xref: /linux/drivers/interconnect/core.c (revision ed5c2f5fd10dda07263f79f338a512c0f49f76f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interconnect framework core driver
4  *
5  * Copyright (c) 2017-2019, Linaro Ltd.
6  * Author: Georgi Djakov <georgi.djakov@linaro.org>
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/device.h>
11 #include <linux/idr.h>
12 #include <linux/init.h>
13 #include <linux/interconnect.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/overflow.h>
21 
22 #include "internal.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 static DEFINE_IDR(icc_idr);
28 static LIST_HEAD(icc_providers);
29 static int providers_count;
30 static bool synced_state;
31 static DEFINE_MUTEX(icc_lock);
32 static struct dentry *icc_debugfs_dir;
33 
34 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
35 {
36 	if (!n)
37 		return;
38 
39 	seq_printf(s, "%-42s %12u %12u\n",
40 		   n->name, n->avg_bw, n->peak_bw);
41 }
42 
43 static int icc_summary_show(struct seq_file *s, void *data)
44 {
45 	struct icc_provider *provider;
46 
47 	seq_puts(s, " node                                  tag          avg         peak\n");
48 	seq_puts(s, "--------------------------------------------------------------------\n");
49 
50 	mutex_lock(&icc_lock);
51 
52 	list_for_each_entry(provider, &icc_providers, provider_list) {
53 		struct icc_node *n;
54 
55 		list_for_each_entry(n, &provider->nodes, node_list) {
56 			struct icc_req *r;
57 
58 			icc_summary_show_one(s, n);
59 			hlist_for_each_entry(r, &n->req_list, req_node) {
60 				u32 avg_bw = 0, peak_bw = 0;
61 
62 				if (!r->dev)
63 					continue;
64 
65 				if (r->enabled) {
66 					avg_bw = r->avg_bw;
67 					peak_bw = r->peak_bw;
68 				}
69 
70 				seq_printf(s, "  %-27s %12u %12u %12u\n",
71 					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
72 			}
73 		}
74 	}
75 
76 	mutex_unlock(&icc_lock);
77 
78 	return 0;
79 }
80 DEFINE_SHOW_ATTRIBUTE(icc_summary);
81 
82 static void icc_graph_show_link(struct seq_file *s, int level,
83 				struct icc_node *n, struct icc_node *m)
84 {
85 	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
86 		   level == 2 ? "\t\t" : "\t",
87 		   n->id, n->name, m->id, m->name);
88 }
89 
90 static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
91 {
92 	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
93 		   n->id, n->name, n->id, n->name);
94 	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
95 	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
96 	seq_puts(s, "\"]\n");
97 }
98 
99 static int icc_graph_show(struct seq_file *s, void *data)
100 {
101 	struct icc_provider *provider;
102 	struct icc_node *n;
103 	int cluster_index = 0;
104 	int i;
105 
106 	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
107 	mutex_lock(&icc_lock);
108 
109 	/* draw providers as cluster subgraphs */
110 	cluster_index = 0;
111 	list_for_each_entry(provider, &icc_providers, provider_list) {
112 		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
113 		if (provider->dev)
114 			seq_printf(s, "\t\tlabel = \"%s\"\n",
115 				   dev_name(provider->dev));
116 
117 		/* draw nodes */
118 		list_for_each_entry(n, &provider->nodes, node_list)
119 			icc_graph_show_node(s, n);
120 
121 		/* draw internal links */
122 		list_for_each_entry(n, &provider->nodes, node_list)
123 			for (i = 0; i < n->num_links; ++i)
124 				if (n->provider == n->links[i]->provider)
125 					icc_graph_show_link(s, 2, n,
126 							    n->links[i]);
127 
128 		seq_puts(s, "\t}\n");
129 	}
130 
131 	/* draw external links */
132 	list_for_each_entry(provider, &icc_providers, provider_list)
133 		list_for_each_entry(n, &provider->nodes, node_list)
134 			for (i = 0; i < n->num_links; ++i)
135 				if (n->provider != n->links[i]->provider)
136 					icc_graph_show_link(s, 1, n,
137 							    n->links[i]);
138 
139 	mutex_unlock(&icc_lock);
140 	seq_puts(s, "}");
141 
142 	return 0;
143 }
144 DEFINE_SHOW_ATTRIBUTE(icc_graph);
145 
146 static struct icc_node *node_find(const int id)
147 {
148 	return idr_find(&icc_idr, id);
149 }
150 
151 static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
152 				  ssize_t num_nodes)
153 {
154 	struct icc_node *node = dst;
155 	struct icc_path *path;
156 	int i;
157 
158 	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
