xref: /linux/drivers/input/touchscreen/ads7846.c (revision 3a8ab79eae4500e6ac618a92a90cee63d6e804a8)
1 /*
2  * ADS7846 based touchscreen and sensor driver
3  *
4  * Copyright (c) 2005 David Brownell
5  * Copyright (c) 2006 Nokia Corporation
6  * Various changes: Imre Deak <imre.deak@nokia.com>
7  *
8  * Using code from:
9  *  - corgi_ts.c
10  *	Copyright (C) 2004-2005 Richard Purdie
11  *  - omap_ts.[hc], ads7846.h, ts_osk.c
12  *	Copyright (C) 2002 MontaVista Software
13  *	Copyright (C) 2004 Texas Instruments
14  *	Copyright (C) 2005 Dirk Behme
15  *
16  *  This program is free software; you can redistribute it and/or modify
17  *  it under the terms of the GNU General Public License version 2 as
18  *  published by the Free Software Foundation.
19  */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/pm.h>
30 #include <linux/gpio.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/ads7846.h>
33 #include <linux/regulator/consumer.h>
34 #include <asm/irq.h>
35 
36 /*
37  * This code has been heavily tested on a Nokia 770, and lightly
38  * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
39  * TSC2046 is just newer ads7846 silicon.
40  * Support for ads7843 tested on Atmel at91sam926x-EK.
41  * Support for ads7845 has only been stubbed in.
42  * Support for Analog Devices AD7873 and AD7843 tested.
43  *
44  * IRQ handling needs a workaround because of a shortcoming in handling
45  * edge triggered IRQs on some platforms like the OMAP1/2. These
46  * platforms don't handle the ARM lazy IRQ disabling properly, thus we
47  * have to maintain our own SW IRQ disabled status. This should be
48  * removed as soon as the affected platform's IRQ handling is fixed.
49  *
50  * App note sbaa036 talks in more detail about accurate sampling...
51  * that ought to help in situations like LCDs inducing noise (which
52  * can also be helped by using synch signals) and more generally.
53  * This driver tries to utilize the measures described in the app
54  * note. The strength of filtering can be set in the board-* specific
55  * files.
56  */
57 
58 #define TS_POLL_DELAY	1	/* ms delay before the first sample */
59 #define TS_POLL_PERIOD	5	/* ms delay between samples */
60 
61 /* this driver doesn't aim at the peak continuous sample rate */
62 #define	SAMPLE_BITS	(8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
63 
64 struct ts_event {
65 	/*
66 	 * For portability, we can't read 12 bit values using SPI (which
67 	 * would make the controller deliver them as native byte order u16
68 	 * with msbs zeroed).  Instead, we read them as two 8-bit values,
69 	 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
70 	 */
71 	u16	x;
72 	u16	y;
73 	u16	z1, z2;
74 	bool	ignore;
75 	u8	x_buf[3];
76 	u8	y_buf[3];
77 };
78 
79 /*
80  * We allocate this separately to avoid cache line sharing issues when
81  * driver is used with DMA-based SPI controllers (like atmel_spi) on
82  * systems where main memory is not DMA-coherent (most non-x86 boards).
83  */
84 struct ads7846_packet {
85 	u8			read_x, read_y, read_z1, read_z2, pwrdown;
86 	u16			dummy;		/* for the pwrdown read */
87 	struct ts_event		tc;
88 	/* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
89 	u8			read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
90 };
91 
92 struct ads7846 {
93 	struct input_dev	*input;
94 	char			phys[32];
95 	char			name[32];
96 
97 	struct spi_device	*spi;
98 	struct regulator	*reg;
99 
100 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
101 	struct attribute_group	*attr_group;
102 	struct device		*hwmon;
103 #endif
104 
105 	u16			model;
106 	u16			vref_mv;
107 	u16			vref_delay_usecs;
108 	u16			x_plate_ohms;
109 	u16			pressure_max;
110 
111 	bool			swap_xy;
112 
113 	struct ads7846_packet	*packet;
114 
115 	struct spi_transfer	xfer[18];
116 	struct spi_message	msg[5];
117 	int			msg_count;
118 	wait_queue_head_t	wait;
119 
120 	bool			pendown;
121 
122 	int			read_cnt;
123 	int			read_rep;
124 	int			last_read;
125 
126 	u16			debounce_max;
127 	u16			debounce_tol;
128 	u16			debounce_rep;
129 
130 	u16			penirq_recheck_delay_usecs;
131 
132 	struct mutex		lock;
133 	bool			stopped;	/* P: lock */
134 	bool			disabled;	/* P: lock */
135 	bool			suspended;	/* P: lock */
136 
137 	int			(*filter)(void *data, int data_idx, int *val);
138 	void			*filter_data;
139 	void			(*filter_cleanup)(void *data);
140 	int			(*get_pendown_state)(void);
141 	int			gpio_pendown;
142 
143 	void			(*wait_for_sync)(void);
144 };
145 
146 /* leave chip selected when we're done, for quicker re-select? */
147 #if	0
148 #define	CS_CHANGE(xfer)	((xfer).cs_change = 1)
149 #else
150 #define	CS_CHANGE(xfer)	((xfer).cs_change = 0)
151 #endif
152 
153 /*--------------------------------------------------------------------------*/
154 
155 /* The ADS7846 has touchscreen and other sensors.
156  * Earlier ads784x chips are somewhat compatible.
