1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/idr.h>
22 #include <linux/iommu-helper.h>
23 #include <linux/delay.h>
24 #include <linux/amd-iommu.h>
25 #include <linux/notifier.h>
26 #include <linux/export.h>
27 #include <linux/irq.h>
28 #include <linux/msi.h>
29 #include <linux/irqdomain.h>
30 #include <linux/percpu.h>
31 #include <linux/io-pgtable.h>
32 #include <linux/cc_platform.h>
33 #include <asm/irq_remapping.h>
34 #include <asm/io_apic.h>
35 #include <asm/apic.h>
36 #include <asm/hw_irq.h>
37 #include <asm/proto.h>
38 #include <asm/iommu.h>
39 #include <asm/gart.h>
40 #include <asm/dma.h>
41 #include <uapi/linux/iommufd.h>
42
43 #include "amd_iommu.h"
44 #include "../dma-iommu.h"
45 #include "../irq_remapping.h"
46 #include "../iommu-pages.h"
47
48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
49
50 /* Reserved IOVA ranges */
51 #define MSI_RANGE_START (0xfee00000)
52 #define MSI_RANGE_END (0xfeefffff)
53 #define HT_RANGE_START (0xfd00000000ULL)
54 #define HT_RANGE_END (0xffffffffffULL)
55
56 LIST_HEAD(ioapic_map);
57 LIST_HEAD(hpet_map);
58 LIST_HEAD(acpihid_map);
59
60 const struct iommu_ops amd_iommu_ops;
61 static const struct iommu_dirty_ops amd_dirty_ops;
62
63 int amd_iommu_max_glx_val = -1;
64
65 /*
66 * general struct to manage commands send to an IOMMU
67 */
68 struct iommu_cmd {
69 u32 data[4];
70 };
71
72 /*
73 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
74 * to know which ones are already in use.
75 */
76 DEFINE_IDA(pdom_ids);
77
78 struct kmem_cache *amd_iommu_irq_cache;
79
80 static int amd_iommu_attach_device(struct iommu_domain *dom,
81 struct device *dev);
82
83 static void set_dte_entry(struct amd_iommu *iommu,
84 struct iommu_dev_data *dev_data);
85
86 /****************************************************************************
87 *
88 * Helper functions
89 *
90 ****************************************************************************/
91
pdom_is_v2_pgtbl_mode(struct protection_domain * pdom)92 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
93 {
94 return (pdom && (pdom->pd_mode == PD_MODE_V2));
95 }
96
pdom_is_in_pt_mode(struct protection_domain * pdom)97 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
98 {
99 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
100 }
101
102 /*
103 * We cannot support PASID w/ existing v1 page table in the same domain
104 * since it will be nested. However, existing domain w/ v2 page table
105 * or passthrough mode can be used for PASID.
106 */
pdom_is_sva_capable(struct protection_domain * pdom)107 static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
108 {
109 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
110 }
111
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)112 static inline int get_acpihid_device_id(struct device *dev,
113 struct acpihid_map_entry **entry)
114 {
115 struct acpi_device *adev = ACPI_COMPANION(dev);
116 struct acpihid_map_entry *p;
117
118 if (!adev)
119 return -ENODEV;
120
121 list_for_each_entry(p, &acpihid_map, list) {
122 if (acpi_dev_hid_uid_match(adev, p->hid,
123 p->uid[0] ? p->uid : NULL)) {
124 if (entry)
125 *entry = p;
126 return p->devid;
127 }
128 }
129 return -EINVAL;
130 }
131
get_device_sbdf_id(struct device * dev)132 static inline int get_device_sbdf_id(struct device *dev)
133 {
134 int sbdf;
135
136 if (dev_is_pci(dev))
137 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
138 else
139 sbdf = get_acpihid_device_id(dev, NULL);
140
141 return sbdf;
142 }
143
get_dev_table(struct amd_iommu * iommu)144 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
145 {
146 struct dev_table_entry *dev_table;
147 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
148
149 BUG_ON(pci_seg == NULL);
150 dev_table = pci_seg->dev_table;
151 BUG_ON(dev_table == NULL);
152
153 return dev_table;
154 }
155
get_device_segment(struct device * dev)156 static inline u16 get_device_segment(struct device *dev)
157 {
158 u16 seg;
159
160 if (dev_is_pci(dev)) {
161 struct pci_dev *pdev = to_pci_dev(dev);
162
163 seg = pci_domain_nr(pdev->bus);
164 } else {
165 u32 devid = get_acpihid_device_id(dev, NULL);
166
167 seg = PCI_SBDF_TO_SEGID(devid);
168 }
169
170 return seg;
171 }
172
173 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)174 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
175 {
176 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
177
178 pci_seg->rlookup_table[devid] = iommu;
179 }
180
__rlookup_amd_iommu(u16 seg,u16 devid)181 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
182 {
183 struct amd_iommu_pci_seg *pci_seg;
184
185 for_each_pci_segment(pci_seg) {
186 if (pci_seg->id == seg)
187 return pci_seg->rlookup_table[devid];
188 }
189 return NULL;
190 }
191
rlookup_amd_iommu(struct device * dev)192 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
193 {
194 u16 seg = get_device_segment(dev);
195 int devid = get_device_sbdf_id(dev);
196
197 if (devid < 0)
198 return NULL;
199 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
200 }
201
alloc_dev_data(struct amd_iommu * iommu,u16 devid)202 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
203 {
204 struct iommu_dev_data *dev_data;
205 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
206
207 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
208 if (!dev_data)
209 return NULL;
210
211 mutex_init(&dev_data->mutex);
212 dev_data->devid = devid;
213 ratelimit_default_init(&dev_data->rs);
214
215 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
216 return dev_data;
217 }
218
search_dev_data(struct amd_iommu * iommu,u16 devid)219 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
220 {
221 struct iommu_dev_data *dev_data;
222 struct llist_node *node;
223 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
224
225 if (llist_empty(&pci_seg->dev_data_list))
226 return NULL;
227
228 node = pci_seg->dev_data_list.first;
229 llist_for_each_entry(dev_data, node, dev_data_list) {
230 if (dev_data->devid == devid)
231 return dev_data;
232 }
233
234 return NULL;
235 }
236
clone_alias(struct pci_dev * pdev,u16 alias,void * data)237 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
238 {
239 struct amd_iommu *iommu;
240 struct dev_table_entry *dev_table;
241 u16 devid = pci_dev_id(pdev);
242
243 if (devid == alias)
244 return 0;
245
246 iommu = rlookup_amd_iommu(&pdev->dev);
247 if (!iommu)
248 return 0;
249
250 amd_iommu_set_rlookup_table(iommu, alias);
251 dev_table = get_dev_table(iommu);
252 memcpy(dev_table[alias].data,
253 dev_table[devid].data,
254 sizeof(dev_table[alias].data));
255
256 return 0;
257 }
258
clone_aliases(struct amd_iommu * iommu,struct device * dev)259 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
260 {
261 struct pci_dev *pdev;
262
263 if (!dev_is_pci(dev))
264 return;
265 pdev = to_pci_dev(dev);
266
267 /*
268 * The IVRS alias stored in the alias table may not be
269 * part of the PCI DMA aliases if it's bus differs
270 * from the original device.
271 */
272 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
273
274 pci_for_each_dma_alias(pdev, clone_alias, NULL);
275 }
276
setup_aliases(struct amd_iommu * iommu,struct device * dev)277 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
278 {
279 struct pci_dev *pdev = to_pci_dev(dev);
280 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
281 u16 ivrs_alias;
282
283 /* For ACPI HID devices, there are no aliases */
284 if (!dev_is_pci(dev))
285 return;
286
287 /*
288 * Add the IVRS alias to the pci aliases if it is on the same
289 * bus. The IVRS table may know about a quirk that we don't.
290 */
291 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
292 if (ivrs_alias != pci_dev_id(pdev) &&
293 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
294 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
295
296 clone_aliases(iommu, dev);
297 }
298
find_dev_data(struct amd_iommu * iommu,u16 devid)299 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
300 {
301 struct iommu_dev_data *dev_data;
302
303 dev_data = search_dev_data(iommu, devid);
304
305 if (dev_data == NULL) {
306 dev_data = alloc_dev_data(iommu, devid);
307 if (!dev_data)
308 return NULL;
309
310 if (translation_pre_enabled(iommu))
311 dev_data->defer_attach = true;
312 }
313
314 return dev_data;
315 }
316
317 /*
318 * Find or create an IOMMU group for a acpihid device.
319 */
acpihid_device_group(struct device * dev)320 static struct iommu_group *acpihid_device_group(struct device *dev)
321 {
322 struct acpihid_map_entry *p, *entry = NULL;
323 int devid;
324
325 devid = get_acpihid_device_id(dev, &entry);
326 if (devid < 0)
327 return ERR_PTR(devid);
328
329 list_for_each_entry(p, &acpihid_map, list) {
330 if ((devid == p->devid) && p->group)
331 entry->group = p->group;
332 }
333
334 if (!entry->group)
335 entry->group = generic_device_group(dev);
336 else
337 iommu_group_ref_get(entry->group);
338
339 return entry->group;
340 }
341
pdev_pasid_supported(struct iommu_dev_data * dev_data)342 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
343 {
344 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
345 }
346
pdev_get_caps(struct pci_dev * pdev)347 static u32 pdev_get_caps(struct pci_dev *pdev)
348 {
349 int features;
350 u32 flags = 0;
351
352 if (pci_ats_supported(pdev))
353 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
354
355 if (pci_pri_supported(pdev))
356 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
357
358 features = pci_pasid_features(pdev);
359 if (features >= 0) {
360 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
361
362 if (features & PCI_PASID_CAP_EXEC)
363 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
364
365 if (features & PCI_PASID_CAP_PRIV)
366 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
367 }
368
369 return flags;
370 }
371
pdev_enable_cap_ats(struct pci_dev * pdev)372 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
373 {
374 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
375 int ret = -EINVAL;
376
377 if (dev_data->ats_enabled)
378 return 0;
379
380 if (amd_iommu_iotlb_sup &&
381 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
382 ret = pci_enable_ats(pdev, PAGE_SHIFT);
383 if (!ret) {
384 dev_data->ats_enabled = 1;
385 dev_data->ats_qdep = pci_ats_queue_depth(pdev);
386 }
387 }
388
389 return ret;
390 }
391
pdev_disable_cap_ats(struct pci_dev * pdev)392 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
393 {
394 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
395
396 if (dev_data->ats_enabled) {
397 pci_disable_ats(pdev);
398 dev_data->ats_enabled = 0;
399 }
400 }
401
pdev_enable_cap_pri(struct pci_dev * pdev)402 static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
403 {
404 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
405 int ret = -EINVAL;
406
407 if (dev_data->pri_enabled)
408 return 0;
409
410 if (!dev_data->ats_enabled)
411 return 0;
412
413 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
414 /*
415 * First reset the PRI state of the device.
416 * FIXME: Hardcode number of outstanding requests for now
417 */
418 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
419 dev_data->pri_enabled = 1;
420 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
421
422 ret = 0;
423 }
424 }
425
426 return ret;
427 }
428
pdev_disable_cap_pri(struct pci_dev * pdev)429 static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
430 {
431 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
432
433 if (dev_data->pri_enabled) {
434 pci_disable_pri(pdev);
435 dev_data->pri_enabled = 0;
436 }
437 }
438
pdev_enable_cap_pasid(struct pci_dev * pdev)439 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
440 {
441 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
442 int ret = -EINVAL;
443
444 if (dev_data->pasid_enabled)
445 return 0;
446
447 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
448 /* Only allow access to user-accessible pages */
449 ret = pci_enable_pasid(pdev, 0);
450 if (!ret)
451 dev_data->pasid_enabled = 1;
452 }
453
454 return ret;
455 }
456
pdev_disable_cap_pasid(struct pci_dev * pdev)457 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
458 {
459 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
460
461 if (dev_data->pasid_enabled) {
462 pci_disable_pasid(pdev);
463 dev_data->pasid_enabled = 0;
464 }
465 }
466
pdev_enable_caps(struct pci_dev * pdev)467 static void pdev_enable_caps(struct pci_dev *pdev)
468 {
469 pdev_enable_cap_ats(pdev);
470 pdev_enable_cap_pasid(pdev);
471 pdev_enable_cap_pri(pdev);
472 }
473
pdev_disable_caps(struct pci_dev * pdev)474 static void pdev_disable_caps(struct pci_dev *pdev)
475 {
476 pdev_disable_cap_ats(pdev);
477 pdev_disable_cap_pasid(pdev);
478 pdev_disable_cap_pri(pdev);
479 }
480
481 /*
482 * This function checks if the driver got a valid device from the caller to
483 * avoid dereferencing invalid pointers.
484 */
check_device(struct device * dev)485 static bool check_device(struct device *dev)
486 {
487 struct amd_iommu_pci_seg *pci_seg;
488 struct amd_iommu *iommu;
489 int devid, sbdf;
490
491 if (!dev)
492 return false;
493
494 sbdf = get_device_sbdf_id(dev);
495 if (sbdf < 0)
496 return false;
497 devid = PCI_SBDF_TO_DEVID(sbdf);
498
499 iommu = rlookup_amd_iommu(dev);
500 if (!iommu)
501 return false;
502
503 /* Out of our scope? */
504 pci_seg = iommu->pci_seg;
505 if (devid > pci_seg->last_bdf)
506 return false;
507
508 return true;
509 }
510
iommu_init_device(struct amd_iommu * iommu,struct device * dev)511 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
512 {
513 struct iommu_dev_data *dev_data;
514 int devid, sbdf;
515
516 if (dev_iommu_priv_get(dev))
517 return 0;
518
519 sbdf = get_device_sbdf_id(dev);
520 if (sbdf < 0)
521 return sbdf;
522
523 devid = PCI_SBDF_TO_DEVID(sbdf);
524 dev_data = find_dev_data(iommu, devid);
525 if (!dev_data)
526 return -ENOMEM;
527
528 dev_data->dev = dev;
529 setup_aliases(iommu, dev);
530
531 /*
532 * By default we use passthrough mode for IOMMUv2 capable device.
533 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
534 * invalid address), we ignore the capability for the device so
535 * it'll be forced to go into translation mode.
