xref: /linux/drivers/input/touchscreen/ads7846.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * ADS7846 based touchscreen and sensor driver
3  *
4  * Copyright (c) 2005 David Brownell
5  * Copyright (c) 2006 Nokia Corporation
6  * Various changes: Imre Deak <imre.deak@nokia.com>
7  *
8  * Using code from:
9  *  - corgi_ts.c
10  *	Copyright (C) 2004-2005 Richard Purdie
11  *  - omap_ts.[hc], ads7846.h, ts_osk.c
12  *	Copyright (C) 2002 MontaVista Software
13  *	Copyright (C) 2004 Texas Instruments
14  *	Copyright (C) 2005 Dirk Behme
15  *
16  *  This program is free software; you can redistribute it and/or modify
17  *  it under the terms of the GNU General Public License version 2 as
18  *  published by the Free Software Foundation.
19  */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/pm.h>
30 #include <linux/gpio.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/ads7846.h>
33 #include <linux/regulator/consumer.h>
34 #include <asm/irq.h>
35 
36 /*
37  * This code has been heavily tested on a Nokia 770, and lightly
38  * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
39  * TSC2046 is just newer ads7846 silicon.
40  * Support for ads7843 tested on Atmel at91sam926x-EK.
41  * Support for ads7845 has only been stubbed in.
42  * Support for Analog Devices AD7873 and AD7843 tested.
43  *
44  * IRQ handling needs a workaround because of a shortcoming in handling
45  * edge triggered IRQs on some platforms like the OMAP1/2. These
46  * platforms don't handle the ARM lazy IRQ disabling properly, thus we
47  * have to maintain our own SW IRQ disabled status. This should be
48  * removed as soon as the affected platform's IRQ handling is fixed.
49  *
50  * App note sbaa036 talks in more detail about accurate sampling...
51  * that ought to help in situations like LCDs inducing noise (which
52  * can also be helped by using synch signals) and more generally.
53  * This driver tries to utilize the measures described in the app
54  * note. The strength of filtering can be set in the board-* specific
55  * files.
56  */
57 
58 #define TS_POLL_DELAY	1	/* ms delay before the first sample */
59 #define TS_POLL_PERIOD	5	/* ms delay between samples */
60 
61 /* this driver doesn't aim at the peak continuous sample rate */
62 #define	SAMPLE_BITS	(8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
63 
64 struct ts_event {
65 	/*
66 	 * For portability, we can't read 12 bit values using SPI (which
67 	 * would make the controller deliver them as native byte order u16
68 	 * with msbs zeroed).  Instead, we read them as two 8-bit values,
69 	 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
70 	 */
71 	u16	x;
72 	u16	y;
73 	u16	z1, z2;
74 	bool	ignore;
75 	u8	x_buf[3];
76 	u8	y_buf[3];
77 };
78 
79 /*
80  * We allocate this separately to avoid cache line sharing issues when
81  * driver is used with DMA-based SPI controllers (like atmel_spi) on
82  * systems where main memory is not DMA-coherent (most non-x86 boards).
83  */
84 struct ads7846_packet {
85 	u8			read_x, read_y, read_z1, read_z2, pwrdown;
86 	u16			dummy;		/* for the pwrdown read */
87 	struct ts_event		tc;
88 	/* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
89 	u8			read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
90 };
91 
92 struct ads7846 {
93 	struct input_dev	*input;
94 	char			phys[32];
95 	char			name[32];
96 
97 	struct spi_device	*spi;
98 	struct regulator	*reg;
99 
100 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
101 	struct attribute_group	*attr_group;
102 	struct device		*hwmon;
103 #endif
104 
105 	u16			model;
106 	u16			vref_mv;
107 	u16			vref_delay_usecs;
108 	u16			x_plate_ohms;
109 	u16			pressure_max;
110 
111 	bool			swap_xy;
112 	bool			use_internal;
113 
114 	struct ads7846_packet	*packet;
115 
116 	struct spi_transfer	xfer[18];
117 	struct spi_message	msg[5];
118 	int			msg_count;
119 	wait_queue_head_t	wait;
120 
121 	bool			pendown;
122 
123 	int			read_cnt;
124 	int			read_rep;
125 	int			last_read;
126 
127 	u16			debounce_max;
128 	u16			debounce_tol;
129 	u16			debounce_rep;
130 
131 	u16			penirq_recheck_delay_usecs;
132 
133 	struct mutex		lock;
134 	bool			stopped;	/* P: lock */
135 	bool			disabled;	/* P: lock */
136 	bool			suspended;	/* P: lock */
137 
138 	int			(*filter)(void *data, int data_idx, int *val);
139 	void			*filter_data;
140 	void			(*filter_cleanup)(void *data);
141 	int			(*get_pendown_state)(void);
142 	int			gpio_pendown;
143 
144 	void			(*wait_for_sync)(void);
145 };
146 
147 /* leave chip selected when we're done, for quicker re-select? */
148 #if	0
149 #define	CS_CHANGE(xfer)	((xfer).cs_change = 1)
150 #else
151 #define	CS_CHANGE(xfer)	((xfer).cs_change = 0)
152 #endif
153 
154 /*--------------------------------------------------------------------------*/
155 
156 /* The ADS7846 has touchscreen and other sensors.