157  */
158 #define	ADS_START		(1 << 7)
159 #define	ADS_A2A1A0_d_y		(1 << 4)	/* differential */
160 #define	ADS_A2A1A0_d_z1		(3 << 4)	/* differential */
161 #define	ADS_A2A1A0_d_z2		(4 << 4)	/* differential */
162 #define	ADS_A2A1A0_d_x		(5 << 4)	/* differential */
163 #define	ADS_A2A1A0_temp0	(0 << 4)	/* non-differential */
164 #define	ADS_A2A1A0_vbatt	(2 << 4)	/* non-differential */
165 #define	ADS_A2A1A0_vaux		(6 << 4)	/* non-differential */
166 #define	ADS_A2A1A0_temp1	(7 << 4)	/* non-differential */
167 #define	ADS_8_BIT		(1 << 3)
168 #define	ADS_12_BIT		(0 << 3)
169 #define	ADS_SER			(1 << 2)	/* non-differential */
170 #define	ADS_DFR			(0 << 2)	/* differential */
171 #define	ADS_PD10_PDOWN		(0 << 0)	/* low power mode + penirq */
172 #define	ADS_PD10_ADC_ON		(1 << 0)	/* ADC on */
173 #define	ADS_PD10_REF_ON		(2 << 0)	/* vREF on + penirq */
174 #define	ADS_PD10_ALL_ON		(3 << 0)	/* ADC + vREF on */
175 
176 #define	MAX_12BIT	((1<<12)-1)
177 
178 /* leave ADC powered up (disables penirq) between differential samples */
179 #define	READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
180 	| ADS_12_BIT | ADS_DFR | \
181 	(adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
182 
183 #define	READ_Y(vref)	(READ_12BIT_DFR(y,  1, vref))
184 #define	READ_Z1(vref)	(READ_12BIT_DFR(z1, 1, vref))
185 #define	READ_Z2(vref)	(READ_12BIT_DFR(z2, 1, vref))
186 
187 #define	READ_X(vref)	(READ_12BIT_DFR(x,  1, vref))
188 #define	PWRDOWN		(READ_12BIT_DFR(y,  0, 0))	/* LAST */
189 
190 /* single-ended samples need to first power up reference voltage;
191  * we leave both ADC and VREF powered
192  */
193 #define	READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
194 	| ADS_12_BIT | ADS_SER)
195 
196 #define	REF_ON	(READ_12BIT_DFR(x, 1, 1))
197 #define	REF_OFF	(READ_12BIT_DFR(y, 0, 0))
198 
199 /* Must be called with ts->lock held */
200 static void ads7846_stop(struct ads7846 *ts)
201 {
202 	if (!ts->disabled && !ts->suspended) {
203 		/* Signal IRQ thread to stop polling and disable the handler. */
204 		ts->stopped = true;
205 		mb();
206 		wake_up(&ts->wait);
207 		disable_irq(ts->spi->irq);
208 	}
209 }
210 
211 /* Must be called with ts->lock held */
212 static void ads7846_restart(struct ads7846 *ts)
213 {
214 	if (!ts->disabled && !ts->suspended) {
215 		/* Tell IRQ thread that it may poll the device. */
216 		ts->stopped = false;
217 		mb();
218 		enable_irq(ts->spi->irq);
219 	}
220 }
221 
222 /* Must be called with ts->lock held */
223 static void __ads7846_disable(struct ads7846 *ts)
224 {
225 	ads7846_stop(ts);
226 	regulator_disable(ts->reg);
227 
228 	/*
229 	 * We know the chip's in low power mode since we always
230 	 * leave it that way after every request
231 	 */
232 }
233 
234 /* Must be called with ts->lock held */
235 static void __ads7846_enable(struct ads7846 *ts)
236 {
237 	regulator_enable(ts->reg);
238 	ads7846_restart(ts);
239 }
240 
241 static void ads7846_disable(struct ads7846 *ts)
242 {
243 	mutex_lock(&ts->lock);
244 
245 	if (!ts->disabled) {
246 
247 		if  (!ts->suspended)
248 			__ads7846_disable(ts);
249 
250 		ts->disabled = true;
251 	}
252 
253 	mutex_unlock(&ts->lock);
254 }
255 
256 static void ads7846_enable(struct ads7846 *ts)
257 {
258 	mutex_lock(&ts->lock);
259 
260 	if (ts->disabled) {
261 
262 		ts->disabled = false;
263 
264 		if (!ts->suspended)
265 			__ads7846_enable(ts);
266 	}
267 
268 	mutex_unlock(&ts->lock);
269 }
270 
271 /*--------------------------------------------------------------------------*/
272 
273 /*
274  * Non-touchscreen sensors only use single-ended conversions.
275  * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
276  * ads7846 lets that pin be unconnected, to use internal vREF.
277  */
278 
279 struct ser_req {
280 	u8			ref_on;
281 	u8			command;
282 	u8			ref_off;
283 	u16			scratch;
284 	struct spi_message	msg;
285 	struct spi_transfer	xfer[6];
286 	/*
287 	 * DMA (thus cache coherency maintenance) requires the
288 	 * transfer buffers to live in their own cache lines.
289 	 */
290 	__be16 sample ____cacheline_aligned;
291 };
292 
293 struct ads7845_ser_req {
294 	u8			command[3];
295 	struct spi_message	msg;
296 	struct spi_transfer	xfer[2];
297 	/*
298 	 * DMA (thus cache coherency maintenance) requires the
299 	 * transfer buffers to live in their own cache lines.