536 */
537 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
538 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
539 dev_data->flags = pdev_get_caps(to_pci_dev(dev));
540 }
541
542 dev_iommu_priv_set(dev, dev_data);
543
544 return 0;
545 }
546
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)547 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
548 {
549 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
550 struct dev_table_entry *dev_table = get_dev_table(iommu);
551 int devid, sbdf;
552
553 sbdf = get_device_sbdf_id(dev);
554 if (sbdf < 0)
555 return;
556
557 devid = PCI_SBDF_TO_DEVID(sbdf);
558 pci_seg->rlookup_table[devid] = NULL;
559 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
560
561 setup_aliases(iommu, dev);
562 }
563
564
565 /****************************************************************************
566 *
567 * Interrupt handling functions
568 *
569 ****************************************************************************/
570
dump_dte_entry(struct amd_iommu * iommu,u16 devid)571 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
572 {
573 int i;
574 struct dev_table_entry *dev_table = get_dev_table(iommu);
575
576 for (i = 0; i < 4; ++i)
577 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
578 }
579
dump_command(unsigned long phys_addr)580 static void dump_command(unsigned long phys_addr)
581 {
582 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
583 int i;
584
585 for (i = 0; i < 4; ++i)
586 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
587 }
588
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)589 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
590 {
591 struct iommu_dev_data *dev_data = NULL;
592 int devid, vmg_tag, flags;
593 struct pci_dev *pdev;
594 u64 spa;
595
596 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
597 vmg_tag = (event[1]) & 0xFFFF;
598 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
599 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
600
601 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
602 devid & 0xff);
603 if (pdev)
604 dev_data = dev_iommu_priv_get(&pdev->dev);
605
606 if (dev_data) {
607 if (__ratelimit(&dev_data->rs)) {
608 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
609 vmg_tag, spa, flags);
610 }
611 } else {
612 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
613 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
614 vmg_tag, spa, flags);
615 }
616
617 if (pdev)
618 pci_dev_put(pdev);
619 }
620
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)621 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
622 {
623 struct iommu_dev_data *dev_data = NULL;
624 int devid, flags_rmp, vmg_tag, flags;
625 struct pci_dev *pdev;
626 u64 gpa;
627
628 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
629 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
630 vmg_tag = (event[1]) & 0xFFFF;
631 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
632 gpa = ((u64)event[3] << 32) | event[2];
633
634 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
635 devid & 0xff);
636 if (pdev)
637 dev_data = dev_iommu_priv_get(&pdev->dev);
638
639 if (dev_data) {
640 if (__ratelimit(&dev_data->rs)) {
641 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
642 vmg_tag, gpa, flags_rmp, flags);
643 }
644 } else {
645 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
646 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
647 vmg_tag, gpa, flags_rmp, flags);
648 }
649
650 if (pdev)
651 pci_dev_put(pdev);
652 }
653
654 #define IS_IOMMU_MEM_TRANSACTION(flags) \
655 (((flags) & EVENT_FLAG_I) == 0)
656
657 #define IS_WRITE_REQUEST(flags) \
658 ((flags) & EVENT_FLAG_RW)
659
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)660 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
661 u16 devid, u16 domain_id,
662 u64 address, int flags)
663 {
664 struct iommu_dev_data *dev_data = NULL;
665 struct pci_dev *pdev;
666
667 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
668 devid & 0xff);
669 if (pdev)
670 dev_data = dev_iommu_priv_get(&pdev->dev);
671
672 if (dev_data) {
673 /*
674 * If this is a DMA fault (for which the I(nterrupt)
675 * bit will be unset), allow report_iommu_fault() to
676 * prevent logging it.
677 */
678 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
679 /* Device not attached to domain properly */
680 if (dev_data->domain == NULL) {
681 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
682 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
683 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
684 PCI_FUNC(devid), domain_id);
685 goto out;
686 }
687
688 if (!report_iommu_fault(&dev_data->domain->domain,
689 &pdev->dev, address,
690 IS_WRITE_REQUEST(flags) ?
691 IOMMU_FAULT_WRITE :
692 IOMMU_FAULT_READ))
693 goto out;
694 }
695
696 if (__ratelimit(&dev_data->rs)) {
697 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
698 domain_id, address, flags);
699 }
700 } else {
701 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
702 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
703 domain_id, address, flags);
704 }
705
706 out:
707 if (pdev)
708 pci_dev_put(pdev);
709 }
710
iommu_print_event(struct amd_iommu * iommu,void * __evt)711 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
712 {
713 struct device *dev = iommu->iommu.dev;
714 int type, devid, flags, tag;
715 volatile u32 *event = __evt;
716 int count = 0;
717 u64 address;
718 u32 pasid;
719
720 retry:
721 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
722 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
723 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
724 (event[1] & EVENT_DOMID_MASK_LO);
725 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
726 address = (u64)(((u64)event[3]) << 32) | event[2];
727
728 if (type == 0) {
729 /* Did we hit the erratum? */
730 if (++count == LOOP_TIMEOUT) {
731 pr_err("No event written to event log\n");
732 return;
733 }
734 udelay(1);
735 goto retry;
736 }
737
738 if (type == EVENT_TYPE_IO_FAULT) {
739 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
740 return;
741 }
742
743 switch (type) {
744 case EVENT_TYPE_ILL_DEV:
745 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
746 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
747 pasid, address, flags);
748 dump_dte_entry(iommu, devid);
749 break;
750 case EVENT_TYPE_DEV_TAB_ERR:
751 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
752 "address=0x%llx flags=0x%04x]\n",
753 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
754 address, flags);
755 break;
756 case EVENT_TYPE_PAGE_TAB_ERR:
757 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
758 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
759 pasid, address, flags);
760 break;
761 case EVENT_TYPE_ILL_CMD:
762 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
763 dump_command(address);
764 break;
765 case EVENT_TYPE_CMD_HARD_ERR:
766 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
767 address, flags);
768 break;
769 case EVENT_TYPE_IOTLB_INV_TO:
770 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
771 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
772 address);
773 break;
774 case EVENT_TYPE_INV_DEV_REQ:
775 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
776 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
777 pasid, address, flags);
778 break;
779 case EVENT_TYPE_RMP_FAULT:
780 amd_iommu_report_rmp_fault(iommu, event);
781 break;
782 case EVENT_TYPE_RMP_HW_ERR:
783 amd_iommu_report_rmp_hw_error(iommu, event);
784 break;
785 case EVENT_TYPE_INV_PPR_REQ:
786 pasid = PPR_PASID(*((u64 *)__evt));
787 tag = event[1] & 0x03FF;
788 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
789 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
790 pasid, address, flags, tag);
791 break;
792 default:
793 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
794 event[0], event[1], event[2], event[3]);
795 }
796
797 /*
798 * To detect the hardware errata 732 we need to clear the
799 * entry back to zero. This issue does not exist on SNP
800 * enabled system. Also this buffer is not writeable on
801 * SNP enabled system.
802 */
803 if (!amd_iommu_snp_en)
804 memset(__evt, 0, 4 * sizeof(u32));
805 }
806
iommu_poll_events(struct amd_iommu * iommu)807 static void iommu_poll_events(struct amd_iommu *iommu)
808 {
809 u32 head, tail;
810
811 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
812 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
813
814 while (head != tail) {
815 iommu_print_event(iommu, iommu->evt_buf + head);
816
817 /* Update head pointer of hardware ring-buffer */
818 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
819 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
820 }
821
822 }
823
824 #ifdef CONFIG_IRQ_REMAP
825 static int (*iommu_ga_log_notifier)(u32);
826
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))827 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
828 {
829 iommu_ga_log_notifier = notifier;
830
831 return 0;
832 }
833 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
834
iommu_poll_ga_log(struct amd_iommu * iommu)835 static void iommu_poll_ga_log(struct amd_iommu *iommu)
836 {
837 u32 head, tail;
838
839 if (iommu->ga_log == NULL)
840 return;
841
842 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
843 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
844
845 while (head != tail) {
846 volatile u64 *raw;
847 u64 log_entry;
848
849 raw = (u64 *)(iommu->ga_log + head);
850
851 /* Avoid memcpy function-call overhead */
852 log_entry = *raw;
853
854 /* Update head pointer of hardware ring-buffer */
855 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
856 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
857
858 /* Handle GA entry */
859 switch (GA_REQ_TYPE(log_entry)) {
860 case GA_GUEST_NR:
861 if (!iommu_ga_log_notifier)
862 break;
863
864 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
865 __func__, GA_DEVID(log_entry),
866 GA_TAG(log_entry));
867
868 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
869 pr_err("GA log notifier failed.\n");
870 break;
871 default:
872 break;
873 }
874 }
875 }
876
877 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)878 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
879 {
880 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
881 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
882 return;
883
884 dev_set_msi_domain(dev, iommu->ir_domain);
885 }
886
887 #else /* CONFIG_IRQ_REMAP */
888 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)889 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
890 #endif /* !CONFIG_IRQ_REMAP */
891
amd_iommu_handle_irq(void * data,const char * evt_type,u32 int_mask,u32 overflow_mask,void (* int_handler)(struct amd_iommu *),void (* overflow_handler)(struct amd_iommu *))892 static void amd_iommu_handle_irq(void *data, const char *evt_type,
893 u32 int_mask, u32 overflow_mask,
894 void (*int_handler)(struct amd_iommu *),
895 void (*overflow_handler)(struct amd_iommu *))
896 {
897 struct amd_iommu *iommu = (struct amd_iommu *) data;
898 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
899 u32 mask = int_mask | overflow_mask;
900
901 while (status & mask) {
902 /* Enable interrupt sources again */
903 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
904
905 if (int_handler) {
906 pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
907 iommu->index, evt_type);
908 int_handler(iommu);
909 }
910
911 if ((status & overflow_mask) && overflow_handler)
912 overflow_handler(iommu);
913
914 /*
915 * Hardware bug: ERBT1312
916 * When re-enabling interrupt (by writing 1
917 * to clear the bit), the hardware might also try to set
918 * the interrupt bit in the event status register.
919 * In this scenario, the bit will be set, and disable
920 * subsequent interrupts.
921 *
922 * Workaround: The IOMMU driver should read back the
923 * status register and check if the interrupt bits are cleared.
924 * If not, driver will need to go through the interrupt handler
925 * again and re-clear the bits
926 */
927 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
928 }
929 }
930
amd_iommu_int_thread_evtlog(int irq,void * data)931 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
932 {
933 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
934 MMIO_STATUS_EVT_OVERFLOW_MASK,
935 iommu_poll_events, amd_iommu_restart_event_logging);
936
937 return IRQ_HANDLED;
938 }
939
amd_iommu_int_thread_pprlog(int irq,void * data)940 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
941 {
942 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
943 MMIO_STATUS_PPR_OVERFLOW_MASK,
944 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
945
946 return IRQ_HANDLED;
947 }
948
amd_iommu_int_thread_galog(int irq,void * data)949 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
950 {
951 #ifdef CONFIG_IRQ_REMAP
952 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
953 MMIO_STATUS_GALOG_OVERFLOW_MASK,
954 iommu_poll_ga_log, amd_iommu_restart_ga_log);
955 #endif
956
957 return IRQ_HANDLED;
958 }
959
amd_iommu_int_thread(int irq,void * data)960 irqreturn_t amd_iommu_int_thread(int irq, void *data)
961 {
962 amd_iommu_int_thread_evtlog(irq, data);
963 amd_iommu_int_thread_pprlog(irq, data);
964 amd_iommu_int_thread_galog(irq, data);
965
966 return IRQ_HANDLED;
967 }
968
amd_iommu_int_handler(int irq,void * data)969 irqreturn_t amd_iommu_int_handler(int irq, void *data)
970 {
971 return IRQ_WAKE_THREAD;
972 }
973
974 /****************************************************************************
975 *
976 * IOMMU command queuing functions
977 *
978 ****************************************************************************/
979
wait_on_sem(struct amd_iommu * iommu,u64 data)980 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
981 {
982 int i = 0;
983
984 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
985 udelay(1);
986 i += 1;
987 }
988
989 if (i == LOOP_TIMEOUT) {
990 pr_alert("Completion-Wait loop timed out\n");
991 return -EIO;
992 }
993
994 return 0;
995 }
996
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)997 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
998 struct iommu_cmd *cmd)
999 {
1000 u8 *target;
1001 u32 tail;
1002
1003 /* Copy command to buffer */
1004 tail = iommu->cmd_buf_tail;
1005 target = iommu->cmd_buf + tail;
1006 memcpy(target, cmd, sizeof(*cmd));
1007
1008 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1009 iommu->cmd_buf_tail = tail;
1010
1011 /* Tell the IOMMU about it */
1012 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1013 }
1014
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)1015 static void build_completion_wait(struct iommu_cmd *cmd,
1016 struct amd_iommu *iommu,
1017 u64 data)
1018 {
1019 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1020
1021 memset(cmd, 0, sizeof(*cmd));
1022 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1023 cmd->data[1] = upper_32_bits(paddr);
1024 cmd->data[2] = lower_32_bits(data);
1025 cmd->data[3] = upper_32_bits(data);
1026 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1027 }
1028
build_inv_dte(struct iommu_cmd * cmd,u16 devid)1029 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1030 {
1031 memset(cmd, 0, sizeof(*cmd));
1032 cmd->data[0] = devid;
1033 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1034 }
1035
1036 /*
1037 * Builds an invalidation address which is suitable for one page or multiple
1038 * pages. Sets the size bit (S) as needed is more than one page is flushed.
1039 */
build_inv_address(u64 address,size_t size)1040 static inline u64 build_inv_address(u64 address, size_t size)
1041 {
1042 u64 pages, end, msb_diff;
1043
1044 pages = iommu_num_pages(address, size, PAGE_SIZE);
1045
1046 if (pages == 1)
1047 return address & PAGE_MASK;
1048
1049 end = address + size - 1;
1050
1051 /*
1052 * msb_diff would hold the index of the most significant bit that
1053 * flipped between the start and end.
1054 */
1055 msb_diff = fls64(end ^ address) - 1;
1056
1057 /*
1058 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1059 * between the start and the end, invalidate everything.
1060 */
1061 if (unlikely(msb_diff > 51)) {
1062 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1063 } else {
1064 /*
1065 * The msb-bit must be clear on the address. Just set all the
1066 * lower bits.
