xref: /linux/drivers/interconnect/core.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interconnect framework core driver
4  *
5  * Copyright (c) 2017-2019, Linaro Ltd.
6  * Author: Georgi Djakov <georgi.djakov@linaro.org>
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/device.h>
11 #include <linux/idr.h>
12 #include <linux/init.h>
13 #include <linux/interconnect.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/overflow.h>
21 
22 #include "internal.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 static DEFINE_IDR(icc_idr);
28 static LIST_HEAD(icc_providers);
29 static DEFINE_MUTEX(icc_lock);
30 static struct dentry *icc_debugfs_dir;
31 
32 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
33 {
34 	if (!n)
35 		return;
36 
37 	seq_printf(s, "%-42s %12u %12u\n",
38 		   n->name, n->avg_bw, n->peak_bw);
39 }
40 
41 static int icc_summary_show(struct seq_file *s, void *data)
42 {
43 	struct icc_provider *provider;
44 
45 	seq_puts(s, " node                                  tag          avg         peak\n");
46 	seq_puts(s, "--------------------------------------------------------------------\n");
47 
48 	mutex_lock(&icc_lock);
49 
50 	list_for_each_entry(provider, &icc_providers, provider_list) {
51 		struct icc_node *n;
52 
53 		list_for_each_entry(n, &provider->nodes, node_list) {
54 			struct icc_req *r;
55 
56 			icc_summary_show_one(s, n);
57 			hlist_for_each_entry(r, &n->req_list, req_node) {
58 				if (!r->dev)
59 					continue;
60 
61 				seq_printf(s, "  %-27s %12u %12u %12u\n",
62 					   dev_name(r->dev), r->tag, r->avg_bw,
63 					   r->peak_bw);
64 			}
65 		}
66 	}
67 
68 	mutex_unlock(&icc_lock);
69 
70 	return 0;
71 }
72 DEFINE_SHOW_ATTRIBUTE(icc_summary);
73 
74 static void icc_graph_show_link(struct seq_file *s, int level,
75 				struct icc_node *n, struct icc_node *m)
76 {
77 	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
78 		   level == 2 ? "\t\t" : "\t",
79 		   n->id, n->name, m->id, m->name);
80 }
81 
82 static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
83 {
84 	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
85 		   n->id, n->name, n->id, n->name);
86 	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
87 	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
88 	seq_puts(s, "\"]\n");
89 }
90 
91 static int icc_graph_show(struct seq_file *s, void *data)
92 {
93 	struct icc_provider *provider;
94 	struct icc_node *n;
95 	int cluster_index = 0;
96 	int i;
97 
98 	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
99 	mutex_lock(&icc_lock);
100 
101 	/* draw providers as cluster subgraphs */
102 	cluster_index = 0;
103 	list_for_each_entry(provider, &icc_providers, provider_list) {
104 		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
105 		if (provider->dev)
106 			seq_printf(s, "\t\tlabel = \"%s\"\n",
107 				   dev_name(provider->dev));
108 
109 		/* draw nodes */
110 		list_for_each_entry(n, &provider->nodes, node_list)
111 			icc_graph_show_node(s, n);
112 
113 		/* draw internal links */
114 		list_for_each_entry(n, &provider->nodes, node_list)
115 			for (i = 0; i < n->num_links; ++i)
116 				if (n->provider == n->links[i]->provider)
117 					icc_graph_show_link(s, 2, n,
118 							    n->links[i]);
119 
120 		seq_puts(s, "\t}\n");