159 	if (!path)
160 		return ERR_PTR(-ENOMEM);
161 
162 	path->num_nodes = num_nodes;
163 
164 	for (i = num_nodes - 1; i >= 0; i--) {
165 		node->provider->users++;
166 		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
167 		path->reqs[i].node = node;
168 		path->reqs[i].dev = dev;
169 		path->reqs[i].enabled = true;
170 		/* reference to previous node was saved during path traversal */
171 		node = node->reverse;
172 	}
173 
174 	return path;
175 }
176 
177 static struct icc_path *path_find(struct device *dev, struct icc_node *src,
178 				  struct icc_node *dst)
179 {
180 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
181 	struct icc_node *n, *node = NULL;
182 	struct list_head traverse_list;
183 	struct list_head edge_list;
184 	struct list_head visited_list;
185 	size_t i, depth = 1;
186 	bool found = false;
187 
188 	INIT_LIST_HEAD(&traverse_list);
189 	INIT_LIST_HEAD(&edge_list);
190 	INIT_LIST_HEAD(&visited_list);
191 
192 	list_add(&src->search_list, &traverse_list);
193 	src->reverse = NULL;
194 
195 	do {
196 		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
197 			if (node == dst) {
198 				found = true;
199 				list_splice_init(&edge_list, &visited_list);
200 				list_splice_init(&traverse_list, &visited_list);
201 				break;
202 			}
203 			for (i = 0; i < node->num_links; i++) {
204 				struct icc_node *tmp = node->links[i];
205 
206 				if (!tmp) {
207 					path = ERR_PTR(-ENOENT);
208 					goto out;
209 				}
210 
211 				if (tmp->is_traversed)
212 					continue;
213 
214 				tmp->is_traversed = true;
215 				tmp->reverse = node;
216 				list_add_tail(&tmp->search_list, &edge_list);
217 			}
218 		}
219 
220 		if (found)
221 			break;
222 
223 		list_splice_init(&traverse_list, &visited_list);
224 		list_splice_init(&edge_list, &traverse_list);
225 
226 		/* count the hops including the source */
227 		depth++;
228 
229 	} while (!list_empty(&traverse_list));
230 
231 out:
232 
233 	/* reset the traversed state */
234 	list_for_each_entry_reverse(n, &visited_list, search_list)
235 		n->is_traversed = false;
236 
237 	if (found)
238 		path = path_init(dev, dst, depth);
239 
240 	return path;
241 }
242 
243 /*
244  * We want the path to honor all bandwidth requests, so the average and peak
245  * bandwidth requirements from each consumer are aggregated at each node.
246  * The aggregation is platform specific, so each platform can customize it by
247  * implementing its own aggregate() function.
248  */
249 
250 static int aggregate_requests(struct icc_node *node)
251 {
252 	struct icc_provider *p = node->provider;
253 	struct icc_req *r;
254 	u32 avg_bw, peak_bw;
255 
256 	node->avg_bw = 0;
257 	node->peak_bw = 0;
258 
259 	if (p->pre_aggregate)
260 		p->pre_aggregate(node);
261 
262 	hlist_for_each_entry(r, &node->req_list, req_node) {
263 		if (r->enabled) {
264 			avg_bw = r->avg_bw;
265 			peak_bw = r->peak_bw;
266 		} else {
267 			avg_bw = 0;
268 			peak_bw = 0;
269 		}
270 		p->aggregate(node, r->tag, avg_bw, peak_bw,
271 			     &node->avg_bw, &node->peak_bw);
272 
273 		/* during boot use the initial bandwidth as a floor value */
274 		if (!synced_state) {
275 			node->avg_bw = max(node->avg_bw, node->init_avg);
276 			node->peak_bw = max(node->peak_bw, node->init_peak);
277 		}
278 	}
279 
280 	return 0;
281 }
282 
283 static int apply_constraints(struct icc_path *path)
284 {
285 	struct icc_node *next, *prev = NULL;
286 	struct icc_provider *p;
287 	int ret = -EINVAL;
288 	int i;
289 
290 	for (i = 0; i < path->num_nodes; i++) {
291 		next = path->reqs[i].node;
292 		p = next->provider;
293 
294 		/* both endpoints should be valid master-slave pairs */
295 		if (!prev || (p != prev->provider && !p->inter_set)) {
296 			prev = next;
297 			continue;
298 		}
299 
300 		/* set the constraints */
301 		ret = p->set(prev, next);
302 		if (ret)
303 			goto out;
304 
305 		prev = next;
306 	}
307 out:
308 	return ret;
309 }
310 
311 int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
312 		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
313 {
314 	*agg_avg += avg_bw;
315 	*agg_peak = max(*agg_peak, peak_bw);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL_GPL(icc_std_aggregate);
320 
321 /* of_icc_xlate_onecell() - Translate function using a single index.