1067 */
1068 address |= (1ull << msb_diff) - 1;
1069 }
1070
1071 /* Clear bits 11:0 */
1072 address &= PAGE_MASK;
1073
1074 /* Set the size bit - we flush more than one 4kb page */
1075 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1076 }
1077
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,ioasid_t pasid,bool gn)1078 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1079 size_t size, u16 domid,
1080 ioasid_t pasid, bool gn)
1081 {
1082 u64 inv_address = build_inv_address(address, size);
1083
1084 memset(cmd, 0, sizeof(*cmd));
1085
1086 cmd->data[1] |= domid;
1087 cmd->data[2] = lower_32_bits(inv_address);
1088 cmd->data[3] = upper_32_bits(inv_address);
1089 /* PDE bit - we want to flush everything, not only the PTEs */
1090 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1091 if (gn) {
1092 cmd->data[0] |= pasid;
1093 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1094 }
1095 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1096 }
1097
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size,ioasid_t pasid,bool gn)1098 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1099 u64 address, size_t size,
1100 ioasid_t pasid, bool gn)
1101 {
1102 u64 inv_address = build_inv_address(address, size);
1103
1104 memset(cmd, 0, sizeof(*cmd));
1105
1106 cmd->data[0] = devid;
1107 cmd->data[0] |= (qdep & 0xff) << 24;
1108 cmd->data[1] = devid;
1109 cmd->data[2] = lower_32_bits(inv_address);
1110 cmd->data[3] = upper_32_bits(inv_address);
1111 if (gn) {
1112 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1113 cmd->data[1] |= (pasid & 0xff) << 16;
1114 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1115 }
1116
1117 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1118 }
1119
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,u8 gn)1120 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1121 int status, int tag, u8 gn)
1122 {
1123 memset(cmd, 0, sizeof(*cmd));
1124
1125 cmd->data[0] = devid;
1126 if (gn) {
1127 cmd->data[1] = pasid;
1128 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1129 }
1130 cmd->data[3] = tag & 0x1ff;
1131 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1132
1133 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1134 }
1135
build_inv_all(struct iommu_cmd * cmd)1136 static void build_inv_all(struct iommu_cmd *cmd)
1137 {
1138 memset(cmd, 0, sizeof(*cmd));
1139 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1140 }
1141
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1142 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1143 {
1144 memset(cmd, 0, sizeof(*cmd));
1145 cmd->data[0] = devid;
1146 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1147 }
1148
1149 /*
1150 * Writes the command to the IOMMUs command buffer and informs the
1151 * hardware about the new command.
1152 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1153 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1154 struct iommu_cmd *cmd,
1155 bool sync)
1156 {
1157 unsigned int count = 0;
1158 u32 left, next_tail;
1159
1160 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1161 again:
1162 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1163
1164 if (left <= 0x20) {
1165 /* Skip udelay() the first time around */
1166 if (count++) {
1167 if (count == LOOP_TIMEOUT) {
1168 pr_err("Command buffer timeout\n");
1169 return -EIO;
1170 }
1171
1172 udelay(1);
1173 }
1174
1175 /* Update head and recheck remaining space */
1176 iommu->cmd_buf_head = readl(iommu->mmio_base +
1177 MMIO_CMD_HEAD_OFFSET);
1178
1179 goto again;
1180 }
1181
1182 copy_cmd_to_buffer(iommu, cmd);
1183
1184 /* Do we need to make sure all commands are processed? */
1185 iommu->need_sync = sync;
1186
1187 return 0;
1188 }
1189
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1190 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1191 struct iommu_cmd *cmd,
1192 bool sync)
1193 {
1194 unsigned long flags;
1195 int ret;
1196
1197 raw_spin_lock_irqsave(&iommu->lock, flags);
1198 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1199 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1200
1201 return ret;
1202 }
1203
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1204 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1205 {
1206 return iommu_queue_command_sync(iommu, cmd, true);
1207 }
1208
1209 /*
1210 * This function queues a completion wait command into the command
1211 * buffer of an IOMMU
1212 */
iommu_completion_wait(struct amd_iommu * iommu)1213 static int iommu_completion_wait(struct amd_iommu *iommu)
1214 {
1215 struct iommu_cmd cmd;
1216 unsigned long flags;
1217 int ret;
1218 u64 data;
1219
1220 if (!iommu->need_sync)
1221 return 0;
1222
1223 data = atomic64_inc_return(&iommu->cmd_sem_val);
1224 build_completion_wait(&cmd, iommu, data);
1225
1226 raw_spin_lock_irqsave(&iommu->lock, flags);
1227
1228 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1229 if (ret)
1230 goto out_unlock;
1231
1232 ret = wait_on_sem(iommu, data);
1233
1234 out_unlock:
1235 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1236
1237 return ret;
1238 }
1239
domain_flush_complete(struct protection_domain * domain)1240 static void domain_flush_complete(struct protection_domain *domain)
1241 {
1242 struct pdom_iommu_info *pdom_iommu_info;
1243 unsigned long i;
1244
1245 lockdep_assert_held(&domain->lock);
1246
1247 /*
1248 * Devices of this domain are behind this IOMMU
1249 * We need to wait for completion of all commands.
1250 */
1251 xa_for_each(&domain->iommu_array, i, pdom_iommu_info)
1252 iommu_completion_wait(pdom_iommu_info->iommu);
1253 }
1254
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1255 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1256 {
1257 struct iommu_cmd cmd;
1258
1259 build_inv_dte(&cmd, devid);
1260
1261 return iommu_queue_command(iommu, &cmd);
1262 }
1263
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1264 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1265 {
1266 u32 devid;
1267 u16 last_bdf = iommu->pci_seg->last_bdf;
1268
1269 for (devid = 0; devid <= last_bdf; ++devid)
1270 iommu_flush_dte(iommu, devid);
1271
1272 iommu_completion_wait(iommu);
1273 }
1274
1275 /*
1276 * This function uses heavy locking and may disable irqs for some time. But
1277 * this is no issue because it is only called during resume.
1278 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1279 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1280 {
1281 u32 dom_id;
1282 u16 last_bdf = iommu->pci_seg->last_bdf;
1283
1284 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1285 struct iommu_cmd cmd;
1286 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1287 dom_id, IOMMU_NO_PASID, false);
1288 iommu_queue_command(iommu, &cmd);
1289 }
1290
1291 iommu_completion_wait(iommu);
1292 }
1293
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1294 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1295 {
1296 struct iommu_cmd cmd;
1297
1298 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1299 dom_id, IOMMU_NO_PASID, false);
1300 iommu_queue_command(iommu, &cmd);
1301
1302 iommu_completion_wait(iommu);
1303 }
1304
amd_iommu_flush_all(struct amd_iommu * iommu)1305 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1306 {
1307 struct iommu_cmd cmd;
1308
1309 build_inv_all(&cmd);
1310
1311 iommu_queue_command(iommu, &cmd);
1312 iommu_completion_wait(iommu);
1313 }
1314
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1315 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1316 {
1317 struct iommu_cmd cmd;
1318
1319 build_inv_irt(&cmd, devid);
1320
1321 iommu_queue_command(iommu, &cmd);
1322 }
1323
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1324 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1325 {
1326 u32 devid;
1327 u16 last_bdf = iommu->pci_seg->last_bdf;
1328
1329 if (iommu->irtcachedis_enabled)
1330 return;
1331
1332 for (devid = 0; devid <= last_bdf; devid++)
1333 iommu_flush_irt(iommu, devid);
1334
1335 iommu_completion_wait(iommu);
1336 }
1337
amd_iommu_flush_all_caches(struct amd_iommu * iommu)1338 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1339 {
1340 if (check_feature(FEATURE_IA)) {
1341 amd_iommu_flush_all(iommu);
1342 } else {
1343 amd_iommu_flush_dte_all(iommu);
1344 amd_iommu_flush_irt_all(iommu);
1345 amd_iommu_flush_tlb_all(iommu);
1346 }
1347 }
1348
1349 /*
1350 * Command send function for flushing on-device TLB
1351 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size,ioasid_t pasid,bool gn)1352 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1353 size_t size, ioasid_t pasid, bool gn)
1354 {
1355 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1356 struct iommu_cmd cmd;
1357 int qdep = dev_data->ats_qdep;
1358
1359 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1360 size, pasid, gn);
1361
1362 return iommu_queue_command(iommu, &cmd);
1363 }
1364
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1365 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1366 {
1367 struct amd_iommu *iommu = data;
1368
1369 return iommu_flush_dte(iommu, alias);
1370 }
1371
1372 /*
1373 * Command send function for invalidating a device table entry
1374 */
device_flush_dte(struct iommu_dev_data * dev_data)1375 static int device_flush_dte(struct iommu_dev_data *dev_data)
1376 {
1377 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1378 struct pci_dev *pdev = NULL;
1379 struct amd_iommu_pci_seg *pci_seg;
1380 u16 alias;
1381 int ret;
1382
1383 if (dev_is_pci(dev_data->dev))
1384 pdev = to_pci_dev(dev_data->dev);
1385
1386 if (pdev)
1387 ret = pci_for_each_dma_alias(pdev,
1388 device_flush_dte_alias, iommu);
1389 else
1390 ret = iommu_flush_dte(iommu, dev_data->devid);
1391 if (ret)
1392 return ret;
1393
1394 pci_seg = iommu->pci_seg;
1395 alias = pci_seg->alias_table[dev_data->devid];
1396 if (alias != dev_data->devid) {
1397 ret = iommu_flush_dte(iommu, alias);
1398 if (ret)
1399 return ret;
1400 }
1401
1402 if (dev_data->ats_enabled) {
1403 /* Invalidate the entire contents of an IOTLB */
1404 ret = device_flush_iotlb(dev_data, 0, ~0UL,
1405 IOMMU_NO_PASID, false);
1406 }
1407
1408 return ret;
1409 }
1410
domain_flush_pages_v2(struct protection_domain * pdom,u64 address,size_t size)1411 static int domain_flush_pages_v2(struct protection_domain *pdom,
1412 u64 address, size_t size)
1413 {
1414 struct iommu_dev_data *dev_data;
1415 struct iommu_cmd cmd;
1416 int ret = 0;
1417
1418 lockdep_assert_held(&pdom->lock);
1419 list_for_each_entry(dev_data, &pdom->dev_list, list) {
1420 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1421 u16 domid = dev_data->gcr3_info.domid;
1422
1423 build_inv_iommu_pages(&cmd, address, size,
1424 domid, IOMMU_NO_PASID, true);
1425
1426 ret |= iommu_queue_command(iommu, &cmd);
1427 }
1428
1429 return ret;
1430 }
1431
domain_flush_pages_v1(struct protection_domain * pdom,u64 address,size_t size)1432 static int domain_flush_pages_v1(struct protection_domain *pdom,
1433 u64 address, size_t size)
1434 {
1435 struct pdom_iommu_info *pdom_iommu_info;
1436 struct iommu_cmd cmd;
1437 int ret = 0;
1438 unsigned long i;
1439
1440 lockdep_assert_held(&pdom->lock);
1441
1442 build_inv_iommu_pages(&cmd, address, size,
1443 pdom->id, IOMMU_NO_PASID, false);
1444
1445 xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) {
1446 /*
1447 * Devices of this domain are behind this IOMMU
1448 * We need a TLB flush
1449 */
1450 ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd);
1451 }
1452
1453 return ret;
1454 }
1455
1456 /*
1457 * TLB invalidation function which is called from the mapping functions.
1458 * It flushes range of PTEs of the domain.
1459 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1460 static void __domain_flush_pages(struct protection_domain *domain,
1461 u64 address, size_t size)
1462 {
1463 struct iommu_dev_data *dev_data;
1464 int ret = 0;
1465 ioasid_t pasid = IOMMU_NO_PASID;
1466 bool gn = false;
1467
1468 lockdep_assert_held(&domain->lock);
1469
1470 if (pdom_is_v2_pgtbl_mode(domain)) {
1471 gn = true;
1472 ret = domain_flush_pages_v2(domain, address, size);
1473 } else {
1474 ret = domain_flush_pages_v1(domain, address, size);
1475 }
1476
1477 list_for_each_entry(dev_data, &domain->dev_list, list) {
1478
1479 if (!dev_data->ats_enabled)
1480 continue;
1481
1482 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1483 }
1484
1485 WARN_ON(ret);
1486 }
1487
amd_iommu_domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1488 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1489 u64 address, size_t size)
1490 {
1491 lockdep_assert_held(&domain->lock);
1492
1493 if (likely(!amd_iommu_np_cache)) {
1494 __domain_flush_pages(domain, address, size);
1495
1496 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1497 domain_flush_complete(domain);
1498
1499 return;
1500 }
1501
1502 /*
1503 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1504 * In such setups it is best to avoid flushes of ranges which are not
1505 * naturally aligned, since it would lead to flushes of unmodified
1506 * PTEs. Such flushes would require the hypervisor to do more work than
1507 * necessary. Therefore, perform repeated flushes of aligned ranges
1508 * until you cover the range. Each iteration flushes the smaller
1509 * between the natural alignment of the address that we flush and the
1510 * greatest naturally aligned region that fits in the range.
1511 */
1512 while (size != 0) {
1513 int addr_alignment = __ffs(address);
1514 int size_alignment = __fls(size);
1515 int min_alignment;
1516 size_t flush_size;
1517
1518 /*
1519 * size is always non-zero, but address might be zero, causing
1520 * addr_alignment to be negative. As the casting of the
1521 * argument in __ffs(address) to long might trim the high bits
1522 * of the address on x86-32, cast to long when doing the check.