121 	}
122 
123 	/* draw external links */
124 	list_for_each_entry(provider, &icc_providers, provider_list)
125 		list_for_each_entry(n, &provider->nodes, node_list)
126 			for (i = 0; i < n->num_links; ++i)
127 				if (n->provider != n->links[i]->provider)
128 					icc_graph_show_link(s, 1, n,
129 							    n->links[i]);
130 
131 	mutex_unlock(&icc_lock);
132 	seq_puts(s, "}");
133 
134 	return 0;
135 }
136 DEFINE_SHOW_ATTRIBUTE(icc_graph);
137 
138 static struct icc_node *node_find(const int id)
139 {
140 	return idr_find(&icc_idr, id);
141 }
142 
143 static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
144 				  ssize_t num_nodes)
145 {
146 	struct icc_node *node = dst;
147 	struct icc_path *path;
148 	int i;
149 
150 	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
151 	if (!path)
152 		return ERR_PTR(-ENOMEM);
153 
154 	path->num_nodes = num_nodes;
155 
156 	for (i = num_nodes - 1; i >= 0; i--) {
157 		node->provider->users++;
158 		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
159 		path->reqs[i].node = node;
160 		path->reqs[i].dev = dev;
161 		path->reqs[i].enabled = true;
162 		/* reference to previous node was saved during path traversal */
163 		node = node->reverse;
164 	}
165 
166 	return path;
167 }
168 
169 static struct icc_path *path_find(struct device *dev, struct icc_node *src,
170 				  struct icc_node *dst)
171 {
172 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
173 	struct icc_node *n, *node = NULL;
174 	struct list_head traverse_list;
175 	struct list_head edge_list;
176 	struct list_head visited_list;
177 	size_t i, depth = 1;
178 	bool found = false;
179 
180 	INIT_LIST_HEAD(&traverse_list);
181 	INIT_LIST_HEAD(&edge_list);
182 	INIT_LIST_HEAD(&visited_list);
183 
184 	list_add(&src->search_list, &traverse_list);
185 	src->reverse = NULL;
186 
187 	do {
188 		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
189 			if (node == dst) {
190 				found = true;
191 				list_splice_init(&edge_list, &visited_list);
192 				list_splice_init(&traverse_list, &visited_list);
193 				break;
194 			}
195 			for (i = 0; i < node->num_links; i++) {
196 				struct icc_node *tmp = node->links[i];
197 
198 				if (!tmp) {
199 					path = ERR_PTR(-ENOENT);
200 					goto out;
201 				}
202 
203 				if (tmp->is_traversed)
204 					continue;
205 
206 				tmp->is_traversed = true;
207 				tmp->reverse = node;
208 				list_add_tail(&tmp->search_list, &edge_list);
209 			}
210 		}
211 
212 		if (found)
213 			break;
214 
215 		list_splice_init(&traverse_list, &visited_list);
216 		list_splice_init(&edge_list, &traverse_list);
217 
218 		/* count the hops including the source */
219 		depth++;
220 
221 	} while (!list_empty(&traverse_list));
222 
223 out:
224 
225 	/* reset the traversed state */
226 	list_for_each_entry_reverse(n, &visited_list, search_list)
227 		n->is_traversed = false;
228 
229 	if (found)
230 		path = path_init(dev, dst, depth);
231 
232 	return path;
233 }
234 
235 /*
236  * We want the path to honor all bandwidth requests, so the average and peak
237  * bandwidth requirements from each consumer are aggregated at each node.
238  * The aggregation is platform specific, so each platform can customize it by
239  * implementing its own aggregate() function.
