xref: /linux/drivers/iommu/amd/io_pgtable.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPU-agnostic AMD IO page table allocator.
4  *
5  * Copyright (C) 2020 Advanced Micro Devices, Inc.
6  * Author: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
7  */
8 
9 #define pr_fmt(fmt)     "AMD-Vi: " fmt
10 #define dev_fmt(fmt)    pr_fmt(fmt)
11 
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/io-pgtable.h>
15 #include <linux/kernel.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/seqlock.h>
21 
22 #include <asm/barrier.h>
23 
24 #include "amd_iommu_types.h"
25 #include "amd_iommu.h"
26 #include "../iommu-pages.h"
27 
28 /*
29  * Helper function to get the first pte of a large mapping
30  */
31 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
32 			 unsigned long *count)
33 {
34 	unsigned long pte_mask, pg_size, cnt;
35 	u64 *fpte;
36 
37 	pg_size  = PTE_PAGE_SIZE(*pte);
38 	cnt      = PAGE_SIZE_PTE_COUNT(pg_size);
39 	pte_mask = ~((cnt << 3) - 1);
40 	fpte     = (u64 *)(((unsigned long)pte) & pte_mask);
41 
42 	if (page_size)
43 		*page_size = pg_size;
44 
45 	if (count)
46 		*count = cnt;
47 
48 	return fpte;
49 }
50 
51 static void free_pt_lvl(u64 *pt, struct iommu_pages_list *freelist, int lvl)
52 {
53 	u64 *p;
54 	int i;
55 
56 	for (i = 0; i < 512; ++i) {
57 		/* PTE present? */
58 		if (!IOMMU_PTE_PRESENT(pt[i]))
59 			continue;
60 
61 		/* Large PTE? */
62 		if (PM_PTE_LEVEL(pt[i]) == 0 ||
63 		    PM_PTE_LEVEL(pt[i]) == 7)
64 			continue;
65 
66 		/*
67 		 * Free the next level. No need to look at l1 tables here since
68 		 * they can only contain leaf PTEs; just free them directly.
69 		 */
70 		p = IOMMU_PTE_PAGE(pt[i]);
71 		if (lvl > 2)
72 			free_pt_lvl(p, freelist, lvl - 1);
73 		else
74 			iommu_pages_list_add(freelist, p);
75 	}
76 
77 	iommu_pages_list_add(freelist, pt);
78 }
79 
80 static void free_sub_pt(u64 *root, int mode, struct iommu_pages_list *freelist)
81 {
82 	switch (mode) {
83 	case PAGE_MODE_NONE:
84 	case PAGE_MODE_7_LEVEL:
85 		break;
86 	case PAGE_MODE_1_LEVEL:
87 		iommu_pages_list_add(freelist, root);
88 		break;
89 	case PAGE_MODE_2_LEVEL:
90 	case PAGE_MODE_3_LEVEL:
91 	case PAGE_MODE_4_LEVEL:
92 	case PAGE_MODE_5_LEVEL:
93 	case PAGE_MODE_6_LEVEL:
94 		free_pt_lvl(root, freelist, mode);
95 		break;
96 	default:
97 		BUG();
98 	}
99 }
100 
101 /*
102  * This function is used to add another level to an IO page table. Adding
103  * another level increases the size of the address space by 9 bits to a size up
104  * to 64 bits.