322  * @spec: OF phandle args to map into an interconnect node.
323  * @data: private data (pointer to struct icc_onecell_data)
324  *
325  * This is a generic translate function that can be used to model simple
326  * interconnect providers that have one device tree node and provide
327  * multiple interconnect nodes. A single cell is used as an index into
328  * an array of icc nodes specified in the icc_onecell_data struct when
329  * registering the provider.
330  */
331 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
332 				      void *data)
333 {
334 	struct icc_onecell_data *icc_data = data;
335 	unsigned int idx = spec->args[0];
336 
337 	if (idx >= icc_data->num_nodes) {
338 		pr_err("%s: invalid index %u\n", __func__, idx);
339 		return ERR_PTR(-EINVAL);
340 	}
341 
342 	return icc_data->nodes[idx];
343 }
344 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
345 
346 /**
347  * of_icc_get_from_provider() - Look-up interconnect node
348  * @spec: OF phandle args to use for look-up
349  *
350  * Looks for interconnect provider under the node specified by @spec and if
351  * found, uses xlate function of the provider to map phandle args to node.
352  *
353  * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
354  * on failure.
355  */
356 struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
357 {
358 	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
359 	struct icc_node_data *data = NULL;
360 	struct icc_provider *provider;
361 
362 	if (!spec)
363 		return ERR_PTR(-EINVAL);
364 
365 	mutex_lock(&icc_lock);
366 	list_for_each_entry(provider, &icc_providers, provider_list) {
367 		if (provider->dev->of_node == spec->np) {
368 			if (provider->xlate_extended) {
369 				data = provider->xlate_extended(spec, provider->data);
370 				if (!IS_ERR(data)) {
371 					node = data->node;
372 					break;
373 				}
374 			} else {
375 				node = provider->xlate(spec, provider->data);
376 				if (!IS_ERR(node))
377 					break;
378 			}
379 		}
380 	}
381 	mutex_unlock(&icc_lock);
382 
383 	if (IS_ERR(node))
384 		return ERR_CAST(node);
385 
386 	if (!data) {
387 		data = kzalloc(sizeof(*data), GFP_KERNEL);
388 		if (!data)
389 			return ERR_PTR(-ENOMEM);
390 		data->node = node;
391 	}
392 
393 	return data;
394 }
395 EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
396 
397 static void devm_icc_release(struct device *dev, void *res)
398 {
399 	icc_put(*(struct icc_path **)res);
400 }
401 
402 struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
403 {
404 	struct icc_path **ptr, *path;
405 
406 	ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
407 	if (!ptr)
408 		return ERR_PTR(-ENOMEM);
409 
410 	path = of_icc_get(dev, name);
411 	if (!IS_ERR(path)) {
412 		*ptr = path;
413 		devres_add(dev, ptr);
414 	} else {
415 		devres_free(ptr);
416 	}
417 
418 	return path;
419 }
420 EXPORT_SYMBOL_GPL(devm_of_icc_get);
421 
422 /**
423  * of_icc_get_by_index() - get a path handle from a DT node based on index
424  * @dev: device pointer for the consumer device
425  * @idx: interconnect path index
426  *
427  * This function will search for a path between two endpoints and return an
428  * icc_path handle on success. Use icc_put() to release constraints when they
429  * are not needed anymore.
430  * If the interconnect API is disabled, NULL is returned and the consumer
431  * drivers will still build. Drivers are free to handle this specifically,
432  * but they don't have to.
433  *
434  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
435  * when the API is disabled or the "interconnects" DT property is missing.
436  */
437 struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
438 {
439 	struct icc_path *path;
440 	struct icc_node_data *src_data, *dst_data;
441 	struct device_node *np;
442 	struct of_phandle_args src_args, dst_args;
443 	int ret;
444 
445 	if (!dev || !dev->of_node)
446 		return ERR_PTR(-ENODEV);
447 
448 	np = dev->of_node;
449 
450 	/*
451 	 * When the consumer DT node do not have "interconnects" property
452 	 * return a NULL path to skip setting constraints.
