xref: /linux/drivers/interconnect/core.c (revision 159a8bb06f7bb298da1aacc99975e9817e2cf02c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interconnect framework core driver
4  *
5  * Copyright (c) 2017-2019, Linaro Ltd.
6  * Author: Georgi Djakov <georgi.djakov@linaro.org>
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/device.h>
11 #include <linux/idr.h>
12 #include <linux/init.h>
13 #include <linux/interconnect.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/list.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/overflow.h>
20 
21 #include "internal.h"
22 
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25 
26 static DEFINE_IDR(icc_idr);
27 static LIST_HEAD(icc_providers);
28 static int providers_count;
29 static bool synced_state;
30 static DEFINE_MUTEX(icc_lock);
31 static struct dentry *icc_debugfs_dir;
32 
33 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
34 {
35 	if (!n)
36 		return;
37 
38 	seq_printf(s, "%-42s %12u %12u\n",
39 		   n->name, n->avg_bw, n->peak_bw);
40 }
41 
42 static int icc_summary_show(struct seq_file *s, void *data)
43 {
44 	struct icc_provider *provider;
45 
46 	seq_puts(s, " node                                  tag          avg         peak\n");
47 	seq_puts(s, "--------------------------------------------------------------------\n");
48 
49 	mutex_lock(&icc_lock);
50 
51 	list_for_each_entry(provider, &icc_providers, provider_list) {
52 		struct icc_node *n;
53 
54 		list_for_each_entry(n, &provider->nodes, node_list) {
55 			struct icc_req *r;
56 
57 			icc_summary_show_one(s, n);
58 			hlist_for_each_entry(r, &n->req_list, req_node) {
59 				u32 avg_bw = 0, peak_bw = 0;
60 
61 				if (!r->dev)
62 					continue;
63 
64 				if (r->enabled) {
65 					avg_bw = r->avg_bw;
66 					peak_bw = r->peak_bw;
67 				}
68 
69 				seq_printf(s, "  %-27s %12u %12u %12u\n",
70 					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
71 			}
72 		}
73 	}
74 
75 	mutex_unlock(&icc_lock);
76 
77 	return 0;
78 }
79 DEFINE_SHOW_ATTRIBUTE(icc_summary);
80 
81 static void icc_graph_show_link(struct seq_file *s, int level,
82 				struct icc_node *n, struct icc_node *m)
83 {
84 	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
85 		   level == 2 ? "\t\t" : "\t",
86 		   n->id, n->name, m->id, m->name);
87 }
88 
89 static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
90 {
91 	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
92 		   n->id, n->name, n->id, n->name);
93 	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
94 	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
95 	seq_puts(s, "\"]\n");
96 }
97 
98 static int icc_graph_show(struct seq_file *s, void *data)
99 {
100 	struct icc_provider *provider;
101 	struct icc_node *n;
102 	int cluster_index = 0;
103 	int i;
104 
105 	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
106 	mutex_lock(&icc_lock);
107 
108 	/* draw providers as cluster subgraphs */
109 	cluster_index = 0;
110 	list_for_each_entry(provider, &icc_providers, provider_list) {
111 		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
112 		if (provider->dev)
113 			seq_printf(s, "\t\tlabel = \"%s\"\n",
114 				   dev_name(provider->dev));
115 
116 		/* draw nodes */
117 		list_for_each_entry(n, &provider->nodes, node_list)
118 			icc_graph_show_node(s, n);
119 
120 		/* draw internal links */
121 		list_for_each_entry(n, &provider->nodes, node_list)
122 			for (i = 0; i < n->num_links; ++i)
