xref: /linux/drivers/interconnect/core.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interconnect framework core driver
4  *
5  * Copyright (c) 2017-2019, Linaro Ltd.
6  * Author: Georgi Djakov <georgi.djakov@linaro.org>
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/device.h>
11 #include <linux/idr.h>
12 #include <linux/init.h>
13 #include <linux/interconnect.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/overflow.h>
21 
22 static DEFINE_IDR(icc_idr);
23 static LIST_HEAD(icc_providers);
24 static DEFINE_MUTEX(icc_lock);
25 static struct dentry *icc_debugfs_dir;
26 
27 /**
28  * struct icc_req - constraints that are attached to each node
29  * @req_node: entry in list of requests for the particular @node
30  * @node: the interconnect node to which this constraint applies
31  * @dev: reference to the device that sets the constraints
32  * @tag: path tag (optional)
33  * @avg_bw: an integer describing the average bandwidth in kBps
34  * @peak_bw: an integer describing the peak bandwidth in kBps
35  */
36 struct icc_req {
37 	struct hlist_node req_node;
38 	struct icc_node *node;
39 	struct device *dev;
40 	u32 tag;
41 	u32 avg_bw;
42 	u32 peak_bw;
43 };
44 
45 /**
46  * struct icc_path - interconnect path structure
47  * @num_nodes: number of hops (nodes)
48  * @reqs: array of the requests applicable to this path of nodes
49  */
50 struct icc_path {
51 	size_t num_nodes;
52 	struct icc_req reqs[];
53 };
54 
55 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
56 {
57 	if (!n)
58 		return;
59 
60 	seq_printf(s, "%-30s %12u %12u\n",
61 		   n->name, n->avg_bw, n->peak_bw);
62 }
63 
64 static int icc_summary_show(struct seq_file *s, void *data)
65 {
66 	struct icc_provider *provider;
67 
68 	seq_puts(s, " node                                   avg         peak\n");
69 	seq_puts(s, "--------------------------------------------------------\n");
70 
71 	mutex_lock(&icc_lock);
72 
73 	list_for_each_entry(provider, &icc_providers, provider_list) {
74 		struct icc_node *n;
75 
76 		list_for_each_entry(n, &provider->nodes, node_list) {
77 			struct icc_req *r;
78 
79 			icc_summary_show_one(s, n);
80 			hlist_for_each_entry(r, &n->req_list, req_node) {
81 				if (!r->dev)
82 					continue;
83 
84 				seq_printf(s, "    %-26s %12u %12u\n",
85 					   dev_name(r->dev), r->avg_bw,
86 					   r->peak_bw);
87 			}
88 		}
89 	}
90 
91 	mutex_unlock(&icc_lock);
92 
93 	return 0;
94 }
95 DEFINE_SHOW_ATTRIBUTE(icc_summary);
96 
97 static struct icc_node *node_find(const int id)
98 {
99 	return idr_find(&icc_idr, id);
100 }
101 
102 static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
103 				  ssize_t num_nodes)
104 {
105 	struct icc_node *node = dst;
106 	struct icc_path *path;
107 	int i;
108 
109 	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
110 	if (!path)
111 		return ERR_PTR(-ENOMEM);
112 
113 	path->num_nodes = num_nodes;
114 
115 	for (i = num_nodes - 1; i >= 0; i--) {
116 		node->provider->users++;
117 		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
118 		path->reqs[i].node = node;
119 		path->reqs[i].dev = dev;
120 		/* reference to previous node was saved during path traversal */
121 		node = node->reverse;
122 	}
123 
124 	return path;
125 }
126 
127 static struct icc_path *path_find(struct device *dev, struct icc_node *src,
128 				  struct icc_node *dst)
129 {
130 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
131 	struct icc_node *n, *node = NULL;
132 	struct list_head traverse_list;
133 	struct list_head edge_list;
134 	struct list_head visited_list;
135 	size_t i, depth = 1;
136 	bool found = false;
137 
138 	INIT_LIST_HEAD(&traverse_list);
139 	INIT_LIST_HEAD(&edge_list);
140 	INIT_LIST_HEAD(&visited_list);
141 
142 	list_add(&src->search_list, &traverse_list);
143 	src->reverse = NULL;
144 
145 	do {
146 		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