453 	 */
454 	if (!of_find_property(np, "interconnects", NULL))
455 		return NULL;
456 
457 	/*
458 	 * We use a combination of phandle and specifier for endpoint. For now
459 	 * lets support only global ids and extend this in the future if needed
460 	 * without breaking DT compatibility.
461 	 */
462 	ret = of_parse_phandle_with_args(np, "interconnects",
463 					 "#interconnect-cells", idx * 2,
464 					 &src_args);
465 	if (ret)
466 		return ERR_PTR(ret);
467 
468 	of_node_put(src_args.np);
469 
470 	ret = of_parse_phandle_with_args(np, "interconnects",
471 					 "#interconnect-cells", idx * 2 + 1,
472 					 &dst_args);
473 	if (ret)
474 		return ERR_PTR(ret);
475 
476 	of_node_put(dst_args.np);
477 
478 	src_data = of_icc_get_from_provider(&src_args);
479 
480 	if (IS_ERR(src_data)) {
481 		dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
482 		return ERR_CAST(src_data);
483 	}
484 
485 	dst_data = of_icc_get_from_provider(&dst_args);
486 
487 	if (IS_ERR(dst_data)) {
488 		dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
489 		kfree(src_data);
490 		return ERR_CAST(dst_data);
491 	}
492 
493 	mutex_lock(&icc_lock);
494 	path = path_find(dev, src_data->node, dst_data->node);
495 	mutex_unlock(&icc_lock);
496 	if (IS_ERR(path)) {
497 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
498 		goto free_icc_data;
499 	}
500 
501 	if (src_data->tag && src_data->tag == dst_data->tag)
502 		icc_set_tag(path, src_data->tag);
503 
504 	path->name = kasprintf(GFP_KERNEL, "%s-%s",
505 			       src_data->node->name, dst_data->node->name);
506 	if (!path->name) {
507 		kfree(path);
508 		path = ERR_PTR(-ENOMEM);
509 	}
510 
511 free_icc_data:
512 	kfree(src_data);
513 	kfree(dst_data);
514 	return path;
515 }
516 EXPORT_SYMBOL_GPL(of_icc_get_by_index);
517 
518 /**
519  * of_icc_get() - get a path handle from a DT node based on name
520  * @dev: device pointer for the consumer device
521  * @name: interconnect path name
522  *
523  * This function will search for a path between two endpoints and return an
524  * icc_path handle on success. Use icc_put() to release constraints when they
525  * are not needed anymore.
526  * If the interconnect API is disabled, NULL is returned and the consumer
527  * drivers will still build. Drivers are free to handle this specifically,
528  * but they don't have to.
529  *
530  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
531  * when the API is disabled or the "interconnects" DT property is missing.
532  */
533 struct icc_path *of_icc_get(struct device *dev, const char *name)
534 {
535 	struct device_node *np;
536 	int idx = 0;
537 
538 	if (!dev || !dev->of_node)
539 		return ERR_PTR(-ENODEV);
540 
541 	np = dev->of_node;
542 
543 	/*
544 	 * When the consumer DT node do not have "interconnects" property
545 	 * return a NULL path to skip setting constraints.
546 	 */
547 	if (!of_find_property(np, "interconnects", NULL))
548 		return NULL;
549 
550 	/*
551 	 * We use a combination of phandle and specifier for endpoint. For now
552 	 * lets support only global ids and extend this in the future if needed
553 	 * without breaking DT compatibility.
554 	 */
555 	if (name) {
556 		idx = of_property_match_string(np, "interconnect-names", name);
557 		if (idx < 0)
558 			return ERR_PTR(idx);
559 	}
560 
561 	return of_icc_get_by_index(dev, idx);
562 }
563 EXPORT_SYMBOL_GPL(of_icc_get);
564 
565 /**
566  * icc_set_tag() - set an optional tag on a path
567  * @path: the path we want to tag
568  * @tag: the tag value
569  *
570  * This function allows consumers to append a tag to the requests associated
571  * with a path, so that a different aggregation could be done based on this tag.