105  */
106 static bool increase_address_space(struct amd_io_pgtable *pgtable,
107 				   unsigned long address,
108 				   unsigned int page_size_level,
109 				   gfp_t gfp)
110 {
111 	struct io_pgtable_cfg *cfg = &pgtable->pgtbl.cfg;
112 	struct protection_domain *domain =
113 		container_of(pgtable, struct protection_domain, iop);
114 	unsigned long flags;
115 	bool ret = true;
116 	u64 *pte;
117 
118 	pte = iommu_alloc_pages_node_sz(cfg->amd.nid, gfp, SZ_4K);
119 	if (!pte)
120 		return false;
121 
122 	spin_lock_irqsave(&domain->lock, flags);
123 
124 	if (address <= PM_LEVEL_SIZE(pgtable->mode) &&
125 	    pgtable->mode - 1 >= page_size_level)
126 		goto out;
127 
128 	ret = false;
129 	if (WARN_ON_ONCE(pgtable->mode == amd_iommu_hpt_level))
130 		goto out;
131 
132 	*pte = PM_LEVEL_PDE(pgtable->mode, iommu_virt_to_phys(pgtable->root));
133 
134 	write_seqcount_begin(&pgtable->seqcount);
135 	pgtable->root  = pte;
136 	pgtable->mode += 1;
137 	write_seqcount_end(&pgtable->seqcount);
138 
139 	amd_iommu_update_and_flush_device_table(domain);
140 
141 	pte = NULL;
142 	ret = true;
143 
144 out:
145 	spin_unlock_irqrestore(&domain->lock, flags);
146 	iommu_free_pages(pte);
147 
148 	return ret;
149 }
150 
151 static u64 *alloc_pte(struct amd_io_pgtable *pgtable,
152 		      unsigned long address,
153 		      unsigned long page_size,
154 		      u64 **pte_page,
155 		      gfp_t gfp,
156 		      bool *updated)
157 {
158 	unsigned long last_addr = address + (page_size - 1);
159 	struct io_pgtable_cfg *cfg = &pgtable->pgtbl.cfg;
160 	unsigned int seqcount;
161 	int level, end_lvl;
162 	u64 *pte, *page;
163 
164 	BUG_ON(!is_power_of_2(page_size));
165 
166 	while (last_addr > PM_LEVEL_SIZE(pgtable->mode) ||
167 	       pgtable->mode - 1 < PAGE_SIZE_LEVEL(page_size)) {
168 		/*
169 		 * Return an error if there is no memory to update the
170 		 * page-table.
171 		 */
172 		if (!increase_address_space(pgtable, last_addr,
173 					    PAGE_SIZE_LEVEL(page_size), gfp))
174 			return NULL;
175 	}
176 
177 
178 	do {
179 		seqcount = read_seqcount_begin(&pgtable->seqcount);
180 
181 		level   = pgtable->mode - 1;
182 		pte     = &pgtable->root[PM_LEVEL_INDEX(level, address)];
183 	} while (read_seqcount_retry(&pgtable->seqcount, seqcount));
184 
185 
186 	address = PAGE_SIZE_ALIGN(address, page_size);
187 	end_lvl = PAGE_SIZE_LEVEL(page_size);
188 
189 	while (level > end_lvl) {
190 		u64 __pte, __npte;
191 		int pte_level;
192 
193 		__pte     = *pte;
194 		pte_level = PM_PTE_LEVEL(__pte);
195 
196 		/*
197 		 * If we replace a series of large PTEs, we need
198 		 * to tear down all of them.
199 		 */
200 		if (IOMMU_PTE_PRESENT(__pte) &&
201 		    pte_level == PAGE_MODE_7_LEVEL) {
202 			unsigned long count, i;
203 			u64 *lpte;
204 
205 			lpte = first_pte_l7(pte, NULL, &count);
206 
207 			/*
208 			 * Unmap the replicated PTEs that still match the
209 			 * original large mapping
210 			 */
211 			for (i = 0; i < count; ++i)
212 				cmpxchg64(&lpte[i], __pte, 0ULL);
213 
214 			*updated = true;
215 			continue;
216 		}
217 
218 		if (!IOMMU_PTE_PRESENT(__pte) ||
219 		    pte_level == PAGE_MODE_NONE) {
220 			page = iommu_alloc_pages_node_sz(cfg->amd.nid, gfp,
221 							 SZ_4K);
222 
223 			if (!page)
224 				return NULL;
225 
226 			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
227 
228 			/* pte could have been changed somewhere. */
229 			if (!try_cmpxchg64(pte, &__pte, __npte))
230 				iommu_free_pages(page);
231 			else if (IOMMU_PTE_PRESENT(__pte))
232 				*updated = true;
233 
234 			continue;
235 		}
236 
237 		/* No level skipping support yet */
238 		if (pte_level != level)
239 			return NULL;
240 
241 		level -= 1;
242 
243 		pte = IOMMU_PTE_PAGE(__pte);
244 
245 		if (pte_page && level == end_lvl)
246 			*pte_page = pte;
247 
248 		pte = &pte[PM_LEVEL_INDEX(level, address)];
249 	}
250 
251 	return pte;
252 }
253 
254 /*
255  * This function checks if there is a PTE for a given dma address. If
256  * there is one, it returns the pointer to it.