1523 */
1524 if (likely((unsigned long)address != 0))
1525 min_alignment = min(addr_alignment, size_alignment);
1526 else
1527 min_alignment = size_alignment;
1528
1529 flush_size = 1ul << min_alignment;
1530
1531 __domain_flush_pages(domain, address, flush_size);
1532 address += flush_size;
1533 size -= flush_size;
1534 }
1535
1536 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1537 domain_flush_complete(domain);
1538 }
1539
1540 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_all(struct protection_domain * domain)1541 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1542 {
1543 amd_iommu_domain_flush_pages(domain, 0,
1544 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1545 }
1546
amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data * dev_data,ioasid_t pasid,u64 address,size_t size)1547 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1548 ioasid_t pasid, u64 address, size_t size)
1549 {
1550 struct iommu_cmd cmd;
1551 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1552
1553 build_inv_iommu_pages(&cmd, address, size,
1554 dev_data->gcr3_info.domid, pasid, true);
1555 iommu_queue_command(iommu, &cmd);
1556
1557 if (dev_data->ats_enabled)
1558 device_flush_iotlb(dev_data, address, size, pasid, true);
1559
1560 iommu_completion_wait(iommu);
1561 }
1562
dev_flush_pasid_all(struct iommu_dev_data * dev_data,ioasid_t pasid)1563 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1564 ioasid_t pasid)
1565 {
1566 amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
1567 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1568 }
1569
1570 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1571 static void domain_flush_np_cache(struct protection_domain *domain,
1572 dma_addr_t iova, size_t size)
1573 {
1574 if (unlikely(amd_iommu_np_cache)) {
1575 unsigned long flags;
1576
1577 spin_lock_irqsave(&domain->lock, flags);
1578 amd_iommu_domain_flush_pages(domain, iova, size);
1579 spin_unlock_irqrestore(&domain->lock, flags);
1580 }
1581 }
1582
1583
1584 /*
1585 * This function flushes the DTEs for all devices in domain
1586 */
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1587 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1588 {
1589 struct iommu_dev_data *dev_data;
1590
1591 lockdep_assert_held(&domain->lock);
1592
1593 list_for_each_entry(dev_data, &domain->dev_list, list) {
1594 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1595
1596 set_dte_entry(iommu, dev_data);
1597 clone_aliases(iommu, dev_data->dev);
1598 }
1599
1600 list_for_each_entry(dev_data, &domain->dev_list, list)
1601 device_flush_dte(dev_data);
1602
1603 domain_flush_complete(domain);
1604 }
1605
amd_iommu_domain_update(struct protection_domain * domain)1606 void amd_iommu_domain_update(struct protection_domain *domain)
1607 {
1608 /* Update device table */
1609 amd_iommu_update_and_flush_device_table(domain);
1610
1611 /* Flush domain TLB(s) and wait for completion */
1612 amd_iommu_domain_flush_all(domain);
1613 }
1614
amd_iommu_complete_ppr(struct device * dev,u32 pasid,int status,int tag)1615 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
1616 {
1617 struct iommu_dev_data *dev_data;
1618 struct amd_iommu *iommu;
1619 struct iommu_cmd cmd;
1620
1621 dev_data = dev_iommu_priv_get(dev);
1622 iommu = get_amd_iommu_from_dev(dev);
1623
1624 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1625 tag, dev_data->pri_tlp);
1626
1627 return iommu_queue_command(iommu, &cmd);
1628 }
1629
1630 /****************************************************************************
1631 *
1632 * The next functions belong to the domain allocation. A domain is
1633 * allocated for every IOMMU as the default domain. If device isolation
1634 * is enabled, every device get its own domain. The most important thing
1635 * about domains is the page table mapping the DMA address space they
1636 * contain.
1637 *
1638 ****************************************************************************/
1639
pdom_id_alloc(void)1640 static int pdom_id_alloc(void)
1641 {
1642 return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC);
1643 }
1644
pdom_id_free(int id)1645 static void pdom_id_free(int id)
1646 {
1647 ida_free(&pdom_ids, id);
1648 }
1649
free_gcr3_tbl_level1(u64 * tbl)1650 static void free_gcr3_tbl_level1(u64 *tbl)
1651 {
1652 u64 *ptr;
1653 int i;
1654
1655 for (i = 0; i < 512; ++i) {
1656 if (!(tbl[i] & GCR3_VALID))
1657 continue;
1658
1659 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1660
1661 iommu_free_page(ptr);
1662 }
1663 }
1664
free_gcr3_tbl_level2(u64 * tbl)1665 static void free_gcr3_tbl_level2(u64 *tbl)
1666 {
1667 u64 *ptr;
1668 int i;
1669
1670 for (i = 0; i < 512; ++i) {
1671 if (!(tbl[i] & GCR3_VALID))
1672 continue;
1673
1674 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1675
1676 free_gcr3_tbl_level1(ptr);
1677 }
1678 }
1679
free_gcr3_table(struct gcr3_tbl_info * gcr3_info)1680 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1681 {
1682 if (gcr3_info->glx == 2)
1683 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1684 else if (gcr3_info->glx == 1)
1685 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1686 else
1687 WARN_ON_ONCE(gcr3_info->glx != 0);
1688
1689 gcr3_info->glx = 0;
1690
1691 /* Free per device domain ID */
1692 pdom_id_free(gcr3_info->domid);
1693
1694 iommu_free_page(gcr3_info->gcr3_tbl);
1695 gcr3_info->gcr3_tbl = NULL;
1696 }
1697
1698 /*
1699 * Number of GCR3 table levels required. Level must be 4-Kbyte
1700 * page and can contain up to 512 entries.
1701 */
get_gcr3_levels(int pasids)1702 static int get_gcr3_levels(int pasids)
1703 {
1704 int levels;
1705
1706 if (pasids == -1)
1707 return amd_iommu_max_glx_val;
1708
1709 levels = get_count_order(pasids);
1710
1711 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1712 }
1713
setup_gcr3_table(struct gcr3_tbl_info * gcr3_info,struct amd_iommu * iommu,int pasids)1714 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1715 struct amd_iommu *iommu, int pasids)
1716 {
1717 int levels = get_gcr3_levels(pasids);
1718 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1719 int domid;
1720
1721 if (levels > amd_iommu_max_glx_val)
1722 return -EINVAL;
1723
1724 if (gcr3_info->gcr3_tbl)
1725 return -EBUSY;
1726
1727 /* Allocate per device domain ID */
1728 domid = pdom_id_alloc();
1729 if (domid <= 0)
1730 return -ENOSPC;
1731 gcr3_info->domid = domid;
1732
1733 gcr3_info->gcr3_tbl = iommu_alloc_page_node(nid, GFP_ATOMIC);
1734 if (gcr3_info->gcr3_tbl == NULL) {
1735 pdom_id_free(domid);
1736 return -ENOMEM;
1737 }
1738
1739 gcr3_info->glx = levels;
1740
1741 return 0;
1742 }
1743
__get_gcr3_pte(struct gcr3_tbl_info * gcr3_info,ioasid_t pasid,bool alloc)1744 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1745 ioasid_t pasid, bool alloc)
1746 {
1747 int index;
1748 u64 *pte;
1749 u64 *root = gcr3_info->gcr3_tbl;
1750 int level = gcr3_info->glx;
1751
1752 while (true) {
1753
1754 index = (pasid >> (9 * level)) & 0x1ff;
1755 pte = &root[index];
1756
1757 if (level == 0)
1758 break;
1759
1760 if (!(*pte & GCR3_VALID)) {
1761 if (!alloc)
1762 return NULL;
1763
1764 root = (void *)get_zeroed_page(GFP_ATOMIC);
1765 if (root == NULL)
1766 return NULL;
1767
1768 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
1769 }
1770
1771 root = iommu_phys_to_virt(*pte & PAGE_MASK);
1772
1773 level -= 1;
1774 }
1775
1776 return pte;
1777 }
1778
update_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3,bool set)1779 static int update_gcr3(struct iommu_dev_data *dev_data,
1780 ioasid_t pasid, unsigned long gcr3, bool set)
1781 {
1782 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1783 u64 *pte;
1784
1785 pte = __get_gcr3_pte(gcr3_info, pasid, true);
1786 if (pte == NULL)
1787 return -ENOMEM;
1788
1789 if (set)
1790 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1791 else
1792 *pte = 0;
1793
1794 dev_flush_pasid_all(dev_data, pasid);
1795 return 0;
1796 }
1797
amd_iommu_set_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3)1798 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1799 unsigned long gcr3)
1800 {
1801 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1802 int ret;
1803
1804 iommu_group_mutex_assert(dev_data->dev);
1805
1806 ret = update_gcr3(dev_data, pasid, gcr3, true);
1807 if (ret)
1808 return ret;
1809
1810 gcr3_info->pasid_cnt++;
1811 return ret;
1812 }
1813
amd_iommu_clear_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid)1814 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1815 {
1816 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1817 int ret;
1818
1819 iommu_group_mutex_assert(dev_data->dev);
1820
1821 ret = update_gcr3(dev_data, pasid, 0, false);
1822 if (ret)
1823 return ret;
1824
1825 gcr3_info->pasid_cnt--;
1826 return ret;
1827 }
1828
set_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)1829 static void set_dte_entry(struct amd_iommu *iommu,
1830 struct iommu_dev_data *dev_data)
1831 {
1832 u64 pte_root = 0;
1833 u64 flags = 0;
1834 u32 old_domid;
1835 u16 devid = dev_data->devid;
1836 u16 domid;
1837 struct protection_domain *domain = dev_data->domain;
1838 struct dev_table_entry *dev_table = get_dev_table(iommu);
1839 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1840
1841 if (gcr3_info && gcr3_info->gcr3_tbl)
1842 domid = dev_data->gcr3_info.domid;
1843 else
1844 domid = domain->id;
1845
1846 if (domain->iop.mode != PAGE_MODE_NONE)
1847 pte_root = iommu_virt_to_phys(domain->iop.root);
1848
1849 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1850 << DEV_ENTRY_MODE_SHIFT;
1851
1852 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1853
1854 /*
1855 * When SNP is enabled, Only set TV bit when IOMMU
1856 * page translation is in use.
1857 */
1858 if (!amd_iommu_snp_en || (domid != 0))
1859 pte_root |= DTE_FLAG_TV;
1860
1861 flags = dev_table[devid].data[1];
1862
1863 if (dev_data->ats_enabled)
1864 flags |= DTE_FLAG_IOTLB;
1865
1866 if (dev_data->ppr)
1867 pte_root |= 1ULL << DEV_ENTRY_PPR;
1868
1869 if (domain->dirty_tracking)
1870 pte_root |= DTE_FLAG_HAD;
1871
1872 if (gcr3_info && gcr3_info->gcr3_tbl) {
1873 u64 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
1874 u64 glx = gcr3_info->glx;
1875 u64 tmp;
1876
1877 pte_root |= DTE_FLAG_GV;
1878 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1879
1880 /* First mask out possible old values for GCR3 table */
1881 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1882 flags &= ~tmp;
1883
1884 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1885 flags &= ~tmp;
1886
1887 /* Encode GCR3 table into DTE */
1888 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1889 pte_root |= tmp;
1890
1891 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1892 flags |= tmp;
1893
1894 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1895 flags |= tmp;
1896
1897 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1898 dev_table[devid].data[2] |=
1899 ((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1900 }
1901
1902 /* GIOV is supported with V2 page table mode only */
1903 if (pdom_is_v2_pgtbl_mode(domain))
1904 pte_root |= DTE_FLAG_GIOV;
1905 }
1906
1907 flags &= ~DEV_DOMID_MASK;
1908 flags |= domid;
1909
1910 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1911 dev_table[devid].data[1] = flags;
1912 dev_table[devid].data[0] = pte_root;
1913
1914 /*
1915 * A kdump kernel might be replacing a domain ID that was copied from
1916 * the previous kernel--if so, it needs to flush the translation cache
1917 * entries for the old domain ID that is being overwritten
1918 */
1919 if (old_domid) {
1920 amd_iommu_flush_tlb_domid(iommu, old_domid);
1921 }
1922 }
1923
clear_dte_entry(struct amd_iommu * iommu,u16 devid)1924 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1925 {
1926 struct dev_table_entry *dev_table = get_dev_table(iommu);
1927
1928 /* remove entry from the device table seen by the hardware */
1929 dev_table[devid].data[0] = DTE_FLAG_V;
1930
1931 if (!amd_iommu_snp_en)
1932 dev_table[devid].data[0] |= DTE_FLAG_TV;
1933
1934 dev_table[devid].data[1] &= DTE_FLAG_MASK;
1935
1936 amd_iommu_apply_erratum_63(iommu, devid);
1937 }
1938
1939 /* Update and flush DTE for the given device */
dev_update_dte(struct iommu_dev_data * dev_data,bool set)1940 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
1941 {
1942 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1943
1944 if (set)
1945 set_dte_entry(iommu, dev_data);
1946 else
1947 clear_dte_entry(iommu, dev_data->devid);
1948
1949 clone_aliases(iommu, dev_data->dev);
1950 device_flush_dte(dev_data);
1951 iommu_completion_wait(iommu);
1952 }
1953
1954 /*
1955 * If domain is SVA capable then initialize GCR3 table. Also if domain is
1956 * in v2 page table mode then update GCR3[0].
1957 */
init_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)1958 static int init_gcr3_table(struct iommu_dev_data *dev_data,
1959 struct protection_domain *pdom)
1960 {
1961 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1962 int max_pasids = dev_data->max_pasids;
1963 int ret = 0;
1964
1965 /*
1966 * If domain is in pt mode then setup GCR3 table only if device
1967 * is PASID capable
1968 */
1969 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
1970 return ret;
1971
1972 /*
1973 * By default, setup GCR3 table to support MAX PASIDs
1974 * supported by the device/IOMMU.