572  */
573 void icc_set_tag(struct icc_path *path, u32 tag)
574 {
575 	int i;
576 
577 	if (!path)
578 		return;
579 
580 	mutex_lock(&icc_lock);
581 
582 	for (i = 0; i < path->num_nodes; i++)
583 		path->reqs[i].tag = tag;
584 
585 	mutex_unlock(&icc_lock);
586 }
587 EXPORT_SYMBOL_GPL(icc_set_tag);
588 
589 /**
590  * icc_get_name() - Get name of the icc path
591  * @path: reference to the path returned by icc_get()
592  *
593  * This function is used by an interconnect consumer to get the name of the icc
594  * path.
595  *
596  * Returns a valid pointer on success, or NULL otherwise.
597  */
598 const char *icc_get_name(struct icc_path *path)
599 {
600 	if (!path)
601 		return NULL;
602 
603 	return path->name;
604 }
605 EXPORT_SYMBOL_GPL(icc_get_name);
606 
607 /**
608  * icc_set_bw() - set bandwidth constraints on an interconnect path
609  * @path: reference to the path returned by icc_get()
610  * @avg_bw: average bandwidth in kilobytes per second
611  * @peak_bw: peak bandwidth in kilobytes per second
612  *
613  * This function is used by an interconnect consumer to express its own needs
614  * in terms of bandwidth for a previously requested path between two endpoints.
615  * The requests are aggregated and each node is updated accordingly. The entire
616  * path is locked by a mutex to ensure that the set() is completed.
617  * The @path can be NULL when the "interconnects" DT properties is missing,
618  * which will mean that no constraints will be set.
619  *
620  * Returns 0 on success, or an appropriate error code otherwise.
621  */
622 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
623 {
624 	struct icc_node *node;
625 	u32 old_avg, old_peak;
626 	size_t i;
627 	int ret;
628 
629 	if (!path)
630 		return 0;
631 
632 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
633 		return -EINVAL;
634 
635 	mutex_lock(&icc_lock);
636 
637 	old_avg = path->reqs[0].avg_bw;
638 	old_peak = path->reqs[0].peak_bw;
639 
640 	for (i = 0; i < path->num_nodes; i++) {
641 		node = path->reqs[i].node;
642 
643 		/* update the consumer request for this path */
644 		path->reqs[i].avg_bw = avg_bw;
645 		path->reqs[i].peak_bw = peak_bw;
646 
647 		/* aggregate requests for this node */
648 		aggregate_requests(node);
649 
650 		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
651 	}
652 
653 	ret = apply_constraints(path);
654 	if (ret) {
655 		pr_debug("interconnect: error applying constraints (%d)\n",
656 			 ret);
657 
658 		for (i = 0; i < path->num_nodes; i++) {
659 			node = path->reqs[i].node;
660 			path->reqs[i].avg_bw = old_avg;
661 			path->reqs[i].peak_bw = old_peak;
662 			aggregate_requests(node);
663 		}
664 		apply_constraints(path);
665 	}
666 
667 	mutex_unlock(&icc_lock);
668 
669 	trace_icc_set_bw_end(path, ret);
670 
671 	return ret;
672 }
673 EXPORT_SYMBOL_GPL(icc_set_bw);
674 
675 static int __icc_enable(struct icc_path *path, bool enable)
676 {
677 	int i;
678 
679 	if (!path)
680 		return 0;
681 
682 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
683 		return -EINVAL;
684 
685 	mutex_lock(&icc_lock);
686 
687 	for (i = 0; i < path->num_nodes; i++)
688 		path->reqs[i].enabled = enable;
689 
690 	mutex_unlock(&icc_lock);
691 
692 	return icc_set_bw(path, path->reqs[0].avg_bw,
693 			  path->reqs[0].peak_bw);
694 }
695 
696 int icc_enable(struct icc_path *path)
697 {
698 	return __icc_enable(path, true);
699 }
700 EXPORT_SYMBOL_GPL(icc_enable);
701 
702 int icc_disable(struct icc_path *path)
703 {
704 	return __icc_enable(path, false);
705 }
706 EXPORT_SYMBOL_GPL(icc_disable);
707 
708 /**
709  * icc_get() - return a handle for path between two endpoints
710  * @dev: the device requesting the path
711  * @src_id: source device port id
712  * @dst_id: destination device port id
713  *
714  * This function will search for a path between two endpoints and return an
715  * icc_path handle on success. Use icc_put() to release
716  * constraints when they are not needed anymore.
717  * If the interconnect API is disabled, NULL is returned and the consumer
718  * drivers will still build. Drivers are free to handle this specifically,
719  * but they don't have to.
720  *
721  * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
722  * interconnect API is disabled.