123 				if (n->provider == n->links[i]->provider)
124 					icc_graph_show_link(s, 2, n,
125 							    n->links[i]);
126 
127 		seq_puts(s, "\t}\n");
128 	}
129 
130 	/* draw external links */
131 	list_for_each_entry(provider, &icc_providers, provider_list)
132 		list_for_each_entry(n, &provider->nodes, node_list)
133 			for (i = 0; i < n->num_links; ++i)
134 				if (n->provider != n->links[i]->provider)
135 					icc_graph_show_link(s, 1, n,
136 							    n->links[i]);
137 
138 	mutex_unlock(&icc_lock);
139 	seq_puts(s, "}");
140 
141 	return 0;
142 }
143 DEFINE_SHOW_ATTRIBUTE(icc_graph);
144 
145 static struct icc_node *node_find(const int id)
146 {
147 	return idr_find(&icc_idr, id);
148 }
149 
150 static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
151 				  ssize_t num_nodes)
152 {
153 	struct icc_node *node = dst;
154 	struct icc_path *path;
155 	int i;
156 
157 	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
158 	if (!path)
159 		return ERR_PTR(-ENOMEM);
160 
161 	path->num_nodes = num_nodes;
162 
163 	for (i = num_nodes - 1; i >= 0; i--) {
164 		node->provider->users++;
165 		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
166 		path->reqs[i].node = node;
167 		path->reqs[i].dev = dev;
168 		path->reqs[i].enabled = true;
169 		/* reference to previous node was saved during path traversal */
170 		node = node->reverse;
171 	}
172 
173 	return path;
174 }
175 
176 static struct icc_path *path_find(struct device *dev, struct icc_node *src,
177 				  struct icc_node *dst)
178 {
179 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
180 	struct icc_node *n, *node = NULL;
181 	struct list_head traverse_list;
182 	struct list_head edge_list;
183 	struct list_head visited_list;
184 	size_t i, depth = 1;
185 	bool found = false;
186 
187 	INIT_LIST_HEAD(&traverse_list);
188 	INIT_LIST_HEAD(&edge_list);
189 	INIT_LIST_HEAD(&visited_list);
190 
191 	list_add(&src->search_list, &traverse_list);
192 	src->reverse = NULL;
193 
194 	do {
195 		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
196 			if (node == dst) {
197 				found = true;
198 				list_splice_init(&edge_list, &visited_list);
199 				list_splice_init(&traverse_list, &visited_list);
200 				break;
201 			}
202 			for (i = 0; i < node->num_links; i++) {
203 				struct icc_node *tmp = node->links[i];
204 
205 				if (!tmp) {
206 					path = ERR_PTR(-ENOENT);
207 					goto out;
208 				}
209 
210 				if (tmp->is_traversed)
211 					continue;
212 
213 				tmp->is_traversed = true;
214 				tmp->reverse = node;
215 				list_add_tail(&tmp->search_list, &edge_list);
216 			}
217 		}
218 
219 		if (found)
220 			break;
221 
222 		list_splice_init(&traverse_list, &visited_list);
223 		list_splice_init(&edge_list, &traverse_list);
224 
225 		/* count the hops including the source */
226 		depth++;
227 
228 	} while (!list_empty(&traverse_list));
229 
230 out:
231 
232 	/* reset the traversed state */
233 	list_for_each_entry_reverse(n, &visited_list, search_list)
234 		n->is_traversed = false;
235 
236 	if (found)
237 		path = path_init(dev, dst, depth);
238 
239 	return path;
240 }
241 
242 /*
243  * We want the path to honor all bandwidth requests, so the average and peak
244  * bandwidth requirements from each consumer are aggregated at each node.
245  * The aggregation is platform specific, so each platform can customize it by
246  * implementing its own aggregate() function.