147 			if (node == dst) {
148 				found = true;
149 				list_splice_init(&edge_list, &visited_list);
150 				list_splice_init(&traverse_list, &visited_list);
151 				break;
152 			}
153 			for (i = 0; i < node->num_links; i++) {
154 				struct icc_node *tmp = node->links[i];
155 
156 				if (!tmp) {
157 					path = ERR_PTR(-ENOENT);
158 					goto out;
159 				}
160 
161 				if (tmp->is_traversed)
162 					continue;
163 
164 				tmp->is_traversed = true;
165 				tmp->reverse = node;
166 				list_add_tail(&tmp->search_list, &edge_list);
167 			}
168 		}
169 
170 		if (found)
171 			break;
172 
173 		list_splice_init(&traverse_list, &visited_list);
174 		list_splice_init(&edge_list, &traverse_list);
175 
176 		/* count the hops including the source */
177 		depth++;
178 
179 	} while (!list_empty(&traverse_list));
180 
181 out:
182 
183 	/* reset the traversed state */
184 	list_for_each_entry_reverse(n, &visited_list, search_list)
185 		n->is_traversed = false;
186 
187 	if (found)
188 		path = path_init(dev, dst, depth);
189 
190 	return path;
191 }
192 
193 /*
194  * We want the path to honor all bandwidth requests, so the average and peak
195  * bandwidth requirements from each consumer are aggregated at each node.
196  * The aggregation is platform specific, so each platform can customize it by
197  * implementing its own aggregate() function.
198  */
199 
200 static int aggregate_requests(struct icc_node *node)
201 {
202 	struct icc_provider *p = node->provider;
203 	struct icc_req *r;
204 
205 	node->avg_bw = 0;
206 	node->peak_bw = 0;
207 
208 	if (p->pre_aggregate)
209 		p->pre_aggregate(node);
210 
211 	hlist_for_each_entry(r, &node->req_list, req_node)
212 		p->aggregate(node, r->tag, r->avg_bw, r->peak_bw,
213 			     &node->avg_bw, &node->peak_bw);
214 
215 	return 0;
216 }
217 
218 static int apply_constraints(struct icc_path *path)
219 {
220 	struct icc_node *next, *prev = NULL;
221 	int ret = -EINVAL;
222 	int i;
223 
224 	for (i = 0; i < path->num_nodes; i++) {
225 		next = path->reqs[i].node;
226 
227 		/*
228 		 * Both endpoints should be valid master-slave pairs of the
229 		 * same interconnect provider that will be configured.
230 		 */
231 		if (!prev || next->provider != prev->provider) {
232 			prev = next;
233 			continue;
234 		}
235 
236 		/* set the constraints */
237 		ret = next->provider->set(prev, next);
238 		if (ret)
239 			goto out;
240 
241 		prev = next;
242 	}
243 out:
244 	return ret;
245 }
246 
247 /* of_icc_xlate_onecell() - Translate function using a single index.
248  * @spec: OF phandle args to map into an interconnect node.
249  * @data: private data (pointer to struct icc_onecell_data)
250  *
251  * This is a generic translate function that can be used to model simple
252  * interconnect providers that have one device tree node and provide
253  * multiple interconnect nodes. A single cell is used as an index into
254  * an array of icc nodes specified in the icc_onecell_data struct when
255  * registering the provider.
256  */
257 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
258 				      void *data)
259 {
260 	struct icc_onecell_data *icc_data = data;
261 	unsigned int idx = spec->args[0];
262 
263 	if (idx >= icc_data->num_nodes) {
264 		pr_err("%s: invalid index %u\n", __func__, idx);
265 		return ERR_PTR(-EINVAL);
266 	}
267 
268 	return icc_data->nodes[idx];
269 }
270 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
271 
272 /**
273  * of_icc_get_from_provider() - Look-up interconnect node
274  * @spec: OF phandle args to use for look-up
275  *
276  * Looks for interconnect provider under the node specified by @spec and if
277  * found, uses xlate function of the provider to map phandle args to node.
278  *
279  * Returns a valid pointer to struct icc_node on success or ERR_PTR()
280  * on failure.
