pdev);
560 dev_data->ats_enabled = 0;
561 }
562 }
563
pdev_enable_cap_pri(struct pci_dev * pdev)564 static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
565 {
566 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
567 int ret = -EINVAL;
568
569 if (dev_data->pri_enabled)
570 return 0;
571
572 if (!dev_data->ats_enabled)
573 return 0;
574
575 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
576 /*
577 * First reset the PRI state of the device.
578 * FIXME: Hardcode number of outstanding requests for now
579 */
580 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
581 dev_data->pri_enabled = 1;
582 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
583
584 ret = 0;
585 }
586 }
587
588 return ret;
589 }
590
pdev_disable_cap_pri(struct pci_dev * pdev)591 static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
592 {
593 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
594
595 if (dev_data->pri_enabled) {
596 pci_disable_pri(pdev);
597 dev_data->pri_enabled = 0;
598 }
599 }
600
pdev_enable_cap_pasid(struct pci_dev * pdev)601 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
602 {
603 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
604 int ret = -EINVAL;
605
606 if (dev_data->pasid_enabled)
607 return 0;
608
609 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
610 /* Only allow access to user-accessible pages */
611 ret = pci_enable_pasid(pdev, 0);
612 if (!ret)
613 dev_data->pasid_enabled = 1;
614 }
615
616 return ret;
617 }
618
pdev_disable_cap_pasid(struct pci_dev * pdev)619 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
620 {
621 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
622
623 if (dev_data->pasid_enabled) {
624 pci_disable_pasid(pdev);
625 dev_data->pasid_enabled = 0;
626 }
627 }
628
pdev_enable_caps(struct pci_dev * pdev)629 static void pdev_enable_caps(struct pci_dev *pdev)
630 {
631 pdev_enable_cap_pasid(pdev);
632 pdev_enable_cap_ats(pdev);
633 pdev_enable_cap_pri(pdev);
634 }
635
pdev_disable_caps(struct pci_dev * pdev)636 static void pdev_disable_caps(struct pci_dev *pdev)
637 {
638 pdev_disable_cap_ats(pdev);
639 pdev_disable_cap_pasid(pdev);
640 pdev_disable_cap_pri(pdev);
641 }
642
643 /*
644 * This function checks if the driver got a valid device from the caller to
645 * avoid dereferencing invalid pointers.
646 */
check_device(struct device * dev)647 static bool check_device(struct device *dev)
648 {
649 struct amd_iommu_pci_seg *pci_seg;
650 struct amd_iommu *iommu;
651 int devid, sbdf;
652
653 if (!dev)
654 return false;
655
656 sbdf = get_device_sbdf_id(dev);
657 if (sbdf < 0)
658 return false;
659 devid = PCI_SBDF_TO_DEVID(sbdf);
660
661 iommu = rlookup_amd_iommu(dev);
662 if (!iommu)
663 return false;
664
665 /* Out of our scope? */
666 pci_seg = iommu->pci_seg;
667 if (devid > pci_seg->last_bdf)
668 return false;
669
670 return true;
671 }
672
iommu_init_device(struct amd_iommu * iommu,struct device * dev)673 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
674 {
675 struct iommu_dev_data *dev_data;
676 int devid, sbdf;
677
678 if (dev_iommu_priv_get(dev))
679 return 0;
680
681 sbdf = get_device_sbdf_id(dev);
682 if (sbdf < 0)
683 return sbdf;
684
685 devid = PCI_SBDF_TO_DEVID(sbdf);
686 dev_data = find_dev_data(iommu, devid);
687 if (!dev_data)
688 return -ENOMEM;
689
690 dev_data->dev = dev;
691
692 /*
693 * The dev_iommu_priv_set() needes to be called before setup_aliases.
694 * Otherwise, subsequent call to dev_iommu_priv_get() will fail.
695 */
696 dev_iommu_priv_set(dev, dev_data);
697 setup_aliases(iommu, dev);
698
699 /*
700 * By default we use passthrough mode for IOMMUv2 capable device.
701 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
702 * invalid address), we ignore the capability for the device so
703 * it'll be forced to go into translation mode.
704 */
705 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
706 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
707 dev_data->flags = pdev_get_caps(to_pci_dev(dev));
708 }
709
710 return 0;
711 }
712
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)713 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
714 {
715 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
716 struct dev_table_entry *dev_table = get_dev_table(iommu);
717 int devid, sbdf;
718
719 sbdf = get_device_sbdf_id(dev);
720 if (sbdf < 0)
721 return;
722
723 devid = PCI_SBDF_TO_DEVID(sbdf);
724 pci_seg->rlookup_table[devid] = NULL;
725 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
726
727 setup_aliases(iommu, dev);
728 }
729
730
731 /****************************************************************************
732 *
733 * Interrupt handling functions
734 *
735 ****************************************************************************/
736
dump_dte_entry(struct amd_iommu * iommu,u16 devid)737 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
738 {
739 int i;
740 struct dev_table_entry dte;
741 struct iommu_dev_data *dev_data = find_dev_data(iommu, devid);
742
743 get_dte256(iommu, dev_data, &dte);
744
745 for (i = 0; i < 4; ++i)
746 pr_err("DTE[%d]: %016llx\n", i, dte.data[i]);
747 }
748
dump_command(unsigned long phys_addr)749 static void dump_command(unsigned long phys_addr)
750 {
751 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
752 int i;
753
754 for (i = 0; i < 4; ++i)
755 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
756 }
757
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)758 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
759 {
760 struct iommu_dev_data *dev_data = NULL;
761 int devid, vmg_tag, flags;
762 struct pci_dev *pdev;
763 u64 spa;
764
765 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
766 vmg_tag = (event[1]) & 0xFFFF;
767 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
768 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
769
770 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
771 devid & 0xff);
772 if (pdev)
773 dev_data = dev_iommu_priv_get(&pdev->dev);
774
775 if (dev_data) {
776 if (__ratelimit(&dev_data->rs)) {
777 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
778 vmg_tag, spa, flags);
779 }
780 } else {
781 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
782 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
783 vmg_tag, spa, flags);
784 }
785
786 if (pdev)
787 pci_dev_put(pdev);
788 }
789
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)790 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
791 {
792 struct iommu_dev_data *dev_data = NULL;
793 int devid, flags_rmp, vmg_tag, flags;
794 struct pci_dev *pdev;
795 u64 gpa;
796
797 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
798 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
799 vmg_tag = (event[1]) & 0xFFFF;
800 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
801 gpa = ((u64)event[3] << 32) | event[2];
802
803 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
804 devid & 0xff);
805 if (pdev)
806 dev_data = dev_iommu_priv_get(&pdev->dev);
807
808 if (dev_data) {
809 if (__ratelimit(&dev_data->rs)) {
810 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
811 vmg_tag, gpa, flags_rmp, flags);
812 }
813 } else {
814 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
815 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
816 vmg_tag, gpa, flags_rmp, flags);
817 }
818
819 if (pdev)
820 pci_dev_put(pdev);
821 }
822
823 #define IS_IOMMU_MEM_TRANSACTION(flags) \
824 (((flags) & EVENT_FLAG_I) == 0)
825
826 #define IS_WRITE_REQUEST(flags) \
827 ((flags) & EVENT_FLAG_RW)
828
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)829 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
830 u16 devid, u16 domain_id,
831 u64 address, int flags)
832 {
833 struct iommu_dev_data *dev_data = NULL;
834 struct pci_dev *pdev;
835
836 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
837 devid & 0xff);
838 if (pdev)
839 dev_data = dev_iommu_priv_get(&pdev->dev);
840
841 if (dev_data) {
842 /*
843 * If this is a DMA fault (for which the I(nterrupt)
844 * bit will be unset), allow report_iommu_fault() to
845 * prevent logging it.
846 */
847 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
848 /* Device not attached to domain properly */
849 if (dev_data->domain == NULL) {
850 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
851 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
852 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
853 PCI_FUNC(devid), domain_id);
854 goto out;
855 }
856
857 if (!report_iommu_fault(&dev_data->domain->domain,
858 &pdev->dev, address,
859 IS_WRITE_REQUEST(flags) ?
860 IOMMU_FAULT_WRITE :
861 IOMMU_FAULT_READ))
862 goto out;
863 }
864
865 if (__ratelimit(&dev_data->rs)) {
866 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
867 domain_id, address, flags);
868 }
869 } else {
870 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
871 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
872 domain_id, address, flags);
873 }
874
875 out:
876 if (pdev)
877 pci_dev_put(pdev);
878 }
879
iommu_print_event(struct amd_iommu * iommu,void * __evt)880 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
881 {
882 struct device *dev = iommu->iommu.dev;
883 int type, devid, flags, tag;
884 volatile u32 *event = __evt;
885 int count = 0;
886 u64 address, ctrl;
887 u32 pasid;
888
889 retry:
890 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
891 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
892 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
893 (event[1] & EVENT_DOMID_MASK_LO);
894 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
895 address = (u64)(((u64)event[3]) << 32) | event[2];
896 ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
897
898 if (type == 0) {
899 /* Did we hit the erratum? */
900 if (++count == LOOP_TIMEOUT) {
901 pr_err("No event written to event log\n");
902 return;
903 }
904 udelay(1);
905 goto retry;
906 }
907
908 if (type == EVENT_TYPE_IO_FAULT) {
909 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
910 return;
911 }
912
913 switch (type) {
914 case EVENT_TYPE_ILL_DEV:
915 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
916 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
917 pasid, address, flags);
918 dev_err(dev, "Control Reg : 0x%llx\n", ctrl);
919 dump_dte_entry(iommu, devid);
920 break;
921 case EVENT_TYPE_DEV_TAB_ERR:
922 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
923 "address=0x%llx flags=0x%04x]\n",
924 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
925 address, flags);
926 break;
927 case EVENT_TYPE_PAGE_TAB_ERR:
928 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
929 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
930 pasid, address, flags);
931 break;
932 case EVENT_TYPE_ILL_CMD:
933 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
934 dump_command(address);
935 break;
936 case EVENT_TYPE_CMD_HARD_ERR:
937 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
938 address, flags);
939 break;
940 case EVENT_TYPE_IOTLB_INV_TO:
941 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
942 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
943 address);
944 break;
945 case EVENT_TYPE_INV_DEV_REQ:
946 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
947 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
948 pasid, address, flags);
949 break;
950 case EVENT_TYPE_RMP_FAULT:
951 amd_iommu_report_rmp_fault(iommu, event);
952 break;
953 case EVENT_TYPE_RMP_HW_ERR:
954 amd_iommu_report_rmp_hw_error(iommu, event);
955 break;
956 case EVENT_TYPE_INV_PPR_REQ:
957 pasid = PPR_PASID(*((u64 *)__evt));
958 tag = event[1] & 0x03FF;
959 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
960 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
961 pasid, address, flags, tag);
962 break;
963 default:
964 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
965 event[0], event[1], event[2], event[3]);
966 }
967
968 /*
969 * To detect the hardware errata 732 we need to clear the
970 * entry back to zero. This issue does not exist on SNP
971 * enabled system. Also this buffer is not writeable on
972 * SNP enabled system.
973 */
974 if (!amd_iommu_snp_en)
975 memset(__evt, 0, 4 * sizeof(u32));
976 }
977
iommu_poll_events(struct amd_iommu * iommu)978 static void iommu_poll_events(struct amd_iommu *iommu)
979 {
980 u32 head, tail;
981
982 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
983 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
984
985 while (head != tail) {
986 iommu_print_event(iommu, iommu->evt_buf + head);
987
988 /* Update head pointer of hardware ring-buffer */
989 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
990 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
991 }
992
993 }
994
995 #ifdef CONFIG_IRQ_REMAP
996 static int (*iommu_ga_log_notifier)(u32);
997
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))998 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
999 {
1000 iommu_ga_log_notifier = notifier;
1001
1002 /*
1003 * Ensure all in-flight IRQ handlers run to completion before returning
1004 * to the caller, e.g. to ensure module code isn't unloaded while it's
1005 * being executed in the IRQ handler.
1006 */
1007 if (!notifier)
1008 synchronize_rcu();
1009
1010 return 0;
1011 }
1012 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
1013
iommu_poll_ga_log(struct amd_iommu * iommu)1014 static void iommu_poll_ga_log(struct amd_iommu *iommu)
1015 {
1016 u32 head, tail;
1017
1018 if (iommu->ga_log == NULL)
1019 return;
1020
1021 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1022 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
1023
1024 while (head != tail) {
1025 volatile u64 *raw;
1026 u64 log_entry;
1027
1028 raw = (u64 *)(iommu->ga_log + head);
1029
1030 /* Avoid memcpy function-call overhead */
1031 log_entry = *raw;
1032
1033 /* Update head pointer of hardware ring-buffer */
1034 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
1035 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1036
1037 /* Handle GA entry */
1038 switch (GA_REQ_TYPE(log_entry)) {
1039 case GA_GUEST_NR:
1040 if (!iommu_ga_log_notifier)
1041 break;
1042
1043 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
1044 __func__, GA_DEVID(log_entry),
1045 GA_TAG(log_entry));
1046
1047 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
1048 pr_err("GA log notifier failed.\n");
1049 break;
1050 default:
1051 break;
1052 }
1053 }
1054 }
1055
1056 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1057 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
1058 {
1059 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
1060 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
1061 return;
1062
1063 dev_set_msi_domain(dev, iommu->ir_domain);
1064 }
1065
1066 #else /* CONFIG_IRQ_REMAP */
1067 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1068 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
1069 #endif /* !CONFIG_IRQ_REMAP */
1070
amd_iommu_handle_irq(void * data,const char * evt_type,u32 int_mask,u32 overflow_mask,void (* int_handler)(struct amd_iommu *),void (* overflow_handler)(struct amd_iommu *))1071 static void amd_iommu_handle_irq(void *data, const char *evt_type,
1072 u32 int_mask, u32 overflow_mask,
1073 void (*int_handler)(struct amd_iommu *),
1074 void (*overflow_handler)(struct amd_iommu *))
1075 {
1076 struct amd_iommu *iommu = (struct amd_iommu *) data;
1077 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1078 u32 mask = int_mask | overflow_mask;
1079
1080 while (status & mask) {
1081 /* Enable interrupt sources again */
1082 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
1083
1084 if (int_handler) {
1085 pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
1086 iommu->index, evt_type);
1087 int_handler(iommu);
1088 }
1089
1090 if ((status & overflow_mask) && overflow_handler)
1091 overflow_handler(iommu);
1092
1093 /*
1094 * Hardware bug: ERBT1312
1095 * When re-enabling interrupt (by writing 1
1096 * to clear the bit), the hardware might also try to set
1097 * the interrupt bit in the event status register.