247  */
248 
249 static int aggregate_requests(struct icc_node *node)
250 {
251 	struct icc_provider *p = node->provider;
252 	struct icc_req *r;
253 	u32 avg_bw, peak_bw;
254 
255 	node->avg_bw = 0;
256 	node->peak_bw = 0;
257 
258 	if (p->pre_aggregate)
259 		p->pre_aggregate(node);
260 
261 	hlist_for_each_entry(r, &node->req_list, req_node) {
262 		if (r->enabled) {
263 			avg_bw = r->avg_bw;
264 			peak_bw = r->peak_bw;
265 		} else {
266 			avg_bw = 0;
267 			peak_bw = 0;
268 		}
269 		p->aggregate(node, r->tag, avg_bw, peak_bw,
270 			     &node->avg_bw, &node->peak_bw);
271 
272 		/* during boot use the initial bandwidth as a floor value */
273 		if (!synced_state) {
274 			node->avg_bw = max(node->avg_bw, node->init_avg);
275 			node->peak_bw = max(node->peak_bw, node->init_peak);
276 		}
277 	}
278 
279 	return 0;
280 }
281 
282 static int apply_constraints(struct icc_path *path)
283 {
284 	struct icc_node *next, *prev = NULL;
285 	struct icc_provider *p;
286 	int ret = -EINVAL;
287 	int i;
288 
289 	for (i = 0; i < path->num_nodes; i++) {
290 		next = path->reqs[i].node;
291 		p = next->provider;
292 
293 		/* both endpoints should be valid master-slave pairs */
294 		if (!prev || (p != prev->provider && !p->inter_set)) {
295 			prev = next;
296 			continue;
297 		}
298 
299 		/* set the constraints */
300 		ret = p->set(prev, next);
301 		if (ret)
302 			goto out;
303 
304 		prev = next;
305 	}
306 out:
307 	return ret;
308 }
309 
310 int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
311 		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
312 {
313 	*agg_avg += avg_bw;
314 	*agg_peak = max(*agg_peak, peak_bw);
315 
316 	return 0;
317 }
318 EXPORT_SYMBOL_GPL(icc_std_aggregate);
319 
320 /* of_icc_xlate_onecell() - Translate function using a single index.
321  * @spec: OF phandle args to map into an interconnect node.
322  * @data: private data (pointer to struct icc_onecell_data)
323  *
324  * This is a generic translate function that can be used to model simple
325  * interconnect providers that have one device tree node and provide
326  * multiple interconnect nodes. A single cell is used as an index into
327  * an array of icc nodes specified in the icc_onecell_data struct when
328  * registering the provider.
329  */
330 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
331 				      void *data)
332 {
333 	struct icc_onecell_data *icc_data = data;
334 	unsigned int idx = spec->args[0];
335 
336 	if (idx >= icc_data->num_nodes) {
337 		pr_err("%s: invalid index %u\n", __func__, idx);
338 		return ERR_PTR(-EINVAL);
339 	}
340 
341 	return icc_data->nodes[idx];
342 }
343 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
344 
345 /**
346  * of_icc_get_from_provider() - Look-up interconnect node
347  * @spec: OF phandle args to use for look-up
348  *
349  * Looks for interconnect provider under the node specified by @spec and if
350  * found, uses xlate function of the provider to map phandle args to node.
351  *
352  * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
353  * on failure.
354  */
355 struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
356 {
357 	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
358 	struct icc_node_data *data = NULL;
359 	struct icc_provider *provider;
360 
361 	if (!spec)
362 		return ERR_PTR(-EINVAL);
363 
364 	mutex_lock(&icc_lock);
365 	list_for_each_entry(provider, &icc_providers, provider_list) {
366 		if (provider->dev->of_node == spec->np) {
367 			if (provider->xlate_extended) {
368 				data = provider->xlate_extended(spec, provider->data);
369 				if (!IS_ERR(data)) {
370 					node = data->node;
371 					break;
372 				}
373 			} else {
374 				node = provider->xlate(spec, provider->data);
375 				if (!IS_ERR(node))
376 					break;
377 			}
378 		}
379 	}
380 	mutex_unlock(&icc_lock);
381 
382 	if (IS_ERR(node))
383 		return ERR_CAST(node);
384 
385 	if (!data) {
386 		data = kzalloc(sizeof(*data), GFP_KERNEL);
387 		if (!data)
388 			return ERR_PTR(-ENOMEM);
389 		data->node = node;
390 	}
391 
392 	return data;
393 }
394 EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
395 
396 static void devm_icc_release(struct device *dev, void *res)
397 {
398 	icc_put(*(struct icc_path **)res);
399 }
400 
401 struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
402 {
403 	struct icc_path **ptr, *path;
404 
405 	ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
406 	if (!ptr)
407 		return ERR_PTR(-ENOMEM);
408 
409 	path = of_icc_get(dev, name);
410 	if (!IS_ERR(path)) {
411 		*ptr = path;
412 		devres_add(dev, ptr);
413 	} else {
414 		devres_free(ptr);
415 	}
416 
417 	return path;
418 }
419 EXPORT_SYMBOL_GPL(devm_of_icc_get);
420 
421 /**
422  * of_icc_get_by_index() - get a path handle from a DT node based on index
423  * @dev: device pointer for the consumer device
424  * @idx: interconnect path index
425  *
426  * This function will search for a path between two endpoints and return an
427  * icc_path handle on success. Use icc_put() to release constraints when they
428  * are not needed anymore.