240  */
241 
242 static int aggregate_requests(struct icc_node *node)
243 {
244 	struct icc_provider *p = node->provider;
245 	struct icc_req *r;
246 	u32 avg_bw, peak_bw;
247 
248 	node->avg_bw = 0;
249 	node->peak_bw = 0;
250 
251 	if (p->pre_aggregate)
252 		p->pre_aggregate(node);
253 
254 	hlist_for_each_entry(r, &node->req_list, req_node) {
255 		if (r->enabled) {
256 			avg_bw = r->avg_bw;
257 			peak_bw = r->peak_bw;
258 		} else {
259 			avg_bw = 0;
260 			peak_bw = 0;
261 		}
262 		p->aggregate(node, r->tag, avg_bw, peak_bw,
263 			     &node->avg_bw, &node->peak_bw);
264 	}
265 
266 	return 0;
267 }
268 
269 static int apply_constraints(struct icc_path *path)
270 {
271 	struct icc_node *next, *prev = NULL;
272 	struct icc_provider *p;
273 	int ret = -EINVAL;
274 	int i;
275 
276 	for (i = 0; i < path->num_nodes; i++) {
277 		next = path->reqs[i].node;
278 		p = next->provider;
279 
280 		/* both endpoints should be valid master-slave pairs */
281 		if (!prev || (p != prev->provider && !p->inter_set)) {
282 			prev = next;
283 			continue;
284 		}
285 
286 		/* set the constraints */
287 		ret = p->set(prev, next);
288 		if (ret)
289 			goto out;
290 
291 		prev = next;
292 	}
293 out:
294 	return ret;
295 }
296 
297 int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
298 		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
299 {
300 	*agg_avg += avg_bw;
301 	*agg_peak = max(*agg_peak, peak_bw);
302 
303 	return 0;
304 }
305 EXPORT_SYMBOL_GPL(icc_std_aggregate);
306 
307 /* of_icc_xlate_onecell() - Translate function using a single index.
308  * @spec: OF phandle args to map into an interconnect node.
309  * @data: private data (pointer to struct icc_onecell_data)
310  *
311  * This is a generic translate function that can be used to model simple
312  * interconnect providers that have one device tree node and provide
313  * multiple interconnect nodes. A single cell is used as an index into
314  * an array of icc nodes specified in the icc_onecell_data struct when
315  * registering the provider.
316  */
317 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
318 				      void *data)
319 {
320 	struct icc_onecell_data *icc_data = data;
321 	unsigned int idx = spec->args[0];
322 
323 	if (idx >= icc_data->num_nodes) {
324 		pr_err("%s: invalid index %u\n", __func__, idx);
325 		return ERR_PTR(-EINVAL);
326 	}
327 
328 	return icc_data->nodes[idx];
329 }
330 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
331 
332 /**
333  * of_icc_get_from_provider() - Look-up interconnect node
334  * @spec: OF phandle args to use for look-up
335  *
336  * Looks for interconnect provider under the node specified by @spec and if
337  * found, uses xlate function of the provider to map phandle args to node.
338  *
339  * Returns a valid pointer to struct icc_node on success or ERR_PTR()
340  * on failure.
341  */
342 struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
343 {
344 	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
345 	struct icc_provider *provider;
346 
347 	if (!spec)
348 		return ERR_PTR(-EINVAL);
349 
350 	mutex_lock(&icc_lock);
351 	list_for_each_entry(provider, &icc_providers, provider_list) {
352 		if (provider->dev->of_node == spec->np)
353 			node = provider->xlate(spec, provider->data);
354 		if (!IS_ERR(node))
355 			break;
356 	}
357 	mutex_unlock(&icc_lock);
358 
359 	return node;
360 }
361 EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
362 
363 static void devm_icc_release(struct device *dev, void *res)
364 {
365 	icc_put(*(struct icc_path **)res);
366 }
367 
368 struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
369 {
370 	struct icc_path **ptr, *path;
371 
372 	ptr = devres_alloc(devm_icc_release, sizeof(**ptr), GFP_KERNEL);
373 	if (!ptr)
374 		return ERR_PTR(-ENOMEM);
375 
376 	path = of_icc_get(dev, name);
377 	if (!IS_ERR(path)) {
378 		*ptr = path;
379 		devres_add(dev, ptr);
380 	} else {
381 		devres_free(ptr);
382 	}
383 
384 	return path;
385 }
386 EXPORT_SYMBOL_GPL(devm_of_icc_get);
387 
388 /**
389  * of_icc_get_by_index() - get a path handle from a DT node based on index
390  * @dev: device pointer for the consumer device
391  * @idx: interconnect path index
392  *
393  * This function will search for a path between two endpoints and return an
394  * icc_path handle on success. Use icc_put() to release constraints when they
395  * are not needed anymore.
396  * If the interconnect API is disabled, NULL is returned and the consumer
397  * drivers will still build. Drivers are free to handle this specifically,
398  * but they don't have to.