281  */
282 static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
283 {
284 	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
285 	struct icc_provider *provider;
286 
287 	if (!spec || spec->args_count != 1)
288 		return ERR_PTR(-EINVAL);
289 
290 	mutex_lock(&icc_lock);
291 	list_for_each_entry(provider, &icc_providers, provider_list) {
292 		if (provider->dev->of_node == spec->np)
293 			node = provider->xlate(spec, provider->data);
294 		if (!IS_ERR(node))
295 			break;
296 	}
297 	mutex_unlock(&icc_lock);
298 
299 	return node;
300 }
301 
302 /**
303  * of_icc_get() - get a path handle from a DT node based on name
304  * @dev: device pointer for the consumer device
305  * @name: interconnect path name
306  *
307  * This function will search for a path between two endpoints and return an
308  * icc_path handle on success. Use icc_put() to release constraints when they
309  * are not needed anymore.
310  * If the interconnect API is disabled, NULL is returned and the consumer
311  * drivers will still build. Drivers are free to handle this specifically,
312  * but they don't have to.
313  *
314  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
315  * when the API is disabled or the "interconnects" DT property is missing.
316  */
317 struct icc_path *of_icc_get(struct device *dev, const char *name)
318 {
319 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
320 	struct icc_node *src_node, *dst_node;
321 	struct device_node *np = NULL;
322 	struct of_phandle_args src_args, dst_args;
323 	int idx = 0;
324 	int ret;
325 
326 	if (!dev || !dev->of_node)
327 		return ERR_PTR(-ENODEV);
328 
329 	np = dev->of_node;
330 
331 	/*
332 	 * When the consumer DT node do not have "interconnects" property
333 	 * return a NULL path to skip setting constraints.
334 	 */
335 	if (!of_find_property(np, "interconnects", NULL))
336 		return NULL;
337 
338 	/*
339 	 * We use a combination of phandle and specifier for endpoint. For now
340 	 * lets support only global ids and extend this in the future if needed
341 	 * without breaking DT compatibility.
342 	 */
343 	if (name) {
344 		idx = of_property_match_string(np, "interconnect-names", name);
345 		if (idx < 0)
346 			return ERR_PTR(idx);
347 	}
348 
349 	ret = of_parse_phandle_with_args(np, "interconnects",
350 					 "#interconnect-cells", idx * 2,
351 					 &src_args);
352 	if (ret)
353 		return ERR_PTR(ret);
354 
355 	of_node_put(src_args.np);
356 
357 	ret = of_parse_phandle_with_args(np, "interconnects",
358 					 "#interconnect-cells", idx * 2 + 1,
359 					 &dst_args);
360 	if (ret)
361 		return ERR_PTR(ret);
362 
363 	of_node_put(dst_args.np);
364 
365 	src_node = of_icc_get_from_provider(&src_args);
366 
367 	if (IS_ERR(src_node)) {
368 		if (PTR_ERR(src_node) != -EPROBE_DEFER)
369 			dev_err(dev, "error finding src node: %ld\n",
370 				PTR_ERR(src_node));
371 		return ERR_CAST(src_node);
372 	}
373 
374 	dst_node = of_icc_get_from_provider(&dst_args);
375 
376 	if (IS_ERR(dst_node)) {
377 		if (PTR_ERR(dst_node) != -EPROBE_DEFER)
378 			dev_err(dev, "error finding dst node: %ld\n",
379 				PTR_ERR(dst_node));
380 		return ERR_CAST(dst_node);
381 	}
382 
383 	mutex_lock(&icc_lock);
384 	path = path_find(dev, src_node, dst_node);
385 	if (IS_ERR(path))
386 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
387 	mutex_unlock(&icc_lock);
388 
389 	return path;
390 }
391 EXPORT_SYMBOL_GPL(of_icc_get);
392 
393 /**
394  * icc_set_tag() - set an optional tag on a path
395  * @path: the path we want to tag
396  * @tag: the tag value
397  *
398  * This function allows consumers to append a tag to the requests associated
399  * with a path, so that a different aggregation could be done based on this tag.