429  * If the interconnect API is disabled, NULL is returned and the consumer
430  * drivers will still build. Drivers are free to handle this specifically,
431  * but they don't have to.
432  *
433  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
434  * when the API is disabled or the "interconnects" DT property is missing.
435  */
436 struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
437 {
438 	struct icc_path *path;
439 	struct icc_node_data *src_data, *dst_data;
440 	struct device_node *np;
441 	struct of_phandle_args src_args, dst_args;
442 	int ret;
443 
444 	if (!dev || !dev->of_node)
445 		return ERR_PTR(-ENODEV);
446 
447 	np = dev->of_node;
448 
449 	/*
450 	 * When the consumer DT node do not have "interconnects" property
451 	 * return a NULL path to skip setting constraints.
452 	 */
453 	if (!of_property_present(np, "interconnects"))
454 		return NULL;
455 
456 	/*
457 	 * We use a combination of phandle and specifier for endpoint. For now
458 	 * lets support only global ids and extend this in the future if needed
459 	 * without breaking DT compatibility.
460 	 */
461 	ret = of_parse_phandle_with_args(np, "interconnects",
462 					 "#interconnect-cells", idx * 2,
463 					 &src_args);
464 	if (ret)
465 		return ERR_PTR(ret);
466 
467 	of_node_put(src_args.np);
468 
469 	ret = of_parse_phandle_with_args(np, "interconnects",
470 					 "#interconnect-cells", idx * 2 + 1,
471 					 &dst_args);
472 	if (ret)
473 		return ERR_PTR(ret);
474 
475 	of_node_put(dst_args.np);
476 
477 	src_data = of_icc_get_from_provider(&src_args);
478 
479 	if (IS_ERR(src_data)) {
480 		dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
481 		return ERR_CAST(src_data);
482 	}
483 
484 	dst_data = of_icc_get_from_provider(&dst_args);
485 
486 	if (IS_ERR(dst_data)) {
487 		dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
488 		kfree(src_data);
489 		return ERR_CAST(dst_data);
490 	}
491 
492 	mutex_lock(&icc_lock);
493 	path = path_find(dev, src_data->node, dst_data->node);
494 	mutex_unlock(&icc_lock);
495 	if (IS_ERR(path)) {
496 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
497 		goto free_icc_data;
498 	}
499 
500 	if (src_data->tag && src_data->tag == dst_data->tag)
501 		icc_set_tag(path, src_data->tag);
502 
503 	path->name = kasprintf(GFP_KERNEL, "%s-%s",
504 			       src_data->node->name, dst_data->node->name);
505 	if (!path->name) {
506 		kfree(path);
507 		path = ERR_PTR(-ENOMEM);
508 	}
509 
510 free_icc_data:
511 	kfree(src_data);
512 	kfree(dst_data);
513 	return path;
514 }
515 EXPORT_SYMBOL_GPL(of_icc_get_by_index);
516 
517 /**
518  * of_icc_get() - get a path handle from a DT node based on name
519  * @dev: device pointer for the consumer device
520  * @name: interconnect path name
521  *
522  * This function will search for a path between two endpoints and return an
523  * icc_path handle on success. Use icc_put() to release constraints when they
524  * are not needed anymore.
525  * If the interconnect API is disabled, NULL is returned and the consumer
526  * drivers will still build. Drivers are free to handle this specifically,
527  * but they don't have to.
528  *
529  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
530  * when the API is disabled or the "interconnects" DT property is missing.