723  */
724 struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
725 {
726 	struct icc_node *src, *dst;
727 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
728 
729 	mutex_lock(&icc_lock);
730 
731 	src = node_find(src_id);
732 	if (!src)
733 		goto out;
734 
735 	dst = node_find(dst_id);
736 	if (!dst)
737 		goto out;
738 
739 	path = path_find(dev, src, dst);
740 	if (IS_ERR(path)) {
741 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
742 		goto out;
743 	}
744 
745 	path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
746 	if (!path->name) {
747 		kfree(path);
748 		path = ERR_PTR(-ENOMEM);
749 	}
750 out:
751 	mutex_unlock(&icc_lock);
752 	return path;
753 }
754 EXPORT_SYMBOL_GPL(icc_get);
755 
756 /**
757  * icc_put() - release the reference to the icc_path
758  * @path: interconnect path
759  *
760  * Use this function to release the constraints on a path when the path is
761  * no longer needed. The constraints will be re-aggregated.
762  */
763 void icc_put(struct icc_path *path)
764 {
765 	struct icc_node *node;
766 	size_t i;
767 	int ret;
768 
769 	if (!path || WARN_ON(IS_ERR(path)))
770 		return;
771 
772 	ret = icc_set_bw(path, 0, 0);
773 	if (ret)
774 		pr_err("%s: error (%d)\n", __func__, ret);
775 
776 	mutex_lock(&icc_lock);
777 	for (i = 0; i < path->num_nodes; i++) {
778 		node = path->reqs[i].node;
779 		hlist_del(&path->reqs[i].req_node);
780 		if (!WARN_ON(!node->provider->users))
781 			node->provider->users--;
782 	}
783 	mutex_unlock(&icc_lock);
784 
785 	kfree_const(path->name);
786 	kfree(path);
787 }
788 EXPORT_SYMBOL_GPL(icc_put);
789 
790 static struct icc_node *icc_node_create_nolock(int id)
791 {
792 	struct icc_node *node;
793 
794 	/* check if node already exists */
795 	node = node_find(id);
796 	if (node)
797 		return node;
798 
799 	node = kzalloc(sizeof(*node), GFP_KERNEL);
800 	if (!node)
801 		return ERR_PTR(-ENOMEM);
802 
803 	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
804 	if (id < 0) {
805 		WARN(1, "%s: couldn't get idr\n", __func__);
806 		kfree(node);
807 		return ERR_PTR(id);
808 	}
809 
810 	node->id = id;
811 
812 	return node;
813 }
814 
815 /**
816  * icc_node_create() - create a node
817  * @id: node id
818  *
819  * Return: icc_node pointer on success, or ERR_PTR() on error
820  */
821 struct icc_node *icc_node_create(int id)
822 {
823 	struct icc_node *node;
824 
825 	mutex_lock(&icc_lock);
826 
827 	node = icc_node_create_nolock(id);
828 
829 	mutex_unlock(&icc_lock);
830 
831 	return node;
832 }
833 EXPORT_SYMBOL_GPL(icc_node_create);
834 
835 /**
836  * icc_node_destroy() - destroy a node
837  * @id: node id
838  */
839 void icc_node_destroy(int id)
840 {
841 	struct icc_node *node;
842 
843 	mutex_lock(&icc_lock);
844 
845 	node = node_find(id);
846 	if (node) {
847 		idr_remove(&icc_idr, node->id);
848 		WARN_ON(!hlist_empty(&node->req_list));
849 	}
850 
851 	mutex_unlock(&icc_lock);
852 
853 	kfree(node);
854 }
855 EXPORT_SYMBOL_GPL(icc_node_destroy);
856 
857 /**
858  * icc_link_create() - create a link between two nodes
859  * @node: source node id
860  * @dst_id: destination node id
861  *
862  * Create a link between two nodes. The nodes might belong to different
863  * interconnect providers and the @dst_id node might not exist (if the
864  * provider driver has not probed yet). So just create the @dst_id node
865  * and when the actual provider driver is probed, the rest of the node
866  * data is filled.