157  * Earlier ads784x chips are somewhat compatible.
158  */
159 #define	ADS_START		(1 << 7)
160 #define	ADS_A2A1A0_d_y		(1 << 4)	/* differential */
161 #define	ADS_A2A1A0_d_z1		(3 << 4)	/* differential */
162 #define	ADS_A2A1A0_d_z2		(4 << 4)	/* differential */
163 #define	ADS_A2A1A0_d_x		(5 << 4)	/* differential */
164 #define	ADS_A2A1A0_temp0	(0 << 4)	/* non-differential */
165 #define	ADS_A2A1A0_vbatt	(2 << 4)	/* non-differential */
166 #define	ADS_A2A1A0_vaux		(6 << 4)	/* non-differential */
167 #define	ADS_A2A1A0_temp1	(7 << 4)	/* non-differential */
168 #define	ADS_8_BIT		(1 << 3)
169 #define	ADS_12_BIT		(0 << 3)
170 #define	ADS_SER			(1 << 2)	/* non-differential */
171 #define	ADS_DFR			(0 << 2)	/* differential */
172 #define	ADS_PD10_PDOWN		(0 << 0)	/* low power mode + penirq */
173 #define	ADS_PD10_ADC_ON		(1 << 0)	/* ADC on */
174 #define	ADS_PD10_REF_ON		(2 << 0)	/* vREF on + penirq */
175 #define	ADS_PD10_ALL_ON		(3 << 0)	/* ADC + vREF on */
176 
177 #define	MAX_12BIT	((1<<12)-1)
178 
179 /* leave ADC powered up (disables penirq) between differential samples */
180 #define	READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
181 	| ADS_12_BIT | ADS_DFR | \
182 	(adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
183 
184 #define	READ_Y(vref)	(READ_12BIT_DFR(y,  1, vref))
185 #define	READ_Z1(vref)	(READ_12BIT_DFR(z1, 1, vref))
186 #define	READ_Z2(vref)	(READ_12BIT_DFR(z2, 1, vref))
187 
188 #define	READ_X(vref)	(READ_12BIT_DFR(x,  1, vref))
189 #define	PWRDOWN		(READ_12BIT_DFR(y,  0, 0))	/* LAST */
190 
191 /* single-ended samples need to first power up reference voltage;
192  * we leave both ADC and VREF powered
193  */
194 #define	READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
195 	| ADS_12_BIT | ADS_SER)
196 
197 #define	REF_ON	(READ_12BIT_DFR(x, 1, 1))
198 #define	REF_OFF	(READ_12BIT_DFR(y, 0, 0))
199 
200 /* Must be called with ts->lock held */
201 static void ads7846_stop(struct ads7846 *ts)
202 {
203 	if (!ts->disabled && !ts->suspended) {
204 		/* Signal IRQ thread to stop polling and disable the handler. */
205 		ts->stopped = true;
206 		mb();
207 		wake_up(&ts->wait);
208 		disable_irq(ts->spi->irq);
209 	}
210 }
211 
212 /* Must be called with ts->lock held */
213 static void ads7846_restart(struct ads7846 *ts)
214 {
215 	if (!ts->disabled && !ts->suspended) {
216 		/* Tell IRQ thread that it may poll the device. */
217 		ts->stopped = false;
218 		mb();
219 		enable_irq(ts->spi->irq);
220 	}
221 }
222 
223 /* Must be called with ts->lock held */
224 static void __ads7846_disable(struct ads7846 *ts)
225 {
226 	ads7846_stop(ts);
227 	regulator_disable(ts->reg);
228 
229 	/*
230 	 * We know the chip's in low power mode since we always
231 	 * leave it that way after every request
232 	 */
233 }
234 
235 /* Must be called with ts->lock held */
236 static void __ads7846_enable(struct ads7846 *ts)
237 {
238 	regulator_enable(ts->reg);
239 	ads7846_restart(ts);
240 }
241 
242 static void ads7846_disable(struct ads7846 *ts)
243 {
244 	mutex_lock(&ts->lock);
245 
246 	if (!ts->disabled) {
247 
248 		if  (!ts->suspended)
249 			__ads7846_disable(ts);
250 
251 		ts->disabled = true;
252 	}
253 
254 	mutex_unlock(&ts->lock);
255 }
256 
257 static void ads7846_enable(struct ads7846 *ts)
258 {
259 	mutex_lock(&ts->lock);
260 
261 	if (ts->disabled) {
262 
263 		ts->disabled = false;
264 
265 		if (!ts->suspended)
266 			__ads7846_enable(ts);
267 	}
268 
269 	mutex_unlock(&ts->lock);
270 }
271 
272 /*--------------------------------------------------------------------------*/
273 
274 /*
275  * Non-touchscreen sensors only use single-ended conversions.