1098 * In this scenario, the bit will be set, and disable
1099 * subsequent interrupts.
1100 *
1101 * Workaround: The IOMMU driver should read back the
1102 * status register and check if the interrupt bits are cleared.
1103 * If not, driver will need to go through the interrupt handler
1104 * again and re-clear the bits
1105 */
1106 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1107 }
1108 }
1109
amd_iommu_int_thread_evtlog(int irq,void * data)1110 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
1111 {
1112 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
1113 MMIO_STATUS_EVT_OVERFLOW_MASK,
1114 iommu_poll_events, amd_iommu_restart_event_logging);
1115
1116 return IRQ_HANDLED;
1117 }
1118
amd_iommu_int_thread_pprlog(int irq,void * data)1119 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
1120 {
1121 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
1122 MMIO_STATUS_PPR_OVERFLOW_MASK,
1123 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
1124
1125 return IRQ_HANDLED;
1126 }
1127
amd_iommu_int_thread_galog(int irq,void * data)1128 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1129 {
1130 #ifdef CONFIG_IRQ_REMAP
1131 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1132 MMIO_STATUS_GALOG_OVERFLOW_MASK,
1133 iommu_poll_ga_log, amd_iommu_restart_ga_log);
1134 #endif
1135
1136 return IRQ_HANDLED;
1137 }
1138
amd_iommu_int_thread(int irq,void * data)1139 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1140 {
1141 amd_iommu_int_thread_evtlog(irq, data);
1142 amd_iommu_int_thread_pprlog(irq, data);
1143 amd_iommu_int_thread_galog(irq, data);
1144
1145 return IRQ_HANDLED;
1146 }
1147
amd_iommu_int_handler(int irq,void * data)1148 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1149 {
1150 return IRQ_WAKE_THREAD;
1151 }
1152
1153 /****************************************************************************
1154 *
1155 * IOMMU command queuing functions
1156 *
1157 ****************************************************************************/
1158
wait_on_sem(struct amd_iommu * iommu,u64 data)1159 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1160 {
1161 int i = 0;
1162
1163 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1164 udelay(1);
1165 i += 1;
1166 }
1167
1168 if (i == LOOP_TIMEOUT) {
1169 pr_alert("Completion-Wait loop timed out\n");
1170 return -EIO;
1171 }
1172
1173 return 0;
1174 }
1175
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)1176 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1177 struct iommu_cmd *cmd)
1178 {
1179 u8 *target;
1180 u32 tail;
1181
1182 /* Copy command to buffer */
1183 tail = iommu->cmd_buf_tail;
1184 target = iommu->cmd_buf + tail;
1185 memcpy(target, cmd, sizeof(*cmd));
1186
1187 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1188 iommu->cmd_buf_tail = tail;
1189
1190 /* Tell the IOMMU about it */
1191 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1192 }
1193
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)1194 static void build_completion_wait(struct iommu_cmd *cmd,
1195 struct amd_iommu *iommu,
1196 u64 data)
1197 {
1198 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1199
1200 memset(cmd, 0, sizeof(*cmd));
1201 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1202 cmd->data[1] = upper_32_bits(paddr);
1203 cmd->data[2] = lower_32_bits(data);
1204 cmd->data[3] = upper_32_bits(data);
1205 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1206 }
1207
build_inv_dte(struct iommu_cmd * cmd,u16 devid)1208 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1209 {
1210 memset(cmd, 0, sizeof(*cmd));
1211 cmd->data[0] = devid;
1212 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1213 }
1214
1215 /*
1216 * Builds an invalidation address which is suitable for one page or multiple
1217 * pages. Sets the size bit (S) as needed is more than one page is flushed.
1218 */
build_inv_address(u64 address,size_t size)1219 static inline u64 build_inv_address(u64 address, size_t size)
1220 {
1221 u64 pages, end, msb_diff;
1222
1223 pages = iommu_num_pages(address, size, PAGE_SIZE);
1224
1225 if (pages == 1)
1226 return address & PAGE_MASK;
1227
1228 end = address + size - 1;
1229
1230 /*
1231 * msb_diff would hold the index of the most significant bit that
1232 * flipped between the start and end.
1233 */
1234 msb_diff = fls64(end ^ address) - 1;
1235
1236 /*
1237 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1238 * between the start and the end, invalidate everything.
1239 */
1240 if (unlikely(msb_diff > 51)) {
1241 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1242 } else {
1243 /*
1244 * The msb-bit must be clear on the address. Just set all the
1245 * lower bits.
1246 */
1247 address |= (1ull << msb_diff) - 1;
1248 }
1249
1250 /* Clear bits 11:0 */
1251 address &= PAGE_MASK;
1252
1253 /* Set the size bit - we flush more than one 4kb page */
1254 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1255 }
1256
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,ioasid_t pasid,bool gn)1257 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1258 size_t size, u16 domid,
1259 ioasid_t pasid, bool gn)
1260 {
1261 u64 inv_address = build_inv_address(address, size);
1262
1263 memset(cmd, 0, sizeof(*cmd));
1264
1265 cmd->data[1] |= domid;
1266 cmd->data[2] = lower_32_bits(inv_address);
1267 cmd->data[3] = upper_32_bits(inv_address);
1268 /* PDE bit - we want to flush everything, not only the PTEs */
1269 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1270 if (gn) {
1271 cmd->data[0] |= pasid;
1272 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1273 }
1274 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1275 }
1276
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size,ioasid_t pasid,bool gn)1277 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1278 u64 address, size_t size,
1279 ioasid_t pasid, bool gn)
1280 {
1281 u64 inv_address = build_inv_address(address, size);
1282
1283 memset(cmd, 0, sizeof(*cmd));
1284
1285 cmd->data[0] = devid;
1286 cmd->data[0] |= (qdep & 0xff) << 24;
1287 cmd->data[1] = devid;
1288 cmd->data[2] = lower_32_bits(inv_address);
1289 cmd->data[3] = upper_32_bits(inv_address);
1290 if (gn) {
1291 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1292 cmd->data[1] |= (pasid & 0xff) << 16;
1293 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1294 }
1295
1296 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1297 }
1298
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,u8 gn)1299 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1300 int status, int tag, u8 gn)
1301 {
1302 memset(cmd, 0, sizeof(*cmd));
1303
1304 cmd->data[0] = devid;
1305 if (gn) {
1306 cmd->data[1] = pasid;
1307 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1308 }
1309 cmd->data[3] = tag & 0x1ff;
1310 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1311
1312 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1313 }
1314
build_inv_all(struct iommu_cmd * cmd)1315 static void build_inv_all(struct iommu_cmd *cmd)
1316 {
1317 memset(cmd, 0, sizeof(*cmd));
1318 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1319 }
1320
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1321 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1322 {
1323 memset(cmd, 0, sizeof(*cmd));
1324 cmd->data[0] = devid;
1325 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1326 }
1327
1328 /*
1329 * Writes the command to the IOMMUs command buffer and informs the
1330 * hardware about the new command.
1331 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1332 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1333 struct iommu_cmd *cmd,
1334 bool sync)
1335 {
1336 unsigned int count = 0;
1337 u32 left, next_tail;
1338
1339 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1340 again:
1341 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1342
1343 if (left <= 0x20) {
1344 /* Skip udelay() the first time around */
1345 if (count++) {
1346 if (count == LOOP_TIMEOUT) {
1347 pr_err("Command buffer timeout\n");
1348 return -EIO;
1349 }
1350
1351 udelay(1);
1352 }
1353
1354 /* Update head and recheck remaining space */
1355 iommu->cmd_buf_head = readl(iommu->mmio_base +
1356 MMIO_CMD_HEAD_OFFSET);
1357
1358 goto again;
1359 }
1360
1361 copy_cmd_to_buffer(iommu, cmd);
1362
1363 /* Do we need to make sure all commands are processed? */
1364 iommu->need_sync = sync;
1365
1366 return 0;
1367 }
1368
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1369 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1370 struct iommu_cmd *cmd,
1371 bool sync)
1372 {
1373 unsigned long flags;
1374 int ret;
1375
1376 raw_spin_lock_irqsave(&iommu->lock, flags);
1377 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1378 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1379
1380 return ret;
1381 }
1382
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1383 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1384 {
1385 return iommu_queue_command_sync(iommu, cmd, true);
1386 }
1387
1388 /*
1389 * This function queues a completion wait command into the command
1390 * buffer of an IOMMU
1391 */
iommu_completion_wait(struct amd_iommu * iommu)1392 static int iommu_completion_wait(struct amd_iommu *iommu)
1393 {
1394 struct iommu_cmd cmd;
1395 unsigned long flags;
1396 int ret;
1397 u64 data;
1398
1399 if (!iommu->need_sync)
1400 return 0;
1401
1402 data = atomic64_inc_return(&iommu->cmd_sem_val);
1403 build_completion_wait(&cmd, iommu, data);
1404
1405 raw_spin_lock_irqsave(&iommu->lock, flags);
1406
1407 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1408 if (ret)
1409 goto out_unlock;
1410
1411 ret = wait_on_sem(iommu, data);
1412
1413 out_unlock:
1414 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1415
1416 return ret;
1417 }
1418
domain_flush_complete(struct protection_domain * domain)1419 static void domain_flush_complete(struct protection_domain *domain)
1420 {
1421 struct pdom_iommu_info *pdom_iommu_info;
1422 unsigned long i;
1423
1424 lockdep_assert_held(&domain->lock);
1425
1426 /*
1427 * Devices of this domain are behind this IOMMU
1428 * We need to wait for completion of all commands.
1429 */
1430 xa_for_each(&domain->iommu_array, i, pdom_iommu_info)
1431 iommu_completion_wait(pdom_iommu_info->iommu);
1432 }
1433
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1434 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1435 {
1436 struct iommu_cmd cmd;
1437
1438 build_inv_dte(&cmd, devid);
1439
1440 return iommu_queue_command(iommu, &cmd);
1441 }
1442
iommu_flush_dte_sync(struct amd_iommu * iommu,u16 devid)1443 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid)
1444 {
1445 int ret;
1446
1447 ret = iommu_flush_dte(iommu, devid);
1448 if (!ret)
1449 iommu_completion_wait(iommu);
1450 }
1451
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1452 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1453 {
1454 u32 devid;
1455 u16 last_bdf = iommu->pci_seg->last_bdf;
1456
1457 for (devid = 0; devid <= last_bdf; ++devid)
1458 iommu_flush_dte(iommu, devid);
1459
1460 iommu_completion_wait(iommu);
1461 }
1462
1463 /*
1464 * This function uses heavy locking and may disable irqs for some time. But
1465 * this is no issue because it is only called during resume.