531  */
532 struct icc_path *of_icc_get(struct device *dev, const char *name)
533 {
534 	struct device_node *np;
535 	int idx = 0;
536 
537 	if (!dev || !dev->of_node)
538 		return ERR_PTR(-ENODEV);
539 
540 	np = dev->of_node;
541 
542 	/*
543 	 * When the consumer DT node do not have "interconnects" property
544 	 * return a NULL path to skip setting constraints.
545 	 */
546 	if (!of_property_present(np, "interconnects"))
547 		return NULL;
548 
549 	/*
550 	 * We use a combination of phandle and specifier for endpoint. For now
551 	 * lets support only global ids and extend this in the future if needed
552 	 * without breaking DT compatibility.
553 	 */
554 	if (name) {
555 		idx = of_property_match_string(np, "interconnect-names", name);
556 		if (idx < 0)
557 			return ERR_PTR(idx);
558 	}
559 
560 	return of_icc_get_by_index(dev, idx);
561 }
562 EXPORT_SYMBOL_GPL(of_icc_get);
563 
564 /**
565  * icc_set_tag() - set an optional tag on a path
566  * @path: the path we want to tag
567  * @tag: the tag value
568  *
569  * This function allows consumers to append a tag to the requests associated
570  * with a path, so that a different aggregation could be done based on this tag.
571  */
572 void icc_set_tag(struct icc_path *path, u32 tag)
573 {
574 	int i;
575 
576 	if (!path)
577 		return;
578 
579 	mutex_lock(&icc_lock);
580 
581 	for (i = 0; i < path->num_nodes; i++)
582 		path->reqs[i].tag = tag;
583 
584 	mutex_unlock(&icc_lock);
585 }
586 EXPORT_SYMBOL_GPL(icc_set_tag);
587 
588 /**
589  * icc_get_name() - Get name of the icc path
590  * @path: interconnect path
591  *
592  * This function is used by an interconnect consumer to get the name of the icc
593  * path.
594  *
595  * Returns a valid pointer on success, or NULL otherwise.
596  */
597 const char *icc_get_name(struct icc_path *path)
598 {
599 	if (!path)
600 		return NULL;
601 
602 	return path->name;
603 }
604 EXPORT_SYMBOL_GPL(icc_get_name);
605 
606 /**
607  * icc_set_bw() - set bandwidth constraints on an interconnect path
608  * @path: interconnect path
609  * @avg_bw: average bandwidth in kilobytes per second
610  * @peak_bw: peak bandwidth in kilobytes per second
611  *
612  * This function is used by an interconnect consumer to express its own needs
613  * in terms of bandwidth for a previously requested path between two endpoints.
614  * The requests are aggregated and each node is updated accordingly. The entire
615  * path is locked by a mutex to ensure that the set() is completed.
616  * The @path can be NULL when the "interconnects" DT properties is missing,
617  * which will mean that no constraints will be set.
618  *
619  * Returns 0 on success, or an appropriate error code otherwise.
620  */
621 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
622 {
623 	struct icc_node *node;
624 	u32 old_avg, old_peak;
625 	size_t i;
626 	int ret;
627 
628 	if (!path)
629 		return 0;
630 
631 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
632 		return -EINVAL;
633 
634 	mutex_lock(&icc_lock);
635 
636 	old_avg = path->reqs[0].avg_bw;
637 	old_peak = path->reqs[0].peak_bw;
638 
639 	for (i = 0; i < path->num_nodes; i++) {
640 		node = path->reqs[i].node;
641 
642 		/* update the consumer request for this path */
643 		path->reqs[i].avg_bw = avg_bw;
644 		path->reqs[i].peak_bw = peak_bw;
645 
646 		/* aggregate requests for this node */
647 		aggregate_requests(node);
648 
649 		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
650 	}
651 
652 	ret = apply_constraints(path);
653 	if (ret) {
654 		pr_debug("interconnect: error applying constraints (%d)\n",
655 			 ret);
656 
657 		for (i = 0; i < path->num_nodes; i++) {
658 			node = path->reqs[i].node;
659 			path->reqs[i].avg_bw = old_avg;
660 			path->reqs[i].peak_bw = old_peak;