1975 */
1976 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
1977 max_pasids > 0 ? max_pasids : 1);
1978 if (ret)
1979 return ret;
1980
1981 /* Setup GCR3[0] only if domain is setup with v2 page table mode */
1982 if (!pdom_is_v2_pgtbl_mode(pdom))
1983 return ret;
1984
1985 ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true);
1986 if (ret)
1987 free_gcr3_table(&dev_data->gcr3_info);
1988
1989 return ret;
1990 }
1991
destroy_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)1992 static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
1993 struct protection_domain *pdom)
1994 {
1995 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1996
1997 if (pdom_is_v2_pgtbl_mode(pdom))
1998 update_gcr3(dev_data, 0, 0, false);
1999
2000 if (gcr3_info->gcr3_tbl == NULL)
2001 return;
2002
2003 free_gcr3_table(gcr3_info);
2004 }
2005
pdom_attach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2006 static int pdom_attach_iommu(struct amd_iommu *iommu,
2007 struct protection_domain *pdom)
2008 {
2009 struct pdom_iommu_info *pdom_iommu_info, *curr;
2010 struct io_pgtable_cfg *cfg = &pdom->iop.pgtbl.cfg;
2011 unsigned long flags;
2012 int ret = 0;
2013
2014 spin_lock_irqsave(&pdom->lock, flags);
2015
2016 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2017 if (pdom_iommu_info) {
2018 pdom_iommu_info->refcnt++;
2019 goto out_unlock;
2020 }
2021
2022 pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC);
2023 if (!pdom_iommu_info) {
2024 ret = -ENOMEM;
2025 goto out_unlock;
2026 }
2027
2028 pdom_iommu_info->iommu = iommu;
2029 pdom_iommu_info->refcnt = 1;
2030
2031 curr = xa_cmpxchg(&pdom->iommu_array, iommu->index,
2032 NULL, pdom_iommu_info, GFP_ATOMIC);
2033 if (curr) {
2034 kfree(pdom_iommu_info);
2035 ret = -ENOSPC;
2036 goto out_unlock;
2037 }
2038
2039 /* Update NUMA Node ID */
2040 if (cfg->amd.nid == NUMA_NO_NODE)
2041 cfg->amd.nid = dev_to_node(&iommu->dev->dev);
2042
2043 out_unlock:
2044 spin_unlock_irqrestore(&pdom->lock, flags);
2045 return ret;
2046 }
2047
pdom_detach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2048 static void pdom_detach_iommu(struct amd_iommu *iommu,
2049 struct protection_domain *pdom)
2050 {
2051 struct pdom_iommu_info *pdom_iommu_info;
2052 unsigned long flags;
2053
2054 spin_lock_irqsave(&pdom->lock, flags);
2055
2056 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2057 if (!pdom_iommu_info) {
2058 spin_unlock_irqrestore(&pdom->lock, flags);
2059 return;
2060 }
2061
2062 pdom_iommu_info->refcnt--;
2063 if (pdom_iommu_info->refcnt == 0) {
2064 xa_erase(&pdom->iommu_array, iommu->index);
2065 kfree(pdom_iommu_info);
2066 }
2067
2068 spin_unlock_irqrestore(&pdom->lock, flags);
2069 }
2070
2071 /*
2072 * If a device is not yet associated with a domain, this function makes the
2073 * device visible in the domain
2074 */
attach_device(struct device * dev,struct protection_domain * domain)2075 static int attach_device(struct device *dev,
2076 struct protection_domain *domain)
2077 {
2078 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2079 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2080 struct pci_dev *pdev;
2081 unsigned long flags;
2082 int ret = 0;
2083
2084 mutex_lock(&dev_data->mutex);
2085
2086 if (dev_data->domain != NULL) {
2087 ret = -EBUSY;
2088 goto out;
2089 }
2090
2091 /* Do reference counting */
2092 ret = pdom_attach_iommu(iommu, domain);
2093 if (ret)
2094 goto out;
2095
2096 /* Setup GCR3 table */
2097 if (pdom_is_sva_capable(domain)) {
2098 ret = init_gcr3_table(dev_data, domain);
2099 if (ret) {
2100 pdom_detach_iommu(iommu, domain);
2101 goto out;
2102 }
2103 }
2104
2105 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
2106 if (pdev && pdom_is_sva_capable(domain)) {
2107 pdev_enable_caps(pdev);
2108
2109 /*
2110 * Device can continue to function even if IOPF
2111 * enablement failed. Hence in error path just
2112 * disable device PRI support.
2113 */
2114 if (amd_iommu_iopf_add_device(iommu, dev_data))
2115 pdev_disable_cap_pri(pdev);
2116 } else if (pdev) {
2117 pdev_enable_cap_ats(pdev);
2118 }
2119
2120 /* Update data structures */
2121 dev_data->domain = domain;
2122 spin_lock_irqsave(&domain->lock, flags);
2123 list_add(&dev_data->list, &domain->dev_list);
2124 spin_unlock_irqrestore(&domain->lock, flags);
2125
2126 /* Update device table */
2127 dev_update_dte(dev_data, true);
2128
2129 out:
2130 mutex_unlock(&dev_data->mutex);
2131
2132 return ret;
2133 }
2134
2135 /*
2136 * Removes a device from a protection domain (with devtable_lock held)
2137 */
detach_device(struct device * dev)2138 static void detach_device(struct device *dev)
2139 {
2140 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2141 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2142 struct protection_domain *domain = dev_data->domain;
2143 unsigned long flags;
2144
2145 mutex_lock(&dev_data->mutex);
2146
2147 /*
2148 * First check if the device is still attached. It might already
2149 * be detached from its domain because the generic
2150 * iommu_detach_group code detached it and we try again here in
2151 * our alias handling.
2152 */
2153 if (WARN_ON(!dev_data->domain))
2154 goto out;
2155
2156 /* Remove IOPF handler */
2157 if (dev_data->ppr) {
2158 iopf_queue_flush_dev(dev);
2159 amd_iommu_iopf_remove_device(iommu, dev_data);
2160 }
2161
2162 if (dev_is_pci(dev))
2163 pdev_disable_caps(to_pci_dev(dev));
2164
2165 /* Clear DTE and flush the entry */
2166 dev_update_dte(dev_data, false);
2167
2168 /* Flush IOTLB and wait for the flushes to finish */
2169 spin_lock_irqsave(&domain->lock, flags);
2170 amd_iommu_domain_flush_all(domain);
2171 list_del(&dev_data->list);
2172 spin_unlock_irqrestore(&domain->lock, flags);
2173
2174 /* Clear GCR3 table */
2175 if (pdom_is_sva_capable(domain))
2176 destroy_gcr3_table(dev_data, domain);
2177
2178 /* Update data structures */
2179 dev_data->domain = NULL;
2180
2181 /* decrease reference counters - needs to happen after the flushes */
2182 pdom_detach_iommu(iommu, domain);
2183
2184 out:
2185 mutex_unlock(&dev_data->mutex);
2186 }
2187
amd_iommu_probe_device(struct device * dev)2188 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2189 {
2190 struct iommu_device *iommu_dev;
2191 struct amd_iommu *iommu;
2192 struct iommu_dev_data *dev_data;
2193 int ret;
2194
2195 if (!check_device(dev))
2196 return ERR_PTR(-ENODEV);
2197
2198 iommu = rlookup_amd_iommu(dev);
2199 if (!iommu)
2200 return ERR_PTR(-ENODEV);
2201
2202 /* Not registered yet? */
2203 if (!iommu->iommu.ops)
2204 return ERR_PTR(-ENODEV);
2205
2206 if (dev_iommu_priv_get(dev))
2207 return &iommu->iommu;
2208
2209 ret = iommu_init_device(iommu, dev);
2210 if (ret) {
2211 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2212 iommu_dev = ERR_PTR(ret);
2213 iommu_ignore_device(iommu, dev);
2214 goto out_err;
2215 }
2216
2217 amd_iommu_set_pci_msi_domain(dev, iommu);
2218 iommu_dev = &iommu->iommu;
2219
2220 /*
2221 * If IOMMU and device supports PASID then it will contain max
2222 * supported PASIDs, else it will be zero.
2223 */
2224 dev_data = dev_iommu_priv_get(dev);
2225 if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
2226 pdev_pasid_supported(dev_data)) {
2227 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
2228 pci_max_pasids(to_pci_dev(dev)));
2229 }
2230
2231 out_err:
2232 iommu_completion_wait(iommu);
2233
2234 if (dev_is_pci(dev))
2235 pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
2236
2237 return iommu_dev;
2238 }
2239
amd_iommu_release_device(struct device * dev)2240 static void amd_iommu_release_device(struct device *dev)
2241 {
2242 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2243
2244 WARN_ON(dev_data->domain);
2245
2246 /*
2247 * We keep dev_data around for unplugged devices and reuse it when the
2248 * device is re-plugged - not doing so would introduce a ton of races.
2249 */
2250 }
2251
amd_iommu_device_group(struct device * dev)2252 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2253 {
2254 if (dev_is_pci(dev))
2255 return pci_device_group(dev);
2256
2257 return acpihid_device_group(dev);
2258 }
2259
2260 /*****************************************************************************
2261 *
2262 * The following functions belong to the exported interface of AMD IOMMU
2263 *
2264 * This interface allows access to lower level functions of the IOMMU
2265 * like protection domain handling and assignement of devices to domains
2266 * which is not possible with the dma_ops interface.
2267 *
2268 *****************************************************************************/
2269
protection_domain_free(struct protection_domain * domain)2270 void protection_domain_free(struct protection_domain *domain)
2271 {
2272 WARN_ON(!list_empty(&domain->dev_list));
2273 if (domain->domain.type & __IOMMU_DOMAIN_PAGING)
2274 free_io_pgtable_ops(&domain->iop.pgtbl.ops);
2275 pdom_id_free(domain->id);
2276 kfree(domain);
2277 }
2278
protection_domain_init(struct protection_domain * domain,int nid)2279 static void protection_domain_init(struct protection_domain *domain, int nid)
2280 {
2281 spin_lock_init(&domain->lock);
2282 INIT_LIST_HEAD(&domain->dev_list);
2283 INIT_LIST_HEAD(&domain->dev_data_list);
2284 xa_init(&domain->iommu_array);
2285 domain->iop.pgtbl.cfg.amd.nid = nid;
2286 }
2287
protection_domain_alloc(unsigned int type,int nid)2288 struct protection_domain *protection_domain_alloc(unsigned int type, int nid)
2289 {
2290 struct protection_domain *domain;
2291 int domid;
2292
2293 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2294 if (!domain)
2295 return NULL;
2296
2297 domid = pdom_id_alloc();
2298 if (domid <= 0) {
2299 kfree(domain);
2300 return NULL;
2301 }
2302 domain->id = domid;
2303
2304 protection_domain_init(domain, nid);
2305
2306 return domain;
2307 }
2308
pdom_setup_pgtable(struct protection_domain * domain,unsigned int type,int pgtable)2309 static int pdom_setup_pgtable(struct protection_domain *domain,
2310 unsigned int type, int pgtable)
2311 {
2312 struct io_pgtable_ops *pgtbl_ops;
2313
2314 /* No need to allocate io pgtable ops in passthrough mode */
2315 if (!(type & __IOMMU_DOMAIN_PAGING))
2316 return 0;
2317
2318 switch (pgtable) {
2319 case AMD_IOMMU_V1:
2320 domain->pd_mode = PD_MODE_V1;
2321 break;
2322 case AMD_IOMMU_V2:
2323 domain->pd_mode = PD_MODE_V2;
2324 break;
2325 default:
2326 return -EINVAL;
2327 }
2328
2329 pgtbl_ops =
2330 alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl.cfg, domain);
2331 if (!pgtbl_ops)
2332 return -ENOMEM;
2333
2334 return 0;
2335 }
2336
dma_max_address(int pgtable)2337 static inline u64 dma_max_address(int pgtable)
2338 {
2339 if (pgtable == AMD_IOMMU_V1)
2340 return ~0ULL;
2341
2342 /* V2 with 4/5 level page table */
2343 return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2344 }
2345
amd_iommu_hd_support(struct amd_iommu * iommu)2346 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2347 {
2348 return iommu && (iommu->features & FEATURE_HDSUP);
2349 }
2350
do_iommu_domain_alloc(unsigned int type,struct device * dev,u32 flags,int pgtable)2351 static struct iommu_domain *do_iommu_domain_alloc(unsigned int type,
2352 struct device *dev,
2353 u32 flags, int pgtable)
2354 {
2355 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2356 struct protection_domain *domain;
2357 struct amd_iommu *iommu = NULL;
2358 int ret;
2359
2360 if (dev)
2361 iommu = get_amd_iommu_from_dev(dev);
2362
2363 /*
2364 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2365 * default to use IOMMU_DOMAIN_DMA[_FQ].
2366 */
2367 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2368 return ERR_PTR(-EINVAL);
2369
2370 domain = protection_domain_alloc(type,
2371 dev ? dev_to_node(dev) : NUMA_NO_NODE);
2372 if (!domain)
2373 return ERR_PTR(-ENOMEM);
2374
2375 ret = pdom_setup_pgtable(domain, type, pgtable);
2376 if (ret) {
2377 pdom_id_free(domain->id);
2378 kfree(domain);
2379 return ERR_PTR(ret);
2380 }
2381
2382 domain->domain.geometry.aperture_start = 0;
2383 domain->domain.geometry.aperture_end = dma_max_address(pgtable);
2384 domain->domain.geometry.force_aperture = true;
2385 domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap;
2386
2387 if (iommu) {
2388 domain->domain.type = type;
2389 domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2390
2391 if (dirty_tracking)
2392 domain->domain.dirty_ops = &amd_dirty_ops;
2393 }
2394
2395 return &domain->domain;
2396 }
2397
amd_iommu_domain_alloc(unsigned int type)2398 static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type)
2399 {
2400 struct iommu_domain *domain;
2401 int pgtable = amd_iommu_pgtable;
2402
2403 /*
2404 * Force IOMMU v1 page table when allocating
2405 * domain for pass-through devices.
2406 */
2407 if (type == IOMMU_DOMAIN_UNMANAGED)
2408 pgtable = AMD_IOMMU_V1;
2409
2410 domain = do_iommu_domain_alloc(type, NULL, 0, pgtable);
2411 if (IS_ERR(domain))
2412 return NULL;
2413
2414 return domain;
2415 }
2416
2417 static struct iommu_domain *
amd_iommu_domain_alloc_paging_flags(struct device * dev,u32 flags,const struct iommu_user_data * user_data)2418 amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
2419 const struct iommu_user_data *user_data)
2420
2421 {
2422 unsigned int type = IOMMU_DOMAIN_UNMANAGED;
2423 struct amd_iommu *iommu = NULL;
2424 const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
2425 IOMMU_HWPT_ALLOC_PASID;
2426
2427 if (dev)
2428 iommu = get_amd_iommu_from_dev(dev);
2429
2430 if ((flags & ~supported_flags) || user_data)
2431 return ERR_PTR(-EOPNOTSUPP);
2432
2433 /* Allocate domain with v2 page table if IOMMU supports PASID. */
2434 if (flags & IOMMU_HWPT_ALLOC_PASID) {
2435 if (!amd_iommu_pasid_supported())
2436 return ERR_PTR(-EOPNOTSUPP);
2437
2438 return do_iommu_domain_alloc(type, dev, flags, AMD_IOMMU_V2);
2439 }
2440
2441 /* Allocate domain with v1 page table for dirty tracking */
2442 if (flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING) {
2443 if (iommu && amd_iommu_hd_support(iommu)) {
2444 return do_iommu_domain_alloc(type, dev,
2445 flags, AMD_IOMMU_V1);
2446 }
2447
2448 return ERR_PTR(-EOPNOTSUPP);
2449 }
2450
2451 /* If nothing specific is required use the kernel commandline default */
2452 return do_iommu_domain_alloc(type, dev, 0, amd_iommu_pgtable);
2453 }
2454
amd_iommu_domain_free(struct iommu_domain * dom)2455 void amd_iommu_domain_free(struct iommu_domain *dom)
2456 {
2457 struct protection_domain *domain = to_pdomain(dom);
2458
2459 protection_domain_free(domain);
2460 }
2461
blocked_domain_attach_device(struct iommu_domain * domain,struct device * dev)2462 static int blocked_domain_attach_device(struct iommu_domain *domain,
2463 struct device *dev)
2464 {
2465 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2466
2467 if (dev_data->domain)
2468 detach_device(dev);
2469
2470 /* Clear DTE and flush the entry */
2471 mutex_lock(&dev_data->mutex);
2472 dev_update_dte(dev_data, false);
2473 mutex_unlock(&dev_data->mutex);
2474
2475 return 0;
2476 }
2477
2478 static struct iommu_domain blocked_domain = {
2479 .type = IOMMU_DOMAIN_BLOCKED,
2480 .ops = &(const struct iommu_domain_ops) {
2481 .attach_dev = blocked_domain_attach_device,
2482 }
2483 };
2484
2485 static struct protection_domain identity_domain;
2486
2487 static const struct iommu_domain_ops identity_domain_ops = {
2488 .attach_dev = amd_iommu_attach_device,
2489 };
2490
amd_iommu_init_identity_domain(void)2491 void amd_iommu_init_identity_domain(void)
2492 {
2493 struct iommu_domain *domain = &identity_domain.domain;
2494
2495 domain->type = IOMMU_DOMAIN_IDENTITY;
2496 domain->ops = &identity_domain_ops;
2497 domain->owner = &amd_iommu_ops;
2498
2499 identity_domain.id = pdom_id_alloc();
2500
2501 protection_domain_init(&identity_domain, NUMA_NO_NODE);
2502 }
2503
2504 /* Same as blocked domain except it supports only ops->attach_dev() */
2505 static struct iommu_domain release_domain = {
2506 .type = IOMMU_DOMAIN_BLOCKED,
2507 .ops = &(const struct iommu_domain_ops) {
2508 .attach_dev = blocked_domain_attach_device,
2509 }
2510 };
2511
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2512 static int amd_iommu_attach_device(struct iommu_domain *dom,
2513 struct device *dev)
2514 {
2515 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2516 struct protection_domain *domain = to_pdomain(dom);
2517 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2518 int ret;
2519
2520 /*
2521 * Skip attach device to domain if new domain is same as
2522 * devices current domain
2523 */
2524 if (dev_data->domain == domain)
2525 return 0;
2526
2527 dev_data->defer_attach = false;
2528
2529 /*
2530 * Restrict to devices with compatible IOMMU hardware support
2531 * when enforcement of dirty tracking is enabled.