257  */
258 static u64 *fetch_pte(struct amd_io_pgtable *pgtable,
259 		      unsigned long address,
260 		      unsigned long *page_size)
261 {
262 	int level;
263 	unsigned int seqcount;
264 	u64 *pte;
265 
266 	*page_size = 0;
267 
268 	if (address > PM_LEVEL_SIZE(pgtable->mode))
269 		return NULL;
270 
271 	do {
272 		seqcount = read_seqcount_begin(&pgtable->seqcount);
273 		level	   =  pgtable->mode - 1;
274 		pte	   = &pgtable->root[PM_LEVEL_INDEX(level, address)];
275 	} while (read_seqcount_retry(&pgtable->seqcount, seqcount));
276 
277 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
278 
279 	while (level > 0) {
280 
281 		/* Not Present */
282 		if (!IOMMU_PTE_PRESENT(*pte))
283 			return NULL;
284 
285 		/* Large PTE */
286 		if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL ||
287 		    PM_PTE_LEVEL(*pte) == PAGE_MODE_NONE)
288 			break;
289 
290 		/* No level skipping support yet */
291 		if (PM_PTE_LEVEL(*pte) != level)
292 			return NULL;
293 
294 		level -= 1;
295 
296 		/* Walk to the next level */
297 		pte	   = IOMMU_PTE_PAGE(*pte);
298 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
299 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
300 	}
301 
302 	/*
303 	 * If we have a series of large PTEs, make
304 	 * sure to return a pointer to the first one.
305 	 */
306 	if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
307 		pte = first_pte_l7(pte, page_size, NULL);
308 
309 	return pte;
310 }
311 
312 static void free_clear_pte(u64 *pte, u64 pteval,
313 			   struct iommu_pages_list *freelist)
314 {
315 	u64 *pt;
316 	int mode;
317 
318 	while (!try_cmpxchg64(pte, &pteval, 0))
319 		pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
320 
321 	if (!IOMMU_PTE_PRESENT(pteval))
322 		return;
323 
324 	pt   = IOMMU_PTE_PAGE(pteval);
325 	mode = IOMMU_PTE_MODE(pteval);
326 
327 	free_sub_pt(pt, mode, freelist);
328 }
329 
330 /*
331  * Generic mapping functions. It maps a physical address into a DMA
332  * address space. It allocates the page table pages if necessary.
333  * In the future it can be extended to a generic mapping function
334  * supporting all features of AMD IOMMU page tables like level skipping
335  * and full 64 bit address spaces.
336  */
337 static int iommu_v1_map_pages(struct io_pgtable_ops *ops, unsigned long iova,
338 			      phys_addr_t paddr, size_t pgsize, size_t pgcount,
339 			      int prot, gfp_t gfp, size_t *mapped)
340 {
341 	struct amd_io_pgtable *pgtable = io_pgtable_ops_to_data(ops);
342 	struct iommu_pages_list freelist = IOMMU_PAGES_LIST_INIT(freelist);
343 	bool updated = false;
344 	u64 __pte, *pte;
345 	int ret, i, count;
346 	size_t size = pgcount << __ffs(pgsize);
347 	unsigned long o_iova = iova;
348 
349 	BUG_ON(!IS_ALIGNED(iova, pgsize));
350 	BUG_ON(!IS_ALIGNED(paddr, pgsize));
351 
352 	ret = -EINVAL;
353 	if (!(prot & IOMMU_PROT_MASK))
354 		goto out;
355 
356 	while (pgcount > 0) {
357 		count = PAGE_SIZE_PTE_COUNT(pgsize);
358 		pte   = alloc_pte(pgtable, iova, pgsize, NULL, gfp, &updated);
359 
360 		ret = -ENOMEM;
361 		if (!pte)
362 			goto out;
363 
364 		for (i = 0; i < count; ++i)
365 			free_clear_pte(&pte[i], pte[i], &freelist);
366 
367 		if (!iommu_pages_list_empty(&freelist))
368 			updated = true;
369 
370 		if (count > 1) {
371 			__pte = PAGE_SIZE_PTE(__sme_set(paddr), pgsize);
372 			__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
373 		} else
374 			__pte = __sme_set(paddr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
375 
376 		if (prot & IOMMU_PROT_IR)
377 			__pte |= IOMMU_PTE_IR;
378 		if (prot & IOMMU_PROT_IW)
379 			__pte |= IOMMU_PTE_IW;
380 
381 		for (i = 0; i < count; ++i)
382 			pte[i] = __pte;
383 
384 		iova  += pgsize;
385 		paddr += pgsize;
386 		pgcount--;
387 		if (mapped)
388 			*mapped += pgsize;
389 	}
390 
391 	ret = 0;
392 
393 out:
394 	if (updated) {
395 		struct protection_domain *dom = io_pgtable_ops_to_domain(ops);
396 		unsigned long flags;
397 
398 		spin_lock_irqsave(&dom->lock, flags);
399 		/*
400 		 * Flush domain TLB(s) and wait for completion. Any Device-Table
401 		 * Updates and flushing already happened in
402 		 * increase_address_space().