661 			aggregate_requests(node);
662 		}
663 		apply_constraints(path);
664 	}
665 
666 	mutex_unlock(&icc_lock);
667 
668 	trace_icc_set_bw_end(path, ret);
669 
670 	return ret;
671 }
672 EXPORT_SYMBOL_GPL(icc_set_bw);
673 
674 static int __icc_enable(struct icc_path *path, bool enable)
675 {
676 	int i;
677 
678 	if (!path)
679 		return 0;
680 
681 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
682 		return -EINVAL;
683 
684 	mutex_lock(&icc_lock);
685 
686 	for (i = 0; i < path->num_nodes; i++)
687 		path->reqs[i].enabled = enable;
688 
689 	mutex_unlock(&icc_lock);
690 
691 	return icc_set_bw(path, path->reqs[0].avg_bw,
692 			  path->reqs[0].peak_bw);
693 }
694 
695 int icc_enable(struct icc_path *path)
696 {
697 	return __icc_enable(path, true);
698 }
699 EXPORT_SYMBOL_GPL(icc_enable);
700 
701 int icc_disable(struct icc_path *path)
702 {
703 	return __icc_enable(path, false);
704 }
705 EXPORT_SYMBOL_GPL(icc_disable);
706 
707 /**
708  * icc_put() - release the reference to the icc_path
709  * @path: interconnect path
710  *
711  * Use this function to release the constraints on a path when the path is
712  * no longer needed. The constraints will be re-aggregated.
713  */
714 void icc_put(struct icc_path *path)
715 {
716 	struct icc_node *node;
717 	size_t i;
718 	int ret;
719 
720 	if (!path || WARN_ON(IS_ERR(path)))
721 		return;
722 
723 	ret = icc_set_bw(path, 0, 0);
724 	if (ret)
725 		pr_err("%s: error (%d)\n", __func__, ret);
726 
727 	mutex_lock(&icc_lock);
728 	for (i = 0; i < path->num_nodes; i++) {
729 		node = path->reqs[i].node;
730 		hlist_del(&path->reqs[i].req_node);
731 		if (!WARN_ON(!node->provider->users))
732 			node->provider->users--;
733 	}
734 	mutex_unlock(&icc_lock);
735 
736 	kfree_const(path->name);
737 	kfree(path);
738 }
739 EXPORT_SYMBOL_GPL(icc_put);
740 
741 static struct icc_node *icc_node_create_nolock(int id)
742 {
743 	struct icc_node *node;
744 
745 	/* check if node already exists */
746 	node = node_find(id);
747 	if (node)
748 		return node;
749 
750 	node = kzalloc(sizeof(*node), GFP_KERNEL);
751 	if (!node)
752 		return ERR_PTR(-ENOMEM);
753 
754 	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
755 	if (id < 0) {
756 		WARN(1, "%s: couldn't get idr\n", __func__);
757 		kfree(node);
758 		return ERR_PTR(id);
759 	}
760 
761 	node->id = id;
762 
763 	return node;
764 }
765 
766 /**
767  * icc_node_create() - create a node
768  * @id: node id
769  *
770  * Return: icc_node pointer on success, or ERR_PTR() on error
771  */
772 struct icc_node *icc_node_create(int id)
773 {
774 	struct icc_node *node;
775 
776 	mutex_lock(&icc_lock);
777 
778 	node = icc_node_create_nolock(id);
779 
780 	mutex_unlock(&icc_lock);
781 
782 	return node;
783 }
784 EXPORT_SYMBOL_GPL(icc_node_create);
785 
786 /**
787  * icc_node_destroy() - destroy a node
788  * @id: node id
789  */
790 void icc_node_destroy(int id)
791 {
792 	struct icc_node *node;
793 
794 	mutex_lock(&icc_lock);
795 
796 	node = node_find(id);
797 	if (node) {
798 		idr_remove(&icc_idr, node->id);
799 		WARN_ON(!hlist_empty(&node->req_list));
800 	}
801 
802 	mutex_unlock(&icc_lock);
803 
804 	if (!node)
805 		return;
806 
807 	kfree(node->links);
808 	kfree(node);
809 }
810 EXPORT_SYMBOL_GPL(icc_node_destroy);
811 
812 /**
813  * icc_link_create() - create a link between two nodes
814  * @node: source node id
815  * @dst_id: destination node id
816  *
817  * Create a link between two nodes. The nodes might belong to different
818  * interconnect providers and the @dst_id node might not exist (if the
819  * provider driver has not probed yet). So just create the @dst_id node
820  * and when the actual provider driver is probed, the rest of the node
821  * data is filled.
