xref: /linux/drivers/interconnect/core.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interconnect framework core driver
4  *
5  * Copyright (c) 2017-2019, Linaro Ltd.
6  * Author: Georgi Djakov <georgi.djakov@linaro.org>
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/device.h>
11 #include <linux/idr.h>
12 #include <linux/init.h>
13 #include <linux/interconnect.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/list.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/overflow.h>
20 
21 #include "internal.h"
22 
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25 
26 static DEFINE_IDR(icc_idr);
27 static LIST_HEAD(icc_providers);
28 static int providers_count;
29 static bool synced_state;
30 static DEFINE_MUTEX(icc_lock);
31 static DEFINE_MUTEX(icc_bw_lock);
32 static struct dentry *icc_debugfs_dir;
33 
34 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
35 {
36 	if (!n)
37 		return;
38 
39 	seq_printf(s, "%-42s %12u %12u\n",
40 		   n->name, n->avg_bw, n->peak_bw);
41 }
42 
43 static int icc_summary_show(struct seq_file *s, void *data)
44 {
45 	struct icc_provider *provider;
46 
47 	seq_puts(s, " node                                  tag          avg         peak\n");
48 	seq_puts(s, "--------------------------------------------------------------------\n");
49 
50 	mutex_lock(&icc_lock);
51 
52 	list_for_each_entry(provider, &icc_providers, provider_list) {
53 		struct icc_node *n;
54 
55 		list_for_each_entry(n, &provider->nodes, node_list) {
56 			struct icc_req *r;
57 
58 			icc_summary_show_one(s, n);
59 			hlist_for_each_entry(r, &n->req_list, req_node) {
60 				u32 avg_bw = 0, peak_bw = 0;
61 
62 				if (!r->dev)
63 					continue;
64 
65 				if (r->enabled) {
66 					avg_bw = r->avg_bw;
67 					peak_bw = r->peak_bw;
68 				}
69 
70 				seq_printf(s, "  %-27s %12u %12u %12u\n",
71 					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
72 			}
73 		}
74 	}
75 
76 	mutex_unlock(&icc_lock);
77 
78 	return 0;
79 }
80 DEFINE_SHOW_ATTRIBUTE(icc_summary);
81 
82 static void icc_graph_show_link(struct seq_file *s, int level,
83 				struct icc_node *n, struct icc_node *m)
84 {
85 	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
86 		   level == 2 ? "\t\t" : "\t",
87 		   n->id, n->name, m->id, m->name);
88 }
89 
90 static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
91 {
92 	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
93 		   n->id, n->name, n->id, n->name);
94 	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
95 	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
96 	seq_puts(s, "\"]\n");
97 }
98 
99 static int icc_graph_show(struct seq_file *s, void *data)
100 {
101 	struct icc_provider *provider;
102 	struct icc_node *n;
103 	int cluster_index = 0;
104 	int i;
105 
106 	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
107 	mutex_lock(&icc_lock);
108 
109 	/* draw providers as cluster subgraphs */
110 	cluster_index = 0;
111 	list_for_each_entry(provider, &icc_providers, provider_list) {
112 		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
113 		if (provider->dev)
114 			seq_printf(s, "\t\tlabel = \"%s\"\n",
115 				   dev_name(provider->dev));
116 
117 		/* draw nodes */
118 		list_for_each_entry(n, &provider->nodes, node_list)
119 			icc_graph_show_node(s, n);
120 
121 		/* draw internal links */
122 		list_for_each_entry(n, &provider->nodes, node_list)
123 			for (i = 0; i < n->num_links; ++i)
124 				if (n->provider == n->links[i]->provider)
125 					icc_graph_show_link(s, 2, n,
126 							    n->links[i]);
127 
128 		seq_puts(s, "\t}\n");
129 	}
130 
131 	/* draw external links */
132 	list_for_each_entry(provider, &icc_providers, provider_list)
133 		list_for_each_entry(n, &provider->nodes, node_list)
134 			for (i = 0; i < n->num_links; ++i)
135 				if (n->provider != n->links[i]->provider)
136 					icc_graph_show_link(s, 1, n,
137 							    n->links[i]);
138 
139 	mutex_unlock(&icc_lock);
140 	seq_puts(s, "}");
141 
142 	return 0;
143 }
144 DEFINE_SHOW_ATTRIBUTE(icc_graph);
145 
146 static struct icc_node *node_find(const int id)
147 {
148 	return idr_find(&icc_idr, id);
149 }
150 
151 static struct icc_node *node_find_by_name(const char *name)
152 {
153 	struct icc_provider *provider;
154 	struct icc_node *n;
155 
156 	list_for_each_entry(provider, &icc_providers, provider_list) {
157 		list_for_each_entry(n, &provider->nodes, node_list) {
158 			if (!strcmp(n->name, name))
159 				return n;
160 		}
161 	}
162 
163 	return NULL;
164 }
165 