276  * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
277  * ads7846 lets that pin be unconnected, to use internal vREF.
278  */
279 
280 struct ser_req {
281 	u8			ref_on;
282 	u8			command;
283 	u8			ref_off;
284 	u16			scratch;
285 	struct spi_message	msg;
286 	struct spi_transfer	xfer[6];
287 	/*
288 	 * DMA (thus cache coherency maintenance) requires the
289 	 * transfer buffers to live in their own cache lines.
290 	 */
291 	__be16 sample ____cacheline_aligned;
292 };
293 
294 struct ads7845_ser_req {
295 	u8			command[3];
296 	struct spi_message	msg;
297 	struct spi_transfer	xfer[2];
298 	/*
299 	 * DMA (thus cache coherency maintenance) requires the
300 	 * transfer buffers to live in their own cache lines.
301 	 */
302 	u8 sample[3] ____cacheline_aligned;
303 };
304 
305 static int ads7846_read12_ser(struct device *dev, unsigned command)
306 {
307 	struct spi_device *spi = to_spi_device(dev);
308 	struct ads7846 *ts = dev_get_drvdata(dev);
309 	struct ser_req *req;
310 	int status;
311 
312 	req = kzalloc(sizeof *req, GFP_KERNEL);
313 	if (!req)
314 		return -ENOMEM;
315 
316 	spi_message_init(&req->msg);
317 
318 	/* maybe turn on internal vREF, and let it settle */
319 	if (ts->use_internal) {
320 		req->ref_on = REF_ON;
321 		req->xfer[0].tx_buf = &req->ref_on;
322 		req->xfer[0].len = 1;
323 		spi_message_add_tail(&req->xfer[0], &req->msg);
324 
325 		req->xfer[1].rx_buf = &req->scratch;
326 		req->xfer[1].len = 2;
327 
328 		/* for 1uF, settle for 800 usec; no cap, 100 usec.  */
329 		req->xfer[1].delay_usecs = ts->vref_delay_usecs;
330 		spi_message_add_tail(&req->xfer[1], &req->msg);
331 
332 		/* Enable reference voltage */
333 		command |= ADS_PD10_REF_ON;
334 	}
335 
336 	/* Enable ADC in every case */
337 	command |= ADS_PD10_ADC_ON;
338 
339 	/* take sample */
340 	req->command = (u8) command;
341 	req->xfer[2].tx_buf = &req->command;
342 	req->xfer[2].len = 1;
343 	spi_message_add_tail(&req->xfer[2], &req->msg);
344 
345 	req->xfer[3].rx_buf = &req->sample;
346 	req->xfer[3].len = 2;
347 	spi_message_add_tail(&req->xfer[3], &req->msg);
348 
349 	/* REVISIT:  take a few more samples, and compare ... */
350 
351 	/* converter in low power mode & enable PENIRQ */
352 	req->ref_off = PWRDOWN;
353 	req->xfer[4].tx_buf = &req->ref_off;
354 	req->xfer[4].len = 1;
355 	spi_message_add_tail(&req->xfer[4], &req->msg);
356 
357 	req->xfer[5].rx_buf = &req->scratch;
358 	req->xfer[5].len = 2;
359 	CS_CHANGE(req->xfer[5]);
360 	spi_message_add_tail(&req->xfer[5], &req->msg);
361 
362 	mutex_lock(&ts->lock);
363 	ads7846_stop(ts);
364 	status = spi_sync(spi, &req->msg);
365 	ads7846_restart(ts);
366 	mutex_unlock(&ts->lock);
367 
368 	if (status == 0) {
369 		/* on-wire is a must-ignore bit, a BE12 value, then padding */
370 		status = be16_to_cpu(req->sample);
371 		status = status >> 3;
372 		status &= 0x0fff;
373 	}
374 
375 	kfree(req);
376 	return status;
377 }
378 
379 static int ads7845_read12_ser(struct device *dev, unsigned command)
380 {
381 	struct spi_device *spi = to_spi_device(dev);
382 	struct ads7846 *ts = dev_get_drvdata(dev);
383 	struct ads7845_ser_req *req;
384 	int status;
385 
386 	req = kzalloc(sizeof *req, GFP_KERNEL);
387 	if (!req)
388 		return -ENOMEM;
389 
390 	spi_message_init(&req->msg);
391 
392 	req->command[0] = (u8) command;
393 	req->xfer[0].tx_buf = req->command;
394 	req->xfer[0].rx_buf = req->sample;
395 	req->xfer[0].len = 3;
396 	spi_message_add_tail(&req->xfer[0], &req->msg);
397 
398 	mutex_lock(&ts->lock);
399 	ads7846_stop(ts);
400 	status = spi_sync(spi, &req->msg);