300 	 */
301 	u8 sample[3] ____cacheline_aligned;
302 };
303 
304 static int ads7846_read12_ser(struct device *dev, unsigned command)
305 {
306 	struct spi_device *spi = to_spi_device(dev);
307 	struct ads7846 *ts = dev_get_drvdata(dev);
308 	struct ser_req *req;
309 	int status;
310 	int use_internal;
311 
312 	req = kzalloc(sizeof *req, GFP_KERNEL);
313 	if (!req)
314 		return -ENOMEM;
315 
316 	spi_message_init(&req->msg);
317 
318 	/* FIXME boards with ads7846 might use external vref instead ... */
319 	use_internal = (ts->model == 7846);
320 
321 	/* maybe turn on internal vREF, and let it settle */
322 	if (use_internal) {
323 		req->ref_on = REF_ON;
324 		req->xfer[0].tx_buf = &req->ref_on;
325 		req->xfer[0].len = 1;
326 		spi_message_add_tail(&req->xfer[0], &req->msg);
327 
328 		req->xfer[1].rx_buf = &req->scratch;
329 		req->xfer[1].len = 2;
330 
331 		/* for 1uF, settle for 800 usec; no cap, 100 usec.  */
332 		req->xfer[1].delay_usecs = ts->vref_delay_usecs;
333 		spi_message_add_tail(&req->xfer[1], &req->msg);
334 	}
335 
336 	/* take sample */
337 	req->command = (u8) command;
338 	req->xfer[2].tx_buf = &req->command;
339 	req->xfer[2].len = 1;
340 	spi_message_add_tail(&req->xfer[2], &req->msg);
341 
342 	req->xfer[3].rx_buf = &req->sample;
343 	req->xfer[3].len = 2;
344 	spi_message_add_tail(&req->xfer[3], &req->msg);
345 
346 	/* REVISIT:  take a few more samples, and compare ... */
347 
348 	/* converter in low power mode & enable PENIRQ */
349 	req->ref_off = PWRDOWN;
350 	req->xfer[4].tx_buf = &req->ref_off;
351 	req->xfer[4].len = 1;
352 	spi_message_add_tail(&req->xfer[4], &req->msg);
353 
354 	req->xfer[5].rx_buf = &req->scratch;
355 	req->xfer[5].len = 2;
356 	CS_CHANGE(req->xfer[5]);
357 	spi_message_add_tail(&req->xfer[5], &req->msg);
358 
359 	mutex_lock(&ts->lock);
360 	ads7846_stop(ts);
361 	status = spi_sync(spi, &req->msg);
362 	ads7846_restart(ts);
363 	mutex_unlock(&ts->lock);
364 
365 	if (status == 0) {
366 		/* on-wire is a must-ignore bit, a BE12 value, then padding */
367 		status = be16_to_cpu(req->sample);
368 		status = status >> 3;
369 		status &= 0x0fff;
370 	}
371 
372 	kfree(req);
373 	return status;
374 }
375 
376 static int ads7845_read12_ser(struct device *dev, unsigned command)
377 {
378 	struct spi_device *spi = to_spi_device(dev);
379 	struct ads7846 *ts = dev_get_drvdata(dev);
380 	struct ads7845_ser_req *req;
381 	int status;
382 
383 	req = kzalloc(sizeof *req, GFP_KERNEL);
384 	if (!req)
385 		return -ENOMEM;
386 
387 	spi_message_init(&req->msg);
388 
389 	req->command[0] = (u8) command;
390 	req->xfer[0].tx_buf = req->command;
391 	req->xfer[0].rx_buf = req->sample;
392 	req->xfer[0].len = 3;
393 	spi_message_add_tail(&req->xfer[0], &req->msg);
394 
395 	mutex_lock(&ts->lock);
396 	ads7846_stop(ts);
397 	status = spi_sync(spi, &req->msg);
398 	ads7846_restart(ts);
399 	mutex_unlock(&ts->lock);
400 
401 	if (status == 0) {
402 		/* BE12 value, then padding */
403 		status = be16_to_cpu(*((u16 *)&req->sample[1]));
404 		status = status >> 3;
405 		status &= 0x0fff;
406 	}
407 
408 	kfree(req);
409 	return status;
410 }
411 
412 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
413 
414 #define SHOW(name, var, adjust) static ssize_t \
415 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
416 { \
417 	struct ads7846 *ts = dev_get_drvdata(dev); \
418 	ssize_t v = ads7846_read12_ser(dev, \
419 			READ_12BIT_SER(var) | ADS_PD10_ALL_ON); \
420 	if (v < 0) \
421 		return v; \
422 	return sprintf(buf, "%u\n", adjust(ts, v)); \
423 } \
424 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
425 
426 
427 /* Sysfs conventions report temperatures in millidegrees Celsius.
428  * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
429  * accuracy scheme without calibration data.  For now we won't try either;
430  * userspace sees raw sensor values, and must scale/calibrate appropriately.
431  */
432 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
433 {
434 	return v;
435 }
436 
437 SHOW(temp0, temp0, null_adjust)		/* temp1_input */
438 SHOW(temp1, temp1, null_adjust)		/* temp2_input */
439 
440 
441 /* sysfs conventions report voltages in millivolts.  We can convert voltages
442  * if we know vREF.  userspace may need to scale vAUX to match the board's
443  * external resistors; we assume that vBATT only uses the internal ones.