2532 */
2533 if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2534 return -EINVAL;
2535
2536 if (dev_data->domain)
2537 detach_device(dev);
2538
2539 ret = attach_device(dev, domain);
2540
2541 #ifdef CONFIG_IRQ_REMAP
2542 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2543 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2544 dev_data->use_vapic = 1;
2545 else
2546 dev_data->use_vapic = 0;
2547 }
2548 #endif
2549
2550 return ret;
2551 }
2552
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2553 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2554 unsigned long iova, size_t size)
2555 {
2556 struct protection_domain *domain = to_pdomain(dom);
2557 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2558
2559 if (ops->map_pages)
2560 domain_flush_np_cache(domain, iova, size);
2561 return 0;
2562 }
2563
amd_iommu_map_pages(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int iommu_prot,gfp_t gfp,size_t * mapped)2564 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2565 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2566 int iommu_prot, gfp_t gfp, size_t *mapped)
2567 {
2568 struct protection_domain *domain = to_pdomain(dom);
2569 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2570 int prot = 0;
2571 int ret = -EINVAL;
2572
2573 if ((domain->pd_mode == PD_MODE_V1) &&
2574 (domain->iop.mode == PAGE_MODE_NONE))
2575 return -EINVAL;
2576
2577 if (iommu_prot & IOMMU_READ)
2578 prot |= IOMMU_PROT_IR;
2579 if (iommu_prot & IOMMU_WRITE)
2580 prot |= IOMMU_PROT_IW;
2581
2582 if (ops->map_pages) {
2583 ret = ops->map_pages(ops, iova, paddr, pgsize,
2584 pgcount, prot, gfp, mapped);
2585 }
2586
2587 return ret;
2588 }
2589
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2590 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2591 struct iommu_iotlb_gather *gather,
2592 unsigned long iova, size_t size)
2593 {
2594 /*
2595 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2596 * Unless we run in a virtual machine, which can be inferred according
2597 * to whether "non-present cache" is on, it is probably best to prefer
2598 * (potentially) too extensive TLB flushing (i.e., more misses) over
2599 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2600 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2601 * the guest, and the trade-off is different: unnecessary TLB flushes
2602 * should be avoided.
2603 */
2604 if (amd_iommu_np_cache &&
2605 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2606 iommu_iotlb_sync(domain, gather);
2607
2608 iommu_iotlb_gather_add_range(gather, iova, size);
2609 }
2610
amd_iommu_unmap_pages(struct iommu_domain * dom,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)2611 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2612 size_t pgsize, size_t pgcount,
2613 struct iommu_iotlb_gather *gather)
2614 {
2615 struct protection_domain *domain = to_pdomain(dom);
2616 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2617 size_t r;
2618
2619 if ((domain->pd_mode == PD_MODE_V1) &&
2620 (domain->iop.mode == PAGE_MODE_NONE))
2621 return 0;
2622
2623 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2624
2625 if (r)
2626 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2627
2628 return r;
2629 }
2630
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2631 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2632 dma_addr_t iova)
2633 {
2634 struct protection_domain *domain = to_pdomain(dom);
2635 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2636
2637 return ops->iova_to_phys(ops, iova);
2638 }
2639
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2640 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2641 {
2642 switch (cap) {
2643 case IOMMU_CAP_CACHE_COHERENCY:
2644 return true;
2645 case IOMMU_CAP_NOEXEC:
2646 return false;
2647 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2648 return amdr_ivrs_remap_support;
2649 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2650 return true;
2651 case IOMMU_CAP_DEFERRED_FLUSH:
2652 return true;
2653 case IOMMU_CAP_DIRTY_TRACKING: {
2654 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2655
2656 return amd_iommu_hd_support(iommu);
2657 }
2658 default:
2659 break;
2660 }
2661
2662 return false;
2663 }
2664
amd_iommu_set_dirty_tracking(struct iommu_domain * domain,bool enable)2665 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2666 bool enable)
2667 {
2668 struct protection_domain *pdomain = to_pdomain(domain);
2669 struct dev_table_entry *dev_table;
2670 struct iommu_dev_data *dev_data;
2671 bool domain_flush = false;
2672 struct amd_iommu *iommu;
2673 unsigned long flags;
2674 u64 pte_root;
2675
2676 spin_lock_irqsave(&pdomain->lock, flags);
2677 if (!(pdomain->dirty_tracking ^ enable)) {
2678 spin_unlock_irqrestore(&pdomain->lock, flags);
2679 return 0;
2680 }
2681
2682 list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2683 iommu = get_amd_iommu_from_dev_data(dev_data);
2684
2685 dev_table = get_dev_table(iommu);
2686 pte_root = dev_table[dev_data->devid].data[0];
2687
2688 pte_root = (enable ? pte_root | DTE_FLAG_HAD :
2689 pte_root & ~DTE_FLAG_HAD);
2690
2691 /* Flush device DTE */
2692 dev_table[dev_data->devid].data[0] = pte_root;
2693 device_flush_dte(dev_data);
2694 domain_flush = true;
2695 }
2696
2697 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2698 if (domain_flush)
2699 amd_iommu_domain_flush_all(pdomain);
2700
2701 pdomain->dirty_tracking = enable;
2702 spin_unlock_irqrestore(&pdomain->lock, flags);
2703
2704 return 0;
2705 }
2706
amd_iommu_read_and_clear_dirty(struct iommu_domain * domain,unsigned long iova,size_t size,unsigned long flags,struct iommu_dirty_bitmap * dirty)2707 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2708 unsigned long iova, size_t size,
2709 unsigned long flags,
2710 struct iommu_dirty_bitmap *dirty)
2711 {
2712 struct protection_domain *pdomain = to_pdomain(domain);
2713 struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops;
2714 unsigned long lflags;
2715
2716 if (!ops || !ops->read_and_clear_dirty)
2717 return -EOPNOTSUPP;
2718
2719 spin_lock_irqsave(&pdomain->lock, lflags);
2720 if (!pdomain->dirty_tracking && dirty->bitmap) {
2721 spin_unlock_irqrestore(&pdomain->lock, lflags);
2722 return -EINVAL;
2723 }
2724 spin_unlock_irqrestore(&pdomain->lock, lflags);
2725
2726 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2727 }
2728
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2729 static void amd_iommu_get_resv_regions(struct device *dev,
2730 struct list_head *head)
2731 {
2732 struct iommu_resv_region *region;
2733 struct unity_map_entry *entry;
2734 struct amd_iommu *iommu;
2735 struct amd_iommu_pci_seg *pci_seg;
2736 int devid, sbdf;
2737
2738 sbdf = get_device_sbdf_id(dev);
2739 if (sbdf < 0)
2740 return;
2741
2742 devid = PCI_SBDF_TO_DEVID(sbdf);
2743 iommu = get_amd_iommu_from_dev(dev);
2744 pci_seg = iommu->pci_seg;
2745
2746 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2747 int type, prot = 0;
2748 size_t length;
2749
2750 if (devid < entry->devid_start || devid > entry->devid_end)
2751 continue;
2752
2753 type = IOMMU_RESV_DIRECT;
2754 length = entry->address_end - entry->address_start;
2755 if (entry->prot & IOMMU_PROT_IR)
2756 prot |= IOMMU_READ;
2757 if (entry->prot & IOMMU_PROT_IW)
2758 prot |= IOMMU_WRITE;
2759 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2760 /* Exclusion range */
2761 type = IOMMU_RESV_RESERVED;
2762
2763 region = iommu_alloc_resv_region(entry->address_start,
2764 length, prot, type,
2765 GFP_KERNEL);
2766 if (!region) {
2767 dev_err(dev, "Out of memory allocating dm-regions\n");
2768 return;
2769 }
2770 list_add_tail(®ion->list, head);
2771 }
2772
2773 region = iommu_alloc_resv_region(MSI_RANGE_START,
2774 MSI_RANGE_END - MSI_RANGE_START + 1,
2775 0, IOMMU_RESV_MSI, GFP_KERNEL);
2776 if (!region)
2777 return;
2778 list_add_tail(®ion->list, head);
2779
2780 region = iommu_alloc_resv_region(HT_RANGE_START,
2781 HT_RANGE_END - HT_RANGE_START + 1,
2782 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2783 if (!region)
2784 return;
2785 list_add_tail(®ion->list, head);
2786 }
2787
amd_iommu_is_attach_deferred(struct device * dev)2788 static bool amd_iommu_is_attach_deferred(struct device *dev)
2789 {
2790 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2791
2792 return dev_data->defer_attach;
2793 }
2794
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2795 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2796 {
2797 struct protection_domain *dom = to_pdomain(domain);
2798 unsigned long flags;
2799
2800 spin_lock_irqsave(&dom->lock, flags);
2801 amd_iommu_domain_flush_all(dom);
2802 spin_unlock_irqrestore(&dom->lock, flags);
2803 }
2804
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2805 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2806 struct iommu_iotlb_gather *gather)
2807 {
2808 struct protection_domain *dom = to_pdomain(domain);
2809 unsigned long flags;
2810
2811 spin_lock_irqsave(&dom->lock, flags);
2812 amd_iommu_domain_flush_pages(dom, gather->start,
2813 gather->end - gather->start + 1);
2814 spin_unlock_irqrestore(&dom->lock, flags);
2815 }
2816
amd_iommu_def_domain_type(struct device * dev)2817 static int amd_iommu_def_domain_type(struct device *dev)
2818 {
2819 struct iommu_dev_data *dev_data;
2820
2821 dev_data = dev_iommu_priv_get(dev);
2822 if (!dev_data)
2823 return 0;
2824
2825 /* Always use DMA domain for untrusted device */
2826 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
2827 return IOMMU_DOMAIN_DMA;
2828
2829 /*
2830 * Do not identity map IOMMUv2 capable devices when:
2831 * - memory encryption is active, because some of those devices
2832 * (AMD GPUs) don't have the encryption bit in their DMA-mask
2833 * and require remapping.
2834 * - SNP is enabled, because it prohibits DTE[Mode]=0.