822  *
823  * Return: 0 on success, or an error code otherwise
824  */
825 int icc_link_create(struct icc_node *node, const int dst_id)
826 {
827 	struct icc_node *dst;
828 	struct icc_node **new;
829 	int ret = 0;
830 
831 	if (!node->provider)
832 		return -EINVAL;
833 
834 	mutex_lock(&icc_lock);
835 
836 	dst = node_find(dst_id);
837 	if (!dst) {
838 		dst = icc_node_create_nolock(dst_id);
839 
840 		if (IS_ERR(dst)) {
841 			ret = PTR_ERR(dst);
842 			goto out;
843 		}
844 	}
845 
846 	new = krealloc(node->links,
847 		       (node->num_links + 1) * sizeof(*node->links),
848 		       GFP_KERNEL);
849 	if (!new) {
850 		ret = -ENOMEM;
851 		goto out;
852 	}
853 
854 	node->links = new;
855 	node->links[node->num_links++] = dst;
856 
857 out:
858 	mutex_unlock(&icc_lock);
859 
860 	return ret;
861 }
862 EXPORT_SYMBOL_GPL(icc_link_create);
863 
864 /**
865  * icc_node_add() - add interconnect node to interconnect provider
866  * @node: pointer to the interconnect node
867  * @provider: pointer to the interconnect provider
868  */
869 void icc_node_add(struct icc_node *node, struct icc_provider *provider)
870 {
871 	if (WARN_ON(node->provider))
872 		return;
873 
874 	mutex_lock(&icc_lock);
875 
876 	node->provider = provider;
877 	list_add_tail(&node->node_list, &provider->nodes);
878 
879 	/* get the initial bandwidth values and sync them with hardware */
880 	if (provider->get_bw) {
881 		provider->get_bw(node, &node->init_avg, &node->init_peak);
882 	} else {
883 		node->init_avg = INT_MAX;
884 		node->init_peak = INT_MAX;
885 	}
886 	node->avg_bw = node->init_avg;
887 	node->peak_bw = node->init_peak;
888 
889 	if (node->avg_bw || node->peak_bw) {
890 		if (provider->pre_aggregate)
891 			provider->pre_aggregate(node);
892 
893 		if (provider->aggregate)
894 			provider->aggregate(node, 0, node->init_avg, node->init_peak,
895 					    &node->avg_bw, &node->peak_bw);
896 		if (provider->set)
897 			provider->set(node, node);
898 	}
899 
900 	node->avg_bw = 0;
901 	node->peak_bw = 0;
902 
903 	mutex_unlock(&icc_lock);
904 }
905 EXPORT_SYMBOL_GPL(icc_node_add);
906 
907 /**
908  * icc_node_del() - delete interconnect node from interconnect provider
909  * @node: pointer to the interconnect node
910  */
911 void icc_node_del(struct icc_node *node)
912 {
913 	mutex_lock(&icc_lock);
914 
915 	list_del(&node->node_list);
916 
917 	mutex_unlock(&icc_lock);
918 }
919 EXPORT_SYMBOL_GPL(icc_node_del);
920 
921 /**
922  * icc_nodes_remove() - remove all previously added nodes from provider
923  * @provider: the interconnect provider we are removing nodes from
924  *
925  * Return: 0 on success, or an error code otherwise
926  */
927 int icc_nodes_remove(struct icc_provider *provider)
928 {
929 	struct icc_node *n, *tmp;
930 
931 	if (WARN_ON(IS_ERR_OR_NULL(provider)))
932 		return -EINVAL;
933 
934 	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
935 		icc_node_del(n);
936 		icc_node_destroy(n->id);
937 	}
938 
939 	return 0;
940 }
941 EXPORT_SYMBOL_GPL(icc_nodes_remove);
942 
943 /**
944  * icc_provider_init() - initialize a new interconnect provider
945  * @provider: the interconnect provider to initialize
946  *
947  * Must be called before adding nodes to the provider.