444  */
445 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
446 {
447 	unsigned retval = v;
448 
449 	/* external resistors may scale vAUX into 0..vREF */
450 	retval *= ts->vref_mv;
451 	retval = retval >> 12;
452 
453 	return retval;
454 }
455 
456 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
457 {
458 	unsigned retval = vaux_adjust(ts, v);
459 
460 	/* ads7846 has a resistor ladder to scale this signal down */
461 	if (ts->model == 7846)
462 		retval *= 4;
463 
464 	return retval;
465 }
466 
467 SHOW(in0_input, vaux, vaux_adjust)
468 SHOW(in1_input, vbatt, vbatt_adjust)
469 
470 static struct attribute *ads7846_attributes[] = {
471 	&dev_attr_temp0.attr,
472 	&dev_attr_temp1.attr,
473 	&dev_attr_in0_input.attr,
474 	&dev_attr_in1_input.attr,
475 	NULL,
476 };
477 
478 static struct attribute_group ads7846_attr_group = {
479 	.attrs = ads7846_attributes,
480 };
481 
482 static struct attribute *ads7843_attributes[] = {
483 	&dev_attr_in0_input.attr,
484 	&dev_attr_in1_input.attr,
485 	NULL,
486 };
487 
488 static struct attribute_group ads7843_attr_group = {
489 	.attrs = ads7843_attributes,
490 };
491 
492 static struct attribute *ads7845_attributes[] = {
493 	&dev_attr_in0_input.attr,
494 	NULL,
495 };
496 
497 static struct attribute_group ads7845_attr_group = {
498 	.attrs = ads7845_attributes,
499 };
500 
501 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
502 {
503 	struct device *hwmon;
504 	int err;
505 
506 	/* hwmon sensors need a reference voltage */
507 	switch (ts->model) {
508 	case 7846:
509 		if (!ts->vref_mv) {
510 			dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
511 			ts->vref_mv = 2500;
512 		}
513 		break;
514 	case 7845:
515 	case 7843:
516 		if (!ts->vref_mv) {
517 			dev_warn(&spi->dev,
518 				"external vREF for ADS%d not specified\n",
519 				ts->model);
520 			return 0;
521 		}
522 		break;
523 	}
524 
525 	/* different chips have different sensor groups */
526 	switch (ts->model) {
527 	case 7846:
528 		ts->attr_group = &ads7846_attr_group;
529 		break;
530 	case 7845:
531 		ts->attr_group = &ads7845_attr_group;
532 		break;
533 	case 7843:
534 		ts->attr_group = &ads7843_attr_group;
535 		break;
536 	default:
537 		dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
538 		return 0;
539 	}
540 
541 	err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
542 	if (err)
543 		return err;
544 
545 	hwmon = hwmon_device_register(&spi->dev);
546 	if (IS_ERR(hwmon)) {
547 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
548 		return PTR_ERR(hwmon);
549 	}
550 
551 	ts->hwmon = hwmon;
552 	return 0;
553 }
554 
555 static void ads784x_hwmon_unregister(struct spi_device *spi,
556 				     struct ads7846 *ts)
557 {
558 	if (ts->hwmon) {
559 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
560 		hwmon_device_unregister(ts->hwmon);
561 	}
562 }
563 
564 #else
565 static inline int ads784x_hwmon_register(struct spi_device *spi,
566 					 struct ads7846 *ts)
567 {
568 	return 0;
569 }
570 
571 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
572 					    struct ads7846 *ts)
573 {
574 }
575 #endif
576 
577 static ssize_t ads7846_pen_down_show(struct device *dev,
578 				     struct device_attribute *attr, char *buf)
579 {
580 	struct ads7846 *ts = dev_get_drvdata(dev);
581 
582 	return sprintf(buf, "%u\n", ts->pendown);
583 }
584 
585 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
586 
587 static ssize_t ads7846_disable_show(struct device *dev,
588 				     struct device_attribute *attr, char *buf)
589 {
590 	struct ads7846 *ts = dev_get_drvdata(dev);
591 
592 	return sprintf(buf, "%u\n", ts->disabled);
593 }
594 
595 static ssize_t ads7846_disable_store(struct device *dev,
596 				     struct device_attribute *attr,
597 				     const char *buf, size_t count)
598 {
599 	struct ads7846 *ts = dev_get_drvdata(dev);
600 	unsigned long i;
601 
602 	if (strict_strtoul(buf, 10, &i))
603 		return -EINVAL;
604 
605 	if (i)
606 		ads7846_disable(ts);
607 	else
608 		ads7846_enable(ts);
609 
610 	return count;
611 }
612 
613 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
614 
615 static struct attribute *ads784x_attributes[] = {
616 	&dev_attr_pen_down.attr,
617 	&dev_attr_disable.attr,
618 	NULL,
619 };
620 
621 static struct attribute_group ads784x_attr_group = {
622 	.attrs = ads784x_attributes,
623 };
624 
625 /*--------------------------------------------------------------------------*/
626 
627 static int get_pendown_state(struct ads7846 *ts)
628 {
629 	if (ts->get_pendown_state)
630 		return ts->get_pendown_state();
631 
632 	return !gpio_get_value(ts->gpio_pendown);
633 }
634 
635 static void null_wait_for_sync(void)
636 {
637 }
638 
639 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
640 {
641 	struct ads7846 *ts = ads;
642 
643 	if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
644 		/* Start over collecting consistent readings. */
645 		ts->read_rep = 0;
646 		/*
647 		 * Repeat it, if this was the first read or the read
648 		 * wasn't consistent enough.
649 		 */
650 		if (ts->read_cnt < ts->debounce_max) {
651 			ts->last_read = *val;
652 			ts->read_cnt++;
653 			return ADS7846_FILTER_REPEAT;
654 		} else {
655 			/*
656 			 * Maximum number of debouncing reached and still
657 			 * not enough number of consistent readings. Abort
658 			 * the whole sample, repeat it in the next sampling
659 			 * period.
660 			 */
661 			ts->read_cnt = 0;
662 			return ADS7846_FILTER_IGNORE;
663 		}
664 	} else {
665 		if (++ts->read_rep > ts->debounce_rep) {
666 			/*
667 			 * Got a good reading for this coordinate,
668 			 * go for the next one.
669 			 */
670 			ts->read_cnt = 0;
671 			ts->read_rep = 0;
672 			return ADS7846_FILTER_OK;
673 		} else {
674 			/* Read more values that are consistent. */
675 			ts->read_cnt++;
676 			return ADS7846_FILTER_REPEAT;
677 		}
678 	}
679 }
680 
681 static int ads7846_no_filter(void *ads, int data_idx, int *val)
682 {
683 	return ADS7846_FILTER_OK;
684 }
685 
686 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
687 {
688 	struct spi_transfer *t =
689 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
690 
691 	if (ts->model == 7845) {
692 		return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
693 	} else {
694 		/*
695 		 * adjust:  on-wire is a must-ignore bit, a BE12 value, then
696 		 * padding; built from two 8 bit values written msb-first.
697 		 */
698 		return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
699 	}
700 }
701 
702 static void ads7846_update_value(struct spi_message *m, int val)
703 {
704 	struct spi_transfer *t =
705 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
706 
707 	*(u16 *)t->rx_buf = val;
708 }
709 
710 static void ads7846_read_state(struct ads7846 *ts)
711 {
712 	struct ads7846_packet *packet = ts->packet;
713 	struct spi_message *m;
714 	int msg_idx = 0;
715 	int val;
716 	int action;
717 	int error;
718 
719 	while (msg_idx < ts->msg_count) {
720 
721 		ts->wait_for_sync();
722 
723 		m = &ts->msg[msg_idx];
724 		error = spi_sync(ts->spi, m);
725 		if (error) {
726 			dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
727 			packet->tc.ignore = true;
728 			return;
729 		}
730 
731 		/*
732 		 * Last message is power down request, no need to convert
733 		 * or filter the value.