403 		 */
404 		amd_iommu_domain_flush_pages(dom, o_iova, size);
405 		spin_unlock_irqrestore(&dom->lock, flags);
406 	}
407 
408 	/* Everything flushed out, free pages now */
409 	iommu_put_pages_list(&freelist);
410 
411 	return ret;
412 }
413 
414 static unsigned long iommu_v1_unmap_pages(struct io_pgtable_ops *ops,
415 					  unsigned long iova,
416 					  size_t pgsize, size_t pgcount,
417 					  struct iommu_iotlb_gather *gather)
418 {
419 	struct amd_io_pgtable *pgtable = io_pgtable_ops_to_data(ops);
420 	unsigned long long unmapped;
421 	unsigned long unmap_size;
422 	u64 *pte;
423 	size_t size = pgcount << __ffs(pgsize);
424 
425 	BUG_ON(!is_power_of_2(pgsize));
426 
427 	unmapped = 0;
428 
429 	while (unmapped < size) {
430 		pte = fetch_pte(pgtable, iova, &unmap_size);
431 		if (pte) {
432 			int i, count;
433 
434 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
435 			for (i = 0; i < count; i++)
436 				pte[i] = 0ULL;
437 		} else {
438 			return unmapped;
439 		}
440 
441 		iova = (iova & ~(unmap_size - 1)) + unmap_size;
442 		unmapped += unmap_size;
443 	}
444 
445 	return unmapped;
446 }
447 
448 static phys_addr_t iommu_v1_iova_to_phys(struct io_pgtable_ops *ops, unsigned long iova)
449 {
450 	struct amd_io_pgtable *pgtable = io_pgtable_ops_to_data(ops);
451 	unsigned long offset_mask, pte_pgsize;
452 	u64 *pte, __pte;
453 
454 	pte = fetch_pte(pgtable, iova, &pte_pgsize);
455 
456 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
457 		return 0;
458 
459 	offset_mask = pte_pgsize - 1;
460 	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
461 
462 	return (__pte & ~offset_mask) | (iova & offset_mask);
463 }
464 
465 static bool pte_test_and_clear_dirty(u64 *ptep, unsigned long size,
466 				     unsigned long flags)
467 {
468 	bool test_only = flags & IOMMU_DIRTY_NO_CLEAR;
469 	bool dirty = false;
470 	int i, count;
471 
472 	/*
473 	 * 2.2.3.2 Host Dirty Support
474 	 * When a non-default page size is used , software must OR the
475 	 * Dirty bits in all of the replicated host PTEs used to map
476 	 * the page. The IOMMU does not guarantee the Dirty bits are
477 	 * set in all of the replicated PTEs. Any portion of the page
478 	 * may have been written even if the Dirty bit is set in only
479 	 * one of the replicated PTEs.