1466 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1467 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1468 {
1469 u32 dom_id;
1470 u16 last_bdf = iommu->pci_seg->last_bdf;
1471
1472 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1473 struct iommu_cmd cmd;
1474 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1475 dom_id, IOMMU_NO_PASID, false);
1476 iommu_queue_command(iommu, &cmd);
1477 }
1478
1479 iommu_completion_wait(iommu);
1480 }
1481
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1482 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1483 {
1484 struct iommu_cmd cmd;
1485
1486 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1487 dom_id, IOMMU_NO_PASID, false);
1488 iommu_queue_command(iommu, &cmd);
1489
1490 iommu_completion_wait(iommu);
1491 }
1492
amd_iommu_flush_all(struct amd_iommu * iommu)1493 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1494 {
1495 struct iommu_cmd cmd;
1496
1497 build_inv_all(&cmd);
1498
1499 iommu_queue_command(iommu, &cmd);
1500 iommu_completion_wait(iommu);
1501 }
1502
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1503 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1504 {
1505 struct iommu_cmd cmd;
1506
1507 build_inv_irt(&cmd, devid);
1508
1509 iommu_queue_command(iommu, &cmd);
1510 }
1511
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1512 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1513 {
1514 u32 devid;
1515 u16 last_bdf = iommu->pci_seg->last_bdf;
1516
1517 if (iommu->irtcachedis_enabled)
1518 return;
1519
1520 for (devid = 0; devid <= last_bdf; devid++)
1521 iommu_flush_irt(iommu, devid);
1522
1523 iommu_completion_wait(iommu);
1524 }
1525
amd_iommu_flush_all_caches(struct amd_iommu * iommu)1526 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1527 {
1528 if (check_feature(FEATURE_IA)) {
1529 amd_iommu_flush_all(iommu);
1530 } else {
1531 amd_iommu_flush_dte_all(iommu);
1532 amd_iommu_flush_irt_all(iommu);
1533 amd_iommu_flush_tlb_all(iommu);
1534 }
1535 }
1536
1537 /*
1538 * Command send function for flushing on-device TLB
1539 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size,ioasid_t pasid,bool gn)1540 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1541 size_t size, ioasid_t pasid, bool gn)
1542 {
1543 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1544 struct iommu_cmd cmd;
1545 int qdep = dev_data->ats_qdep;
1546
1547 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1548 size, pasid, gn);
1549
1550 return iommu_queue_command(iommu, &cmd);
1551 }
1552
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1553 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1554 {
1555 struct amd_iommu *iommu = data;
1556
1557 return iommu_flush_dte(iommu, alias);
1558 }
1559
1560 /*
1561 * Command send function for invalidating a device table entry
1562 */
device_flush_dte(struct iommu_dev_data * dev_data)1563 static int device_flush_dte(struct iommu_dev_data *dev_data)
1564 {
1565 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1566 struct pci_dev *pdev = NULL;
1567 struct amd_iommu_pci_seg *pci_seg;
1568 u16 alias;
1569 int ret;
1570
1571 if (dev_is_pci(dev_data->dev))
1572 pdev = to_pci_dev(dev_data->dev);
1573
1574 if (pdev)
1575 ret = pci_for_each_dma_alias(pdev,
1576 device_flush_dte_alias, iommu);
1577 else
1578 ret = iommu_flush_dte(iommu, dev_data->devid);
1579 if (ret)
1580 return ret;
1581
1582 pci_seg = iommu->pci_seg;
1583 alias = pci_seg->alias_table[dev_data->devid];
1584 if (alias != dev_data->devid) {
1585 ret = iommu_flush_dte(iommu, alias);
1586 if (ret)
1587 return ret;
1588 }
1589
1590 if (dev_data->ats_enabled) {
1591 /* Invalidate the entire contents of an IOTLB */
1592 ret = device_flush_iotlb(dev_data, 0, ~0UL,
1593 IOMMU_NO_PASID, false);
1594 }
1595
1596 return ret;
1597 }
1598
domain_flush_pages_v2(struct protection_domain * pdom,u64 address,size_t size)1599 static int domain_flush_pages_v2(struct protection_domain *pdom,
1600 u64 address, size_t size)
1601 {
1602 struct iommu_dev_data *dev_data;
1603 struct iommu_cmd cmd;
1604 int ret = 0;
1605
1606 lockdep_assert_held(&pdom->lock);
1607 list_for_each_entry(dev_data, &pdom->dev_list, list) {
1608 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1609 u16 domid = dev_data->gcr3_info.domid;
1610
1611 build_inv_iommu_pages(&cmd, address, size,
1612 domid, IOMMU_NO_PASID, true);
1613
1614 ret |= iommu_queue_command(iommu, &cmd);
1615 }
1616
1617 return ret;
1618 }
1619
domain_flush_pages_v1(struct protection_domain * pdom,u64 address,size_t size)1620 static int domain_flush_pages_v1(struct protection_domain *pdom,
1621 u64 address, size_t size)
1622 {
1623 struct pdom_iommu_info *pdom_iommu_info;
1624 struct iommu_cmd cmd;
1625 int ret = 0;
1626 unsigned long i;
1627
1628 lockdep_assert_held(&pdom->lock);
1629
1630 build_inv_iommu_pages(&cmd, address, size,
1631 pdom->id, IOMMU_NO_PASID, false);
1632
1633 xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) {
1634 /*
1635 * Devices of this domain are behind this IOMMU
1636 * We need a TLB flush
1637 */
1638 ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd);
1639 }
1640
1641 return ret;
1642 }
1643
1644 /*
1645 * TLB invalidation function which is called from the mapping functions.
1646 * It flushes range of PTEs of the domain.
1647 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1648 static void __domain_flush_pages(struct protection_domain *domain,
1649 u64 address, size_t size)
1650 {
1651 struct iommu_dev_data *dev_data;
1652 int ret = 0;
1653 ioasid_t pasid = IOMMU_NO_PASID;
1654 bool gn = false;
1655
1656 lockdep_assert_held(&domain->lock);
1657
1658 if (pdom_is_v2_pgtbl_mode(domain)) {
1659 gn = true;
1660 ret = domain_flush_pages_v2(domain, address, size);
1661 } else {
1662 ret = domain_flush_pages_v1(domain, address, size);
1663 }
1664
1665 list_for_each_entry(dev_data, &domain->dev_list, list) {
1666
1667 if (!dev_data->ats_enabled)
1668 continue;
1669
1670 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1671 }
1672
1673 WARN_ON(ret);
1674 }
1675
amd_iommu_domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1676 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1677 u64 address, size_t size)
1678 {
1679 lockdep_assert_held(&domain->lock);
1680
1681 if (likely(!amd_iommu_np_cache)) {
1682 __domain_flush_pages(domain, address, size);
1683
1684 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1685 domain_flush_complete(domain);
1686
1687 return;
1688 }
1689
1690 /*
1691 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1692 * In such setups it is best to avoid flushes of ranges which are not
1693 * naturally aligned, since it would lead to flushes of unmodified
1694 * PTEs. Such flushes would require the hypervisor to do more work than
1695 * necessary. Therefore, perform repeated flushes of aligned ranges
1696 * until you cover the range. Each iteration flushes the smaller
1697 * between the natural alignment of the address that we flush and the
1698 * greatest naturally aligned region that fits in the range.
1699 */
1700 while (size != 0) {
1701 int addr_alignment = __ffs(address);
1702 int size_alignment = __fls(size);
1703 int min_alignment;
1704 size_t flush_size;
1705
1706 /*
1707 * size is always non-zero, but address might be zero, causing
1708 * addr_alignment to be negative. As the casting of the
1709 * argument in __ffs(address) to long might trim the high bits
1710 * of the address on x86-32, cast to long when doing the check.
1711 */
1712 if (likely((unsigned long)address != 0))
1713 min_alignment = min(addr_alignment, size_alignment);
1714 else
1715 min_alignment = size_alignment;
1716
1717 flush_size = 1ul << min_alignment;
1718
1719 __domain_flush_pages(domain, address, flush_size);
1720 address += flush_size;
1721 size -= flush_size;
1722 }
1723
1724 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1725 domain_flush_complete(domain);
1726 }
1727
1728 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_all(struct protection_domain * domain)1729 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1730 {
1731 amd_iommu_domain_flush_pages(domain, 0,
1732 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1733 }
1734
amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data * dev_data,ioasid_t pasid,u64 address,size_t size)1735 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1736 ioasid_t pasid, u64 address, size_t size)
1737 {
1738 struct iommu_cmd cmd;
1739 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1740
1741 build_inv_iommu_pages(&cmd, address, size,
1742 dev_data->gcr3_info.domid, pasid, true);
1743 iommu_queue_command(iommu, &cmd);
1744
1745 if (dev_data->ats_enabled)
1746 device_flush_iotlb(dev_data, address, size, pasid, true);
1747
1748 iommu_completion_wait(iommu);
1749 }
1750
dev_flush_pasid_all(struct iommu_dev_data * dev_data,ioasid_t pasid)1751 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1752 ioasid_t pasid)
1753 {
1754 amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
1755 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1756 }
1757
1758 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1759 static void domain_flush_np_cache(struct protection_domain *domain,
1760 dma_addr_t iova, size_t size)
1761 {
1762 if (unlikely(amd_iommu_np_cache)) {
1763 unsigned long flags;
1764
1765 spin_lock_irqsave(&domain->lock, flags);
1766 amd_iommu_domain_flush_pages(domain, iova, size);
1767 spin_unlock_irqrestore(&domain->lock, flags);
1768 }
1769 }
1770
1771
1772 /*
1773 * This function flushes the DTEs for all devices in domain
1774 */
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1775 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1776 {
1777 struct iommu_dev_data *dev_data;
1778
1779 lockdep_assert_held(&domain->lock);
1780
1781 list_for_each_entry(dev_data, &domain->dev_list, list) {
1782 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1783
1784 set_dte_entry(iommu, dev_data);
1785 clone_aliases(iommu, dev_data->dev);
1786 }
1787
1788 list_for_each_entry(dev_data, &domain->dev_list, list)
1789 device_flush_dte(dev_data);
1790
1791 domain_flush_complete(domain);
1792 }
1793
amd_iommu_complete_ppr(struct device * dev,u32 pasid,int status,int tag)1794 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
1795 {
1796 struct iommu_dev_data *dev_data;
1797 struct amd_iommu *iommu;
1798 struct iommu_cmd cmd;
1799
1800 dev_data = dev_iommu_priv_get(dev);
1801 iommu = get_amd_iommu_from_dev(dev);
1802
1803 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1804 tag, dev_data->pri_tlp);
1805
1806 return iommu_queue_command(iommu, &cmd);
1807 }
1808
1809 /****************************************************************************
1810 *
1811 * The next functions belong to the domain allocation. A domain is
1812 * allocated for every IOMMU as the default domain. If device isolation
1813 * is enabled, every device get its own domain. The most important thing
1814 * about domains is the page table mapping the DMA address space they
1815 * contain.
1816 *
1817 ****************************************************************************/
1818
pdom_id_alloc(void)1819 static int pdom_id_alloc(void)
1820 {
1821 return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC);
1822 }
1823
pdom_id_free(int id)1824 static void pdom_id_free(int id)
1825 {
1826 ida_free(&pdom_ids, id);
1827 }
1828
free_gcr3_tbl_level1(u64 * tbl)1829 static void free_gcr3_tbl_level1(u64 *tbl)
1830 {
1831 u64 *ptr;
1832 int i;
1833
1834 for (i = 0; i < 512; ++i) {
1835 if (!(tbl[i] & GCR3_VALID))
1836 continue;
1837
1838 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1839
1840 iommu_free_pages(ptr);
1841 }
1842 }
1843
free_gcr3_tbl_level2(u64 * tbl)1844 static void free_gcr3_tbl_level2(u64 *tbl)
1845 {
1846 u64 *ptr;
1847 int i;
1848
1849 for (i = 0; i < 512; ++i) {
1850 if (!(tbl[i] & GCR3_VALID))
1851 continue;
1852
1853 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1854
1855 free_gcr3_tbl_level1(ptr);
1856 }
1857 }
1858
free_gcr3_table(struct gcr3_tbl_info * gcr3_info)1859 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1860 {
1861 if (gcr3_info->glx == 2)
1862 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1863 else if (gcr3_info->glx == 1)
1864 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1865 else
1866 WARN_ON_ONCE(gcr3_info->glx != 0);
1867
1868 gcr3_info->glx = 0;
1869
1870 /* Free per device domain ID */
1871 pdom_id_free(gcr3_info->domid);
1872
1873 iommu_free_pages(gcr3_info->gcr3_tbl);
1874 gcr3_info->gcr3_tbl = NULL;
1875 }
1876
1877 /*
1878 * Number of GCR3 table levels required. Level must be 4-Kbyte
1879 * page and can contain up to 512 entries.
1880 */
get_gcr3_levels(int pasids)1881 static int get_gcr3_levels(int pasids)
1882 {
1883 int levels;
1884
1885 if (pasids == -1)
1886 return amd_iommu_max_glx_val;
1887
1888 levels = get_count_order(pasids);
1889
1890 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1891 }
1892
setup_gcr3_table(struct gcr3_tbl_info * gcr3_info,struct amd_iommu * iommu,int pasids)1893 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1894 struct amd_iommu *iommu, int pasids)
1895 {
1896 int levels = get_gcr3_levels(pasids);
1897 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1898 int domid;
1899
1900 if (levels > amd_iommu_max_glx_val)
1901 return -EINVAL;
1902
1903 if (gcr3_info->gcr3_tbl)
1904 return -EBUSY;
1905
1906 /* Allocate per device domain ID */
1907 domid = pdom_id_alloc();
1908 if (domid <= 0)
1909 return -ENOSPC;
1910 gcr3_info->domid = domid;
1911
1912 gcr3_info->gcr3_tbl = iommu_alloc_pages_node_sz(nid, GFP_ATOMIC, SZ_4K);
1913 if (gcr3_info->gcr3_tbl == NULL) {
1914 pdom_id_free(domid);
1915 return -ENOMEM;
1916 }
1917
1918 gcr3_info->glx = levels;
1919
1920 return 0;
1921 }
1922
__get_gcr3_pte(struct gcr3_tbl_info * gcr3_info,ioasid_t pasid,bool alloc)1923 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1924 ioasid_t pasid, bool alloc)
1925 {
1926 int index;
1927 u64 *pte;
1928 u64 *root = gcr3_info->gcr3_tbl;
1929 int level = gcr3_info->glx;
1930
1931 while (true) {
1932
1933 index = (pasid >> (9 * level)) & 0x1ff;
1934 pte = &root[index];
1935
1936 if (level == 0)
1937 break;
1938
1939 if (!(*pte & GCR3_VALID)) {
1940 if (!alloc)
1941 return NULL;
1942
1943 root = (void *)get_zeroed_page(GFP_ATOMIC);
1944 if (root == NULL)
1945 return NULL;
1946
1947 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
1948 }
1949
1950 root = iommu_phys_to_virt(*pte & PAGE_MASK);
1951
1952 level -= 1;
1953 }
1954
1955 return pte;
1956 }
1957
update_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3,bool set)1958 static int update_gcr3(struct iommu_dev_data *dev_data,
1959 ioasid_t pasid, unsigned long gcr3, bool set)
1960 {
1961 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1962 u64 *pte;
1963
1964 pte = __get_gcr3_pte(gcr3_info, pasid, true);
1965 if (pte == NULL)
1966 return -ENOMEM;
1967
1968 if (set)
1969 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1970 else
1971 *pte = 0;
1972
1973 dev_flush_pasid_all(dev_data, pasid);
1974 return 0;
1975 }
1976
amd_iommu_set_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3)1977 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1978 unsigned long gcr3)
1979 {
1980 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1981 int ret;
1982
1983 iommu_group_mutex_assert(dev_data->dev);
1984
1985 ret = update_gcr3(dev_data, pasid, gcr3, true);
1986 if (ret)
1987 return ret;
1988
1989 gcr3_info->pasid_cnt++;
1990 return ret;
1991 }
1992
amd_iommu_clear_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid)1993 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1994 {
1995 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1996 int ret;
1997
1998 iommu_group_mutex_assert(dev_data->dev);
1999
2000 ret = update_gcr3(dev_data, pasid, 0, false);
2001 if (ret)
2002 return ret;
2003
2004 gcr3_info->pasid_cnt--;
2005 return ret;
2006 }
2007
make_clear_dte(struct iommu_dev_data * dev_data,struct dev_table_entry * ptr,struct dev_table_entry * new)2008 static void make_clear_dte(struct iommu_dev_data *dev_data, struct dev_table_entry *ptr,
2009 struct dev_table_entry *new)
2010 {
2011 /* All existing DTE must have V bit set */
2012 new->data128[0] = DTE_FLAG_V;
2013 new->data128[1] = 0;
2014 }
2015
2016 /*
2017 * Note:
2018 * The old value for GCR3 table and GPT have been cleared from caller.