734 		 */
735 		if (msg_idx < ts->msg_count - 1) {
736 
737 			val = ads7846_get_value(ts, m);
738 
739 			action = ts->filter(ts->filter_data, msg_idx, &val);
740 			switch (action) {
741 			case ADS7846_FILTER_REPEAT:
742 				continue;
743 
744 			case ADS7846_FILTER_IGNORE:
745 				packet->tc.ignore = true;
746 				msg_idx = ts->msg_count - 1;
747 				continue;
748 
749 			case ADS7846_FILTER_OK:
750 				ads7846_update_value(m, val);
751 				packet->tc.ignore = false;
752 				msg_idx++;
753 				break;
754 
755 			default:
756 				BUG();
757 			}
758 		} else {
759 			msg_idx++;
760 		}
761 	}
762 }
763 
764 static void ads7846_report_state(struct ads7846 *ts)
765 {
766 	struct ads7846_packet *packet = ts->packet;
767 	unsigned int Rt;
768 	u16 x, y, z1, z2;
769 
770 	/*
771 	 * ads7846_get_value() does in-place conversion (including byte swap)
772 	 * from on-the-wire format as part of debouncing to get stable
773 	 * readings.
774 	 */
775 	if (ts->model == 7845) {
776 		x = *(u16 *)packet->tc.x_buf;
777 		y = *(u16 *)packet->tc.y_buf;
778 		z1 = 0;
779 		z2 = 0;
780 	} else {
781 		x = packet->tc.x;
782 		y = packet->tc.y;
783 		z1 = packet->tc.z1;
784 		z2 = packet->tc.z2;
785 	}
786 
787 	/* range filtering */
788 	if (x == MAX_12BIT)
789 		x = 0;
790 
791 	if (ts->model == 7843) {
792 		Rt = ts->pressure_max / 2;
793 	} else if (ts->model == 7845) {
794 		if (get_pendown_state(ts))
795 			Rt = ts->pressure_max / 2;
796 		else
797 			Rt = 0;
798 		dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
799 	} else if (likely(x && z1)) {
800 		/* compute touch pressure resistance using equation #2 */
801 		Rt = z2;
802 		Rt -= z1;
803 		Rt *= x;
804 		Rt *= ts->x_plate_ohms;
805 		Rt /= z1;
806 		Rt = (Rt + 2047) >> 12;
807 	} else {
808 		Rt = 0;
809 	}
810 
811 	/*
812 	 * Sample found inconsistent by debouncing or pressure is beyond
813 	 * the maximum. Don't report it to user space, repeat at least
814 	 * once more the measurement
815 	 */
816 	if (packet->tc.ignore || Rt > ts->pressure_max) {
817 		dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
818 			 packet->tc.ignore, Rt);
819 		return;
820 	}
821 
822 	/*
823 	 * Maybe check the pendown state before reporting. This discards
824 	 * false readings when the pen is lifted.
825 	 */
826 	if (ts->penirq_recheck_delay_usecs) {
827 		udelay(ts->penirq_recheck_delay_usecs);
828 		if (!get_pendown_state(ts))
829 			Rt = 0;
830 	}
831 
832 	/*
833 	 * NOTE: We can't rely on the pressure to determine the pen down
834 	 * state, even this controller has a pressure sensor. The pressure
835 	 * value can fluctuate for quite a while after lifting the pen and
836 	 * in some cases may not even settle at the expected value.
837 	 *
838 	 * The only safe way to check for the pen up condition is in the
839 	 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
840 	 */
841 	if (Rt) {
842 		struct input_dev *input = ts->input;
843 
844 		if (ts->swap_xy)
845 			swap(x, y);
846 
847 		if (!ts->pendown) {
848 			input_report_key(input, BTN_TOUCH, 1);
849 			ts->pendown = true;
850 			dev_vdbg(&ts->spi->dev, "DOWN\n");
851 		}
852 
853 		input_report_abs(input, ABS_X, x);
854 		input_report_abs(input, ABS_Y, y);
855 		input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
856 
857 		input_sync(input);
858 		dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
859 	}
860 }
861 
862 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
863 {
864 	struct ads7846 *ts = handle;
865 
866 	return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
867 }
868 
869 
870 static irqreturn_t ads7846_irq(int irq, void *handle)
871 {
872 	struct ads7846 *ts = handle;
873 
874 	/* Start with a small delay before checking pendown state */
875 	msleep(TS_POLL_DELAY);
876 
877 	while (!ts->stopped && get_pendown_state(ts)) {
878 
879 		/* pen is down, continue with the measurement */
880 		ads7846_read_state(ts);
881 
882 		if (!ts->stopped)
883 			ads7846_report_state(ts);
884 
885 		wait_event_timeout(ts->wait, ts->stopped,
886 				   msecs_to_jiffies(TS_POLL_PERIOD));
887 	}
888 
889 	if (ts->pendown) {
890 		struct input_dev *input = ts->input;
891 
892 		input_report_key(input, BTN_TOUCH, 0);
893 		input_report_abs(input, ABS_PRESSURE, 0);
894 		input_sync(input);
895 
896 		ts->pendown = false;
897 		dev_vdbg(&ts->spi->dev, "UP\n");
898 	}
899 
900 	return IRQ_HANDLED;
901 }
902 
903 #ifdef CONFIG_PM_SLEEP
904 static int ads7846_suspend(struct device *dev)
905 {
906 	struct ads7846 *ts = dev_get_drvdata(dev);
907 
908 	mutex_lock(&ts->lock);
909 
910 	if (!ts->suspended) {
911 
912 		if (!ts->disabled)
913 			__ads7846_disable(ts);
914 
915 		if (device_may_wakeup(&ts->spi->dev))
916 			enable_irq_wake(ts->spi->irq);
917 
918 		ts->suspended = true;
919 	}
920 
921 	mutex_unlock(&ts->lock);
922 
923 	return 0;
924 }
925 
926 static int ads7846_resume(struct device *dev)
927 {
928 	struct ads7846 *ts = dev_get_drvdata(dev);
929 
930 	mutex_lock(&ts->lock);
931 
932 	if (ts->suspended) {
933 
934 		ts->suspended = false;
935 
936 		if (device_may_wakeup(&ts->spi->dev))
937 			disable_irq_wake(ts->spi->irq);
938 
939 		if (!ts->disabled)
940 			__ads7846_enable(ts);
941 	}
942 
943 	mutex_unlock(&ts->lock);
944 
945 	return 0;
946 }
947 #endif
948 
949 static SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
950 
951 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
952 {
953 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
954 	int err;
955 
956 	/*
957 	 * REVISIT when the irq can be triggered active-low, or if for some
958 	 * reason the touchscreen isn't hooked up, we don't need to access
959 	 * the pendown state.