399  *
400  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
401  * when the API is disabled or the "interconnects" DT property is missing.
402  */
403 struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
404 {
405 	struct icc_path *path;
406 	struct icc_node *src_node, *dst_node;
407 	struct device_node *np;
408 	struct of_phandle_args src_args, dst_args;
409 	int ret;
410 
411 	if (!dev || !dev->of_node)
412 		return ERR_PTR(-ENODEV);
413 
414 	np = dev->of_node;
415 
416 	/*
417 	 * When the consumer DT node do not have "interconnects" property
418 	 * return a NULL path to skip setting constraints.
419 	 */
420 	if (!of_find_property(np, "interconnects", NULL))
421 		return NULL;
422 
423 	/*
424 	 * We use a combination of phandle and specifier for endpoint. For now
425 	 * lets support only global ids and extend this in the future if needed
426 	 * without breaking DT compatibility.
427 	 */
428 	ret = of_parse_phandle_with_args(np, "interconnects",
429 					 "#interconnect-cells", idx * 2,
430 					 &src_args);
431 	if (ret)
432 		return ERR_PTR(ret);
433 
434 	of_node_put(src_args.np);
435 
436 	ret = of_parse_phandle_with_args(np, "interconnects",
437 					 "#interconnect-cells", idx * 2 + 1,
438 					 &dst_args);
439 	if (ret)
440 		return ERR_PTR(ret);
441 
442 	of_node_put(dst_args.np);
443 
444 	src_node = of_icc_get_from_provider(&src_args);
445 
446 	if (IS_ERR(src_node)) {
447 		if (PTR_ERR(src_node) != -EPROBE_DEFER)
448 			dev_err(dev, "error finding src node: %ld\n",
449 				PTR_ERR(src_node));
450 		return ERR_CAST(src_node);
451 	}
452 
453 	dst_node = of_icc_get_from_provider(&dst_args);
454 
455 	if (IS_ERR(dst_node)) {
456 		if (PTR_ERR(dst_node) != -EPROBE_DEFER)
457 			dev_err(dev, "error finding dst node: %ld\n",
458 				PTR_ERR(dst_node));
459 		return ERR_CAST(dst_node);
460 	}
461 
462 	mutex_lock(&icc_lock);
463 	path = path_find(dev, src_node, dst_node);
464 	mutex_unlock(&icc_lock);
465 	if (IS_ERR(path)) {
466 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
467 		return path;
468 	}
469 
470 	path->name = kasprintf(GFP_KERNEL, "%s-%s",
471 			       src_node->name, dst_node->name);
472 	if (!path->name) {
473 		kfree(path);
474 		return ERR_PTR(-ENOMEM);
475 	}
476 
477 	return path;
478 }
479 EXPORT_SYMBOL_GPL(of_icc_get_by_index);
480 
481 /**
482  * of_icc_get() - get a path handle from a DT node based on name
483  * @dev: device pointer for the consumer device
484  * @name: interconnect path name
485  *
486  * This function will search for a path between two endpoints and return an
487  * icc_path handle on success. Use icc_put() to release constraints when they
488  * are not needed anymore.
489  * If the interconnect API is disabled, NULL is returned and the consumer
490  * drivers will still build. Drivers are free to handle this specifically,
491  * but they don't have to.
492  *
493  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
494  * when the API is disabled or the "interconnects" DT property is missing.
495  */
496 struct icc_path *of_icc_get(struct device *dev, const char *name)
497 {
498 	struct device_node *np;
499 	int idx = 0;
500 
501 	if (!dev || !dev->of_node)
502 		return ERR_PTR(-ENODEV);
503 
504 	np = dev->of_node;
505 
506 	/*
507 	 * When the consumer DT node do not have "interconnects" property
508 	 * return a NULL path to skip setting constraints.