2019 */
set_dte_gcr3_table(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * target)2020 static void set_dte_gcr3_table(struct amd_iommu *iommu,
2021 struct iommu_dev_data *dev_data,
2022 struct dev_table_entry *target)
2023 {
2024 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2025 u64 gcr3;
2026
2027 if (!gcr3_info->gcr3_tbl)
2028 return;
2029
2030 pr_debug("%s: devid=%#x, glx=%#x, gcr3_tbl=%#llx\n",
2031 __func__, dev_data->devid, gcr3_info->glx,
2032 (unsigned long long)gcr3_info->gcr3_tbl);
2033
2034 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
2035
2036 target->data[0] |= DTE_FLAG_GV |
2037 FIELD_PREP(DTE_GLX, gcr3_info->glx) |
2038 FIELD_PREP(DTE_GCR3_14_12, gcr3 >> 12);
2039 if (pdom_is_v2_pgtbl_mode(dev_data->domain))
2040 target->data[0] |= DTE_FLAG_GIOV;
2041
2042 target->data[1] |= FIELD_PREP(DTE_GCR3_30_15, gcr3 >> 15) |
2043 FIELD_PREP(DTE_GCR3_51_31, gcr3 >> 31);
2044
2045 /* Guest page table can only support 4 and 5 levels */
2046 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL)
2047 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_5_LEVEL);
2048 else
2049 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_4_LEVEL);
2050 }
2051
set_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)2052 static void set_dte_entry(struct amd_iommu *iommu,
2053 struct iommu_dev_data *dev_data)
2054 {
2055 u16 domid;
2056 u32 old_domid;
2057 struct dev_table_entry *initial_dte;
2058 struct dev_table_entry new = {};
2059 struct protection_domain *domain = dev_data->domain;
2060 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2061 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2062
2063 if (gcr3_info && gcr3_info->gcr3_tbl)
2064 domid = dev_data->gcr3_info.domid;
2065 else
2066 domid = domain->id;
2067
2068 make_clear_dte(dev_data, dte, &new);
2069
2070 if (domain->iop.mode != PAGE_MODE_NONE)
2071 new.data[0] |= iommu_virt_to_phys(domain->iop.root);
2072
2073 new.data[0] |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
2074 << DEV_ENTRY_MODE_SHIFT;
2075
2076 new.data[0] |= DTE_FLAG_IR | DTE_FLAG_IW;
2077
2078 /*
2079 * When SNP is enabled, we can only support TV=1 with non-zero domain ID.
2080 * This is prevented by the SNP-enable and IOMMU_DOMAIN_IDENTITY check in
2081 * do_iommu_domain_alloc().
2082 */
2083 WARN_ON(amd_iommu_snp_en && (domid == 0));
2084 new.data[0] |= DTE_FLAG_TV;
2085
2086 if (dev_data->ppr)
2087 new.data[0] |= 1ULL << DEV_ENTRY_PPR;
2088
2089 if (domain->dirty_tracking)
2090 new.data[0] |= DTE_FLAG_HAD;
2091
2092 if (dev_data->ats_enabled)
2093 new.data[1] |= DTE_FLAG_IOTLB;
2094
2095 old_domid = READ_ONCE(dte->data[1]) & DEV_DOMID_MASK;
2096 new.data[1] |= domid;
2097
2098 /*
2099 * Restore cached persistent DTE bits, which can be set by information
2100 * in IVRS table. See set_dev_entry_from_acpi().
2101 */
2102 initial_dte = amd_iommu_get_ivhd_dte_flags(iommu->pci_seg->id, dev_data->devid);
2103 if (initial_dte) {
2104 new.data128[0] |= initial_dte->data128[0];
2105 new.data128[1] |= initial_dte->data128[1];
2106 }
2107
2108 set_dte_gcr3_table(iommu, dev_data, &new);
2109
2110 update_dte256(iommu, dev_data, &new);
2111
2112 /*
2113 * A kdump kernel might be replacing a domain ID that was copied from
2114 * the previous kernel--if so, it needs to flush the translation cache
2115 * entries for the old domain ID that is being overwritten
2116 */
2117 if (old_domid) {
2118 amd_iommu_flush_tlb_domid(iommu, old_domid);
2119 }
2120 }
2121
2122 /*
2123 * Clear DMA-remap related flags to block all DMA (blockeded domain)
2124 */
clear_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)2125 static void clear_dte_entry(struct amd_iommu *iommu, struct iommu_dev_data *dev_data)
2126 {
2127 struct dev_table_entry new = {};
2128 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2129
2130 make_clear_dte(dev_data, dte, &new);
2131 update_dte256(iommu, dev_data, &new);
2132 }
2133
2134 /* Update and flush DTE for the given device */
dev_update_dte(struct iommu_dev_data * dev_data,bool set)2135 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
2136 {
2137 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
2138
2139 if (set)
2140 set_dte_entry(iommu, dev_data);
2141 else
2142 clear_dte_entry(iommu, dev_data);
2143
2144 clone_aliases(iommu, dev_data->dev);
2145 device_flush_dte(dev_data);
2146 iommu_completion_wait(iommu);
2147 }
2148
2149 /*
2150 * If domain is SVA capable then initialize GCR3 table. Also if domain is
2151 * in v2 page table mode then update GCR3[0].
2152 */
init_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2153 static int init_gcr3_table(struct iommu_dev_data *dev_data,
2154 struct protection_domain *pdom)
2155 {
2156 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2157 int max_pasids = dev_data->max_pasids;
2158 int ret = 0;
2159
2160 /*
2161 * If domain is in pt mode then setup GCR3 table only if device
2162 * is PASID capable
2163 */
2164 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
2165 return ret;
2166
2167 /*
2168 * By default, setup GCR3 table to support MAX PASIDs
2169 * supported by the device/IOMMU.
2170 */
2171 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
2172 max_pasids > 0 ? max_pasids : 1);
2173 if (ret)
2174 return ret;
2175
2176 /* Setup GCR3[0] only if domain is setup with v2 page table mode */
2177 if (!pdom_is_v2_pgtbl_mode(pdom))
2178 return ret;
2179
2180 ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true);
2181 if (ret)
2182 free_gcr3_table(&dev_data->gcr3_info);
2183
2184 return ret;
2185 }
2186
destroy_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2187 static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
2188 struct protection_domain *pdom)
2189 {
2190 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2191
2192 if (pdom_is_v2_pgtbl_mode(pdom))
2193 update_gcr3(dev_data, 0, 0, false);
2194
2195 if (gcr3_info->gcr3_tbl == NULL)
2196 return;
2197
2198 free_gcr3_table(gcr3_info);
2199 }
2200
pdom_attach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2201 static int pdom_attach_iommu(struct amd_iommu *iommu,
2202 struct protection_domain *pdom)
2203 {
2204 struct pdom_iommu_info *pdom_iommu_info, *curr;
2205 unsigned long flags;
2206 int ret = 0;
2207
2208 spin_lock_irqsave(&pdom->lock, flags);
2209
2210 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2211 if (pdom_iommu_info) {
2212 pdom_iommu_info->refcnt++;
2213 goto out_unlock;
2214 }
2215
2216 pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC);
2217 if (!pdom_iommu_info) {
2218 ret = -ENOMEM;
2219 goto out_unlock;
2220 }
2221
2222 pdom_iommu_info->iommu = iommu;
2223 pdom_iommu_info->refcnt = 1;
2224
2225 curr = xa_cmpxchg(&pdom->iommu_array, iommu->index,
2226 NULL, pdom_iommu_info, GFP_ATOMIC);
2227 if (curr) {
2228 kfree(pdom_iommu_info);
2229 ret = -ENOSPC;
2230 goto out_unlock;
2231 }
2232
2233 out_unlock:
2234 spin_unlock_irqrestore(&pdom->lock, flags);
2235 return ret;
2236 }
2237
pdom_detach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2238 static void pdom_detach_iommu(struct amd_iommu *iommu,
2239 struct protection_domain *pdom)
2240 {
2241 struct pdom_iommu_info *pdom_iommu_info;
2242 unsigned long flags;
2243
2244 spin_lock_irqsave(&pdom->lock, flags);
2245
2246 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2247 if (!pdom_iommu_info) {
2248 spin_unlock_irqrestore(&pdom->lock, flags);
2249 return;
2250 }
2251
2252 pdom_iommu_info->refcnt--;
2253 if (pdom_iommu_info->refcnt == 0) {
2254 xa_erase(&pdom->iommu_array, iommu->index);
2255 kfree(pdom_iommu_info);
2256 }
2257
2258 spin_unlock_irqrestore(&pdom->lock, flags);
2259 }
2260
2261 /*
2262 * If a device is not yet associated with a domain, this function makes the
2263 * device visible in the domain
2264 */
attach_device(struct device * dev,struct protection_domain * domain)2265 static int attach_device(struct device *dev,
2266 struct protection_domain *domain)
2267 {
2268 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2269 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2270 struct pci_dev *pdev;
2271 unsigned long flags;
2272 int ret = 0;
2273
2274 mutex_lock(&dev_data->mutex);
2275
2276 if (dev_data->domain != NULL) {
2277 ret = -EBUSY;
2278 goto out;
2279 }
2280
2281 /* Do reference counting */
2282 ret = pdom_attach_iommu(iommu, domain);
2283 if (ret)
2284 goto out;
2285
2286 /* Setup GCR3 table */
2287 if (pdom_is_sva_capable(domain)) {
2288 ret = init_gcr3_table(dev_data, domain);
2289 if (ret) {
2290 pdom_detach_iommu(iommu, domain);
2291 goto out;
2292 }
2293 }
2294
2295 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
2296 if (pdev && pdom_is_sva_capable(domain)) {
2297 pdev_enable_caps(pdev);
2298
2299 /*
2300 * Device can continue to function even if IOPF
2301 * enablement failed. Hence in error path just
2302 * disable device PRI support.
2303 */
2304 if (amd_iommu_iopf_add_device(iommu, dev_data))
2305 pdev_disable_cap_pri(pdev);
2306 } else if (pdev) {
2307 pdev_enable_cap_ats(pdev);
2308 }
2309
2310 /* Update data structures */
2311 dev_data->domain = domain;
2312 spin_lock_irqsave(&domain->lock, flags);
2313 list_add(&dev_data->list, &domain->dev_list);
2314 spin_unlock_irqrestore(&domain->lock, flags);
2315
2316 /* Update device table */
2317 dev_update_dte(dev_data, true);
2318
2319 out:
2320 mutex_unlock(&dev_data->mutex);
2321
2322 return ret;
2323 }
2324
2325 /*
2326 * Removes a device from a protection domain (with devtable_lock held)
2327 */
detach_device(struct device * dev)2328 static void detach_device(struct device *dev)
2329 {
2330 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2331 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2332 struct protection_domain *domain = dev_data->domain;
2333 unsigned long flags;
2334
2335 mutex_lock(&dev_data->mutex);
2336
2337 /*
2338 * First check if the device is still attached. It might already
2339 * be detached from its domain because the generic
2340 * iommu_detach_group code detached it and we try again here in
2341 * our alias handling.
2342 */
2343 if (WARN_ON(!dev_data->domain))
2344 goto out;
2345
2346 /* Remove IOPF handler */
2347 if (dev_data->ppr) {
2348 iopf_queue_flush_dev(dev);
2349 amd_iommu_iopf_remove_device(iommu, dev_data);
2350 }
2351
2352 if (dev_is_pci(dev))
2353 pdev_disable_caps(to_pci_dev(dev));
2354
2355 /* Clear DTE and flush the entry */
2356 dev_update_dte(dev_data, false);
2357
2358 /* Flush IOTLB and wait for the flushes to finish */
2359 spin_lock_irqsave(&domain->lock, flags);
2360 amd_iommu_domain_flush_all(domain);
2361 list_del(&dev_data->list);
2362 spin_unlock_irqrestore(&domain->lock, flags);
2363
2364 /* Clear GCR3 table */
2365 if (pdom_is_sva_capable(domain))
2366 destroy_gcr3_table(dev_data, domain);
2367
2368 /* Update data structures */
2369 dev_data->domain = NULL;
2370
2371 /* decrease reference counters - needs to happen after the flushes */
2372 pdom_detach_iommu(iommu, domain);
2373
2374 out:
2375 mutex_unlock(&dev_data->mutex);
2376 }
2377
amd_iommu_probe_device(struct device * dev)2378 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2379 {
2380 struct iommu_device *iommu_dev;
2381 struct amd_iommu *iommu;
2382 struct iommu_dev_data *dev_data;
2383 int ret;
2384
2385 if (!check_device(dev))
2386 return ERR_PTR(-ENODEV);
2387
2388 iommu = rlookup_amd_iommu(dev);
2389 if (!iommu)
2390 return ERR_PTR(-ENODEV);
2391
2392 /* Not registered yet? */
2393 if (!iommu->iommu.ops)
2394 return ERR_PTR(-ENODEV);
2395
2396 if (dev_iommu_priv_get(dev))
2397 return &iommu->iommu;
2398
2399 ret = iommu_init_device(iommu, dev);
2400 if (ret) {
2401 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2402 iommu_dev = ERR_PTR(ret);
2403 iommu_ignore_device(iommu, dev);
2404 goto out_err;
2405 }
2406
2407 amd_iommu_set_pci_msi_domain(dev, iommu);
2408 iommu_dev = &iommu->iommu;
2409
2410 /*
2411 * If IOMMU and device supports PASID then it will contain max
2412 * supported PASIDs, else it will be zero.