867  *
868  * Return: 0 on success, or an error code otherwise
869  */
870 int icc_link_create(struct icc_node *node, const int dst_id)
871 {
872 	struct icc_node *dst;
873 	struct icc_node **new;
874 	int ret = 0;
875 
876 	if (!node->provider)
877 		return -EINVAL;
878 
879 	mutex_lock(&icc_lock);
880 
881 	dst = node_find(dst_id);
882 	if (!dst) {
883 		dst = icc_node_create_nolock(dst_id);
884 
885 		if (IS_ERR(dst)) {
886 			ret = PTR_ERR(dst);
887 			goto out;
888 		}
889 	}
890 
891 	new = krealloc(node->links,
892 		       (node->num_links + 1) * sizeof(*node->links),
893 		       GFP_KERNEL);
894 	if (!new) {
895 		ret = -ENOMEM;
896 		goto out;
897 	}
898 
899 	node->links = new;
900 	node->links[node->num_links++] = dst;
901 
902 out:
903 	mutex_unlock(&icc_lock);
904 
905 	return ret;
906 }
907 EXPORT_SYMBOL_GPL(icc_link_create);
908 
909 /**
910  * icc_link_destroy() - destroy a link between two nodes
911  * @src: pointer to source node
912  * @dst: pointer to destination node
913  *
914  * Return: 0 on success, or an error code otherwise
915  */
916 int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
917 {
918 	struct icc_node **new;
919 	size_t slot;
920 	int ret = 0;
921 
922 	if (IS_ERR_OR_NULL(src))
923 		return -EINVAL;
924 
925 	if (IS_ERR_OR_NULL(dst))
926 		return -EINVAL;
927 
928 	mutex_lock(&icc_lock);
929 
930 	for (slot = 0; slot < src->num_links; slot++)
931 		if (src->links[slot] == dst)
932 			break;
933 
934 	if (WARN_ON(slot == src->num_links)) {
935 		ret = -ENXIO;
936 		goto out;
937 	}
938 
939 	src->links[slot] = src->links[--src->num_links];
940 
941 	new = krealloc(src->links, src->num_links * sizeof(*src->links),
942 		       GFP_KERNEL);
943 	if (new)
944 		src->links = new;
945 	else
946 		ret = -ENOMEM;
947 
948 out:
949 	mutex_unlock(&icc_lock);
950 
951 	return ret;
952 }
953 EXPORT_SYMBOL_GPL(icc_link_destroy);
954 
955 /**
956  * icc_node_add() - add interconnect node to interconnect provider
957  * @node: pointer to the interconnect node
958  * @provider: pointer to the interconnect provider
959  */
960 void icc_node_add(struct icc_node *node, struct icc_provider *provider)
961 {
962 	if (WARN_ON(node->provider))
963 		return;
964 
965 	mutex_lock(&icc_lock);
966 
967 	node->provider = provider;
968 	list_add_tail(&node->node_list, &provider->nodes);
969 
970 	/* get the initial bandwidth values and sync them with hardware */
971 	if (provider->get_bw) {
972 		provider->get_bw(node, &node->init_avg, &node->init_peak);
973 	} else {
974 		node->init_avg = INT_MAX;
975 		node->init_peak = INT_MAX;
976 	}
977 	node->avg_bw = node->init_avg;
978 	node->peak_bw = node->init_peak;
979 
980 	if (provider->pre_aggregate)
981 		provider->pre_aggregate(node);
982 
983 	if (provider->aggregate)
984 		provider->aggregate(node, 0, node->init_avg, node->init_peak,
985 				    &node->avg_bw, &node->peak_bw);
986 
987 	provider->set(node, node);
988 	node->avg_bw = 0;
989 	node->peak_bw = 0;
990 
991 	mutex_unlock(&icc_lock);
992 }
993 EXPORT_SYMBOL_GPL(icc_node_add);
994 
995 /**
996  * icc_node_del() - delete interconnect node from interconnect provider
997  * @node: pointer to the interconnect node
998  */
999 void icc_node_del(struct icc_node *node)
1000 {
1001 	mutex_lock(&icc_lock);
1002 
1003 	list_del(&node->node_list);
1004 
1005 	mutex_unlock(&icc_lock);
1006 }
1007 EXPORT_SYMBOL_GPL(icc_node_del);
1008 
1009 /**
1010  * icc_nodes_remove() - remove all previously added nodes from provider
1011  * @provider: the interconnect provider we are removing nodes from
1012  *
1013  * Return: 0 on success, or an error code otherwise
1014  */
1015 int icc_nodes_remove(struct icc_provider *provider)
1016 {
1017 	struct icc_node *n, *tmp;
1018 
1019 	if (WARN_ON(IS_ERR_OR_NULL(provider)))
1020 		return -EINVAL;
1021 