401 	ads7846_restart(ts);
402 	mutex_unlock(&ts->lock);
403 
404 	if (status == 0) {
405 		/* BE12 value, then padding */
406 		status = be16_to_cpu(*((u16 *)&req->sample[1]));
407 		status = status >> 3;
408 		status &= 0x0fff;
409 	}
410 
411 	kfree(req);
412 	return status;
413 }
414 
415 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
416 
417 #define SHOW(name, var, adjust) static ssize_t \
418 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
419 { \
420 	struct ads7846 *ts = dev_get_drvdata(dev); \
421 	ssize_t v = ads7846_read12_ser(dev, \
422 			READ_12BIT_SER(var)); \
423 	if (v < 0) \
424 		return v; \
425 	return sprintf(buf, "%u\n", adjust(ts, v)); \
426 } \
427 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
428 
429 
430 /* Sysfs conventions report temperatures in millidegrees Celsius.
431  * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
432  * accuracy scheme without calibration data.  For now we won't try either;
433  * userspace sees raw sensor values, and must scale/calibrate appropriately.
434  */
435 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
436 {
437 	return v;
438 }
439 
440 SHOW(temp0, temp0, null_adjust)		/* temp1_input */
441 SHOW(temp1, temp1, null_adjust)		/* temp2_input */
442 
443 
444 /* sysfs conventions report voltages in millivolts.  We can convert voltages
445  * if we know vREF.  userspace may need to scale vAUX to match the board's
446  * external resistors; we assume that vBATT only uses the internal ones.
447  */
448 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
449 {
450 	unsigned retval = v;
451 
452 	/* external resistors may scale vAUX into 0..vREF */
453 	retval *= ts->vref_mv;
454 	retval = retval >> 12;
455 
456 	return retval;
457 }
458 
459 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
460 {
461 	unsigned retval = vaux_adjust(ts, v);
462 
463 	/* ads7846 has a resistor ladder to scale this signal down */
464 	if (ts->model == 7846)
465 		retval *= 4;
466 
467 	return retval;
468 }
469 
470 SHOW(in0_input, vaux, vaux_adjust)
471 SHOW(in1_input, vbatt, vbatt_adjust)
472 
473 static struct attribute *ads7846_attributes[] = {
474 	&dev_attr_temp0.attr,
475 	&dev_attr_temp1.attr,
476 	&dev_attr_in0_input.attr,
477 	&dev_attr_in1_input.attr,
478 	NULL,
479 };
480 
481 static struct attribute_group ads7846_attr_group = {
482 	.attrs = ads7846_attributes,
483 };
484 
485 static struct attribute *ads7843_attributes[] = {
486 	&dev_attr_in0_input.attr,
487 	&dev_attr_in1_input.attr,
488 	NULL,
489 };
490 
491 static struct attribute_group ads7843_attr_group = {
492 	.attrs = ads7843_attributes,
493 };
494 
495 static struct attribute *ads7845_attributes[] = {
496 	&dev_attr_in0_input.attr,
497 	NULL,
498 };
499 
500 static struct attribute_group ads7845_attr_group = {
501 	.attrs = ads7845_attributes,
502 };
503 
504 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
505 {
506 	struct device *hwmon;
507 	int err;
508 
509 	/* hwmon sensors need a reference voltage */
510 	switch (ts->model) {
511 	case 7846:
512 		if (!ts->vref_mv) {
513 			dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
514 			ts->vref_mv = 2500;
515 			ts->use_internal = true;
516 		}
517 		break;
518 	case 7845:
519 	case 7843:
520 		if (!ts->vref_mv) {
521 			dev_warn(&spi->dev,
522 				"external vREF for ADS%d not specified\n",
523 				ts->model);
524 			return 0;
525 		}
526 		break;
527 	}
528 
529 	/* different chips have different sensor groups */
530 	switch (ts->model) {
531 	case 7846:
532 		ts->attr_group = &ads7846_attr_group;
533 		break;