2835 */
2836 if (pdev_pasid_supported(dev_data) &&
2837 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2838 !amd_iommu_snp_en) {
2839 return IOMMU_DOMAIN_IDENTITY;
2840 }
2841
2842 return 0;
2843 }
2844
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)2845 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2846 {
2847 /* IOMMU_PTE_FC is always set */
2848 return true;
2849 }
2850
2851 static const struct iommu_dirty_ops amd_dirty_ops = {
2852 .set_dirty_tracking = amd_iommu_set_dirty_tracking,
2853 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2854 };
2855
amd_iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2856 static int amd_iommu_dev_enable_feature(struct device *dev,
2857 enum iommu_dev_features feat)
2858 {
2859 int ret = 0;
2860
2861 switch (feat) {
2862 case IOMMU_DEV_FEAT_IOPF:
2863 case IOMMU_DEV_FEAT_SVA:
2864 break;
2865 default:
2866 ret = -EINVAL;
2867 break;
2868 }
2869 return ret;
2870 }
2871
amd_iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2872 static int amd_iommu_dev_disable_feature(struct device *dev,
2873 enum iommu_dev_features feat)
2874 {
2875 int ret = 0;
2876
2877 switch (feat) {
2878 case IOMMU_DEV_FEAT_IOPF:
2879 case IOMMU_DEV_FEAT_SVA:
2880 break;
2881 default:
2882 ret = -EINVAL;
2883 break;
2884 }
2885 return ret;
2886 }
2887
2888 const struct iommu_ops amd_iommu_ops = {
2889 .capable = amd_iommu_capable,
2890 .blocked_domain = &blocked_domain,
2891 .release_domain = &release_domain,
2892 .identity_domain = &identity_domain.domain,
2893 .domain_alloc = amd_iommu_domain_alloc,
2894 .domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags,
2895 .domain_alloc_sva = amd_iommu_domain_alloc_sva,
2896 .probe_device = amd_iommu_probe_device,
2897 .release_device = amd_iommu_release_device,
2898 .device_group = amd_iommu_device_group,
2899 .get_resv_regions = amd_iommu_get_resv_regions,
2900 .is_attach_deferred = amd_iommu_is_attach_deferred,
2901 .def_domain_type = amd_iommu_def_domain_type,
2902 .dev_enable_feat = amd_iommu_dev_enable_feature,
2903 .dev_disable_feat = amd_iommu_dev_disable_feature,
2904 .remove_dev_pasid = amd_iommu_remove_dev_pasid,
2905 .page_response = amd_iommu_page_response,
2906 .default_domain_ops = &(const struct iommu_domain_ops) {
2907 .attach_dev = amd_iommu_attach_device,
2908 .map_pages = amd_iommu_map_pages,
2909 .unmap_pages = amd_iommu_unmap_pages,
2910 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2911 .iova_to_phys = amd_iommu_iova_to_phys,
2912 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2913 .iotlb_sync = amd_iommu_iotlb_sync,
2914 .free = amd_iommu_domain_free,
2915 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2916 }
2917 };
2918
2919 #ifdef CONFIG_IRQ_REMAP
2920
2921 /*****************************************************************************
2922 *
2923 * Interrupt Remapping Implementation
2924 *
2925 *****************************************************************************/
2926
2927 static struct irq_chip amd_ir_chip;
2928 static DEFINE_SPINLOCK(iommu_table_lock);
2929
iommu_flush_irt_and_complete(struct amd_iommu * iommu,u16 devid)2930 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2931 {
2932 int ret;
2933 u64 data;
2934 unsigned long flags;
2935 struct iommu_cmd cmd, cmd2;
2936
2937 if (iommu->irtcachedis_enabled)
2938 return;
2939
2940 build_inv_irt(&cmd, devid);
2941 data = atomic64_inc_return(&iommu->cmd_sem_val);
2942 build_completion_wait(&cmd2, iommu, data);
2943
2944 raw_spin_lock_irqsave(&iommu->lock, flags);
2945 ret = __iommu_queue_command_sync(iommu, &cmd, true);
2946 if (ret)
2947 goto out;
2948 ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2949 if (ret)
2950 goto out;
2951 wait_on_sem(iommu, data);
2952 out:
2953 raw_spin_unlock_irqrestore(&iommu->lock, flags);
2954 }
2955
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2956 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2957 struct irq_remap_table *table)
2958 {
2959 u64 dte;
2960 struct dev_table_entry *dev_table = get_dev_table(iommu);
2961
2962 dte = dev_table[devid].data[2];
2963 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
2964 dte |= iommu_virt_to_phys(table->table);
2965 dte |= DTE_IRQ_REMAP_INTCTL;
2966 dte |= DTE_INTTABLEN;
2967 dte |= DTE_IRQ_REMAP_ENABLE;
2968
2969 dev_table[devid].data[2] = dte;
2970 }
2971
get_irq_table(struct amd_iommu * iommu,u16 devid)2972 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2973 {
2974 struct irq_remap_table *table;
2975 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2976
2977 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2978 "%s: no iommu for devid %x:%x\n",
2979 __func__, pci_seg->id, devid))
2980 return NULL;
2981
2982 table = pci_seg->irq_lookup_table[devid];
2983 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2984 __func__, pci_seg->id, devid))
2985 return NULL;
2986
2987 return table;
2988 }
2989
__alloc_irq_table(void)2990 static struct irq_remap_table *__alloc_irq_table(void)
2991 {
2992 struct irq_remap_table *table;
2993
2994 table = kzalloc(sizeof(*table), GFP_KERNEL);
2995 if (!table)
2996 return NULL;
2997
2998 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2999 if (!table->table) {
3000 kfree(table);
3001 return NULL;
3002 }
3003 raw_spin_lock_init(&table->lock);
3004
3005 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3006 memset(table->table, 0,
3007 MAX_IRQS_PER_TABLE * sizeof(u32));
3008 else
3009 memset(table->table, 0,
3010 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3011 return table;
3012 }
3013
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3014 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3015 struct irq_remap_table *table)
3016 {
3017 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3018
3019 pci_seg->irq_lookup_table[devid] = table;
3020 set_dte_irq_entry(iommu, devid, table);
3021 iommu_flush_dte(iommu, devid);
3022 }
3023
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3024 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3025 void *data)
3026 {
3027 struct irq_remap_table *table = data;
3028 struct amd_iommu_pci_seg *pci_seg;
3029 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
3030
3031 if (!iommu)
3032 return -EINVAL;
3033
3034 pci_seg = iommu->pci_seg;
3035 pci_seg->irq_lookup_table[alias] = table;
3036 set_dte_irq_entry(iommu, alias, table);
3037 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
3038
3039 return 0;
3040 }
3041
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev)3042 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3043 u16 devid, struct pci_dev *pdev)
3044 {
3045 struct irq_remap_table *table = NULL;
3046 struct irq_remap_table *new_table = NULL;
3047 struct amd_iommu_pci_seg *pci_seg;
3048 unsigned long flags;
3049 u16 alias;
3050
3051 spin_lock_irqsave(&iommu_table_lock, flags);
3052
3053 pci_seg = iommu->pci_seg;
3054 table = pci_seg->irq_lookup_table[devid];
3055 if (table)
3056 goto out_unlock;
3057
3058 alias = pci_seg->alias_table[devid];
3059 table = pci_seg->irq_lookup_table[alias];
3060 if (table) {
3061 set_remap_table_entry(iommu, devid, table);
3062 goto out_wait;
3063 }
3064 spin_unlock_irqrestore(&iommu_table_lock, flags);
3065
3066 /* Nothing there yet, allocate new irq remapping table */
3067 new_table = __alloc_irq_table();
3068 if (!new_table)
3069 return NULL;
3070
3071 spin_lock_irqsave(&iommu_table_lock, flags);
3072
3073 table = pci_seg->irq_lookup_table[devid];
3074 if (table)
3075 goto out_unlock;
3076
3077 table = pci_seg->irq_lookup_table[alias];
3078 if (table) {
3079 set_remap_table_entry(iommu, devid, table);
3080 goto out_wait;
3081 }
3082
3083 table = new_table;
3084 new_table = NULL;
3085
3086 if (pdev)
3087 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3088 table);
3089 else
3090 set_remap_table_entry(iommu, devid, table);
3091
3092 if (devid != alias)
3093 set_remap_table_entry(iommu, alias, table);
3094
3095 out_wait:
3096 iommu_completion_wait(iommu);
3097
3098 out_unlock:
3099 spin_unlock_irqrestore(&iommu_table_lock, flags);
3100
3101 if (new_table) {
3102 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3103 kfree(new_table);
3104 }
3105 return table;
3106 }
3107
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev)3108 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3109 bool align, struct pci_dev *pdev)
3110 {
3111 struct irq_remap_table *table;
3112 int index, c, alignment = 1;
3113 unsigned long flags;
3114
3115 table = alloc_irq_table(iommu, devid, pdev);
3116 if (!table)
3117 return -ENODEV;
3118
3119 if (align)
3120 alignment = roundup_pow_of_two(count);
3121
3122 raw_spin_lock_irqsave(&table->lock, flags);
3123
3124 /* Scan table for free entries */
3125 for (index = ALIGN(table->min_index, alignment), c = 0;
3126 index < MAX_IRQS_PER_TABLE;) {
3127 if (!iommu->irte_ops->is_allocated(table, index)) {
3128 c += 1;
3129 } else {
3130 c = 0;
3131 index = ALIGN(index + 1, alignment);
3132 continue;
3133 }
3134
3135 if (c == count) {
3136 for (; c != 0; --c)
3137 iommu->irte_ops->set_allocated(table, index - c + 1);
3138
3139 index -= count - 1;
3140 goto out;
3141 }
3142
3143 index++;
3144 }
3145
3146 index = -ENOSPC;
3147
3148 out:
3149 raw_spin_unlock_irqrestore(&table->lock, flags);
3150
3151 return index;
3152 }
3153
__modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3154 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3155 struct irte_ga *irte)
3156 {
3157 struct irq_remap_table *table;
3158 struct irte_ga *entry;
3159 unsigned long flags;
3160 u128 old;
3161
3162 table = get_irq_table(iommu, devid);
3163 if (!table)
3164 return -ENOMEM;
3165
3166 raw_spin_lock_irqsave(&table->lock, flags);
3167
3168 entry = (struct irte_ga *)table->table;
3169 entry = &entry[index];
3170
3171 /*
3172 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3173 * and it cannot be updated by the hardware or other processors
3174 * behind us, so the return value of cmpxchg16 should be the
3175 * same as the old value.
3176 */
3177 old = entry->irte;
3178 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3179
3180 raw_spin_unlock_irqrestore(&table->lock, flags);
3181
3182 return 0;
3183 }
3184
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3185 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3186 struct irte_ga *irte)
3187 {
3188 bool ret;
3189
3190 ret = __modify_irte_ga(iommu, devid, index, irte);
3191 if (ret)
3192 return ret;
3193
3194 iommu_flush_irt_and_complete(iommu, devid);
3195
3196 return 0;
3197 }
3198
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3199 static int modify_irte(struct amd_iommu *iommu,
3200 u16 devid, int index, union irte *irte)
3201 {
3202 struct irq_remap_table *table;
3203 unsigned long flags;
3204
3205 table = get_irq_table(iommu, devid);
3206 if (!table)
3207 return -ENOMEM;
3208
3209 raw_spin_lock_irqsave(&table->lock, flags);
3210 table->table[index] = irte->val;
3211 raw_spin_unlock_irqrestore(&table->lock, flags);
3212
3213 iommu_flush_irt_and_complete(iommu, devid);
3214
3215 return 0;
3216 }
3217
free_irte(struct amd_iommu * iommu,u16 devid,int index)3218 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3219 {
3220 struct irq_remap_table *table;
3221 unsigned long flags;
3222
3223 table = get_irq_table(iommu, devid);
3224 if (!table)
3225 return;
3226
3227 raw_spin_lock_irqsave(&table->lock, flags);
3228 iommu->irte_ops->clear_allocated(table, index);
3229 raw_spin_unlock_irqrestore(&table->lock, flags);
3230
3231 iommu_flush_irt_and_complete(iommu, devid);
3232 }
3233
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3234 static void irte_prepare(void *entry,
3235 u32 delivery_mode, bool dest_mode,
3236 u8 vector, u32 dest_apicid, int devid)
3237 {
3238 union irte *irte = (union irte *) entry;
3239
3240 irte->val = 0;
3241 irte->fields.vector = vector;
3242 irte->fields.int_type = delivery_mode;
3243 irte->fields.destination = dest_apicid;
3244 irte->fields.dm = dest_mode;
3245 irte->fields.valid = 1;
3246 }
3247
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3248 static void irte_ga_prepare(void *entry,
3249 u32 delivery_mode, bool dest_mode,
3250 u8 vector, u32 dest_apicid, int devid)
3251 {
3252 struct irte_ga *irte = (struct irte_ga *) entry;
3253
3254 irte->lo.val = 0;
3255 irte->hi.val = 0;
3256 irte->lo.fields_remap.int_type = delivery_mode;
3257 irte->lo.fields_remap.dm = dest_mode;
3258 irte->hi.fields.vector = vector;
3259 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3260 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3261 irte->lo.fields_remap.valid = 1;
3262 }
3263
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3264 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3265 {
3266 union irte *irte = (union irte *) entry;
3267
3268 irte->fields.valid = 1;
3269 modify_irte(iommu, devid, index, irte);
3270 }
3271
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3272 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3273 {
3274 struct irte_ga *irte = (struct irte_ga *) entry;
3275
3276 irte->lo.fields_remap.valid = 1;
3277 modify_irte_ga(iommu, devid, index, irte);
3278 }
3279
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3280 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3281 {
3282 union irte *irte = (union irte *) entry;
3283
3284 irte->fields.valid = 0;
3285 modify_irte(iommu, devid, index, irte);
3286 }
3287
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3288 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3289 {
3290 struct irte_ga *irte = (struct irte_ga *) entry;
3291
3292 irte->lo.fields_remap.valid = 0;
3293 modify_irte_ga(iommu, devid, index, irte);
3294 }
3295
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3296 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3297 u8 vector, u32 dest_apicid)
3298 {
3299 union irte *irte = (union irte *) entry;
3300
3301 irte->fields.vector = vector;
3302 irte->fields.destination = dest_apicid;
3303 modify_irte(iommu, devid, index, irte);
3304 }
3305
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3306 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3307 u8 vector, u32 dest_apicid)
3308 {
3309 struct irte_ga *irte = (struct irte_ga *) entry;
3310
3311 if (!irte->lo.fields_remap.guest_mode) {
3312 irte->hi.fields.vector = vector;
3313 irte->lo.fields_remap.destination =
3314 APICID_TO_IRTE_DEST_LO(dest_apicid);
3315 irte->hi.fields.destination =
3316 APICID_TO_IRTE_DEST_HI(dest_apicid);
3317 modify_irte_ga(iommu, devid, index, irte);
3318 }
3319 }
3320
3321 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3322 static void irte_set_allocated(struct irq_remap_table *table, int index)
3323 {
3324 table->table[index] = IRTE_ALLOCATED;
3325 }
3326
irte_ga_set_allocated(struct irq_remap_table * table,int index)3327 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3328 {
3329 struct irte_ga *ptr = (struct irte_ga *)table->table;
3330 struct irte_ga *irte = &ptr[index];
3331
3332 memset(&irte->lo.val, 0, sizeof(u64));
3333 memset(&irte->hi.val, 0, sizeof(u64));
3334 irte->hi.fields.vector = 0xff;
3335 }
3336
irte_is_allocated(struct irq_remap_table * table,int index)3337 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3338 {
3339 union irte *ptr = (union irte *)table->table;
3340 union irte *irte = &ptr[index];
3341
3342 return irte->val != 0;
3343 }
3344
irte_ga_is_allocated(struct irq_remap_table * table,int index)3345 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3346 {
3347 struct irte_ga *ptr = (struct irte_ga *)table->table;
3348 struct irte_ga *irte = &ptr[index];
3349
3350 return irte->hi.fields.vector != 0;
3351 }
3352
irte_clear_allocated(struct irq_remap_table * table,int index)3353 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3354 {
3355 table->table[index] = 0;
3356 }
3357
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3358 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3359 {
3360 struct irte_ga *ptr = (struct irte_ga *)table->table;
3361 struct irte_ga *irte = &ptr[index];
3362
3363 memset(&irte->lo.val, 0, sizeof(u64));
3364 memset(&irte->hi.val, 0, sizeof(u64));
3365 }
3366
get_devid(struct irq_alloc_info * info)3367 static int get_devid(struct irq_alloc_info *info)
3368 {
3369 switch (info->type) {
3370 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3371 return get_ioapic_devid(info->devid);
3372 case X86_IRQ_ALLOC_TYPE_HPET:
3373 return get_hpet_devid(info->devid);
3374 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3375 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3376 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3377 default:
3378 WARN_ON_ONCE(1);
3379 return -1;
3380 }
3381 }
3382
3383 struct irq_remap_ops amd_iommu_irq_ops = {
3384 .prepare = amd_iommu_prepare,
3385 .enable = amd_iommu_enable,
3386 .disable = amd_iommu_disable,
3387 .reenable = amd_iommu_reenable,
3388 .enable_faulting = amd_iommu_enable_faulting,
3389 };
3390
fill_msi_msg(struct msi_msg * msg,u32 index)3391 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3392 {
3393 msg->data = index;
3394 msg->address_lo = 0;
3395 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3396 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3397 }
3398
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3399 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3400 struct irq_cfg *irq_cfg,
3401 struct irq_alloc_info *info,
3402 int devid, int index, int sub_handle)
3403 {
3404 struct irq_2_irte *irte_info = &data->irq_2_irte;
3405 struct amd_iommu *iommu = data->iommu;
3406
3407 if (!iommu)
3408 return;
3409
3410 data->irq_2_irte.devid = devid;
3411 data->irq_2_irte.index = index + sub_handle;
3412 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3413 apic->dest_mode_logical, irq_cfg->vector,
3414 irq_cfg->dest_apicid, devid);
3415
3416 switch (info->type) {
3417 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3418 case X86_IRQ_ALLOC_TYPE_HPET:
3419 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3420 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3421 fill_msi_msg(&data->msi_entry, irte_info->index);
3422 break;
3423
3424 default:
3425 BUG_ON(1);
3426 break;
3427 }
3428 }
3429
3430 struct amd_irte_ops irte_32_ops = {
3431 .prepare = irte_prepare,
3432 .activate = irte_activate,
3433 .deactivate = irte_deactivate,
3434 .set_affinity = irte_set_affinity,
3435 .set_allocated = irte_set_allocated,
3436 .is_allocated = irte_is_allocated,
3437 .clear_allocated = irte_clear_allocated,
3438 };
3439
3440 struct amd_irte_ops irte_128_ops = {
3441 .prepare = irte_ga_prepare,
3442 .activate = irte_ga_activate,
3443 .deactivate = irte_ga_deactivate,
3444 .set_affinity = irte_ga_set_affinity,
3445 .set_allocated = irte_ga_set_allocated,
3446 .is_allocated = irte_ga_is_allocated,
3447 .clear_allocated = irte_ga_clear_allocated,
3448 };
3449
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3450 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3451 unsigned int nr_irqs, void *arg)
3452 {
3453 struct irq_alloc_info *info = arg;
3454 struct irq_data *irq_data;
3455 struct amd_ir_data *data = NULL;
3456 struct amd_iommu *iommu;
3457 struct irq_cfg *cfg;
3458 int i, ret, devid, seg, sbdf;
3459 int index;
3460
3461 if (!info)
3462 return -EINVAL;
3463 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3464 return -EINVAL;
3465
3466 sbdf = get_devid(info);
3467 if (sbdf < 0)
3468 return -EINVAL;
3469
3470 seg = PCI_SBDF_TO_SEGID(sbdf);
3471 devid = PCI_SBDF_TO_DEVID(sbdf);
3472 iommu = __rlookup_amd_iommu(seg, devid);
3473 if (!iommu)
3474 return -EINVAL;
3475
3476 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3477 if (ret < 0)
3478 return ret;
3479
3480 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3481 struct irq_remap_table *table;
3482
3483 table = alloc_irq_table(iommu, devid, NULL);
3484 if (table) {
3485 if (!table->min_index) {
3486 /*
3487 * Keep the first 32 indexes free for IOAPIC
3488 * interrupts.