1022 	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
1023 		icc_node_del(n);
1024 		icc_node_destroy(n->id);
1025 	}
1026 
1027 	return 0;
1028 }
1029 EXPORT_SYMBOL_GPL(icc_nodes_remove);
1030 
1031 /**
1032  * icc_provider_add() - add a new interconnect provider
1033  * @provider: the interconnect provider that will be added into topology
1034  *
1035  * Return: 0 on success, or an error code otherwise
1036  */
1037 int icc_provider_add(struct icc_provider *provider)
1038 {
1039 	if (WARN_ON(!provider->set))
1040 		return -EINVAL;
1041 	if (WARN_ON(!provider->xlate && !provider->xlate_extended))
1042 		return -EINVAL;
1043 
1044 	mutex_lock(&icc_lock);
1045 
1046 	INIT_LIST_HEAD(&provider->nodes);
1047 	list_add_tail(&provider->provider_list, &icc_providers);
1048 
1049 	mutex_unlock(&icc_lock);
1050 
1051 	dev_dbg(provider->dev, "interconnect provider added to topology\n");
1052 
1053 	return 0;
1054 }
1055 EXPORT_SYMBOL_GPL(icc_provider_add);
1056 
1057 /**
1058  * icc_provider_del() - delete previously added interconnect provider
1059  * @provider: the interconnect provider that will be removed from topology
1060  *
1061  * Return: 0 on success, or an error code otherwise
1062  */
1063 int icc_provider_del(struct icc_provider *provider)
1064 {
1065 	mutex_lock(&icc_lock);
1066 	if (provider->users) {
1067 		pr_warn("interconnect provider still has %d users\n",
1068 			provider->users);
1069 		mutex_unlock(&icc_lock);
1070 		return -EBUSY;
1071 	}
1072 
1073 	if (!list_empty(&provider->nodes)) {
1074 		pr_warn("interconnect provider still has nodes\n");
1075 		mutex_unlock(&icc_lock);
1076 		return -EBUSY;
1077 	}
1078 
1079 	list_del(&provider->provider_list);
1080 	mutex_unlock(&icc_lock);
1081 
1082 	return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(icc_provider_del);
1085 
1086 static int of_count_icc_providers(struct device_node *np)
1087 {
1088 	struct device_node *child;
1089 	int count = 0;
1090 	const struct of_device_id __maybe_unused ignore_list[] = {
1091 		{ .compatible = "qcom,sc7180-ipa-virt" },
1092 		{ .compatible = "qcom,sdx55-ipa-virt" },
1093 		{}
1094 	};
1095 
1096 	for_each_available_child_of_node(np, child) {
1097 		if (of_property_read_bool(child, "#interconnect-cells") &&
1098 		    likely(!of_match_node(ignore_list, child)))
1099 			count++;
1100 		count += of_count_icc_providers(child);
1101 	}
1102 
1103 	return count;
1104 }
1105 
1106 void icc_sync_state(struct device *dev)
1107 {
1108 	struct icc_provider *p;
1109 	struct icc_node *n;
1110 	static int count;
1111 
1112 	count++;
1113 
1114 	if (count < providers_count)
1115 		return;
1116 
1117 	mutex_lock(&icc_lock);
1118 	synced_state = true;
1119 	list_for_each_entry(p, &icc_providers, provider_list) {
1120 		dev_dbg(p->dev, "interconnect provider is in synced state\n");
1121 		list_for_each_entry(n, &p->nodes, node_list) {
1122 			if (n->init_avg || n->init_peak) {
1123 				n->init_avg = 0;
1124 				n->init_peak = 0;
1125 				aggregate_requests(n);
1126 				p->set(n, n);
1127 			}
1128 		}
1129 	}
1130 	mutex_unlock(&icc_lock);
1131 }
1132 EXPORT_SYMBOL_GPL(icc_sync_state);
1133 
1134 static int __init icc_init(void)
1135 {
1136 	struct device_node *root = of_find_node_by_path("/");
1137 
1138 	providers_count = of_count_icc_providers(root);
1139 	of_node_put(root);
1140 
1141 	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1142 	debugfs_create_file("interconnect_summary", 0444,
1143 			    icc_debugfs_dir, NULL, &icc_summary_fops);
1144 	debugfs_create_file("interconnect_graph", 0444,
1145 			    icc_debugfs_dir, NULL, &icc_graph_fops);
1146 	return 0;
1147 }
1148 
1149 device_initcall(icc_init);
1150 
1151 MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
1152 MODULE_DESCRIPTION("Interconnect Driver Core");
1153 MODULE_LICENSE("GPL v2");
1154