534 	case 7845:
535 		ts->attr_group = &ads7845_attr_group;
536 		break;
537 	case 7843:
538 		ts->attr_group = &ads7843_attr_group;
539 		break;
540 	default:
541 		dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
542 		return 0;
543 	}
544 
545 	err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
546 	if (err)
547 		return err;
548 
549 	hwmon = hwmon_device_register(&spi->dev);
550 	if (IS_ERR(hwmon)) {
551 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
552 		return PTR_ERR(hwmon);
553 	}
554 
555 	ts->hwmon = hwmon;
556 	return 0;
557 }
558 
559 static void ads784x_hwmon_unregister(struct spi_device *spi,
560 				     struct ads7846 *ts)
561 {
562 	if (ts->hwmon) {
563 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
564 		hwmon_device_unregister(ts->hwmon);
565 	}
566 }
567 
568 #else
569 static inline int ads784x_hwmon_register(struct spi_device *spi,
570 					 struct ads7846 *ts)
571 {
572 	return 0;
573 }
574 
575 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
576 					    struct ads7846 *ts)
577 {
578 }
579 #endif
580 
581 static ssize_t ads7846_pen_down_show(struct device *dev,
582 				     struct device_attribute *attr, char *buf)
583 {
584 	struct ads7846 *ts = dev_get_drvdata(dev);
585 
586 	return sprintf(buf, "%u\n", ts->pendown);
587 }
588 
589 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
590 
591 static ssize_t ads7846_disable_show(struct device *dev,
592 				     struct device_attribute *attr, char *buf)
593 {
594 	struct ads7846 *ts = dev_get_drvdata(dev);
595 
596 	return sprintf(buf, "%u\n", ts->disabled);
597 }
598 
599 static ssize_t ads7846_disable_store(struct device *dev,
600 				     struct device_attribute *attr,
601 				     const char *buf, size_t count)
602 {
603 	struct ads7846 *ts = dev_get_drvdata(dev);
604 	unsigned long i;
605 
606 	if (strict_strtoul(buf, 10, &i))
607 		return -EINVAL;
608 
609 	if (i)
610 		ads7846_disable(ts);
611 	else
612 		ads7846_enable(ts);
613 
614 	return count;
615 }
616 
617 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
618 
619 static struct attribute *ads784x_attributes[] = {
620 	&dev_attr_pen_down.attr,
621 	&dev_attr_disable.attr,
622 	NULL,
623 };
624 
625 static struct attribute_group ads784x_attr_group = {
626 	.attrs = ads784x_attributes,
627 };
628 
629 /*--------------------------------------------------------------------------*/
630 
631 static int get_pendown_state(struct ads7846 *ts)
632 {
633 	if (ts->get_pendown_state)
634 		return ts->get_pendown_state();
635 
636 	return !gpio_get_value(ts->gpio_pendown);
637 }
638 
639 static void null_wait_for_sync(void)
640 {
641 }
642 
643 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
644 {
645 	struct ads7846 *ts = ads;
646 
647 	if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
648 		/* Start over collecting consistent readings. */
649 		ts->read_rep = 0;
650 		/*
651 		 * Repeat it, if this was the first read or the read
652 		 * wasn't consistent enough.
653 		 */
654 		if (ts->read_cnt < ts->debounce_max) {
655 			ts->last_read = *val;
656 			ts->read_cnt++;
657 			return ADS7846_FILTER_REPEAT;
658 		} else {
659 			/*
660 			 * Maximum number of debouncing reached and still
661 			 * not enough number of consistent readings. Abort
662 			 * the whole sample, repeat it in the next sampling
663 			 * period.
664 			 */
665 			ts->read_cnt = 0;
666 			return ADS7846_FILTER_IGNORE;
667 		}
668 	} else {
669 		if (++ts->read_rep > ts->debounce_rep) {
670 			/*
671 			 * Got a good reading for this coordinate,
672 			 * go for the next one.