400  */
401 void icc_set_tag(struct icc_path *path, u32 tag)
402 {
403 	int i;
404 
405 	if (!path)
406 		return;
407 
408 	mutex_lock(&icc_lock);
409 
410 	for (i = 0; i < path->num_nodes; i++)
411 		path->reqs[i].tag = tag;
412 
413 	mutex_unlock(&icc_lock);
414 }
415 EXPORT_SYMBOL_GPL(icc_set_tag);
416 
417 /**
418  * icc_set_bw() - set bandwidth constraints on an interconnect path
419  * @path: reference to the path returned by icc_get()
420  * @avg_bw: average bandwidth in kilobytes per second
421  * @peak_bw: peak bandwidth in kilobytes per second
422  *
423  * This function is used by an interconnect consumer to express its own needs
424  * in terms of bandwidth for a previously requested path between two endpoints.
425  * The requests are aggregated and each node is updated accordingly. The entire
426  * path is locked by a mutex to ensure that the set() is completed.
427  * The @path can be NULL when the "interconnects" DT properties is missing,
428  * which will mean that no constraints will be set.
429  *
430  * Returns 0 on success, or an appropriate error code otherwise.
431  */
432 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
433 {
434 	struct icc_node *node;
435 	u32 old_avg, old_peak;
436 	size_t i;
437 	int ret;
438 
439 	if (!path || !path->num_nodes)
440 		return 0;
441 
442 	mutex_lock(&icc_lock);
443 
444 	old_avg = path->reqs[0].avg_bw;
445 	old_peak = path->reqs[0].peak_bw;
446 
447 	for (i = 0; i < path->num_nodes; i++) {
448 		node = path->reqs[i].node;
449 
450 		/* update the consumer request for this path */
451 		path->reqs[i].avg_bw = avg_bw;
452 		path->reqs[i].peak_bw = peak_bw;
453 
454 		/* aggregate requests for this node */
455 		aggregate_requests(node);
456 	}
457 
458 	ret = apply_constraints(path);
459 	if (ret) {
460 		pr_debug("interconnect: error applying constraints (%d)\n",
461 			 ret);
462 
463 		for (i = 0; i < path->num_nodes; i++) {
464 			node = path->reqs[i].node;
465 			path->reqs[i].avg_bw = old_avg;
466 			path->reqs[i].peak_bw = old_peak;
467 			aggregate_requests(node);
468 		}
469 		apply_constraints(path);
470 	}
471 
472 	mutex_unlock(&icc_lock);
473 
474 	return ret;
475 }
476 EXPORT_SYMBOL_GPL(icc_set_bw);
477 
478 /**
479  * icc_get() - return a handle for path between two endpoints
480  * @dev: the device requesting the path
481  * @src_id: source device port id
482  * @dst_id: destination device port id
483  *
484  * This function will search for a path between two endpoints and return an
485  * icc_path handle on success. Use icc_put() to release
486  * constraints when they are not needed anymore.
487  * If the interconnect API is disabled, NULL is returned and the consumer
488  * drivers will still build. Drivers are free to handle this specifically,
489  * but they don't have to.
490  *
491  * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
492  * interconnect API is disabled.
493  */
494 struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
495 {
496 	struct icc_node *src, *dst;
497 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
498 
499 	mutex_lock(&icc_lock);
500 
501 	src = node_find(src_id);
502 	if (!src)
503 		goto out;
504 
505 	dst = node_find(dst_id);
506 	if (!dst)
507 		goto out;
508 
509 	path = path_find(dev, src, dst);
510 	if (IS_ERR(path))
511 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
512 
513 out:
514 	mutex_unlock(&icc_lock);
515 	return path;
516 }
517 EXPORT_SYMBOL_GPL(icc_get);
518 
519 /**
520  * icc_put() - release the reference to the icc_path
521  * @path: interconnect path
522  *
523  * Use this function to release the constraints on a path when the path is
524  * no longer needed. The constraints will be re-aggregated.