960 	 */
961 
962 	if (pdata->get_pendown_state) {
963 		ts->get_pendown_state = pdata->get_pendown_state;
964 	} else if (gpio_is_valid(pdata->gpio_pendown)) {
965 
966 		err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
967 		if (err) {
968 			dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
969 				pdata->gpio_pendown);
970 			return err;
971 		}
972 
973 		ts->gpio_pendown = pdata->gpio_pendown;
974 
975 	} else {
976 		dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
977 		return -EINVAL;
978 	}
979 
980 	return 0;
981 }
982 
983 /*
984  * Set up the transfers to read touchscreen state; this assumes we
985  * use formula #2 for pressure, not #3.
986  */
987 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
988 				const struct ads7846_platform_data *pdata)
989 {
990 	struct spi_message *m = &ts->msg[0];
991 	struct spi_transfer *x = ts->xfer;
992 	struct ads7846_packet *packet = ts->packet;
993 	int vref = pdata->keep_vref_on;
994 
995 	if (ts->model == 7873) {
996 		/*
997 		 * The AD7873 is almost identical to the ADS7846
998 		 * keep VREF off during differential/ratiometric
999 		 * conversion modes.
1000 		 */
1001 		ts->model = 7846;
1002 		vref = 0;
1003 	}
1004 
1005 	ts->msg_count = 1;
1006 	spi_message_init(m);
1007 	m->context = ts;
1008 
1009 	if (ts->model == 7845) {
1010 		packet->read_y_cmd[0] = READ_Y(vref);
1011 		packet->read_y_cmd[1] = 0;
1012 		packet->read_y_cmd[2] = 0;
1013 		x->tx_buf = &packet->read_y_cmd[0];
1014 		x->rx_buf = &packet->tc.y_buf[0];
1015 		x->len = 3;
1016 		spi_message_add_tail(x, m);
1017 	} else {
1018 		/* y- still on; turn on only y+ (and ADC) */
1019 		packet->read_y = READ_Y(vref);
1020 		x->tx_buf = &packet->read_y;
1021 		x->len = 1;
1022 		spi_message_add_tail(x, m);
1023 
1024 		x++;
1025 		x->rx_buf = &packet->tc.y;
1026 		x->len = 2;
1027 		spi_message_add_tail(x, m);
1028 	}
1029 
1030 	/*
1031 	 * The first sample after switching drivers can be low quality;
1032 	 * optionally discard it, using a second one after the signals
1033 	 * have had enough time to stabilize.
1034 	 */
1035 	if (pdata->settle_delay_usecs) {
1036 		x->delay_usecs = pdata->settle_delay_usecs;
1037 
1038 		x++;
1039 		x->tx_buf = &packet->read_y;
1040 		x->len = 1;
1041 		spi_message_add_tail(x, m);
1042 
1043 		x++;
1044 		x->rx_buf = &packet->tc.y;
1045 		x->len = 2;
1046 		spi_message_add_tail(x, m);
1047 	}
1048 
1049 	ts->msg_count++;
1050 	m++;
1051 	spi_message_init(m);
1052 	m->context = ts;
1053 
1054 	if (ts->model == 7845) {
1055 		x++;
1056 		packet->read_x_cmd[0] = READ_X(vref);
1057 		packet->read_x_cmd[1] = 0;
1058 		packet->read_x_cmd[2] = 0;
1059 		x->tx_buf = &packet->read_x_cmd[0];
1060 		x->rx_buf = &packet->tc.x_buf[0];
1061 		x->len = 3;
1062 		spi_message_add_tail(x, m);
1063 	} else {
1064 		/* turn y- off, x+ on, then leave in lowpower */
1065 		x++;
1066 		packet->read_x = READ_X(vref);
1067 		x->tx_buf = &packet->read_x;
1068 		x->len = 1;
1069 		spi_message_add_tail(x, m);
1070 
1071 		x++;
1072 		x->rx_buf = &packet->tc.x;
1073 		x->len = 2;
1074 		spi_message_add_tail(x, m);
1075 	}
1076 
1077 	/* ... maybe discard first sample ... */
1078 	if (pdata->settle_delay_usecs) {
1079 		x->delay_usecs = pdata->settle_delay_usecs;
1080 
1081 		x++;
1082 		x->tx_buf = &packet->read_x;
1083 		x->len = 1;
1084 		spi_message_add_tail(x, m);
1085 
1086 		x++;
1087 		x->rx_buf = &packet->tc.x;
1088 		x->len = 2;
1089 		spi_message_add_tail(x, m);
1090 	}
1091 
1092 	/* turn y+ off, x- on; we'll use formula #2 */
1093 	if (ts->model == 7846) {
1094 		ts->msg_count++;
1095 		m++;
1096 		spi_message_init(m);
1097 		m->context = ts;
1098 
1099 		x++;
1100 		packet->read_z1 = READ_Z1(vref);
1101 		x->tx_buf = &packet->read_z1;
1102 		x->len = 1;
1103 		spi_message_add_tail(x, m);
1104 
1105 		x++;
1106 		x->rx_buf = &packet->tc.z1;
1107 		x->len = 2;
1108 		spi_message_add_tail(x, m);
1109 
1110 		/* ... maybe discard first sample ... */
1111 		if (pdata->settle_delay_usecs) {
1112 			x->delay_usecs = pdata->settle_delay_usecs;
1113 
1114 			x++;
1115 			x->tx_buf = &packet->read_z1;
1116 			x->len = 1;
1117 			spi_message_add_tail(x, m);
1118 
1119 			x++;
1120 			x->rx_buf = &packet->tc.z1;
1121 			x->len = 2;
1122 			spi_message_add_tail(x, m);
1123 		}
1124 
1125 		ts->msg_count++;
1126 		m++;
1127 		spi_message_init(m);
1128 		m->context = ts;
1129 
1130 		x++;
1131 		packet->read_z2 = READ_Z2(vref);