948  */
949 void icc_provider_init(struct icc_provider *provider)
950 {
951 	WARN_ON(!provider->set);
952 
953 	INIT_LIST_HEAD(&provider->nodes);
954 }
955 EXPORT_SYMBOL_GPL(icc_provider_init);
956 
957 /**
958  * icc_provider_register() - register a new interconnect provider
959  * @provider: the interconnect provider to register
960  *
961  * Return: 0 on success, or an error code otherwise
962  */
963 int icc_provider_register(struct icc_provider *provider)
964 {
965 	if (WARN_ON(!provider->xlate && !provider->xlate_extended))
966 		return -EINVAL;
967 
968 	mutex_lock(&icc_lock);
969 	list_add_tail(&provider->provider_list, &icc_providers);
970 	mutex_unlock(&icc_lock);
971 
972 	dev_dbg(provider->dev, "interconnect provider registered\n");
973 
974 	return 0;
975 }
976 EXPORT_SYMBOL_GPL(icc_provider_register);
977 
978 /**
979  * icc_provider_deregister() - deregister an interconnect provider
980  * @provider: the interconnect provider to deregister
981  */
982 void icc_provider_deregister(struct icc_provider *provider)
983 {
984 	mutex_lock(&icc_lock);
985 	WARN_ON(provider->users);
986 
987 	list_del(&provider->provider_list);
988 	mutex_unlock(&icc_lock);
989 }
990 EXPORT_SYMBOL_GPL(icc_provider_deregister);
991 
992 static const struct of_device_id __maybe_unused ignore_list[] = {
993 	{ .compatible = "qcom,sc7180-ipa-virt" },
994 	{ .compatible = "qcom,sc8180x-ipa-virt" },
995 	{ .compatible = "qcom,sdx55-ipa-virt" },
996 	{ .compatible = "qcom,sm8150-ipa-virt" },
997 	{ .compatible = "qcom,sm8250-ipa-virt" },
998 	{}
999 };
1000 
1001 static int of_count_icc_providers(struct device_node *np)
1002 {
1003 	struct device_node *child;
1004 	int count = 0;
1005 
1006 	for_each_available_child_of_node(np, child) {
1007 		if (of_property_read_bool(child, "#interconnect-cells") &&
1008 		    likely(!of_match_node(ignore_list, child)))
1009 			count++;
1010 		count += of_count_icc_providers(child);
1011 	}
1012 
1013 	return count;
1014 }
1015 
1016 void icc_sync_state(struct device *dev)
1017 {
1018 	struct icc_provider *p;
1019 	struct icc_node *n;
1020 	static int count;
1021 
1022 	count++;
1023 
1024 	if (count < providers_count)
1025 		return;
1026 
1027 	mutex_lock(&icc_lock);
1028 	synced_state = true;
1029 	list_for_each_entry(p, &icc_providers, provider_list) {
1030 		dev_dbg(p->dev, "interconnect provider is in synced state\n");
1031 		list_for_each_entry(n, &p->nodes, node_list) {
1032 			if (n->init_avg || n->init_peak) {
1033 				n->init_avg = 0;
1034 				n->init_peak = 0;
1035 				aggregate_requests(n);
1036 				p->set(n, n);
1037 			}
1038 		}
1039 	}
1040 	mutex_unlock(&icc_lock);
1041 }
1042 EXPORT_SYMBOL_GPL(icc_sync_state);
1043 
1044 static int __init icc_init(void)
1045 {
1046 	struct device_node *root = of_find_node_by_path("/");
1047 
1048 	providers_count = of_count_icc_providers(root);
1049 	of_node_put(root);
1050 
1051 	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1052 	debugfs_create_file("interconnect_summary", 0444,
1053 			    icc_debugfs_dir, NULL, &icc_summary_fops);
1054 	debugfs_create_file("interconnect_graph", 0444,
1055 			    icc_debugfs_dir, NULL, &icc_graph_fops);
1056 	return 0;
1057 }
1058 
1059 device_initcall(icc_init);
1060