166 static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
167 				  ssize_t num_nodes)
168 {
169 	struct icc_node *node = dst;
170 	struct icc_path *path;
171 	int i;
172 
173 	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
174 	if (!path)
175 		return ERR_PTR(-ENOMEM);
176 
177 	path->num_nodes = num_nodes;
178 
179 	for (i = num_nodes - 1; i >= 0; i--) {
180 		node->provider->users++;
181 		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
182 		path->reqs[i].node = node;
183 		path->reqs[i].dev = dev;
184 		path->reqs[i].enabled = true;
185 		/* reference to previous node was saved during path traversal */
186 		node = node->reverse;
187 	}
188 
189 	return path;
190 }
191 
192 static struct icc_path *path_find(struct device *dev, struct icc_node *src,
193 				  struct icc_node *dst)
194 {
195 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
196 	struct icc_node *n, *node = NULL;
197 	struct list_head traverse_list;
198 	struct list_head edge_list;
199 	struct list_head visited_list;
200 	size_t i, depth = 1;
201 	bool found = false;
202 
203 	INIT_LIST_HEAD(&traverse_list);
204 	INIT_LIST_HEAD(&edge_list);
205 	INIT_LIST_HEAD(&visited_list);
206 
207 	list_add(&src->search_list, &traverse_list);
208 	src->reverse = NULL;
209 
210 	do {
211 		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
212 			if (node == dst) {
213 				found = true;
214 				list_splice_init(&edge_list, &visited_list);
215 				list_splice_init(&traverse_list, &visited_list);
216 				break;
217 			}
218 			for (i = 0; i < node->num_links; i++) {
219 				struct icc_node *tmp = node->links[i];
220 
221 				if (!tmp) {
222 					path = ERR_PTR(-ENOENT);
223 					goto out;
224 				}
225 
226 				if (tmp->is_traversed)
227 					continue;
228 
229 				tmp->is_traversed = true;
230 				tmp->reverse = node;
231 				list_add_tail(&tmp->search_list, &edge_list);
232 			}
233 		}
234 
235 		if (found)
236 			break;
237 
238 		list_splice_init(&traverse_list, &visited_list);
239 		list_splice_init(&edge_list, &traverse_list);
240 
241 		/* count the hops including the source */
242 		depth++;
243 
244 	} while (!list_empty(&traverse_list));
245 
246 out:
247 
248 	/* reset the traversed state */
249 	list_for_each_entry_reverse(n, &visited_list, search_list)
250 		n->is_traversed = false;
251 
252 	if (found)
253 		path = path_init(dev, dst, depth);
254 
255 	return path;
256 }
257 
258 /*
259  * We want the path to honor all bandwidth requests, so the average and peak
260  * bandwidth requirements from each consumer are aggregated at each node.
261  * The aggregation is platform specific, so each platform can customize it by
262  * implementing its own aggregate() function.
263  */
264 
265 static int aggregate_requests(struct icc_node *node)
266 {
267 	struct icc_provider *p = node->provider;
268 	struct icc_req *r;
269 	u32 avg_bw, peak_bw;
270 
271 	node->avg_bw = 0;
272 	node->peak_bw = 0;
273 
274 	if (p->pre_aggregate)
275 		p->pre_aggregate(node);
276 
277 	hlist_for_each_entry(r, &node->req_list, req_node) {
278 		if (r->enabled) {
279 			avg_bw = r->avg_bw;
280 			peak_bw = r->peak_bw;
281 		} else {
282 			avg_bw = 0;
283 			peak_bw = 0;
284 		}
285 		p->aggregate(node, r->tag, avg_bw, peak_bw,
286 			     &node->avg_bw, &node->peak_bw);
287 
288 		/* during boot use the initial bandwidth as a floor value */
289 		if (!synced_state) {
290 			node->avg_bw = max(node->avg_bw, node->init_avg);
291 			node->peak_bw = max(node->peak_bw, node->init_peak);
292 		}
293 	}
294 
295 	return 0;
296 }
297 
298 static int apply_constraints(struct icc_path *path)
299 {
300 	struct icc_node *next, *prev = NULL;
301 	struct icc_provider *p;
302 	int ret = -EINVAL;
303 	int i;
304 
305 	for (i = 0; i < path->num_nodes; i++) {
306 		next = path->reqs[i].node;
307 		p = next->provider;
308 
309 		/* both endpoints should be valid master-slave pairs */
310 		if (!prev || (p != prev->provider && !p->inter_set)) {
311 			prev = next;
312 			continue;
313 		}
314 
315 		/* set the constraints */
316 		ret = p->set(prev, next);
317 		if (ret)
318 			goto out;
319 
320 		prev = next;
321 	}
322 out:
323 	return ret;
324 }
325 
326 int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
327 		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
328 {
329 	*agg_avg += avg_bw;
330 	*agg_peak = max(*agg_peak, peak_bw);
331 
332 	return 0;
333 }
334 EXPORT_SYMBOL_GPL(icc_std_aggregate);
335 
336 /* of_icc_xlate_onecell() - Translate function using a single index.