673 			 */
674 			ts->read_cnt = 0;
675 			ts->read_rep = 0;
676 			return ADS7846_FILTER_OK;
677 		} else {
678 			/* Read more values that are consistent. */
679 			ts->read_cnt++;
680 			return ADS7846_FILTER_REPEAT;
681 		}
682 	}
683 }
684 
685 static int ads7846_no_filter(void *ads, int data_idx, int *val)
686 {
687 	return ADS7846_FILTER_OK;
688 }
689 
690 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
691 {
692 	struct spi_transfer *t =
693 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
694 
695 	if (ts->model == 7845) {
696 		return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
697 	} else {
698 		/*
699 		 * adjust:  on-wire is a must-ignore bit, a BE12 value, then
700 		 * padding; built from two 8 bit values written msb-first.
701 		 */
702 		return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
703 	}
704 }
705 
706 static void ads7846_update_value(struct spi_message *m, int val)
707 {
708 	struct spi_transfer *t =
709 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
710 
711 	*(u16 *)t->rx_buf = val;
712 }
713 
714 static void ads7846_read_state(struct ads7846 *ts)
715 {
716 	struct ads7846_packet *packet = ts->packet;
717 	struct spi_message *m;
718 	int msg_idx = 0;
719 	int val;
720 	int action;
721 	int error;
722 
723 	while (msg_idx < ts->msg_count) {
724 
725 		ts->wait_for_sync();
726 
727 		m = &ts->msg[msg_idx];
728 		error = spi_sync(ts->spi, m);
729 		if (error) {
730 			dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
731 			packet->tc.ignore = true;
732 			return;
733 		}
734 
735 		/*
736 		 * Last message is power down request, no need to convert
737 		 * or filter the value.
738 		 */
739 		if (msg_idx < ts->msg_count - 1) {
740 
741 			val = ads7846_get_value(ts, m);
742 
743 			action = ts->filter(ts->filter_data, msg_idx, &val);
744 			switch (action) {
745 			case ADS7846_FILTER_REPEAT:
746 				continue;
747 
748 			case ADS7846_FILTER_IGNORE:
749 				packet->tc.ignore = true;
750 				msg_idx = ts->msg_count - 1;
751 				continue;
752 
753 			case ADS7846_FILTER_OK:
754 				ads7846_update_value(m, val);
755 				packet->tc.ignore = false;
756 				msg_idx++;
757 				break;
758 
759 			default:
760 				BUG();
761 			}
762 		} else {
763 			msg_idx++;
764 		}
765 	}
766 }
767 
768 static void ads7846_report_state(struct ads7846 *ts)
769 {
770 	struct ads7846_packet *packet = ts->packet;
771 	unsigned int Rt;
772 	u16 x, y, z1, z2;
773 
774 	/*
775 	 * ads7846_get_value() does in-place conversion (including byte swap)
776 	 * from on-the-wire format as part of debouncing to get stable
777 	 * readings.
778 	 */
779 	if (ts->model == 7845) {
780 		x = *(u16 *)packet->tc.x_buf;
781 		y = *(u16 *)packet->tc.y_buf;
782 		z1 = 0;
783 		z2 = 0;
784 	} else {
785 		x = packet->tc.x;
786 		y = packet->tc.y;
787 		z1 = packet->tc.z1;
788 		z2 = packet->tc.z2;
789 	}
790 
791 	/* range filtering */
792 	if (x == MAX_12BIT)
793 		x = 0;
794 
795 	if (ts->model == 7843) {
796 		Rt = ts->pressure_max / 2;
797 	} else if (ts->model == 7845) {
798 		if (get_pendown_state(ts))
799 			Rt = ts->pressure_max / 2;
800 		else
801 			Rt = 0;
802 		dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
803 	} else if (likely(x && z1)) {
804 		/* compute touch pressure resistance using equation #2 */
805 		Rt = z2;
806 		Rt -= z1;
807 		Rt *= x;
808 		Rt *= ts->x_plate_ohms;
809 		Rt /= z1;
810 		Rt = (Rt + 2047) >> 12;
811 	} else {
812 		Rt = 0;
813 	}
814 
815 	/*
816 	 * Sample found inconsistent by debouncing or pressure is beyond
817 	 * the maximum. Don't report it to user space, repeat at least
818 	 * once more the measurement
819 	 */
820 	if (packet->tc.ignore || Rt > ts->pressure_max) {
821 		dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
822 			 packet->tc.ignore, Rt);
823 		return;
824 	}
825 
826 	/*
827 	 * Maybe check the pendown state before reporting. This discards
828 	 * false readings when the pen is lifted.