2413 */
2414 dev_data = dev_iommu_priv_get(dev);
2415 if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
2416 pdev_pasid_supported(dev_data)) {
2417 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
2418 pci_max_pasids(to_pci_dev(dev)));
2419 }
2420
2421 if (amd_iommu_pgtable == PD_MODE_NONE) {
2422 pr_warn_once("%s: DMA translation not supported by iommu.\n",
2423 __func__);
2424 iommu_dev = ERR_PTR(-ENODEV);
2425 goto out_err;
2426 }
2427
2428 out_err:
2429
2430 iommu_completion_wait(iommu);
2431
2432 if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
2433 dev_data->max_irqs = MAX_IRQS_PER_TABLE_2K;
2434 else
2435 dev_data->max_irqs = MAX_IRQS_PER_TABLE_512;
2436
2437 if (dev_is_pci(dev))
2438 pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
2439
2440 return iommu_dev;
2441 }
2442
amd_iommu_release_device(struct device * dev)2443 static void amd_iommu_release_device(struct device *dev)
2444 {
2445 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2446
2447 WARN_ON(dev_data->domain);
2448
2449 /*
2450 * We keep dev_data around for unplugged devices and reuse it when the
2451 * device is re-plugged - not doing so would introduce a ton of races.
2452 */
2453 }
2454
amd_iommu_device_group(struct device * dev)2455 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2456 {
2457 if (dev_is_pci(dev))
2458 return pci_device_group(dev);
2459
2460 return acpihid_device_group(dev);
2461 }
2462
2463 /*****************************************************************************
2464 *
2465 * The following functions belong to the exported interface of AMD IOMMU
2466 *
2467 * This interface allows access to lower level functions of the IOMMU
2468 * like protection domain handling and assignement of devices to domains
2469 * which is not possible with the dma_ops interface.
2470 *
2471 *****************************************************************************/
2472
protection_domain_init(struct protection_domain * domain)2473 static void protection_domain_init(struct protection_domain *domain)
2474 {
2475 spin_lock_init(&domain->lock);
2476 INIT_LIST_HEAD(&domain->dev_list);
2477 INIT_LIST_HEAD(&domain->dev_data_list);
2478 xa_init(&domain->iommu_array);
2479 }
2480
protection_domain_alloc(void)2481 struct protection_domain *protection_domain_alloc(void)
2482 {
2483 struct protection_domain *domain;
2484 int domid;
2485
2486 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2487 if (!domain)
2488 return NULL;
2489
2490 domid = pdom_id_alloc();
2491 if (domid <= 0) {
2492 kfree(domain);
2493 return NULL;
2494 }
2495 domain->id = domid;
2496
2497 protection_domain_init(domain);
2498
2499 return domain;
2500 }
2501
pdom_setup_pgtable(struct protection_domain * domain,struct device * dev)2502 static int pdom_setup_pgtable(struct protection_domain *domain,
2503 struct device *dev)
2504 {
2505 struct io_pgtable_ops *pgtbl_ops;
2506 enum io_pgtable_fmt fmt;
2507
2508 switch (domain->pd_mode) {
2509 case PD_MODE_V1:
2510 fmt = AMD_IOMMU_V1;
2511 break;
2512 case PD_MODE_V2:
2513 fmt = AMD_IOMMU_V2;
2514 break;
2515 case PD_MODE_NONE:
2516 WARN_ON_ONCE(1);
2517 return -EPERM;
2518 }
2519
2520 domain->iop.pgtbl.cfg.amd.nid = dev_to_node(dev);
2521 pgtbl_ops = alloc_io_pgtable_ops(fmt, &domain->iop.pgtbl.cfg, domain);
2522 if (!pgtbl_ops)
2523 return -ENOMEM;
2524
2525 return 0;
2526 }
2527
dma_max_address(enum protection_domain_mode pgtable)2528 static inline u64 dma_max_address(enum protection_domain_mode pgtable)
2529 {
2530 if (pgtable == PD_MODE_V1)
2531 return PM_LEVEL_SIZE(amd_iommu_hpt_level);
2532
2533 /*
2534 * V2 with 4/5 level page table. Note that "2.2.6.5 AMD64 4-Kbyte Page
2535 * Translation" shows that the V2 table sign extends the top of the
2536 * address space creating a reserved region in the middle of the
2537 * translation, just like the CPU does. Further Vasant says the docs are
2538 * incomplete and this only applies to non-zero PASIDs. If the AMDv2
2539 * page table is assigned to the 0 PASID then there is no sign extension
2540 * check.
2541 *
2542 * Since the IOMMU must have a fixed geometry, and the core code does
2543 * not understand sign extended addressing, we have to chop off the high
2544 * bit to get consistent behavior with attachments of the domain to any
2545 * PASID.
2546 */
2547 return ((1ULL << (PM_LEVEL_SHIFT(amd_iommu_gpt_level) - 1)) - 1);
2548 }
2549
amd_iommu_hd_support(struct amd_iommu * iommu)2550 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2551 {
2552 if (amd_iommu_hatdis)
2553 return false;
2554
2555 return iommu && (iommu->features & FEATURE_HDSUP);
2556 }
2557
2558 static struct iommu_domain *
do_iommu_domain_alloc(struct device * dev,u32 flags,enum protection_domain_mode pgtable)2559 do_iommu_domain_alloc(struct device *dev, u32 flags,
2560 enum protection_domain_mode pgtable)
2561 {
2562 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2563 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2564 struct protection_domain *domain;
2565 int ret;
2566
2567 domain = protection_domain_alloc();
2568 if (!domain)
2569 return ERR_PTR(-ENOMEM);
2570
2571 domain->pd_mode = pgtable;
2572 ret = pdom_setup_pgtable(domain, dev);
2573 if (ret) {
2574 pdom_id_free(domain->id);
2575 kfree(domain);
2576 return ERR_PTR(ret);
2577 }
2578
2579 domain->domain.geometry.aperture_start = 0;
2580 domain->domain.geometry.aperture_end = dma_max_address(pgtable);
2581 domain->domain.geometry.force_aperture = true;
2582 domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap;
2583
2584 domain->domain.type = IOMMU_DOMAIN_UNMANAGED;
2585 domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2586
2587 if (dirty_tracking)
2588 domain->domain.dirty_ops = &amd_dirty_ops;
2589
2590 return &domain->domain;
2591 }
2592
2593 static struct iommu_domain *
amd_iommu_domain_alloc_paging_flags(struct device * dev,u32 flags,const struct iommu_user_data * user_data)2594 amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
2595 const struct iommu_user_data *user_data)
2596
2597 {
2598 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2599 const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
2600 IOMMU_HWPT_ALLOC_PASID;
2601
2602 if ((flags & ~supported_flags) || user_data)
2603 return ERR_PTR(-EOPNOTSUPP);
2604
2605 switch (flags & supported_flags) {
2606 case IOMMU_HWPT_ALLOC_DIRTY_TRACKING:
2607 /* Allocate domain with v1 page table for dirty tracking */
2608 if (!amd_iommu_hd_support(iommu))
2609 break;
2610 return do_iommu_domain_alloc(dev, flags, PD_MODE_V1);
2611 case IOMMU_HWPT_ALLOC_PASID:
2612 /* Allocate domain with v2 page table if IOMMU supports PASID. */
2613 if (!amd_iommu_pasid_supported())
2614 break;
2615 return do_iommu_domain_alloc(dev, flags, PD_MODE_V2);
2616 case 0:
2617 /* If nothing specific is required use the kernel commandline default */
2618 return do_iommu_domain_alloc(dev, 0, amd_iommu_pgtable);
2619 default:
2620 break;
2621 }
2622 return ERR_PTR(-EOPNOTSUPP);
2623 }
2624
amd_iommu_domain_free(struct iommu_domain * dom)2625 void amd_iommu_domain_free(struct iommu_domain *dom)
2626 {
2627 struct protection_domain *domain = to_pdomain(dom);
2628
2629 WARN_ON(!list_empty(&domain->dev_list));
2630 if (domain->domain.type & __IOMMU_DOMAIN_PAGING)
2631 free_io_pgtable_ops(&domain->iop.pgtbl.ops);
2632 pdom_id_free(domain->id);
2633 kfree(domain);
2634 }
2635
blocked_domain_attach_device(struct iommu_domain * domain,struct device * dev)2636 static int blocked_domain_attach_device(struct iommu_domain *domain,
2637 struct device *dev)
2638 {
2639 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2640
2641 if (dev_data->domain)
2642 detach_device(dev);
2643
2644 /* Clear DTE and flush the entry */
2645 mutex_lock(&dev_data->mutex);
2646 dev_update_dte(dev_data, false);
2647 mutex_unlock(&dev_data->mutex);
2648
2649 return 0;
2650 }
2651
blocked_domain_set_dev_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_domain * old)2652 static int blocked_domain_set_dev_pasid(struct iommu_domain *domain,
2653 struct device *dev, ioasid_t pasid,
2654 struct iommu_domain *old)
2655 {
2656 amd_iommu_remove_dev_pasid(dev, pasid, old);
2657 return 0;
2658 }
2659
2660 static struct iommu_domain blocked_domain = {
2661 .type = IOMMU_DOMAIN_BLOCKED,
2662 .ops = &(const struct iommu_domain_ops) {
2663 .attach_dev = blocked_domain_attach_device,
2664 .set_dev_pasid = blocked_domain_set_dev_pasid,
2665 }
2666 };
2667
2668 static struct protection_domain identity_domain;
2669
2670 static const struct iommu_domain_ops identity_domain_ops = {
2671 .attach_dev = amd_iommu_attach_device,
2672 };
2673
amd_iommu_init_identity_domain(void)2674 void amd_iommu_init_identity_domain(void)
2675 {
2676 struct iommu_domain *domain = &identity_domain.domain;
2677
2678 domain->type = IOMMU_DOMAIN_IDENTITY;
2679 domain->ops = &identity_domain_ops;
2680 domain->owner = &amd_iommu_ops;
2681
2682 identity_domain.id = pdom_id_alloc();
2683
2684 protection_domain_init(&identity_domain);
2685 }
2686
2687 /* Same as blocked domain except it supports only ops->attach_dev() */
2688 static struct iommu_domain release_domain = {
2689 .type = IOMMU_DOMAIN_BLOCKED,
2690 .ops = &(const struct iommu_domain_ops) {
2691 .attach_dev = blocked_domain_attach_device,
2692 }
2693 };
2694
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2695 static int amd_iommu_attach_device(struct iommu_domain *dom,
2696 struct device *dev)
2697 {
2698 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2699 struct protection_domain *domain = to_pdomain(dom);
2700 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2701 int ret;
2702
2703 /*
2704 * Skip attach device to domain if new domain is same as
2705 * devices current domain
2706 */
2707 if (dev_data->domain == domain)
2708 return 0;
2709
2710 dev_data->defer_attach = false;
2711
2712 /*
2713 * Restrict to devices with compatible IOMMU hardware support
2714 * when enforcement of dirty tracking is enabled.
2715 */
2716 if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2717 return -EINVAL;
2718
2719 if (dev_data->domain)
2720 detach_device(dev);
2721
2722 ret = attach_device(dev, domain);
2723
2724 #ifdef CONFIG_IRQ_REMAP
2725 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2726 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2727 dev_data->use_vapic = 1;
2728 else
2729 dev_data->use_vapic = 0;
2730 }
2731 #endif
2732
2733 return ret;
2734 }
2735
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2736 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2737 unsigned long iova, size_t size)
2738 {
2739 struct protection_domain *domain = to_pdomain(dom);
2740 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2741
2742 if (ops->map_pages)
2743 domain_flush_np_cache(domain, iova, size);
2744 return 0;
2745 }
2746
amd_iommu_map_pages(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int iommu_prot,gfp_t gfp,size_t * mapped)2747 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2748 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2749 int iommu_prot, gfp_t gfp, size_t *mapped)
2750 {
2751 struct protection_domain *domain = to_pdomain(dom);
2752 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2753 int prot = 0;
2754 int ret = -EINVAL;
2755
2756 if ((domain->pd_mode == PD_MODE_V1) &&
2757 (domain->iop.mode == PAGE_MODE_NONE))
2758 return -EINVAL;
2759
2760 if (iommu_prot & IOMMU_READ)
2761 prot |= IOMMU_PROT_IR;
2762 if (iommu_prot & IOMMU_WRITE)
2763 prot |= IOMMU_PROT_IW;
2764
2765 if (ops->map_pages) {
2766 ret = ops->map_pages(ops, iova, paddr, pgsize,
2767 pgcount, prot, gfp, mapped);
2768 }
2769
2770 return ret;
2771 }
2772
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2773 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2774 struct iommu_iotlb_gather *gather,
2775 unsigned long iova, size_t size)
2776 {
2777 /*
2778 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2779 * Unless we run in a virtual machine, which can be inferred according
2780 * to whether "non-present cache" is on, it is probably best to prefer
2781 * (potentially) too extensive TLB flushing (i.e., more misses) over
2782 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2783 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2784 * the guest, and the trade-off is different: unnecessary TLB flushes
2785 * should be avoided.