337  * @spec: OF phandle args to map into an interconnect node.
338  * @data: private data (pointer to struct icc_onecell_data)
339  *
340  * This is a generic translate function that can be used to model simple
341  * interconnect providers that have one device tree node and provide
342  * multiple interconnect nodes. A single cell is used as an index into
343  * an array of icc nodes specified in the icc_onecell_data struct when
344  * registering the provider.
345  */
346 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
347 				      void *data)
348 {
349 	struct icc_onecell_data *icc_data = data;
350 	unsigned int idx = spec->args[0];
351 
352 	if (idx >= icc_data->num_nodes) {
353 		pr_err("%s: invalid index %u\n", __func__, idx);
354 		return ERR_PTR(-EINVAL);
355 	}
356 
357 	return icc_data->nodes[idx];
358 }
359 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
360 
361 /**
362  * of_icc_get_from_provider() - Look-up interconnect node
363  * @spec: OF phandle args to use for look-up
364  *
365  * Looks for interconnect provider under the node specified by @spec and if
366  * found, uses xlate function of the provider to map phandle args to node.
367  *
368  * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
369  * on failure.
370  */
371 struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
372 {
373 	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
374 	struct icc_node_data *data = NULL;
375 	struct icc_provider *provider;
376 
377 	if (!spec)
378 		return ERR_PTR(-EINVAL);
379 
380 	mutex_lock(&icc_lock);
381 	list_for_each_entry(provider, &icc_providers, provider_list) {
382 		if (provider->dev->of_node == spec->np) {
383 			if (provider->xlate_extended) {
384 				data = provider->xlate_extended(spec, provider->data);
385 				if (!IS_ERR(data)) {
386 					node = data->node;
387 					break;
388 				}
389 			} else {
390 				node = provider->xlate(spec, provider->data);
391 				if (!IS_ERR(node))
392 					break;
393 			}
394 		}
395 	}
396 	mutex_unlock(&icc_lock);
397 
398 	if (!node)
399 		return ERR_PTR(-EINVAL);
400 
401 	if (IS_ERR(node))
402 		return ERR_CAST(node);
403 
404 	if (!data) {
405 		data = kzalloc(sizeof(*data), GFP_KERNEL);
406 		if (!data)
407 			return ERR_PTR(-ENOMEM);
408 		data->node = node;
409 	}
410 
411 	return data;
412 }
413 EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
414 
415 static void devm_icc_release(struct device *dev, void *res)
416 {
417 	icc_put(*(struct icc_path **)res);
418 }
419 
420 struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
421 {
422 	struct icc_path **ptr, *path;
423 
424 	ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
425 	if (!ptr)
426 		return ERR_PTR(-ENOMEM);
427 
428 	path = of_icc_get(dev, name);
429 	if (!IS_ERR(path)) {
430 		*ptr = path;
431 		devres_add(dev, ptr);
432 	} else {
433 		devres_free(ptr);
434 	}
435 
436 	return path;
437 }
438 EXPORT_SYMBOL_GPL(devm_of_icc_get);
439 
440 /**
441  * of_icc_get_by_index() - get a path handle from a DT node based on index
442  * @dev: device pointer for the consumer device
443  * @idx: interconnect path index
444  *
445  * This function will search for a path between two endpoints and return an
446  * icc_path handle on success. Use icc_put() to release constraints when they
447  * are not needed anymore.