829 	 */
830 	if (ts->penirq_recheck_delay_usecs) {
831 		udelay(ts->penirq_recheck_delay_usecs);
832 		if (!get_pendown_state(ts))
833 			Rt = 0;
834 	}
835 
836 	/*
837 	 * NOTE: We can't rely on the pressure to determine the pen down
838 	 * state, even this controller has a pressure sensor. The pressure
839 	 * value can fluctuate for quite a while after lifting the pen and
840 	 * in some cases may not even settle at the expected value.
841 	 *
842 	 * The only safe way to check for the pen up condition is in the
843 	 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
844 	 */
845 	if (Rt) {
846 		struct input_dev *input = ts->input;
847 
848 		if (ts->swap_xy)
849 			swap(x, y);
850 
851 		if (!ts->pendown) {
852 			input_report_key(input, BTN_TOUCH, 1);
853 			ts->pendown = true;
854 			dev_vdbg(&ts->spi->dev, "DOWN\n");
855 		}
856 
857 		input_report_abs(input, ABS_X, x);
858 		input_report_abs(input, ABS_Y, y);
859 		input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
860 
861 		input_sync(input);
862 		dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
863 	}
864 }
865 
866 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
867 {
868 	struct ads7846 *ts = handle;
869 
870 	return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
871 }
872 
873 
874 static irqreturn_t ads7846_irq(int irq, void *handle)
875 {
876 	struct ads7846 *ts = handle;
877 
878 	/* Start with a small delay before checking pendown state */
879 	msleep(TS_POLL_DELAY);
880 
881 	while (!ts->stopped && get_pendown_state(ts)) {
882 
883 		/* pen is down, continue with the measurement */
884 		ads7846_read_state(ts);
885 
886 		if (!ts->stopped)
887 			ads7846_report_state(ts);
888 
889 		wait_event_timeout(ts->wait, ts->stopped,
890 				   msecs_to_jiffies(TS_POLL_PERIOD));
891 	}
892 
893 	if (ts->pendown) {
894 		struct input_dev *input = ts->input;
895 
896 		input_report_key(input, BTN_TOUCH, 0);
897 		input_report_abs(input, ABS_PRESSURE, 0);
898 		input_sync(input);
899 
900 		ts->pendown = false;
901 		dev_vdbg(&ts->spi->dev, "UP\n");
902 	}
903 
904 	return IRQ_HANDLED;
905 }
906 
907 #ifdef CONFIG_PM_SLEEP
908 static int ads7846_suspend(struct device *dev)
909 {
910 	struct ads7846 *ts = dev_get_drvdata(dev);
911 
912 	mutex_lock(&ts->lock);
913 
914 	if (!ts->suspended) {
915 
916 		if (!ts->disabled)
917 			__ads7846_disable(ts);
918 
919 		if (device_may_wakeup(&ts->spi->dev))
920 			enable_irq_wake(ts->spi->irq);
921 
922 		ts->suspended = true;
923 	}
924 
925 	mutex_unlock(&ts->lock);
926 
927 	return 0;
928 }
929 
930 static int ads7846_resume(struct device *dev)
931 {
932 	struct ads7846 *ts = dev_get_drvdata(dev);
933 
934 	mutex_lock(&ts->lock);
935 
936 	if (ts->suspended) {
937 
938 		ts->suspended = false;
939 
940 		if (device_may_wakeup(&ts->spi->dev))
941 			disable_irq_wake(ts->spi->irq);
942 
943 		if (!ts->disabled)
944 			__ads7846_enable(ts);
945 	}
946 
947 	mutex_unlock(&ts->lock);
948 
949 	return 0;
950 }
951 #endif
952 
953 static SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
954 
955 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
956 {
957 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
958 	int err;
959 
960 	/*
961 	 * REVISIT when the irq can be triggered active-low, or if for some
962 	 * reason the touchscreen isn't hooked up, we don't need to access
963 	 * the pendown state.
964 	 */
965 
966 	if (pdata->get_pendown_state) {
967 		ts->get_pendown_state = pdata->get_pendown_state;
968 	} else if (gpio_is_valid(pdata->gpio_pendown)) {
969 
970 		err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
971 		if (err) {
972 			dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
973 				pdata->gpio_pendown);
974 			return err;
975 		}
976 		err = gpio_direction_input(pdata->gpio_pendown);
977 		if (err) {
978 			dev_err(&spi->dev, "failed to setup pendown GPIO%d\n",
979 				pdata->gpio_pendown);
980 			gpio_free(pdata->gpio_pendown);
981 			return err;
982 		}
983 
984 		ts->gpio_pendown = pdata->gpio_pendown;
985 
986 	} else {
987 		dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
988 		return -EINVAL;
989 	}
990 
991 	return 0;
992 }
993 
994 /*
995  * Set up the transfers to read touchscreen state; this assumes we
996  * use formula #2 for pressure, not #3.