1132 		x->tx_buf = &packet->read_z2;
1133 		x->len = 1;
1134 		spi_message_add_tail(x, m);
1135 
1136 		x++;
1137 		x->rx_buf = &packet->tc.z2;
1138 		x->len = 2;
1139 		spi_message_add_tail(x, m);
1140 
1141 		/* ... maybe discard first sample ... */
1142 		if (pdata->settle_delay_usecs) {
1143 			x->delay_usecs = pdata->settle_delay_usecs;
1144 
1145 			x++;
1146 			x->tx_buf = &packet->read_z2;
1147 			x->len = 1;
1148 			spi_message_add_tail(x, m);
1149 
1150 			x++;
1151 			x->rx_buf = &packet->tc.z2;
1152 			x->len = 2;
1153 			spi_message_add_tail(x, m);
1154 		}
1155 	}
1156 
1157 	/* power down */
1158 	ts->msg_count++;
1159 	m++;
1160 	spi_message_init(m);
1161 	m->context = ts;
1162 
1163 	if (ts->model == 7845) {
1164 		x++;
1165 		packet->pwrdown_cmd[0] = PWRDOWN;
1166 		packet->pwrdown_cmd[1] = 0;
1167 		packet->pwrdown_cmd[2] = 0;
1168 		x->tx_buf = &packet->pwrdown_cmd[0];
1169 		x->len = 3;
1170 	} else {
1171 		x++;
1172 		packet->pwrdown = PWRDOWN;
1173 		x->tx_buf = &packet->pwrdown;
1174 		x->len = 1;
1175 		spi_message_add_tail(x, m);
1176 
1177 		x++;
1178 		x->rx_buf = &packet->dummy;
1179 		x->len = 2;
1180 	}
1181 
1182 	CS_CHANGE(*x);
1183 	spi_message_add_tail(x, m);
1184 }
1185 
1186 static int __devinit ads7846_probe(struct spi_device *spi)
1187 {
1188 	struct ads7846 *ts;
1189 	struct ads7846_packet *packet;
1190 	struct input_dev *input_dev;
1191 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
1192 	unsigned long irq_flags;
1193 	int err;
1194 
1195 	if (!spi->irq) {
1196 		dev_dbg(&spi->dev, "no IRQ?\n");
1197 		return -ENODEV;
1198 	}
1199 
1200 	if (!pdata) {
1201 		dev_dbg(&spi->dev, "no platform data?\n");
1202 		return -ENODEV;
1203 	}
1204 
1205 	/* don't exceed max specified sample rate */
1206 	if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1207 		dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1208 				(spi->max_speed_hz/SAMPLE_BITS)/1000);
1209 		return -EINVAL;
1210 	}
1211 
1212 	/* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1213 	 * that even if the hardware can do that, the SPI controller driver
1214 	 * may not.  So we stick to very-portable 8 bit words, both RX and TX.
1215 	 */
1216 	spi->bits_per_word = 8;
1217 	spi->mode = SPI_MODE_0;
1218 	err = spi_setup(spi);
1219 	if (err < 0)
1220 		return err;
1221 
1222 	ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1223 	packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1224 	input_dev = input_allocate_device();
1225 	if (!ts || !packet || !input_dev) {
1226 		err = -ENOMEM;
1227 		goto err_free_mem;
1228 	}
1229 
1230 	dev_set_drvdata(&spi->dev, ts);
1231 
1232 	ts->packet = packet;
1233 	ts->spi = spi;
1234 	ts->input = input_dev;
1235 	ts->vref_mv = pdata->vref_mv;
1236 	ts->swap_xy = pdata->swap_xy;
1237 
1238 	mutex_init(&ts->lock);
1239 	init_waitqueue_head(&ts->wait);
1240 
1241 	ts->model = pdata->model ? : 7846;
1242 	ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1243 	ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1244 	ts->pressure_max = pdata->pressure_max ? : ~0;
1245 
1246 	if (pdata->filter != NULL) {
1247 		if (pdata->filter_init != NULL) {
1248 			err = pdata->filter_init(pdata, &ts->filter_data);
1249 			if (err < 0)
1250 				goto err_free_mem;
1251 		}
1252 		ts->filter = pdata->filter;
1253 		ts->filter_cleanup = pdata->filter_cleanup;
1254 	} else if (pdata->debounce_max) {
1255 		ts->debounce_max = pdata->debounce_max;
1256 		if (ts->debounce_max < 2)
1257 			ts->debounce_max = 2;
1258 		ts->debounce_tol = pdata->debounce_tol;
1259 		ts->debounce_rep = pdata->debounce_rep;
1260 		ts->filter = ads7846_debounce_filter;
1261 		ts->filter_data = ts;
1262 	} else {
1263 		ts->filter = ads7846_no_filter;
1264 	}
1265 
1266 	err = ads7846_setup_pendown(spi, ts);
1267 	if (err)
1268 		goto err_cleanup_filter;
1269 
1270 	if (pdata->penirq_recheck_delay_usecs)
1271 		ts->penirq_recheck_delay_usecs =
1272 				pdata->penirq_recheck_delay_usecs;
1273 
1274 	ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1275 
1276 	snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1277 	snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1278 
1279 	input_dev->name = ts->name;
1280 	input_dev->phys = ts->phys;
1281 	input_dev->dev.parent = &spi->dev;
1282 
1283 	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1284 	input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1285 	input_set_abs_params(input_dev, ABS_X,