480 	 */
481 	count = PAGE_SIZE_PTE_COUNT(size);
482 	for (i = 0; i < count && test_only; i++) {
483 		if (test_bit(IOMMU_PTE_HD_BIT, (unsigned long *)&ptep[i])) {
484 			dirty = true;
485 			break;
486 		}
487 	}
488 
489 	for (i = 0; i < count && !test_only; i++) {
490 		if (test_and_clear_bit(IOMMU_PTE_HD_BIT,
491 				       (unsigned long *)&ptep[i])) {
492 			dirty = true;
493 		}
494 	}
495 
496 	return dirty;
497 }
498 
499 static int iommu_v1_read_and_clear_dirty(struct io_pgtable_ops *ops,
500 					 unsigned long iova, size_t size,
501 					 unsigned long flags,
502 					 struct iommu_dirty_bitmap *dirty)
503 {
504 	struct amd_io_pgtable *pgtable = io_pgtable_ops_to_data(ops);
505 	unsigned long end = iova + size - 1;
506 
507 	do {
508 		unsigned long pgsize = 0;
509 		u64 *ptep, pte;
510 
511 		ptep = fetch_pte(pgtable, iova, &pgsize);
512 		if (ptep)
513 			pte = READ_ONCE(*ptep);
514 		if (!ptep || !IOMMU_PTE_PRESENT(pte)) {
515 			pgsize = pgsize ?: PTE_LEVEL_PAGE_SIZE(0);
516 			iova += pgsize;
517 			continue;
518 		}
519 
520 		/*
521 		 * Mark the whole IOVA range as dirty even if only one of
522 		 * the replicated PTEs were marked dirty.
523 		 */
524 		if (pte_test_and_clear_dirty(ptep, pgsize, flags))
525 			iommu_dirty_bitmap_record(dirty, iova, pgsize);
526 		iova += pgsize;
527 	} while (iova < end);
528 
529 	return 0;
530 }
531 
532 /*
533  * ----------------------------------------------------
534  */
535 static void v1_free_pgtable(struct io_pgtable *iop)
536 {
537 	struct amd_io_pgtable *pgtable = container_of(iop, struct amd_io_pgtable, pgtbl);
538 	struct iommu_pages_list freelist = IOMMU_PAGES_LIST_INIT(freelist);
539 
540 	if (pgtable->mode == PAGE_MODE_NONE)
541 		return;
542 
543 	/* Page-table is not visible to IOMMU anymore, so free it */
544 	BUG_ON(pgtable->mode < PAGE_MODE_NONE ||
545 	       pgtable->mode > amd_iommu_hpt_level);
546 
547 	free_sub_pt(pgtable->root, pgtable->mode, &freelist);
548 	iommu_put_pages_list(&freelist);
549 }
550 
551 static struct io_pgtable *v1_alloc_pgtable(struct io_pgtable_cfg *cfg, void *cookie)
552 {
553 	struct amd_io_pgtable *pgtable = io_pgtable_cfg_to_data(cfg);
554 
555 	pgtable->root =
556 		iommu_alloc_pages_node_sz(cfg->amd.nid, GFP_KERNEL, SZ_4K);
557 	if (!pgtable->root)
558 		return NULL;
559 	pgtable->mode = PAGE_MODE_3_LEVEL;
560 	seqcount_init(&pgtable->seqcount);
561 
562 	cfg->pgsize_bitmap  = amd_iommu_pgsize_bitmap;
563 	cfg->ias            = IOMMU_IN_ADDR_BIT_SIZE;
564 	cfg->oas            = IOMMU_OUT_ADDR_BIT_SIZE;
565 
566 	pgtable->pgtbl.ops.map_pages    = iommu_v1_map_pages;
567 	pgtable->pgtbl.ops.unmap_pages  = iommu_v1_unmap_pages;
568 	pgtable->pgtbl.ops.iova_to_phys = iommu_v1_iova_to_phys;
569 	pgtable->pgtbl.ops.read_and_clear_dirty = iommu_v1_read_and_clear_dirty;
570 
571 	return &pgtable->pgtbl;
572 }
573 
574 struct io_pgtable_init_fns io_pgtable_amd_iommu_v1_init_fns = {
575 	.alloc	= v1_alloc_pgtable,
576 	.free	= v1_free_pgtable,
577 };
578