2786 */
2787 if (amd_iommu_np_cache &&
2788 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2789 iommu_iotlb_sync(domain, gather);
2790
2791 iommu_iotlb_gather_add_range(gather, iova, size);
2792 }
2793
amd_iommu_unmap_pages(struct iommu_domain * dom,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)2794 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2795 size_t pgsize, size_t pgcount,
2796 struct iommu_iotlb_gather *gather)
2797 {
2798 struct protection_domain *domain = to_pdomain(dom);
2799 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2800 size_t r;
2801
2802 if ((domain->pd_mode == PD_MODE_V1) &&
2803 (domain->iop.mode == PAGE_MODE_NONE))
2804 return 0;
2805
2806 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2807
2808 if (r)
2809 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2810
2811 return r;
2812 }
2813
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2814 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2815 dma_addr_t iova)
2816 {
2817 struct protection_domain *domain = to_pdomain(dom);
2818 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2819
2820 return ops->iova_to_phys(ops, iova);
2821 }
2822
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2823 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2824 {
2825 switch (cap) {
2826 case IOMMU_CAP_CACHE_COHERENCY:
2827 return true;
2828 case IOMMU_CAP_NOEXEC:
2829 return false;
2830 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2831 return amdr_ivrs_remap_support;
2832 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2833 return true;
2834 case IOMMU_CAP_DEFERRED_FLUSH:
2835 return true;
2836 case IOMMU_CAP_DIRTY_TRACKING: {
2837 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2838
2839 return amd_iommu_hd_support(iommu);
2840 }
2841 default:
2842 break;
2843 }
2844
2845 return false;
2846 }
2847
amd_iommu_set_dirty_tracking(struct iommu_domain * domain,bool enable)2848 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2849 bool enable)
2850 {
2851 struct protection_domain *pdomain = to_pdomain(domain);
2852 struct dev_table_entry *dte;
2853 struct iommu_dev_data *dev_data;
2854 bool domain_flush = false;
2855 struct amd_iommu *iommu;
2856 unsigned long flags;
2857 u64 new;
2858
2859 spin_lock_irqsave(&pdomain->lock, flags);
2860 if (!(pdomain->dirty_tracking ^ enable)) {
2861 spin_unlock_irqrestore(&pdomain->lock, flags);
2862 return 0;
2863 }
2864
2865 list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2866 spin_lock(&dev_data->dte_lock);
2867 iommu = get_amd_iommu_from_dev_data(dev_data);
2868 dte = &get_dev_table(iommu)[dev_data->devid];
2869 new = dte->data[0];
2870 new = (enable ? new | DTE_FLAG_HAD : new & ~DTE_FLAG_HAD);
2871 dte->data[0] = new;
2872 spin_unlock(&dev_data->dte_lock);
2873
2874 /* Flush device DTE */
2875 device_flush_dte(dev_data);
2876 domain_flush = true;
2877 }
2878
2879 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2880 if (domain_flush)
2881 amd_iommu_domain_flush_all(pdomain);
2882
2883 pdomain->dirty_tracking = enable;
2884 spin_unlock_irqrestore(&pdomain->lock, flags);
2885
2886 return 0;
2887 }
2888
amd_iommu_read_and_clear_dirty(struct iommu_domain * domain,unsigned long iova,size_t size,unsigned long flags,struct iommu_dirty_bitmap * dirty)2889 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2890 unsigned long iova, size_t size,
2891 unsigned long flags,
2892 struct iommu_dirty_bitmap *dirty)
2893 {
2894 struct protection_domain *pdomain = to_pdomain(domain);
2895 struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops;
2896 unsigned long lflags;
2897
2898 if (!ops || !ops->read_and_clear_dirty)
2899 return -EOPNOTSUPP;
2900
2901 spin_lock_irqsave(&pdomain->lock, lflags);
2902 if (!pdomain->dirty_tracking && dirty->bitmap) {
2903 spin_unlock_irqrestore(&pdomain->lock, lflags);
2904 return -EINVAL;
2905 }
2906 spin_unlock_irqrestore(&pdomain->lock, lflags);
2907
2908 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2909 }
2910
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2911 static void amd_iommu_get_resv_regions(struct device *dev,
2912 struct list_head *head)
2913 {
2914 struct iommu_resv_region *region;
2915 struct unity_map_entry *entry;
2916 struct amd_iommu *iommu;
2917 struct amd_iommu_pci_seg *pci_seg;
2918 int devid, sbdf;
2919
2920 sbdf = get_device_sbdf_id(dev);
2921 if (sbdf < 0)
2922 return;
2923
2924 devid = PCI_SBDF_TO_DEVID(sbdf);
2925 iommu = get_amd_iommu_from_dev(dev);
2926 pci_seg = iommu->pci_seg;
2927
2928 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2929 int type, prot = 0;
2930 size_t length;
2931
2932 if (devid < entry->devid_start || devid > entry->devid_end)
2933 continue;
2934
2935 type = IOMMU_RESV_DIRECT;
2936 length = entry->address_end - entry->address_start;
2937 if (entry->prot & IOMMU_PROT_IR)
2938 prot |= IOMMU_READ;
2939 if (entry->prot & IOMMU_PROT_IW)
2940 prot |= IOMMU_WRITE;
2941 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2942 /* Exclusion range */
2943 type = IOMMU_RESV_RESERVED;
2944
2945 region = iommu_alloc_resv_region(entry->address_start,
2946 length, prot, type,
2947 GFP_KERNEL);
2948 if (!region) {
2949 dev_err(dev, "Out of memory allocating dm-regions\n");
2950 return;
2951 }
2952 list_add_tail(®ion->list, head);
2953 }
2954
2955 region = iommu_alloc_resv_region(MSI_RANGE_START,
2956 MSI_RANGE_END - MSI_RANGE_START + 1,
2957 0, IOMMU_RESV_MSI, GFP_KERNEL);
2958 if (!region)
2959 return;
2960 list_add_tail(®ion->list, head);
2961
2962 if (amd_iommu_ht_range_ignore())
2963 return;
2964
2965 region = iommu_alloc_resv_region(HT_RANGE_START,
2966 HT_RANGE_END - HT_RANGE_START + 1,
2967 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2968 if (!region)
2969 return;
2970 list_add_tail(®ion->list, head);
2971 }
2972
amd_iommu_is_attach_deferred(struct device * dev)2973 static bool amd_iommu_is_attach_deferred(struct device *dev)
2974 {
2975 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2976
2977 return dev_data->defer_attach;
2978 }
2979
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2980 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2981 {
2982 struct protection_domain *dom = to_pdomain(domain);
2983 unsigned long flags;
2984
2985 spin_lock_irqsave(&dom->lock, flags);
2986 amd_iommu_domain_flush_all(dom);
2987 spin_unlock_irqrestore(&dom->lock, flags);
2988 }
2989
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2990 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2991 struct iommu_iotlb_gather *gather)
2992 {
2993 struct protection_domain *dom = to_pdomain(domain);
2994 unsigned long flags;
2995
2996 spin_lock_irqsave(&dom->lock, flags);
2997 amd_iommu_domain_flush_pages(dom, gather->start,
2998 gather->end - gather->start + 1);
2999 spin_unlock_irqrestore(&dom->lock, flags);
3000 }
3001
amd_iommu_def_domain_type(struct device * dev)3002 static int amd_iommu_def_domain_type(struct device *dev)
3003 {
3004 struct iommu_dev_data *dev_data;
3005
3006 dev_data = dev_iommu_priv_get(dev);
3007 if (!dev_data)
3008 return 0;
3009
3010 /* Always use DMA domain for untrusted device */
3011 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
3012 return IOMMU_DOMAIN_DMA;
3013
3014 /*
3015 * Do not identity map IOMMUv2 capable devices when:
3016 * - memory encryption is active, because some of those devices
3017 * (AMD GPUs) don't have the encryption bit in their DMA-mask
3018 * and require remapping.
3019 * - SNP is enabled, because it prohibits DTE[Mode]=0.
3020 */
3021 if (pdev_pasid_supported(dev_data) &&
3022 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
3023 !amd_iommu_snp_en) {
3024 return IOMMU_DOMAIN_IDENTITY;
3025 }
3026
3027 return 0;
3028 }
3029
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)3030 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
3031 {
3032 /* IOMMU_PTE_FC is always set */
3033 return true;
3034 }
3035
3036 static const struct iommu_dirty_ops amd_dirty_ops = {
3037 .set_dirty_tracking = amd_iommu_set_dirty_tracking,
3038 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
3039 };
3040
3041 const struct iommu_ops amd_iommu_ops = {
3042 .capable = amd_iommu_capable,
3043 .blocked_domain = &blocked_domain,
3044 .release_domain = &release_domain,
3045 .identity_domain = &identity_domain.domain,
3046 .domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags,
3047 .domain_alloc_sva = amd_iommu_domain_alloc_sva,
3048 .probe_device = amd_iommu_probe_device,
3049 .release_device = amd_iommu_release_device,
3050 .device_group = amd_iommu_device_group,
3051 .get_resv_regions = amd_iommu_get_resv_regions,
3052 .is_attach_deferred = amd_iommu_is_attach_deferred,
3053 .def_domain_type = amd_iommu_def_domain_type,
3054 .page_response = amd_iommu_page_response,
3055 .default_domain_ops = &(const struct iommu_domain_ops) {
3056 .attach_dev = amd_iommu_attach_device,
3057 .map_pages = amd_iommu_map_pages,
3058 .unmap_pages = amd_iommu_unmap_pages,
3059 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
3060 .iova_to_phys = amd_iommu_iova_to_phys,
3061 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3062 .iotlb_sync = amd_iommu_iotlb_sync,
3063 .free = amd_iommu_domain_free,
3064 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
3065 }
3066 };
3067
3068 #ifdef CONFIG_IRQ_REMAP
3069
3070 /*****************************************************************************
3071 *
3072 * Interrupt Remapping Implementation
3073 *
3074 *****************************************************************************/
3075
3076 static struct irq_chip amd_ir_chip;
3077 static DEFINE_SPINLOCK(iommu_table_lock);
3078
iommu_flush_irt_and_complete(struct amd_iommu * iommu,u16 devid)3079 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
3080 {
3081 int ret;
3082 u64 data;
3083 unsigned long flags;
3084 struct iommu_cmd cmd, cmd2;
3085
3086 if (iommu->irtcachedis_enabled)
3087 return;
3088
3089 build_inv_irt(&cmd, devid);
3090 data = atomic64_inc_return(&iommu->cmd_sem_val);
3091 build_completion_wait(&cmd2, iommu, data);
3092
3093 raw_spin_lock_irqsave(&iommu->lock, flags);
3094 ret = __iommu_queue_command_sync(iommu, &cmd, true);
3095 if (ret)
3096 goto out;
3097 ret = __iommu_queue_command_sync(iommu, &cmd2, false);
3098 if (ret)
3099 goto out;
3100 wait_on_sem(iommu, data);
3101 out:
3102 raw_spin_unlock_irqrestore(&iommu->lock, flags);
3103 }
3104
iommu_get_int_tablen(struct iommu_dev_data * dev_data)3105 static inline u8 iommu_get_int_tablen(struct iommu_dev_data *dev_data)
3106 {
3107 if (dev_data && dev_data->max_irqs == MAX_IRQS_PER_TABLE_2K)
3108 return DTE_INTTABLEN_2K;
3109 return DTE_INTTABLEN_512;
3110 }
3111
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3112 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
3113 struct irq_remap_table *table)
3114 {
3115 u64 new;
3116 struct dev_table_entry *dte = &get_dev_table(iommu)[devid];
3117 struct iommu_dev_data *dev_data = search_dev_data(iommu, devid);
3118
3119 if (dev_data)
3120 spin_lock(&dev_data->dte_lock);
3121
3122 new = READ_ONCE(dte->data[2]);
3123 new &= ~DTE_IRQ_PHYS_ADDR_MASK;
3124 new |= iommu_virt_to_phys(table->table);
3125 new |= DTE_IRQ_REMAP_INTCTL;
3126 new |= iommu_get_int_tablen(dev_data);
3127 new |= DTE_IRQ_REMAP_ENABLE;
3128 WRITE_ONCE(dte->data[2], new);
3129
3130 if (dev_data)
3131 spin_unlock(&dev_data->dte_lock);
3132 }
3133
get_irq_table(struct amd_iommu * iommu,u16 devid)3134 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
3135 {
3136 struct irq_remap_table *table;
3137 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3138
3139 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
3140 "%s: no iommu for devid %x:%x\n",
3141 __func__, pci_seg->id, devid))
3142 return NULL;
3143
3144 table = pci_seg->irq_lookup_table[devid];
3145 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
3146 __func__, pci_seg->id, devid))
3147 return NULL;
3148
3149 return table;
3150 }
3151
__alloc_irq_table(int nid,size_t size)3152 static struct irq_remap_table *__alloc_irq_table(int nid, size_t size)
3153 {
3154 struct irq_remap_table *table;
3155
3156 table = kzalloc(sizeof(*table), GFP_KERNEL);
3157 if (!table)
3158 return NULL;
3159
3160 table->table = iommu_alloc_pages_node_sz(
3161 nid, GFP_KERNEL, max(DTE_INTTAB_ALIGNMENT, size));
3162 if (!table->table) {
3163 kfree(table);
3164 return NULL;
3165 }
3166 raw_spin_lock_init(&table->lock);
3167
3168 return table;
3169 }
3170
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3171 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3172 struct irq_remap_table *table)
3173 {
3174 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3175
3176 pci_seg->irq_lookup_table[devid] = table;
3177 set_dte_irq_entry(iommu, devid, table);
3178 iommu_flush_dte(iommu, devid);
3179 }
3180
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3181 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3182 void *data)
3183 {
3184 struct irq_remap_table *table = data;
3185 struct amd_iommu_pci_seg *pci_seg;
3186 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
3187
3188 if (!iommu)
3189 return -EINVAL;
3190
3191 pci_seg = iommu->pci_seg;
3192 pci_seg->irq_lookup_table[alias] = table;
3193 set_dte_irq_entry(iommu, alias, table);
3194 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
3195
3196 return 0;
3197 }
3198
get_irq_table_size(unsigned int max_irqs)3199 static inline size_t get_irq_table_size(unsigned int max_irqs)
3200 {
3201 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3202 return max_irqs * sizeof(u32);
3203
3204 return max_irqs * (sizeof(u64) * 2);
3205 }
3206
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev,unsigned int max_irqs)3207 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3208 u16 devid, struct pci_dev *pdev,
3209 unsigned int max_irqs)
3210 {
3211 struct irq_remap_table *table = NULL;
3212 struct irq_remap_table *new_table = NULL;
3213 struct amd_iommu_pci_seg *pci_seg;
3214 unsigned long flags;
3215 int nid = iommu && iommu->dev ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
3216 u16 alias;
3217
3218 spin_lock_irqsave(&iommu_table_lock, flags);
3219
3220 pci_seg = iommu->pci_seg;
3221 table = pci_seg->irq_lookup_table[devid];
3222 if (table)
3223 goto out_unlock;
3224
3225 alias = pci_seg->alias_table[devid];
3226 table = pci_seg->irq_lookup_table[alias];
3227 if (table) {
3228 set_remap_table_entry(iommu, devid, table);
3229 goto out_wait;
3230 }
3231 spin_unlock_irqrestore(&iommu_table_lock, flags);
3232
3233 /* Nothing there yet, allocate new irq remapping table */
3234 new_table = __alloc_irq_table(nid, get_irq_table_size(max_irqs));
3235 if (!new_table)
3236 return NULL;
3237
3238 spin_lock_irqsave(&iommu_table_lock, flags);
3239
3240 table = pci_seg->irq_lookup_table[devid];
3241 if (table)
3242 goto out_unlock;
3243
3244 table = pci_seg->irq_lookup_table[alias];
3245 if (table) {
3246 set_remap_table_entry(iommu, devid, table);
3247 goto out_wait;
3248 }
3249
3250 table = new_table;
3251 new_table = NULL;
3252
3253 if (pdev)
3254 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3255 table);
3256 else
3257 set_remap_table_entry(iommu, devid, table);
3258
3259 if (devid != alias)
3260 set_remap_table_entry(iommu, alias, table);
3261
3262 out_wait:
3263 iommu_completion_wait(iommu);
3264
3265 out_unlock:
3266 spin_unlock_irqrestore(&iommu_table_lock, flags);
3267
3268 if (new_table) {
3269 iommu_free_pages(new_table->table);
3270 kfree(new_table);
3271 }
3272 return table;
3273 }
3274
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev,unsigned long max_irqs)3275 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3276 bool align, struct pci_dev *pdev,
3277 unsigned long max_irqs)
3278 {
3279 struct irq_remap_table *table;
3280 int index, c, alignment = 1;
3281 unsigned long flags;
3282
3283 table = alloc_irq_table(iommu, devid, pdev, max_irqs);
3284 if (!table)
3285 return -ENODEV;
3286
3287 if (align)
3288 alignment = roundup_pow_of_two(count);
3289
3290 raw_spin_lock_irqsave(&table->lock, flags);
3291
3292 /* Scan table for free entries */
3293 for (index = ALIGN(table->min_index, alignment), c = 0;
3294 index < max_irqs;) {
3295 if (!iommu->irte_ops->is_allocated(table, index)) {
3296 c += 1;
3297 } else {
3298 c = 0;
3299 index = ALIGN(index + 1, alignment);
3300 continue;
3301 }
3302
3303 if (c == count) {
3304 for (; c != 0; --c)
3305 iommu->irte_ops->set_allocated(table, index - c + 1);
3306
3307 index -= count - 1;
3308 goto out;
3309 }
3310
3311 index++;
3312 }
3313
3314 index = -ENOSPC;
3315
3316 out:
3317 raw_spin_unlock_irqrestore(&table->lock, flags);
3318
3319 return index;
3320 }
3321
__modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3322 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3323 struct irte_ga *irte)
3324 {
3325 struct irq_remap_table *table;
3326 struct irte_ga *entry;
3327 unsigned long flags;
3328 u128 old;
3329
3330 table = get_irq_table(iommu, devid);
3331 if (!table)
3332 return -ENOMEM;
3333
3334 raw_spin_lock_irqsave(&table->lock, flags);
3335
3336 entry = (struct irte_ga *)table->table;
3337 entry = &entry[index];
3338
3339 /*
3340 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3341 * and it cannot be updated by the hardware or other processors
3342 * behind us, so the return value of cmpxchg16 should be the
3343 * same as the old value.