509 	 */
510 	if (!of_find_property(np, "interconnects", NULL))
511 		return NULL;
512 
513 	/*
514 	 * We use a combination of phandle and specifier for endpoint. For now
515 	 * lets support only global ids and extend this in the future if needed
516 	 * without breaking DT compatibility.
517 	 */
518 	if (name) {
519 		idx = of_property_match_string(np, "interconnect-names", name);
520 		if (idx < 0)
521 			return ERR_PTR(idx);
522 	}
523 
524 	return of_icc_get_by_index(dev, idx);
525 }
526 EXPORT_SYMBOL_GPL(of_icc_get);
527 
528 /**
529  * icc_set_tag() - set an optional tag on a path
530  * @path: the path we want to tag
531  * @tag: the tag value
532  *
533  * This function allows consumers to append a tag to the requests associated
534  * with a path, so that a different aggregation could be done based on this tag.
535  */
536 void icc_set_tag(struct icc_path *path, u32 tag)
537 {
538 	int i;
539 
540 	if (!path)
541 		return;
542 
543 	mutex_lock(&icc_lock);
544 
545 	for (i = 0; i < path->num_nodes; i++)
546 		path->reqs[i].tag = tag;
547 
548 	mutex_unlock(&icc_lock);
549 }
550 EXPORT_SYMBOL_GPL(icc_set_tag);
551 
552 /**
553  * icc_get_name() - Get name of the icc path
554  * @path: reference to the path returned by icc_get()
555  *
556  * This function is used by an interconnect consumer to get the name of the icc
557  * path.
558  *
559  * Returns a valid pointer on success, or NULL otherwise.
560  */
561 const char *icc_get_name(struct icc_path *path)
562 {
563 	if (!path)
564 		return NULL;
565 
566 	return path->name;
567 }
568 EXPORT_SYMBOL_GPL(icc_get_name);
569 
570 /**
571  * icc_set_bw() - set bandwidth constraints on an interconnect path
572  * @path: reference to the path returned by icc_get()
573  * @avg_bw: average bandwidth in kilobytes per second
574  * @peak_bw: peak bandwidth in kilobytes per second
575  *
576  * This function is used by an interconnect consumer to express its own needs
577  * in terms of bandwidth for a previously requested path between two endpoints.
578  * The requests are aggregated and each node is updated accordingly. The entire
579  * path is locked by a mutex to ensure that the set() is completed.
580  * The @path can be NULL when the "interconnects" DT properties is missing,
581  * which will mean that no constraints will be set.
582  *
583  * Returns 0 on success, or an appropriate error code otherwise.
584  */
585 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
586 {
587 	struct icc_node *node;
588 	u32 old_avg, old_peak;
589 	size_t i;
590 	int ret;
591 
592 	if (!path)
593 		return 0;
594 
595 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
596 		return -EINVAL;
597 
598 	mutex_lock(&icc_lock);
599 
600 	old_avg = path->reqs[0].avg_bw;
601 	old_peak = path->reqs[0].peak_bw;
602 
603 	for (i = 0; i < path->num_nodes; i++) {
604 		node = path->reqs[i].node;
605 
606 		/* update the consumer request for this path */
607 		path->reqs[i].avg_bw = avg_bw;
608 		path->reqs[i].peak_bw = peak_bw;
609 
610 		/* aggregate requests for this node */
611 		aggregate_requests(node);
612 
613 		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
614 	}
615 
616 	ret = apply_constraints(path);
617 	if (ret) {
618 		pr_debug("interconnect: error applying constraints (%d)\n",
619 			 ret);
620 
621 		for (i = 0; i < path->num_nodes; i++) {
622 			node = path->reqs[i].node;
623 			path->reqs[i].avg_bw = old_avg;
624 			path->reqs[i].peak_bw = old_peak;