448  * If the interconnect API is disabled, NULL is returned and the consumer
449  * drivers will still build. Drivers are free to handle this specifically,
450  * but they don't have to.
451  *
452  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
453  * when the API is disabled or the "interconnects" DT property is missing.
454  */
455 struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
456 {
457 	struct icc_path *path;
458 	struct icc_node_data *src_data, *dst_data;
459 	struct device_node *np;
460 	struct of_phandle_args src_args, dst_args;
461 	int ret;
462 
463 	if (!dev || !dev->of_node)
464 		return ERR_PTR(-ENODEV);
465 
466 	np = dev->of_node;
467 
468 	/*
469 	 * When the consumer DT node do not have "interconnects" property
470 	 * return a NULL path to skip setting constraints.
471 	 */
472 	if (!of_property_present(np, "interconnects"))
473 		return NULL;
474 
475 	/*
476 	 * We use a combination of phandle and specifier for endpoint. For now
477 	 * lets support only global ids and extend this in the future if needed
478 	 * without breaking DT compatibility.
479 	 */
480 	ret = of_parse_phandle_with_args(np, "interconnects",
481 					 "#interconnect-cells", idx * 2,
482 					 &src_args);
483 	if (ret)
484 		return ERR_PTR(ret);
485 
486 	of_node_put(src_args.np);
487 
488 	ret = of_parse_phandle_with_args(np, "interconnects",
489 					 "#interconnect-cells", idx * 2 + 1,
490 					 &dst_args);
491 	if (ret)
492 		return ERR_PTR(ret);
493 
494 	of_node_put(dst_args.np);
495 
496 	src_data = of_icc_get_from_provider(&src_args);
497 
498 	if (IS_ERR(src_data)) {
499 		dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
500 		return ERR_CAST(src_data);
501 	}
502 
503 	dst_data = of_icc_get_from_provider(&dst_args);
504 
505 	if (IS_ERR(dst_data)) {
506 		dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
507 		kfree(src_data);
508 		return ERR_CAST(dst_data);
509 	}
510 
511 	mutex_lock(&icc_lock);
512 	path = path_find(dev, src_data->node, dst_data->node);
513 	mutex_unlock(&icc_lock);
514 	if (IS_ERR(path)) {
515 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
516 		goto free_icc_data;
517 	}
518 
519 	if (src_data->tag && src_data->tag == dst_data->tag)
520 		icc_set_tag(path, src_data->tag);
521 
522 	path->name = kasprintf(GFP_KERNEL, "%s-%s",
523 			       src_data->node->name, dst_data->node->name);
524 	if (!path->name) {
525 		kfree(path);
526 		path = ERR_PTR(-ENOMEM);
527 	}
528 
529 free_icc_data:
530 	kfree(src_data);
531 	kfree(dst_data);
532 	return path;
533 }
534 EXPORT_SYMBOL_GPL(of_icc_get_by_index);
535 
536 /**
537  * of_icc_get() - get a path handle from a DT node based on name
538  * @dev: device pointer for the consumer device
539  * @name: interconnect path name
540  *
541  * This function will search for a path between two endpoints and return an
542  * icc_path handle on success. Use icc_put() to release constraints when they
543  * are not needed anymore.
544  * If the interconnect API is disabled, NULL is returned and the consumer
545  * drivers will still build. Drivers are free to handle this specifically,
546  * but they don't have to.
547  *
548  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
549  * when the API is disabled or the "interconnects" DT property is missing.
550  */
551 struct icc_path *of_icc_get(struct device *dev, const char *name)
552 {
553 	struct device_node *np;
554 	int idx = 0;
555 
556 	if (!dev || !dev->of_node)
557 		return ERR_PTR(-ENODEV);
558 
559 	np = dev->of_node;
560 
561 	/*
562 	 * When the consumer DT node do not have "interconnects" property
563 	 * return a NULL path to skip setting constraints.
564 	 */
565 	if (!of_property_present(np, "interconnects"))
566 		return NULL;
567 
568 	/*
569 	 * We use a combination of phandle and specifier for endpoint. For now
570 	 * lets support only global ids and extend this in the future if needed
571 	 * without breaking DT compatibility.
572 	 */
573 	if (name) {
574 		idx = of_property_match_string(np, "interconnect-names", name);
575 		if (idx < 0)
576 			return ERR_PTR(idx);
577 	}
578 
579 	return of_icc_get_by_index(dev, idx);
580 }
581 EXPORT_SYMBOL_GPL(of_icc_get);
582 
583 /**
584  * icc_get() - get a path handle between two endpoints
585  * @dev: device pointer for the consumer device
586  * @src: source node name
587  * @dst: destination node name
588  *
589  * This function will search for a path between two endpoints and return an
590  * icc_path handle on success. Use icc_put() to release constraints when they
591  * are not needed anymore.