3344 */
3345 old = entry->irte;
3346 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3347
3348 raw_spin_unlock_irqrestore(&table->lock, flags);
3349
3350 return 0;
3351 }
3352
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3353 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3354 struct irte_ga *irte)
3355 {
3356 bool ret;
3357
3358 ret = __modify_irte_ga(iommu, devid, index, irte);
3359 if (ret)
3360 return ret;
3361
3362 iommu_flush_irt_and_complete(iommu, devid);
3363
3364 return 0;
3365 }
3366
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3367 static int modify_irte(struct amd_iommu *iommu,
3368 u16 devid, int index, union irte *irte)
3369 {
3370 struct irq_remap_table *table;
3371 unsigned long flags;
3372
3373 table = get_irq_table(iommu, devid);
3374 if (!table)
3375 return -ENOMEM;
3376
3377 raw_spin_lock_irqsave(&table->lock, flags);
3378 table->table[index] = irte->val;
3379 raw_spin_unlock_irqrestore(&table->lock, flags);
3380
3381 iommu_flush_irt_and_complete(iommu, devid);
3382
3383 return 0;
3384 }
3385
free_irte(struct amd_iommu * iommu,u16 devid,int index)3386 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3387 {
3388 struct irq_remap_table *table;
3389 unsigned long flags;
3390
3391 table = get_irq_table(iommu, devid);
3392 if (!table)
3393 return;
3394
3395 raw_spin_lock_irqsave(&table->lock, flags);
3396 iommu->irte_ops->clear_allocated(table, index);
3397 raw_spin_unlock_irqrestore(&table->lock, flags);
3398
3399 iommu_flush_irt_and_complete(iommu, devid);
3400 }
3401
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3402 static void irte_prepare(void *entry,
3403 u32 delivery_mode, bool dest_mode,
3404 u8 vector, u32 dest_apicid, int devid)
3405 {
3406 union irte *irte = (union irte *) entry;
3407
3408 irte->val = 0;
3409 irte->fields.vector = vector;
3410 irte->fields.int_type = delivery_mode;
3411 irte->fields.destination = dest_apicid;
3412 irte->fields.dm = dest_mode;
3413 irte->fields.valid = 1;
3414 }
3415
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3416 static void irte_ga_prepare(void *entry,
3417 u32 delivery_mode, bool dest_mode,
3418 u8 vector, u32 dest_apicid, int devid)
3419 {
3420 struct irte_ga *irte = (struct irte_ga *) entry;
3421
3422 irte->lo.val = 0;
3423 irte->hi.val = 0;
3424 irte->lo.fields_remap.int_type = delivery_mode;
3425 irte->lo.fields_remap.dm = dest_mode;
3426 irte->hi.fields.vector = vector;
3427 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3428 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3429 irte->lo.fields_remap.valid = 1;
3430 }
3431
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3432 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3433 {
3434 union irte *irte = (union irte *) entry;
3435
3436 irte->fields.valid = 1;
3437 modify_irte(iommu, devid, index, irte);
3438 }
3439
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3440 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3441 {
3442 struct irte_ga *irte = (struct irte_ga *) entry;
3443
3444 irte->lo.fields_remap.valid = 1;
3445 modify_irte_ga(iommu, devid, index, irte);
3446 }
3447
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3448 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3449 {
3450 union irte *irte = (union irte *) entry;
3451
3452 irte->fields.valid = 0;
3453 modify_irte(iommu, devid, index, irte);
3454 }
3455
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3456 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3457 {
3458 struct irte_ga *irte = (struct irte_ga *) entry;
3459
3460 irte->lo.fields_remap.valid = 0;
3461 modify_irte_ga(iommu, devid, index, irte);
3462 }
3463
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3464 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3465 u8 vector, u32 dest_apicid)
3466 {
3467 union irte *irte = (union irte *) entry;
3468
3469 irte->fields.vector = vector;
3470 irte->fields.destination = dest_apicid;
3471 modify_irte(iommu, devid, index, irte);
3472 }
3473
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3474 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3475 u8 vector, u32 dest_apicid)
3476 {
3477 struct irte_ga *irte = (struct irte_ga *) entry;
3478
3479 if (!irte->lo.fields_remap.guest_mode) {
3480 irte->hi.fields.vector = vector;
3481 irte->lo.fields_remap.destination =
3482 APICID_TO_IRTE_DEST_LO(dest_apicid);
3483 irte->hi.fields.destination =
3484 APICID_TO_IRTE_DEST_HI(dest_apicid);
3485 modify_irte_ga(iommu, devid, index, irte);
3486 }
3487 }
3488
3489 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3490 static void irte_set_allocated(struct irq_remap_table *table, int index)
3491 {
3492 table->table[index] = IRTE_ALLOCATED;
3493 }
3494
irte_ga_set_allocated(struct irq_remap_table * table,int index)3495 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3496 {
3497 struct irte_ga *ptr = (struct irte_ga *)table->table;
3498 struct irte_ga *irte = &ptr[index];
3499
3500 memset(&irte->lo.val, 0, sizeof(u64));
3501 memset(&irte->hi.val, 0, sizeof(u64));
3502 irte->hi.fields.vector = 0xff;
3503 }
3504
irte_is_allocated(struct irq_remap_table * table,int index)3505 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3506 {
3507 union irte *ptr = (union irte *)table->table;
3508 union irte *irte = &ptr[index];
3509
3510 return irte->val != 0;
3511 }
3512
irte_ga_is_allocated(struct irq_remap_table * table,int index)3513 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3514 {
3515 struct irte_ga *ptr = (struct irte_ga *)table->table;
3516 struct irte_ga *irte = &ptr[index];
3517
3518 return irte->hi.fields.vector != 0;
3519 }
3520
irte_clear_allocated(struct irq_remap_table * table,int index)3521 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3522 {
3523 table->table[index] = 0;
3524 }
3525
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3526 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3527 {
3528 struct irte_ga *ptr = (struct irte_ga *)table->table;
3529 struct irte_ga *irte = &ptr[index];
3530
3531 memset(&irte->lo.val, 0, sizeof(u64));
3532 memset(&irte->hi.val, 0, sizeof(u64));
3533 }
3534
get_devid(struct irq_alloc_info * info)3535 static int get_devid(struct irq_alloc_info *info)
3536 {
3537 switch (info->type) {
3538 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3539 return get_ioapic_devid(info->devid);
3540 case X86_IRQ_ALLOC_TYPE_HPET:
3541 return get_hpet_devid(info->devid);
3542 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3543 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3544 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3545 default:
3546 WARN_ON_ONCE(1);
3547 return -1;
3548 }
3549 }
3550
3551 struct irq_remap_ops amd_iommu_irq_ops = {
3552 .prepare = amd_iommu_prepare,
3553 .enable = amd_iommu_enable,
3554 .disable = amd_iommu_disable,
3555 .reenable = amd_iommu_reenable,
3556 .enable_faulting = amd_iommu_enable_faulting,
3557 };
3558
fill_msi_msg(struct msi_msg * msg,u32 index)3559 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3560 {
3561 msg->data = index;
3562 msg->address_lo = 0;
3563 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3564 /*
3565 * The struct msi_msg.dest_mode_logical is used to set the DM bit
3566 * in MSI Message Address Register. For device w/ 2K int-remap support,
3567 * this is bit must be set to 1 regardless of the actual destination
3568 * mode, which is signified by the IRTE[DM].
3569 */
3570 if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
3571 msg->arch_addr_lo.dest_mode_logical = true;
3572 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3573 }
3574
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3575 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3576 struct irq_cfg *irq_cfg,
3577 struct irq_alloc_info *info,
3578 int devid, int index, int sub_handle)
3579 {
3580 struct irq_2_irte *irte_info = &data->irq_2_irte;
3581 struct amd_iommu *iommu = data->iommu;
3582
3583 if (!iommu)
3584 return;
3585
3586 data->irq_2_irte.devid = devid;
3587 data->irq_2_irte.index = index + sub_handle;
3588 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3589 apic->dest_mode_logical, irq_cfg->vector,
3590 irq_cfg->dest_apicid, devid);
3591
3592 switch (info->type) {
3593 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3594 case X86_IRQ_ALLOC_TYPE_HPET:
3595 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3596 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3597 fill_msi_msg(&data->msi_entry, irte_info->index);
3598 break;
3599
3600 default:
3601 BUG_ON(1);
3602 break;
3603 }
3604 }
3605
3606 struct amd_irte_ops irte_32_ops = {
3607 .prepare = irte_prepare,
3608 .activate = irte_activate,
3609 .deactivate = irte_deactivate,
3610 .set_affinity = irte_set_affinity,
3611 .set_allocated = irte_set_allocated,
3612 .is_allocated = irte_is_allocated,
3613 .clear_allocated = irte_clear_allocated,
3614 };
3615
3616 struct amd_irte_ops irte_128_ops = {
3617 .prepare = irte_ga_prepare,
3618 .activate = irte_ga_activate,
3619 .deactivate = irte_ga_deactivate,
3620 .set_affinity = irte_ga_set_affinity,
3621 .set_allocated = irte_ga_set_allocated,
3622 .is_allocated = irte_ga_is_allocated,
3623 .clear_allocated = irte_ga_clear_allocated,
3624 };
3625
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3626 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3627 unsigned int nr_irqs, void *arg)
3628 {
3629 struct irq_alloc_info *info = arg;
3630 struct irq_data *irq_data;
3631 struct amd_ir_data *data = NULL;
3632 struct amd_iommu *iommu;
3633 struct irq_cfg *cfg;
3634 struct iommu_dev_data *dev_data;
3635 unsigned long max_irqs;
3636 int i, ret, devid, seg, sbdf;
3637 int index;
3638
3639 if (!info)
3640 return -EINVAL;
3641 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3642 return -EINVAL;
3643
3644 sbdf = get_devid(info);
3645 if (sbdf < 0)
3646 return -EINVAL;
3647
3648 seg = PCI_SBDF_TO_SEGID(sbdf);
3649 devid = PCI_SBDF_TO_DEVID(sbdf);
3650 iommu = __rlookup_amd_iommu(seg, devid);
3651 if (!iommu)
3652 return -EINVAL;
3653
3654 dev_data = search_dev_data(iommu, devid);
3655 max_irqs = dev_data ? dev_data->max_irqs : MAX_IRQS_PER_TABLE_512;
3656
3657 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3658 if (ret < 0)
3659 return ret;
3660
3661 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3662 struct irq_remap_table *table;
3663
3664 table = alloc_irq_table(iommu, devid, NULL, max_irqs);
3665 if (table) {
3666 if (!table->min_index) {
3667 /*
3668 * Keep the first 32 indexes free for IOAPIC
3669 * interrupts.