625 			aggregate_requests(node);
626 		}
627 		apply_constraints(path);
628 	}
629 
630 	mutex_unlock(&icc_lock);
631 
632 	trace_icc_set_bw_end(path, ret);
633 
634 	return ret;
635 }
636 EXPORT_SYMBOL_GPL(icc_set_bw);
637 
638 static int __icc_enable(struct icc_path *path, bool enable)
639 {
640 	int i;
641 
642 	if (!path)
643 		return 0;
644 
645 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
646 		return -EINVAL;
647 
648 	mutex_lock(&icc_lock);
649 
650 	for (i = 0; i < path->num_nodes; i++)
651 		path->reqs[i].enabled = enable;
652 
653 	mutex_unlock(&icc_lock);
654 
655 	return icc_set_bw(path, path->reqs[0].avg_bw,
656 			  path->reqs[0].peak_bw);
657 }
658 
659 int icc_enable(struct icc_path *path)
660 {
661 	return __icc_enable(path, true);
662 }
663 EXPORT_SYMBOL_GPL(icc_enable);
664 
665 int icc_disable(struct icc_path *path)
666 {
667 	return __icc_enable(path, false);
668 }
669 EXPORT_SYMBOL_GPL(icc_disable);
670 
671 /**
672  * icc_get() - return a handle for path between two endpoints
673  * @dev: the device requesting the path
674  * @src_id: source device port id
675  * @dst_id: destination device port id
676  *
677  * This function will search for a path between two endpoints and return an
678  * icc_path handle on success. Use icc_put() to release
679  * constraints when they are not needed anymore.
680  * If the interconnect API is disabled, NULL is returned and the consumer
681  * drivers will still build. Drivers are free to handle this specifically,
682  * but they don't have to.
683  *
684  * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
685  * interconnect API is disabled.
686  */
687 struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
688 {
689 	struct icc_node *src, *dst;
690 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
691 
692 	mutex_lock(&icc_lock);
693 
694 	src = node_find(src_id);
695 	if (!src)
696 		goto out;
697 
698 	dst = node_find(dst_id);
699 	if (!dst)
700 		goto out;
701 
702 	path = path_find(dev, src, dst);
703 	if (IS_ERR(path)) {
704 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
705 		goto out;
706 	}
707 
708 	path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
709 	if (!path->name) {
710 		kfree(path);
711 		path = ERR_PTR(-ENOMEM);
712 	}
713 out:
714 	mutex_unlock(&icc_lock);
715 	return path;
716 }
717 EXPORT_SYMBOL_GPL(icc_get);
718 
719 /**
720  * icc_put() - release the reference to the icc_path
721  * @path: interconnect path
722  *
723  * Use this function to release the constraints on a path when the path is
724  * no longer needed. The constraints will be re-aggregated.
725  */
726 void icc_put(struct icc_path *path)
727 {
728 	struct icc_node *node;
729 	size_t i;
730 	int ret;
731 
732 	if (!path || WARN_ON(IS_ERR(path)))
733 		return;
734 
735 	ret = icc_set_bw(path, 0, 0);
736 	if (ret)
737 		pr_err("%s: error (%d)\n", __func__, ret);
738 
739 	mutex_lock(&icc_lock);
740 	for (i = 0; i < path->num_nodes; i++) {
741 		node = path->reqs[i].node;
742 		hlist_del(&path->reqs[i].req_node);
743 		if (!WARN_ON(!node->provider->users))
744 			node->provider->users--;
745 	}
746 	mutex_unlock(&icc_lock);
747 
748 	kfree_const(path->name);
749 	kfree(path);
750 }
751 EXPORT_SYMBOL_GPL(icc_put);
752 
753 static struct icc_node *icc_node_create_nolock(int id)
754 {
755 	struct icc_node *node;
756 
757 	/* check if node already exists */
758 	node = node_find(id);
759 	if (node)
760 		return node;
761 
762 	node = kzalloc(sizeof(*node), GFP_KERNEL);