592  *
593  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
594  * when the API is disabled.
595  */
596 struct icc_path *icc_get(struct device *dev, const char *src, const char *dst)
597 {
598 	struct icc_node *src_node, *dst_node;
599 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
600 
601 	mutex_lock(&icc_lock);
602 
603 	src_node = node_find_by_name(src);
604 	if (!src_node) {
605 		dev_err(dev, "%s: invalid src=%s\n", __func__, src);
606 		goto out;
607 	}
608 
609 	dst_node = node_find_by_name(dst);
610 	if (!dst_node) {
611 		dev_err(dev, "%s: invalid dst=%s\n", __func__, dst);
612 		goto out;
613 	}
614 
615 	path = path_find(dev, src_node, dst_node);
616 	if (IS_ERR(path)) {
617 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
618 		goto out;
619 	}
620 
621 	path->name = kasprintf(GFP_KERNEL, "%s-%s", src_node->name, dst_node->name);
622 	if (!path->name) {
623 		kfree(path);
624 		path = ERR_PTR(-ENOMEM);
625 	}
626 out:
627 	mutex_unlock(&icc_lock);
628 	return path;
629 }
630 
631 /**
632  * icc_set_tag() - set an optional tag on a path
633  * @path: the path we want to tag
634  * @tag: the tag value
635  *
636  * This function allows consumers to append a tag to the requests associated
637  * with a path, so that a different aggregation could be done based on this tag.
638  */
639 void icc_set_tag(struct icc_path *path, u32 tag)
640 {
641 	int i;
642 
643 	if (!path)
644 		return;
645 
646 	mutex_lock(&icc_lock);
647 
648 	for (i = 0; i < path->num_nodes; i++)
649 		path->reqs[i].tag = tag;
650 
651 	mutex_unlock(&icc_lock);
652 }
653 EXPORT_SYMBOL_GPL(icc_set_tag);
654 
655 /**
656  * icc_get_name() - Get name of the icc path
657  * @path: interconnect path
658  *
659  * This function is used by an interconnect consumer to get the name of the icc
660  * path.
661  *
662  * Returns a valid pointer on success, or NULL otherwise.
663  */
664 const char *icc_get_name(struct icc_path *path)
665 {
666 	if (!path)
667 		return NULL;
668 
669 	return path->name;
670 }
671 EXPORT_SYMBOL_GPL(icc_get_name);
672 
673 /**
674  * icc_set_bw() - set bandwidth constraints on an interconnect path
675  * @path: interconnect path
676  * @avg_bw: average bandwidth in kilobytes per second
677  * @peak_bw: peak bandwidth in kilobytes per second
678  *
679  * This function is used by an interconnect consumer to express its own needs
680  * in terms of bandwidth for a previously requested path between two endpoints.
681  * The requests are aggregated and each node is updated accordingly. The entire
682  * path is locked by a mutex to ensure that the set() is completed.
683  * The @path can be NULL when the "interconnects" DT properties is missing,
684  * which will mean that no constraints will be set.
685  *
686  * Returns 0 on success, or an appropriate error code otherwise.