3670 */
3671 table->min_index = 32;
3672 for (i = 0; i < 32; ++i)
3673 iommu->irte_ops->set_allocated(table, i);
3674 }
3675 WARN_ON(table->min_index != 32);
3676 index = info->ioapic.pin;
3677 } else {
3678 index = -ENOMEM;
3679 }
3680 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3681 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3682 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3683
3684 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3685 msi_desc_to_pci_dev(info->desc),
3686 max_irqs);
3687 } else {
3688 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL,
3689 max_irqs);
3690 }
3691
3692 if (index < 0) {
3693 pr_warn("Failed to allocate IRTE\n");
3694 ret = index;
3695 goto out_free_parent;
3696 }
3697
3698 for (i = 0; i < nr_irqs; i++) {
3699 irq_data = irq_domain_get_irq_data(domain, virq + i);
3700 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3701 if (!cfg) {
3702 ret = -EINVAL;
3703 goto out_free_data;
3704 }
3705
3706 ret = -ENOMEM;
3707 data = kzalloc(sizeof(*data), GFP_KERNEL);
3708 if (!data)
3709 goto out_free_data;
3710
3711 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3712 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3713 else
3714 data->entry = kzalloc(sizeof(struct irte_ga),
3715 GFP_KERNEL);
3716 if (!data->entry) {
3717 kfree(data);
3718 goto out_free_data;
3719 }
3720
3721 data->iommu = iommu;
3722 irq_data->hwirq = (devid << 16) + i;
3723 irq_data->chip_data = data;
3724 irq_data->chip = &amd_ir_chip;
3725 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3726 }
3727
3728 return 0;
3729
3730 out_free_data:
3731 for (i--; i >= 0; i--) {
3732 irq_data = irq_domain_get_irq_data(domain, virq + i);
3733 if (irq_data)
3734 kfree(irq_data->chip_data);
3735 }
3736 for (i = 0; i < nr_irqs; i++)
3737 free_irte(iommu, devid, index + i);
3738 out_free_parent:
3739 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3740 return ret;
3741 }
3742
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3743 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3744 unsigned int nr_irqs)
3745 {
3746 struct irq_2_irte *irte_info;
3747 struct irq_data *irq_data;
3748 struct amd_ir_data *data;
3749 int i;
3750
3751 for (i = 0; i < nr_irqs; i++) {
3752 irq_data = irq_domain_get_irq_data(domain, virq + i);
3753 if (irq_data && irq_data->chip_data) {
3754 data = irq_data->chip_data;
3755 irte_info = &data->irq_2_irte;
3756 free_irte(data->iommu, irte_info->devid, irte_info->index);
3757 kfree(data->entry);
3758 kfree(data);
3759 }
3760 }
3761 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3762 }
3763
3764 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3765 struct amd_ir_data *ir_data,
3766 struct irq_2_irte *irte_info,
3767 struct irq_cfg *cfg);
3768
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3769 static int irq_remapping_activate(struct irq_domain *domain,
3770 struct irq_data *irq_data, bool reserve)
3771 {
3772 struct amd_ir_data *data = irq_data->chip_data;
3773 struct irq_2_irte *irte_info = &data->irq_2_irte;
3774 struct amd_iommu *iommu = data->iommu;
3775 struct irq_cfg *cfg = irqd_cfg(irq_data);
3776
3777 if (!iommu)
3778 return 0;
3779
3780 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3781 irte_info->index);
3782 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3783 return 0;
3784 }
3785
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3786 static void irq_remapping_deactivate(struct irq_domain *domain,
3787 struct irq_data *irq_data)
3788 {
3789 struct amd_ir_data *data = irq_data->chip_data;
3790 struct irq_2_irte *irte_info = &data->irq_2_irte;
3791 struct amd_iommu *iommu = data->iommu;
3792
3793 if (iommu)
3794 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3795 irte_info->index);
3796 }
3797
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3798 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3799 enum irq_domain_bus_token bus_token)
3800 {
3801 struct amd_iommu *iommu;
3802 int devid = -1;
3803
3804 if (!amd_iommu_irq_remap)
3805 return 0;
3806
3807 if (x86_fwspec_is_ioapic(fwspec))
3808 devid = get_ioapic_devid(fwspec->param[0]);
3809 else if (x86_fwspec_is_hpet(fwspec))
3810 devid = get_hpet_devid(fwspec->param[0]);
3811
3812 if (devid < 0)
3813 return 0;
3814 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3815
3816 return iommu && iommu->ir_domain == d;
3817 }
3818
3819 static const struct irq_domain_ops amd_ir_domain_ops = {
3820 .select = irq_remapping_select,
3821 .alloc = irq_remapping_alloc,
3822 .free = irq_remapping_free,
3823 .activate = irq_remapping_activate,
3824 .deactivate = irq_remapping_deactivate,
3825 };
3826
__amd_iommu_update_ga(struct irte_ga * entry,int cpu,bool ga_log_intr)3827 static void __amd_iommu_update_ga(struct irte_ga *entry, int cpu,
3828 bool ga_log_intr)
3829 {
3830 if (cpu >= 0) {
3831 entry->lo.fields_vapic.destination =
3832 APICID_TO_IRTE_DEST_LO(cpu);
3833 entry->hi.fields.destination =
3834 APICID_TO_IRTE_DEST_HI(cpu);
3835 entry->lo.fields_vapic.is_run = true;
3836 entry->lo.fields_vapic.ga_log_intr = false;
3837 } else {
3838 entry->lo.fields_vapic.is_run = false;
3839 entry->lo.fields_vapic.ga_log_intr = ga_log_intr;
3840 }
3841 }
3842
3843 /*
3844 * Update the pCPU information for an IRTE that is configured to post IRQs to
3845 * a vCPU, without issuing an IOMMU invalidation for the IRTE.
3846 *
3847 * If the vCPU is associated with a pCPU (@cpu >= 0), configure the Destination
3848 * with the pCPU's APIC ID, set IsRun, and clear GALogIntr. If the vCPU isn't
3849 * associated with a pCPU (@cpu < 0), clear IsRun and set/clear GALogIntr based
3850 * on input from the caller (e.g. KVM only requests GALogIntr when the vCPU is
3851 * blocking and requires a notification wake event). I.e. treat vCPUs that are
3852 * associated with a pCPU as running. This API is intended to be used when a
3853 * vCPU is scheduled in/out (or stops running for any reason), to do a fast
3854 * update of IsRun, GALogIntr, and (conditionally) Destination.
3855 *
3856 * Per the IOMMU spec, the Destination, IsRun, and GATag fields are not cached
3857 * and thus don't require an invalidation to ensure the IOMMU consumes fresh
3858 * information.
3859 */
amd_iommu_update_ga(void * data,int cpu,bool ga_log_intr)3860 int amd_iommu_update_ga(void *data, int cpu, bool ga_log_intr)
3861 {
3862 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3863 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3864
3865 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3866 return -EINVAL;
3867
3868 if (!entry || !entry->lo.fields_vapic.guest_mode)
3869 return 0;
3870
3871 if (!ir_data->iommu)
3872 return -ENODEV;
3873
3874 __amd_iommu_update_ga(entry, cpu, ga_log_intr);
3875
3876 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3877 ir_data->irq_2_irte.index, entry);
3878 }
3879 EXPORT_SYMBOL(amd_iommu_update_ga);
3880
amd_iommu_activate_guest_mode(void * data,int cpu,bool ga_log_intr)3881 int amd_iommu_activate_guest_mode(void *data, int cpu, bool ga_log_intr)
3882 {
3883 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3884 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3885 u64 valid;
3886
3887 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3888 return -EINVAL;
3889
3890 if (!entry)
3891 return 0;
3892
3893 valid = entry->lo.fields_vapic.valid;
3894
3895 entry->lo.val = 0;
3896 entry->hi.val = 0;
3897
3898 entry->lo.fields_vapic.valid = valid;
3899 entry->lo.fields_vapic.guest_mode = 1;
3900 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3901 entry->hi.fields.vector = ir_data->ga_vector;
3902 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3903
3904 __amd_iommu_update_ga(entry, cpu, ga_log_intr);
3905
3906 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3907 ir_data->irq_2_irte.index, entry);
3908 }
3909 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3910
amd_iommu_deactivate_guest_mode(void * data)3911 int amd_iommu_deactivate_guest_mode(void *data)
3912 {
3913 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3914 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3915 struct irq_cfg *cfg = ir_data->cfg;
3916 u64 valid;
3917
3918 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3919 return -EINVAL;
3920
3921 if (!entry || !entry->lo.fields_vapic.guest_mode)
3922 return 0;
3923
3924 valid = entry->lo.fields_remap.valid;
3925
3926 entry->lo.val = 0;
3927 entry->hi.val = 0;
3928
3929 entry->lo.fields_remap.valid = valid;
3930 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3931 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED;
3932 entry->hi.fields.vector = cfg->vector;
3933 entry->lo.fields_remap.destination =
3934 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3935 entry->hi.fields.destination =
3936 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3937
3938 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3939 ir_data->irq_2_irte.index, entry);
3940 }
3941 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3942
amd_ir_set_vcpu_affinity(struct irq_data * data,void * info)3943 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *info)
3944 {
3945 int ret;
3946 struct amd_iommu_pi_data *pi_data = info;
3947 struct amd_ir_data *ir_data = data->chip_data;
3948 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3949 struct iommu_dev_data *dev_data;
3950
3951 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3952 return -EINVAL;
3953
3954 if (ir_data->iommu == NULL)
3955 return -EINVAL;
3956
3957 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3958
3959 /* Note:
3960 * This device has never been set up for guest mode.
3961 * we should not modify the IRTE
3962 */
3963 if (!dev_data || !dev_data->use_vapic)
3964 return -EINVAL;
3965
3966 ir_data->cfg = irqd_cfg(data);
3967
3968 if (pi_data) {
3969 pi_data->ir_data = ir_data;
3970
3971 ir_data->ga_root_ptr = (pi_data->vapic_addr >> 12);
3972 ir_data->ga_vector = pi_data->vector;
3973 ir_data->ga_tag = pi_data->ga_tag;
3974 if (pi_data->is_guest_mode)
3975 ret = amd_iommu_activate_guest_mode(ir_data, pi_data->cpu,
3976 pi_data->ga_log_intr);
3977 else
3978 ret = amd_iommu_deactivate_guest_mode(ir_data);
3979 } else {
3980 ret = amd_iommu_deactivate_guest_mode(ir_data);
3981 }
3982
3983 return ret;
3984 }
3985
3986
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3987 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3988 struct amd_ir_data *ir_data,
3989 struct irq_2_irte *irte_info,
3990 struct irq_cfg *cfg)
3991 {
3992
3993 /*
3994 * Atomically updates the IRTE with the new destination, vector
3995 * and flushes the interrupt entry cache.
3996 */
3997 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3998 irte_info->index, cfg->vector,
3999 cfg->dest_apicid);
4000 }
4001
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4002 static int amd_ir_set_affinity(struct irq_data *data,
4003 const struct cpumask *mask, bool force)
4004 {
4005 struct amd_ir_data *ir_data = data->chip_data;
4006 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4007 struct irq_cfg *cfg = irqd_cfg(data);
4008 struct irq_data *parent = data->parent_data;
4009 struct amd_iommu *iommu = ir_data->iommu;
4010 int ret;
4011
4012 if (!iommu)
4013 return -ENODEV;
4014
4015 ret = parent->chip->irq_set_affinity(parent, mask, force);
4016 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4017 return ret;
4018
4019 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4020 /*
4021 * After this point, all the interrupts will start arriving
4022 * at the new destination. So, time to cleanup the previous
4023 * vector allocation.
4024 */
4025 vector_schedule_cleanup(cfg);
4026
4027 return IRQ_SET_MASK_OK_DONE;
4028 }
4029
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4030 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4031 {
4032 struct amd_ir_data *ir_data = irq_data->chip_data;
4033
4034 *msg = ir_data->msi_entry;
4035 }
4036
4037 static struct irq_chip amd_ir_chip = {
4038 .name = "AMD-IR",
4039 .irq_ack = apic_ack_irq,
4040 .irq_set_affinity = amd_ir_set_affinity,
4041 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4042 .irq_compose_msi_msg = ir_compose_msi_msg,
4043 };
4044
4045 static const struct msi_parent_ops amdvi_msi_parent_ops = {
4046 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
4047 .bus_select_token = DOMAIN_BUS_AMDVI,
4048 .bus_select_mask = MATCH_PCI_MSI,
4049 .prefix = "IR-",
4050 .init_dev_msi_info = msi_parent_init_dev_msi_info,
4051 };
4052
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4053 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4054 {
4055 struct irq_domain_info info = {
4056 .fwnode = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index),
4057 .ops = &amd_ir_domain_ops,
4058 .domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI,
4059 .host_data = iommu,
4060 .parent = arch_get_ir_parent_domain(),
4061 };
4062
4063 if (!info.fwnode)
4064 return -ENOMEM;
4065
4066 iommu->ir_domain = msi_create_parent_irq_domain(&info, &amdvi_msi_parent_ops);
4067 if (!iommu->ir_domain) {
4068 irq_domain_free_fwnode(info.fwnode);
4069 return -ENOMEM;
4070 }
4071 return 0;
4072 }
4073 #endif
4074