525  */
526 void icc_put(struct icc_path *path)
527 {
528 	struct icc_node *node;
529 	size_t i;
530 	int ret;
531 
532 	if (!path || WARN_ON(IS_ERR(path)))
533 		return;
534 
535 	ret = icc_set_bw(path, 0, 0);
536 	if (ret)
537 		pr_err("%s: error (%d)\n", __func__, ret);
538 
539 	mutex_lock(&icc_lock);
540 	for (i = 0; i < path->num_nodes; i++) {
541 		node = path->reqs[i].node;
542 		hlist_del(&path->reqs[i].req_node);
543 		if (!WARN_ON(!node->provider->users))
544 			node->provider->users--;
545 	}
546 	mutex_unlock(&icc_lock);
547 
548 	kfree(path);
549 }
550 EXPORT_SYMBOL_GPL(icc_put);
551 
552 static struct icc_node *icc_node_create_nolock(int id)
553 {
554 	struct icc_node *node;
555 
556 	/* check if node already exists */
557 	node = node_find(id);
558 	if (node)
559 		return node;
560 
561 	node = kzalloc(sizeof(*node), GFP_KERNEL);
562 	if (!node)
563 		return ERR_PTR(-ENOMEM);
564 
565 	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
566 	if (id < 0) {
567 		WARN(1, "%s: couldn't get idr\n", __func__);
568 		kfree(node);
569 		return ERR_PTR(id);
570 	}
571 
572 	node->id = id;
573 
574 	return node;
575 }
576 
577 /**
578  * icc_node_create() - create a node
579  * @id: node id
580  *
581  * Return: icc_node pointer on success, or ERR_PTR() on error
582  */
583 struct icc_node *icc_node_create(int id)
584 {
585 	struct icc_node *node;
586 
587 	mutex_lock(&icc_lock);
588 
589 	node = icc_node_create_nolock(id);
590 
591 	mutex_unlock(&icc_lock);
592 
593 	return node;
594 }
595 EXPORT_SYMBOL_GPL(icc_node_create);
596 
597 /**
598  * icc_node_destroy() - destroy a node
599  * @id: node id
600  */
601 void icc_node_destroy(int id)
602 {
603 	struct icc_node *node;
604 
605 	mutex_lock(&icc_lock);
606 
607 	node = node_find(id);
608 	if (node) {
609 		idr_remove(&icc_idr, node->id);
610 		WARN_ON(!hlist_empty(&node->req_list));
611 	}
612 
613 	mutex_unlock(&icc_lock);
614 
615 	kfree(node);
616 }
617 EXPORT_SYMBOL_GPL(icc_node_destroy);
618 
619 /**
620  * icc_link_create() - create a link between two nodes
621  * @node: source node id
622  * @dst_id: destination node id
623  *
624  * Create a link between two nodes. The nodes might belong to different
625  * interconnect providers and the @dst_id node might not exist (if the
626  * provider driver has not probed yet). So just create the @dst_id node
627  * and when the actual provider driver is probed, the rest of the node
628  * data is filled.
629  *
630  * Return: 0 on success, or an error code otherwise
631  */
632 int icc_link_create(struct icc_node *node, const int dst_id)
633 {
634 	struct icc_node *dst;
635 	struct icc_node **new;
636 	int ret = 0;
637 
638 	if (!node->provider)
639 		return -EINVAL;
640 
641 	mutex_lock(&icc_lock);
642 
643 	dst = node_find(dst_id);
644 	if (!dst) {
645 		dst = icc_node_create_nolock(dst_id);
646 
647 		if (IS_ERR(dst)) {
648 			ret = PTR_ERR(dst);
649 			goto out;
650 		}
651 	}
652 
653 	new = krealloc(node->links,
654 		       (node->num_links + 1) * sizeof(*node->links),
655 		       GFP_KERNEL);
656 	if (!new) {
657 		ret = -ENOMEM;
658 		goto out;
659 	}
660 
661 	node->links = new;
662 	node->links[node->num_links++] = dst;
663 
664 out:
665 	mutex_unlock(&icc_lock);
666 
667 	return ret;
668 }
669 EXPORT_SYMBOL_GPL(icc_link_create);
670 
671 /**
672  * icc_link_destroy() - destroy a link between two nodes
673  * @src: pointer to source node
674  * @dst: pointer to destination node
675  *
676  * Return: 0 on success, or an error code otherwise
677  */
678 int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
679 {