1286 			pdata->x_min ? : 0,
1287 			pdata->x_max ? : MAX_12BIT,
1288 			0, 0);
1289 	input_set_abs_params(input_dev, ABS_Y,
1290 			pdata->y_min ? : 0,
1291 			pdata->y_max ? : MAX_12BIT,
1292 			0, 0);
1293 	input_set_abs_params(input_dev, ABS_PRESSURE,
1294 			pdata->pressure_min, pdata->pressure_max, 0, 0);
1295 
1296 	ads7846_setup_spi_msg(ts, pdata);
1297 
1298 	ts->reg = regulator_get(&spi->dev, "vcc");
1299 	if (IS_ERR(ts->reg)) {
1300 		err = PTR_ERR(ts->reg);
1301 		dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1302 		goto err_free_gpio;
1303 	}
1304 
1305 	err = regulator_enable(ts->reg);
1306 	if (err) {
1307 		dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1308 		goto err_put_regulator;
1309 	}
1310 
1311 	irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1312 	irq_flags |= IRQF_ONESHOT;
1313 
1314 	err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1315 				   irq_flags, spi->dev.driver->name, ts);
1316 	if (err && !pdata->irq_flags) {
1317 		dev_info(&spi->dev,
1318 			"trying pin change workaround on irq %d\n", spi->irq);
1319 		irq_flags |= IRQF_TRIGGER_RISING;
1320 		err = request_threaded_irq(spi->irq,
1321 				  ads7846_hard_irq, ads7846_irq,
1322 				  irq_flags, spi->dev.driver->name, ts);
1323 	}
1324 
1325 	if (err) {
1326 		dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1327 		goto err_disable_regulator;
1328 	}
1329 
1330 	err = ads784x_hwmon_register(spi, ts);
1331 	if (err)
1332 		goto err_free_irq;
1333 
1334 	dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1335 
1336 	/*
1337 	 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1338 	 * the touchscreen, in case it's not connected.
1339 	 */
1340 	if (ts->model == 7845)
1341 		ads7845_read12_ser(&spi->dev, PWRDOWN);
1342 	else
1343 		(void) ads7846_read12_ser(&spi->dev,
1344 				READ_12BIT_SER(vaux) | ADS_PD10_ALL_ON);
1345 
1346 	err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1347 	if (err)
1348 		goto err_remove_hwmon;
1349 
1350 	err = input_register_device(input_dev);
1351 	if (err)
1352 		goto err_remove_attr_group;
1353 
1354 	device_init_wakeup(&spi->dev, pdata->wakeup);
1355 
1356 	return 0;
1357 
1358  err_remove_attr_group:
1359 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1360  err_remove_hwmon:
1361 	ads784x_hwmon_unregister(spi, ts);
1362  err_free_irq:
1363 	free_irq(spi->irq, ts);
1364  err_disable_regulator:
1365 	regulator_disable(ts->reg);
1366  err_put_regulator:
1367 	regulator_put(ts->reg);
1368  err_free_gpio:
1369 	if (!ts->get_pendown_state)
1370 		gpio_free(ts->gpio_pendown);
1371  err_cleanup_filter:
1372 	if (ts->filter_cleanup)
1373 		ts->filter_cleanup(ts->filter_data);
1374  err_free_mem:
1375 	input_free_device(input_dev);
1376 	kfree(packet);
1377 	kfree(ts);
1378 	return err;
1379 }
1380 
1381 static int __devexit ads7846_remove(struct spi_device *spi)
1382 {
1383 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1384 
1385 	device_init_wakeup(&spi->dev, false);
1386 
1387 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1388 
1389 	ads7846_disable(ts);
1390 	free_irq(ts->spi->irq, ts);
1391 
1392 	input_unregister_device(ts->input);
1393 
1394 	ads784x_hwmon_unregister(spi, ts);
1395 
1396 	regulator_disable(ts->reg);
1397 	regulator_put(ts->reg);
1398 
1399 	if (!ts->get_pendown_state) {
1400 		/*
1401 		 * If we are not using specialized pendown method we must
1402 		 * have been relying on gpio we set up ourselves.
1403 		 */
1404 		gpio_free(ts->gpio_pendown);
1405 	}
1406 
1407 	if (ts->filter_cleanup)
1408 		ts->filter_cleanup(ts->filter_data);
1409 
1410 	kfree(ts->packet);
1411 	kfree(ts);
1412 
1413 	dev_dbg(&spi->dev, "unregistered touchscreen\n");
1414 
1415 	return 0;
1416 }
1417 
1418 static struct spi_driver ads7846_driver = {
1419 	.driver = {
1420 		.name	= "ads7846",
1421 		.bus	= &spi_bus_type,
1422 		.owner	= THIS_MODULE,
1423 		.pm	= &ads7846_pm,
1424 	},
1425 	.probe		= ads7846_probe,
1426 	.remove		= __devexit_p(ads7846_remove),
1427 };
1428 
1429 static int __init ads7846_init(void)
1430 {
1431 	return spi_register_driver(&ads7846_driver);
1432 }
1433 module_init(ads7846_init);
1434 
1435 static void __exit ads7846_exit(void)
1436 {
1437 	spi_unregister_driver(&ads7846_driver);
1438 }
1439 module_exit(ads7846_exit);
1440 
1441 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1442 MODULE_LICENSE("GPL");
1443 MODULE_ALIAS("spi:ads7846");
1444