687  */
688 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
689 {
690 	struct icc_node *node;
691 	u32 old_avg, old_peak;
692 	size_t i;
693 	int ret;
694 
695 	if (!path)
696 		return 0;
697 
698 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
699 		return -EINVAL;
700 
701 	mutex_lock(&icc_bw_lock);
702 
703 	old_avg = path->reqs[0].avg_bw;
704 	old_peak = path->reqs[0].peak_bw;
705 
706 	for (i = 0; i < path->num_nodes; i++) {
707 		node = path->reqs[i].node;
708 
709 		/* update the consumer request for this path */
710 		path->reqs[i].avg_bw = avg_bw;
711 		path->reqs[i].peak_bw = peak_bw;
712 
713 		/* aggregate requests for this node */
714 		aggregate_requests(node);
715 
716 		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
717 	}
718 
719 	ret = apply_constraints(path);
720 	if (ret) {
721 		pr_debug("interconnect: error applying constraints (%d)\n",
722 			 ret);
723 
724 		for (i = 0; i < path->num_nodes; i++) {
725 			node = path->reqs[i].node;
726 			path->reqs[i].avg_bw = old_avg;
727 			path->reqs[i].peak_bw = old_peak;
728 			aggregate_requests(node);
729 		}
730 		apply_constraints(path);
731 	}
732 
733 	mutex_unlock(&icc_bw_lock);
734 
735 	trace_icc_set_bw_end(path, ret);
736 
737 	return ret;
738 }
739 EXPORT_SYMBOL_GPL(icc_set_bw);
740 
741 static int __icc_enable(struct icc_path *path, bool enable)
742 {
743 	int i;
744 
745 	if (!path)
746 		return 0;
747 
748 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
749 		return -EINVAL;
750 
751 	mutex_lock(&icc_lock);
752 
753 	for (i = 0; i < path->num_nodes; i++)
754 		path->reqs[i].enabled = enable;
755 
756 	mutex_unlock(&icc_lock);
757 
758 	return icc_set_bw(path, path->reqs[0].avg_bw,
759 			  path->reqs[0].peak_bw);
760 }
761 
762 int icc_enable(struct icc_path *path)
763 {
764 	return __icc_enable(path, true);
765 }
766 EXPORT_SYMBOL_GPL(icc_enable);
767 
768 int icc_disable(struct icc_path *path)
769 {
770 	return __icc_enable(path, false);
771 }
772 EXPORT_SYMBOL_GPL(icc_disable);
773 
774 /**
775  * icc_put() - release the reference to the icc_path
776  * @path: interconnect path
777  *
778  * Use this function to release the constraints on a path when the path is
779  * no longer needed. The constraints will be re-aggregated.
780  */
781 void icc_put(struct icc_path *path)
782 {
783 	struct icc_node *node;
784 	size_t i;
785 	int ret;
786 
787 	if (!path || WARN_ON(IS_ERR(path)))
788 		return;
789 
790 	ret = icc_set_bw(path, 0, 0);
791 	if (ret)
792 		pr_err("%s: error (%d)\n", __func__, ret);
793 
794 	mutex_lock(&icc_lock);
795 	for (i = 0; i < path->num_nodes; i++) {
796 		node = path->reqs[i].node;
797 		hlist_del(&path->reqs[i].req_node);
798 		if (!WARN_ON(!node->provider->users))
799 			node->provider->users--;
800 	}
801 	mutex_unlock(&icc_lock);
802 
803 	kfree_const(path->name);
804 	kfree(path);
805 }
806 EXPORT_SYMBOL_GPL(icc_put);
807 
808 static struct icc_node *icc_node_create_nolock(int id)
809 {
810 	struct icc_node *node;
811 
812 	/* check if node already exists */
813 	node = node_find(id);
814 	if (node)
815 		return node;
816 
817 	node = kzalloc(sizeof(*node), GFP_KERNEL);
818 	if (!node)
819 		return ERR_PTR(-ENOMEM);
820 
821 	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
822 	if (id < 0) {
823 		WARN(1, "%s: couldn't get idr\n", __func__);
824 		kfree(node);
825 		return ERR_PTR(id);
826 	}
827 
828 	node->id = id;
829 
830 	return node;
831 }
832 
833 /**
834  * icc_node_create() - create a node
835  * @id: node id
836  *
837  * Return: icc_node pointer on success, or ERR_PTR() on error
838  */
839 struct icc_node *icc_node_create(int id)
840 {
841 	struct icc_node *node;
842 
843 	mutex_lock(&icc_lock);
844 
845 	node = icc_node_create_nolock(id);
846 
847 	mutex_unlock(&icc_lock);
848 
849 	return node;
850 }
851 EXPORT_SYMBOL_GPL(icc_node_create);
852 
853 /**
854  * icc_node_destroy() - destroy a node
855  * @id: node id
856  */
857 void icc_node_destroy(int id)
858 {
859 	struct icc_node *node;
860 
861 	mutex_lock(&icc_lock);
862 
863 	node = node_find(id);
864 	if (node) {
865 		idr_remove(&icc_idr, node->id);
866 		WARN_ON(!hlist_empty(&node->req_list));
867 	}
868 
869 	mutex_unlock(&icc_lock);
870 
871 	if (!node)
872 		return;
873 
874 	kfree(node->links);
875 	kfree(node);
876 }
877 EXPORT_SYMBOL_GPL(icc_node_destroy);
878 
879 /**
880  * icc_link_create() - create a link between two nodes
881  * @node: source node id
882  * @dst_id: destination node id
883  *
884  * Create a link between two nodes. The nodes might belong to different
885  * interconnect providers and the @dst_id node might not exist (if the
886  * provider driver has not probed yet). So just create the @dst_id node
887  * and when the actual provider driver is probed, the rest of the node
888  * data is filled.