680 	struct icc_node **new;
681 	size_t slot;
682 	int ret = 0;
683 
684 	if (IS_ERR_OR_NULL(src))
685 		return -EINVAL;
686 
687 	if (IS_ERR_OR_NULL(dst))
688 		return -EINVAL;
689 
690 	mutex_lock(&icc_lock);
691 
692 	for (slot = 0; slot < src->num_links; slot++)
693 		if (src->links[slot] == dst)
694 			break;
695 
696 	if (WARN_ON(slot == src->num_links)) {
697 		ret = -ENXIO;
698 		goto out;
699 	}
700 
701 	src->links[slot] = src->links[--src->num_links];
702 
703 	new = krealloc(src->links, src->num_links * sizeof(*src->links),
704 		       GFP_KERNEL);
705 	if (new)
706 		src->links = new;
707 
708 out:
709 	mutex_unlock(&icc_lock);
710 
711 	return ret;
712 }
713 EXPORT_SYMBOL_GPL(icc_link_destroy);
714 
715 /**
716  * icc_node_add() - add interconnect node to interconnect provider
717  * @node: pointer to the interconnect node
718  * @provider: pointer to the interconnect provider
719  */
720 void icc_node_add(struct icc_node *node, struct icc_provider *provider)
721 {
722 	mutex_lock(&icc_lock);
723 
724 	node->provider = provider;
725 	list_add_tail(&node->node_list, &provider->nodes);
726 
727 	mutex_unlock(&icc_lock);
728 }
729 EXPORT_SYMBOL_GPL(icc_node_add);
730 
731 /**
732  * icc_node_del() - delete interconnect node from interconnect provider
733  * @node: pointer to the interconnect node
734  */
735 void icc_node_del(struct icc_node *node)
736 {
737 	mutex_lock(&icc_lock);
738 
739 	list_del(&node->node_list);
740 
741 	mutex_unlock(&icc_lock);
742 }
743 EXPORT_SYMBOL_GPL(icc_node_del);
744 
745 /**
746  * icc_provider_add() - add a new interconnect provider
747  * @provider: the interconnect provider that will be added into topology
748  *
749  * Return: 0 on success, or an error code otherwise
750  */
751 int icc_provider_add(struct icc_provider *provider)
752 {
753 	if (WARN_ON(!provider->set))
754 		return -EINVAL;
755 	if (WARN_ON(!provider->xlate))
756 		return -EINVAL;
757 
758 	mutex_lock(&icc_lock);
759 
760 	INIT_LIST_HEAD(&provider->nodes);
761 	list_add_tail(&provider->provider_list, &icc_providers);
762 
763 	mutex_unlock(&icc_lock);
764 
765 	dev_dbg(provider->dev, "interconnect provider added to topology\n");
766 
767 	return 0;
768 }
769 EXPORT_SYMBOL_GPL(icc_provider_add);
770 
771 /**
772  * icc_provider_del() - delete previously added interconnect provider
773  * @provider: the interconnect provider that will be removed from topology
774  *
775  * Return: 0 on success, or an error code otherwise
776  */
777 int icc_provider_del(struct icc_provider *provider)
778 {
779 	mutex_lock(&icc_lock);
780 	if (provider->users) {
781 		pr_warn("interconnect provider still has %d users\n",
782 			provider->users);
783 		mutex_unlock(&icc_lock);
784 		return -EBUSY;
785 	}
786 
787 	if (!list_empty(&provider->nodes)) {
788 		pr_warn("interconnect provider still has nodes\n");
789 		mutex_unlock(&icc_lock);
790 		return -EBUSY;
791 	}
792 
793 	list_del(&provider->provider_list);
794 	mutex_unlock(&icc_lock);
795 
796 	return 0;
797 }
798 EXPORT_SYMBOL_GPL(icc_provider_del);
799 
800 static int __init icc_init(void)
801 {
802 	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
803 	debugfs_create_file("interconnect_summary", 0444,
804 			    icc_debugfs_dir, NULL, &icc_summary_fops);
805 	return 0;
806 }
807 
808 static void __exit icc_exit(void)
809 {
810 	debugfs_remove_recursive(icc_debugfs_dir);
811 }
812 module_init(icc_init);
813 module_exit(icc_exit);
814 
815 MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
816 MODULE_DESCRIPTION("Interconnect Driver Core");
817 MODULE_LICENSE("GPL v2");
818