763 	if (!node)
764 		return ERR_PTR(-ENOMEM);
765 
766 	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
767 	if (id < 0) {
768 		WARN(1, "%s: couldn't get idr\n", __func__);
769 		kfree(node);
770 		return ERR_PTR(id);
771 	}
772 
773 	node->id = id;
774 
775 	return node;
776 }
777 
778 /**
779  * icc_node_create() - create a node
780  * @id: node id
781  *
782  * Return: icc_node pointer on success, or ERR_PTR() on error
783  */
784 struct icc_node *icc_node_create(int id)
785 {
786 	struct icc_node *node;
787 
788 	mutex_lock(&icc_lock);
789 
790 	node = icc_node_create_nolock(id);
791 
792 	mutex_unlock(&icc_lock);
793 
794 	return node;
795 }
796 EXPORT_SYMBOL_GPL(icc_node_create);
797 
798 /**
799  * icc_node_destroy() - destroy a node
800  * @id: node id
801  */
802 void icc_node_destroy(int id)
803 {
804 	struct icc_node *node;
805 
806 	mutex_lock(&icc_lock);
807 
808 	node = node_find(id);
809 	if (node) {
810 		idr_remove(&icc_idr, node->id);
811 		WARN_ON(!hlist_empty(&node->req_list));
812 	}
813 
814 	mutex_unlock(&icc_lock);
815 
816 	kfree(node);
817 }
818 EXPORT_SYMBOL_GPL(icc_node_destroy);
819 
820 /**
821  * icc_link_create() - create a link between two nodes
822  * @node: source node id
823  * @dst_id: destination node id
824  *
825  * Create a link between two nodes. The nodes might belong to different
826  * interconnect providers and the @dst_id node might not exist (if the
827  * provider driver has not probed yet). So just create the @dst_id node
828  * and when the actual provider driver is probed, the rest of the node
829  * data is filled.
830  *
831  * Return: 0 on success, or an error code otherwise
832  */
833 int icc_link_create(struct icc_node *node, const int dst_id)
834 {
835 	struct icc_node *dst;
836 	struct icc_node **new;
837 	int ret = 0;
838 
839 	if (!node->provider)
840 		return -EINVAL;
841 
842 	mutex_lock(&icc_lock);
843 
844 	dst = node_find(dst_id);
845 	if (!dst) {
846 		dst = icc_node_create_nolock(dst_id);
847 
848 		if (IS_ERR(dst)) {
849 			ret = PTR_ERR(dst);
850 			goto out;
851 		}
852 	}
853 
854 	new = krealloc(node->links,
855 		       (node->num_links + 1) * sizeof(*node->links),
856 		       GFP_KERNEL);
857 	if (!new) {
858 		ret = -ENOMEM;
859 		goto out;
860 	}
861 
862 	node->links = new;
863 	node->links[node->num_links++] = dst;
864 
865 out:
866 	mutex_unlock(&icc_lock);
867 
868 	return ret;
869 }
870 EXPORT_SYMBOL_GPL(icc_link_create);
871 
872 /**
873  * icc_link_destroy() - destroy a link between two nodes
874  * @src: pointer to source node
875  * @dst: pointer to destination node
876  *
877  * Return: 0 on success, or an error code otherwise
878  */
879 int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
880 {
881 	struct icc_node **new;
882 	size_t slot;
883 	int ret = 0;
884 
885 	if (IS_ERR_OR_NULL(src))
886 		return -EINVAL;
887 
888 	if (IS_ERR_OR_NULL(dst))
889 		return -EINVAL;
890 
891 	mutex_lock(&icc_lock);
892 
893 	for (slot = 0; slot < src->num_links; slot++)
894 		if (src->links[slot] == dst)
895 			break;
896 
897 	if (WARN_ON(slot == src->num_links)) {
898 		ret = -ENXIO;
899 		goto out;
900 	}
901 
902 	src->links[slot] = src->links[--src->num_links];
903 
904 	new = krealloc(src->links, src->num_links * sizeof(*src->links),
905 		       GFP_KERNEL);
906 	if (new)
907 		src->links = new;
908 
909 out:
910 	mutex_unlock(&icc_lock);
911 
912 	return ret;
913 }
914 EXPORT_SYMBOL_GPL(icc_link_destroy);
915 
916 /**