889  *
890  * Return: 0 on success, or an error code otherwise
891  */
892 int icc_link_create(struct icc_node *node, const int dst_id)
893 {
894 	struct icc_node *dst;
895 	struct icc_node **new;
896 	int ret = 0;
897 
898 	if (!node->provider)
899 		return -EINVAL;
900 
901 	mutex_lock(&icc_lock);
902 
903 	dst = node_find(dst_id);
904 	if (!dst) {
905 		dst = icc_node_create_nolock(dst_id);
906 
907 		if (IS_ERR(dst)) {
908 			ret = PTR_ERR(dst);
909 			goto out;
910 		}
911 	}
912 
913 	new = krealloc(node->links,
914 		       (node->num_links + 1) * sizeof(*node->links),
915 		       GFP_KERNEL);
916 	if (!new) {
917 		ret = -ENOMEM;
918 		goto out;
919 	}
920 
921 	node->links = new;
922 	node->links[node->num_links++] = dst;
923 
924 out:
925 	mutex_unlock(&icc_lock);
926 
927 	return ret;
928 }
929 EXPORT_SYMBOL_GPL(icc_link_create);
930 
931 /**
932  * icc_node_add() - add interconnect node to interconnect provider
933  * @node: pointer to the interconnect node
934  * @provider: pointer to the interconnect provider
935  */
936 void icc_node_add(struct icc_node *node, struct icc_provider *provider)
937 {
938 	if (WARN_ON(node->provider))
939 		return;
940 
941 	mutex_lock(&icc_lock);
942 	mutex_lock(&icc_bw_lock);
943 
944 	node->provider = provider;
945 	list_add_tail(&node->node_list, &provider->nodes);
946 
947 	/* get the initial bandwidth values and sync them with hardware */
948 	if (provider->get_bw) {
949 		provider->get_bw(node, &node->init_avg, &node->init_peak);
950 	} else {
951 		node->init_avg = INT_MAX;
952 		node->init_peak = INT_MAX;
953 	}
954 	node->avg_bw = node->init_avg;
955 	node->peak_bw = node->init_peak;
956 
957 	if (node->avg_bw || node->peak_bw) {
958 		if (provider->pre_aggregate)
959 			provider->pre_aggregate(node);
960 
961 		if (provider->aggregate)
962 			provider->aggregate(node, 0, node->init_avg, node->init_peak,
963 					    &node->avg_bw, &node->peak_bw);
964 		if (provider->set)
965 			provider->set(node, node);
966 	}
967 
968 	node->avg_bw = 0;
969 	node->peak_bw = 0;
970 
971 	mutex_unlock(&icc_bw_lock);
972 	mutex_unlock(&icc_lock);
973 }
974 EXPORT_SYMBOL_GPL(icc_node_add);
975 
976 /**
977  * icc_node_del() - delete interconnect node from interconnect provider
978  * @node: pointer to the interconnect node
979  */
980 void icc_node_del(struct icc_node *node)
981 {
982 	mutex_lock(&icc_lock);
983 
984 	list_del(&node->node_list);
985 
986 	mutex_unlock(&icc_lock);
987 }
988 EXPORT_SYMBOL_GPL(icc_node_del);
989 
990 /**
991  * icc_nodes_remove() - remove all previously added nodes from provider
992  * @provider: the interconnect provider we are removing nodes from
993  *
994  * Return: 0 on success, or an error code otherwise
995  */
996 int icc_nodes_remove(struct icc_provider *provider)
997 {
998 	struct icc_node *n, *tmp;
999 
1000 	if (WARN_ON(IS_ERR_OR_NULL(provider)))
1001 		return -EINVAL;
1002 
1003 	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
1004 		icc_node_del(n);
1005 		icc_node_destroy(n->id);
1006 	}
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(icc_nodes_remove);
1011 
1012 /**
1013  * icc_provider_init() - initialize a new interconnect provider
1014  * @provider: the interconnect provider to initialize
1015  *
1016  * Must be called before adding nodes to the provider.