3489 */
3490 table->min_index = 32;
3491 for (i = 0; i < 32; ++i)
3492 iommu->irte_ops->set_allocated(table, i);
3493 }
3494 WARN_ON(table->min_index != 32);
3495 index = info->ioapic.pin;
3496 } else {
3497 index = -ENOMEM;
3498 }
3499 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3500 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3501 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3502
3503 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3504 msi_desc_to_pci_dev(info->desc));
3505 } else {
3506 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3507 }
3508
3509 if (index < 0) {
3510 pr_warn("Failed to allocate IRTE\n");
3511 ret = index;
3512 goto out_free_parent;
3513 }
3514
3515 for (i = 0; i < nr_irqs; i++) {
3516 irq_data = irq_domain_get_irq_data(domain, virq + i);
3517 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3518 if (!cfg) {
3519 ret = -EINVAL;
3520 goto out_free_data;
3521 }
3522
3523 ret = -ENOMEM;
3524 data = kzalloc(sizeof(*data), GFP_KERNEL);
3525 if (!data)
3526 goto out_free_data;
3527
3528 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3529 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3530 else
3531 data->entry = kzalloc(sizeof(struct irte_ga),
3532 GFP_KERNEL);
3533 if (!data->entry) {
3534 kfree(data);
3535 goto out_free_data;
3536 }
3537
3538 data->iommu = iommu;
3539 irq_data->hwirq = (devid << 16) + i;
3540 irq_data->chip_data = data;
3541 irq_data->chip = &amd_ir_chip;
3542 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3543 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3544 }
3545
3546 return 0;
3547
3548 out_free_data:
3549 for (i--; i >= 0; i--) {
3550 irq_data = irq_domain_get_irq_data(domain, virq + i);
3551 if (irq_data)
3552 kfree(irq_data->chip_data);
3553 }
3554 for (i = 0; i < nr_irqs; i++)
3555 free_irte(iommu, devid, index + i);
3556 out_free_parent:
3557 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3558 return ret;
3559 }
3560
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3561 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3562 unsigned int nr_irqs)
3563 {
3564 struct irq_2_irte *irte_info;
3565 struct irq_data *irq_data;
3566 struct amd_ir_data *data;
3567 int i;
3568
3569 for (i = 0; i < nr_irqs; i++) {
3570 irq_data = irq_domain_get_irq_data(domain, virq + i);
3571 if (irq_data && irq_data->chip_data) {
3572 data = irq_data->chip_data;
3573 irte_info = &data->irq_2_irte;
3574 free_irte(data->iommu, irte_info->devid, irte_info->index);
3575 kfree(data->entry);
3576 kfree(data);
3577 }
3578 }
3579 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3580 }
3581
3582 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3583 struct amd_ir_data *ir_data,
3584 struct irq_2_irte *irte_info,
3585 struct irq_cfg *cfg);
3586
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3587 static int irq_remapping_activate(struct irq_domain *domain,
3588 struct irq_data *irq_data, bool reserve)
3589 {
3590 struct amd_ir_data *data = irq_data->chip_data;
3591 struct irq_2_irte *irte_info = &data->irq_2_irte;
3592 struct amd_iommu *iommu = data->iommu;
3593 struct irq_cfg *cfg = irqd_cfg(irq_data);
3594
3595 if (!iommu)
3596 return 0;
3597
3598 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3599 irte_info->index);
3600 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3601 return 0;
3602 }
3603
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3604 static void irq_remapping_deactivate(struct irq_domain *domain,
3605 struct irq_data *irq_data)
3606 {
3607 struct amd_ir_data *data = irq_data->chip_data;
3608 struct irq_2_irte *irte_info = &data->irq_2_irte;
3609 struct amd_iommu *iommu = data->iommu;
3610
3611 if (iommu)
3612 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3613 irte_info->index);
3614 }
3615
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3616 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3617 enum irq_domain_bus_token bus_token)
3618 {
3619 struct amd_iommu *iommu;
3620 int devid = -1;
3621
3622 if (!amd_iommu_irq_remap)
3623 return 0;
3624
3625 if (x86_fwspec_is_ioapic(fwspec))
3626 devid = get_ioapic_devid(fwspec->param[0]);
3627 else if (x86_fwspec_is_hpet(fwspec))
3628 devid = get_hpet_devid(fwspec->param[0]);
3629
3630 if (devid < 0)
3631 return 0;
3632 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3633
3634 return iommu && iommu->ir_domain == d;
3635 }
3636
3637 static const struct irq_domain_ops amd_ir_domain_ops = {
3638 .select = irq_remapping_select,
3639 .alloc = irq_remapping_alloc,
3640 .free = irq_remapping_free,
3641 .activate = irq_remapping_activate,
3642 .deactivate = irq_remapping_deactivate,
3643 };
3644
amd_iommu_activate_guest_mode(void * data)3645 int amd_iommu_activate_guest_mode(void *data)
3646 {
3647 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3648 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3649 u64 valid;
3650
3651 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3652 return 0;
3653
3654 valid = entry->lo.fields_vapic.valid;
3655
3656 entry->lo.val = 0;
3657 entry->hi.val = 0;
3658
3659 entry->lo.fields_vapic.valid = valid;
3660 entry->lo.fields_vapic.guest_mode = 1;
3661 entry->lo.fields_vapic.ga_log_intr = 1;
3662 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3663 entry->hi.fields.vector = ir_data->ga_vector;
3664 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3665
3666 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3667 ir_data->irq_2_irte.index, entry);
3668 }
3669 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3670
amd_iommu_deactivate_guest_mode(void * data)3671 int amd_iommu_deactivate_guest_mode(void *data)
3672 {
3673 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3674 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3675 struct irq_cfg *cfg = ir_data->cfg;
3676 u64 valid;
3677
3678 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3679 !entry || !entry->lo.fields_vapic.guest_mode)
3680 return 0;
3681
3682 valid = entry->lo.fields_remap.valid;
3683
3684 entry->lo.val = 0;
3685 entry->hi.val = 0;
3686
3687 entry->lo.fields_remap.valid = valid;
3688 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3689 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED;
3690 entry->hi.fields.vector = cfg->vector;
3691 entry->lo.fields_remap.destination =
3692 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3693 entry->hi.fields.destination =
3694 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3695
3696 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3697 ir_data->irq_2_irte.index, entry);
3698 }
3699 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3700
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3701 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3702 {
3703 int ret;
3704 struct amd_iommu_pi_data *pi_data = vcpu_info;
3705 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3706 struct amd_ir_data *ir_data = data->chip_data;
3707 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3708 struct iommu_dev_data *dev_data;
3709
3710 if (ir_data->iommu == NULL)
3711 return -EINVAL;
3712
3713 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3714
3715 /* Note:
3716 * This device has never been set up for guest mode.
3717 * we should not modify the IRTE
3718 */
3719 if (!dev_data || !dev_data->use_vapic)
3720 return 0;
3721
3722 ir_data->cfg = irqd_cfg(data);
3723 pi_data->ir_data = ir_data;
3724
3725 /* Note:
3726 * SVM tries to set up for VAPIC mode, but we are in
3727 * legacy mode. So, we force legacy mode instead.
3728 */
3729 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3730 pr_debug("%s: Fall back to using intr legacy remap\n",
3731 __func__);
3732 pi_data->is_guest_mode = false;
3733 }
3734
3735 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3736 if (pi_data->is_guest_mode) {
3737 ir_data->ga_root_ptr = (pi_data->base >> 12);
3738 ir_data->ga_vector = vcpu_pi_info->vector;
3739 ir_data->ga_tag = pi_data->ga_tag;
3740 ret = amd_iommu_activate_guest_mode(ir_data);
3741 if (!ret)
3742 ir_data->cached_ga_tag = pi_data->ga_tag;
3743 } else {
3744 ret = amd_iommu_deactivate_guest_mode(ir_data);
3745
3746 /*
3747 * This communicates the ga_tag back to the caller
3748 * so that it can do all the necessary clean up.
3749 */
3750 if (!ret)
3751 ir_data->cached_ga_tag = 0;
3752 }
3753
3754 return ret;
3755 }
3756
3757
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3758 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3759 struct amd_ir_data *ir_data,
3760 struct irq_2_irte *irte_info,
3761 struct irq_cfg *cfg)
3762 {
3763
3764 /*
3765 * Atomically updates the IRTE with the new destination, vector
3766 * and flushes the interrupt entry cache.
3767 */
3768 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3769 irte_info->index, cfg->vector,
3770 cfg->dest_apicid);
3771 }
3772
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3773 static int amd_ir_set_affinity(struct irq_data *data,
3774 const struct cpumask *mask, bool force)
3775 {
3776 struct amd_ir_data *ir_data = data->chip_data;
3777 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3778 struct irq_cfg *cfg = irqd_cfg(data);
3779 struct irq_data *parent = data->parent_data;
3780 struct amd_iommu *iommu = ir_data->iommu;
3781 int ret;
3782
3783 if (!iommu)
3784 return -ENODEV;
3785
3786 ret = parent->chip->irq_set_affinity(parent, mask, force);
3787 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3788 return ret;
3789
3790 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3791 /*
3792 * After this point, all the interrupts will start arriving
3793 * at the new destination. So, time to cleanup the previous
3794 * vector allocation.
3795 */
3796 vector_schedule_cleanup(cfg);
3797
3798 return IRQ_SET_MASK_OK_DONE;
3799 }
3800
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3801 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3802 {
3803 struct amd_ir_data *ir_data = irq_data->chip_data;
3804
3805 *msg = ir_data->msi_entry;
3806 }
3807
3808 static struct irq_chip amd_ir_chip = {
3809 .name = "AMD-IR",
3810 .irq_ack = apic_ack_irq,
3811 .irq_set_affinity = amd_ir_set_affinity,
3812 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
3813 .irq_compose_msi_msg = ir_compose_msi_msg,
3814 };
3815
3816 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3817 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
3818 .prefix = "IR-",
3819 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3820 };
3821
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3822 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3823 {
3824 struct fwnode_handle *fn;
3825
3826 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3827 if (!fn)
3828 return -ENOMEM;
3829 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3830 fn, &amd_ir_domain_ops, iommu);
3831 if (!iommu->ir_domain) {
3832 irq_domain_free_fwnode(fn);
3833 return -ENOMEM;
3834 }
3835
3836 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI);
3837 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3838 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3839 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3840
3841 return 0;
3842 }
3843
amd_iommu_update_ga(int cpu,bool is_run,void * data)3844 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3845 {
3846 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3847 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3848
3849 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3850 !entry || !entry->lo.fields_vapic.guest_mode)
3851 return 0;
3852
3853 if (!ir_data->iommu)
3854 return -ENODEV;
3855
3856 if (cpu >= 0) {
3857 entry->lo.fields_vapic.destination =
3858 APICID_TO_IRTE_DEST_LO(cpu);
3859 entry->hi.fields.destination =
3860 APICID_TO_IRTE_DEST_HI(cpu);
3861 }
3862 entry->lo.fields_vapic.is_run = is_run;
3863
3864 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3865 ir_data->irq_2_irte.index, entry);
3866 }
3867 EXPORT_SYMBOL(amd_iommu_update_ga);
3868 #endif
3869