917  * icc_node_add() - add interconnect node to interconnect provider
918  * @node: pointer to the interconnect node
919  * @provider: pointer to the interconnect provider
920  */
921 void icc_node_add(struct icc_node *node, struct icc_provider *provider)
922 {
923 	mutex_lock(&icc_lock);
924 
925 	node->provider = provider;
926 	list_add_tail(&node->node_list, &provider->nodes);
927 
928 	mutex_unlock(&icc_lock);
929 }
930 EXPORT_SYMBOL_GPL(icc_node_add);
931 
932 /**
933  * icc_node_del() - delete interconnect node from interconnect provider
934  * @node: pointer to the interconnect node
935  */
936 void icc_node_del(struct icc_node *node)
937 {
938 	mutex_lock(&icc_lock);
939 
940 	list_del(&node->node_list);
941 
942 	mutex_unlock(&icc_lock);
943 }
944 EXPORT_SYMBOL_GPL(icc_node_del);
945 
946 /**
947  * icc_nodes_remove() - remove all previously added nodes from provider
948  * @provider: the interconnect provider we are removing nodes from
949  *
950  * Return: 0 on success, or an error code otherwise
951  */
952 int icc_nodes_remove(struct icc_provider *provider)
953 {
954 	struct icc_node *n, *tmp;
955 
956 	if (WARN_ON(IS_ERR_OR_NULL(provider)))
957 		return -EINVAL;
958 
959 	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
960 		icc_node_del(n);
961 		icc_node_destroy(n->id);
962 	}
963 
964 	return 0;
965 }
966 EXPORT_SYMBOL_GPL(icc_nodes_remove);
967 
968 /**
969  * icc_provider_add() - add a new interconnect provider
970  * @provider: the interconnect provider that will be added into topology
971  *
972  * Return: 0 on success, or an error code otherwise
973  */
974 int icc_provider_add(struct icc_provider *provider)
975 {
976 	if (WARN_ON(!provider->set))
977 		return -EINVAL;
978 	if (WARN_ON(!provider->xlate))
979 		return -EINVAL;
980 
981 	mutex_lock(&icc_lock);
982 
983 	INIT_LIST_HEAD(&provider->nodes);
984 	list_add_tail(&provider->provider_list, &icc_providers);
985 
986 	mutex_unlock(&icc_lock);
987 
988 	dev_dbg(provider->dev, "interconnect provider added to topology\n");
989 
990 	return 0;
991 }
992 EXPORT_SYMBOL_GPL(icc_provider_add);
993 
994 /**
995  * icc_provider_del() - delete previously added interconnect provider
996  * @provider: the interconnect provider that will be removed from topology
997  *
998  * Return: 0 on success, or an error code otherwise
999  */
1000 int icc_provider_del(struct icc_provider *provider)
1001 {
1002 	mutex_lock(&icc_lock);
1003 	if (provider->users) {
1004 		pr_warn("interconnect provider still has %d users\n",
1005 			provider->users);
1006 		mutex_unlock(&icc_lock);
1007 		return -EBUSY;
1008 	}
1009 
1010 	if (!list_empty(&provider->nodes)) {
1011 		pr_warn("interconnect provider still has nodes\n");
1012 		mutex_unlock(&icc_lock);
1013 		return -EBUSY;
1014 	}
1015 
1016 	list_del(&provider->provider_list);
1017 	mutex_unlock(&icc_lock);
1018 
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(icc_provider_del);
1022 
1023 static int __init icc_init(void)
1024 {
1025 	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1026 	debugfs_create_file("interconnect_summary", 0444,
1027 			    icc_debugfs_dir, NULL, &icc_summary_fops);
1028 	debugfs_create_file("interconnect_graph", 0444,
1029 			    icc_debugfs_dir, NULL, &icc_graph_fops);
1030 	return 0;
1031 }
1032 
1033 device_initcall(icc_init);
1034 
1035 MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
1036 MODULE_DESCRIPTION("Interconnect Driver Core");
1037 MODULE_LICENSE("GPL v2");
1038