1017  */
1018 void icc_provider_init(struct icc_provider *provider)
1019 {
1020 	WARN_ON(!provider->set);
1021 
1022 	INIT_LIST_HEAD(&provider->nodes);
1023 }
1024 EXPORT_SYMBOL_GPL(icc_provider_init);
1025 
1026 /**
1027  * icc_provider_register() - register a new interconnect provider
1028  * @provider: the interconnect provider to register
1029  *
1030  * Return: 0 on success, or an error code otherwise
1031  */
1032 int icc_provider_register(struct icc_provider *provider)
1033 {
1034 	if (WARN_ON(!provider->xlate && !provider->xlate_extended))
1035 		return -EINVAL;
1036 
1037 	mutex_lock(&icc_lock);
1038 	list_add_tail(&provider->provider_list, &icc_providers);
1039 	mutex_unlock(&icc_lock);
1040 
1041 	dev_dbg(provider->dev, "interconnect provider registered\n");
1042 
1043 	return 0;
1044 }
1045 EXPORT_SYMBOL_GPL(icc_provider_register);
1046 
1047 /**
1048  * icc_provider_deregister() - deregister an interconnect provider
1049  * @provider: the interconnect provider to deregister
1050  */
1051 void icc_provider_deregister(struct icc_provider *provider)
1052 {
1053 	mutex_lock(&icc_lock);
1054 	WARN_ON(provider->users);
1055 
1056 	list_del(&provider->provider_list);
1057 	mutex_unlock(&icc_lock);
1058 }
1059 EXPORT_SYMBOL_GPL(icc_provider_deregister);
1060 
1061 static const struct of_device_id __maybe_unused ignore_list[] = {
1062 	{ .compatible = "qcom,sc7180-ipa-virt" },
1063 	{ .compatible = "qcom,sc8180x-ipa-virt" },
1064 	{ .compatible = "qcom,sdx55-ipa-virt" },
1065 	{ .compatible = "qcom,sm8150-ipa-virt" },
1066 	{ .compatible = "qcom,sm8250-ipa-virt" },
1067 	{}
1068 };
1069 
1070 static int of_count_icc_providers(struct device_node *np)
1071 {
1072 	struct device_node *child;
1073 	int count = 0;
1074 
1075 	for_each_available_child_of_node(np, child) {
1076 		if (of_property_read_bool(child, "#interconnect-cells") &&
1077 		    likely(!of_match_node(ignore_list, child)))
1078 			count++;
1079 		count += of_count_icc_providers(child);
1080 	}
1081 
1082 	return count;
1083 }
1084 
1085 void icc_sync_state(struct device *dev)
1086 {
1087 	struct icc_provider *p;
1088 	struct icc_node *n;
1089 	static int count;
1090 
1091 	count++;
1092 
1093 	if (count < providers_count)
1094 		return;
1095 
1096 	mutex_lock(&icc_lock);
1097 	mutex_lock(&icc_bw_lock);
1098 	synced_state = true;
1099 	list_for_each_entry(p, &icc_providers, provider_list) {
1100 		dev_dbg(p->dev, "interconnect provider is in synced state\n");
1101 		list_for_each_entry(n, &p->nodes, node_list) {
1102 			if (n->init_avg || n->init_peak) {
1103 				n->init_avg = 0;
1104 				n->init_peak = 0;
1105 				aggregate_requests(n);
1106 				p->set(n, n);
1107 			}
1108 		}
1109 	}
1110 	mutex_unlock(&icc_bw_lock);
1111 	mutex_unlock(&icc_lock);
1112 }
1113 EXPORT_SYMBOL_GPL(icc_sync_state);
1114 
1115 static int __init icc_init(void)
1116 {
1117 	struct device_node *root;
1118 
1119 	/* Teach lockdep about lock ordering wrt. shrinker: */
1120 	fs_reclaim_acquire(GFP_KERNEL);
1121 	might_lock(&icc_bw_lock);
1122 	fs_reclaim_release(GFP_KERNEL);
1123 
1124 	root = of_find_node_by_path("/");
1125 
1126 	providers_count = of_count_icc_providers(root);
1127 	of_node_put(root);
1128 
1129 	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1130 	debugfs_create_file("interconnect_summary", 0444,
1131 			    icc_debugfs_dir, NULL, &icc_summary_fops);
1132 	debugfs_create_file("interconnect_graph", 0444,
1133 			    icc_debugfs_dir, NULL, &icc_graph_fops);
1134 
1135 	icc_debugfs_client_init(icc_debugfs_dir);
1136 
1137 	return 0;
1138 }
1139 
1140 device_initcall(icc_init);
1141