997  */
998 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
999 				const struct ads7846_platform_data *pdata)
1000 {
1001 	struct spi_message *m = &ts->msg[0];
1002 	struct spi_transfer *x = ts->xfer;
1003 	struct ads7846_packet *packet = ts->packet;
1004 	int vref = pdata->keep_vref_on;
1005 
1006 	if (ts->model == 7873) {
1007 		/*
1008 		 * The AD7873 is almost identical to the ADS7846
1009 		 * keep VREF off during differential/ratiometric
1010 		 * conversion modes.
1011 		 */
1012 		ts->model = 7846;
1013 		vref = 0;
1014 	}
1015 
1016 	ts->msg_count = 1;
1017 	spi_message_init(m);
1018 	m->context = ts;
1019 
1020 	if (ts->model == 7845) {
1021 		packet->read_y_cmd[0] = READ_Y(vref);
1022 		packet->read_y_cmd[1] = 0;
1023 		packet->read_y_cmd[2] = 0;
1024 		x->tx_buf = &packet->read_y_cmd[0];
1025 		x->rx_buf = &packet->tc.y_buf[0];
1026 		x->len = 3;
1027 		spi_message_add_tail(x, m);
1028 	} else {
1029 		/* y- still on; turn on only y+ (and ADC) */
1030 		packet->read_y = READ_Y(vref);
1031 		x->tx_buf = &packet->read_y;
1032 		x->len = 1;
1033 		spi_message_add_tail(x, m);
1034 
1035 		x++;
1036 		x->rx_buf = &packet->tc.y;
1037 		x->len = 2;
1038 		spi_message_add_tail(x, m);
1039 	}
1040 
1041 	/*
1042 	 * The first sample after switching drivers can be low quality;
1043 	 * optionally discard it, using a second one after the signals
1044 	 * have had enough time to stabilize.
1045 	 */
1046 	if (pdata->settle_delay_usecs) {
1047 		x->delay_usecs = pdata->settle_delay_usecs;
1048 
1049 		x++;
1050 		x->tx_buf = &packet->read_y;
1051 		x->len = 1;
1052 		spi_message_add_tail(x, m);
1053 
1054 		x++;
1055 		x->rx_buf = &packet->tc.y;
1056 		x->len = 2;
1057 		spi_message_add_tail(x, m);
1058 	}
1059 
1060 	ts->msg_count++;
1061 	m++;
1062 	spi_message_init(m);
1063 	m->context = ts;
1064 
1065 	if (ts->model == 7845) {
1066 		x++;
1067 		packet->read_x_cmd[0] = READ_X(vref);
1068 		packet->read_x_cmd[1] = 0;
1069 		packet->read_x_cmd[2] = 0;
1070 		x->tx_buf = &packet->read_x_cmd[0];
1071 		x->rx_buf = &packet->tc.x_buf[0];
1072 		x->len = 3;
1073 		spi_message_add_tail(x, m);
1074 	} else {
1075 		/* turn y- off, x+ on, then leave in lowpower */
1076 		x++;
1077 		packet->read_x = READ_X(vref);
1078 		x->tx_buf = &packet->read_x;
1079 		x->len = 1;
1080 		spi_message_add_tail(x, m);
1081 
1082 		x++;
1083 		x->rx_buf = &packet->tc.x;
1084 		x->len = 2;
1085 		spi_message_add_tail(x, m);
1086 	}
1087 
1088 	/* ... maybe discard first sample ... */
1089 	if (pdata->settle_delay_usecs) {
1090 		x->delay_usecs = pdata->settle_delay_usecs;
1091 
1092 		x++;
1093 		x->tx_buf = &packet->read_x;
1094 		x->len = 1;
1095 		spi_message_add_tail(x, m);
1096 
1097 		x++;
1098 		x->rx_buf = &packet->tc.x;
1099 		x->len = 2;
1100 		spi_message_add_tail(x, m);
1101 	}
1102 
1103 	/* turn y+ off, x- on; we'll use formula #2 */
1104 	if (ts->model == 7846) {
1105 		ts->msg_count++;
1106 		m++;
1107 		spi_message_init(m);
1108 		m->context = ts;
1109 
1110 		x++;
1111 		packet->read_z1 = READ_Z1(vref);
1112 		x->tx_buf = &packet->read_z1;
1113 		x->len = 1;
1114 		spi_message_add_tail(x, m);
1115 
1116 		x++;
1117 		x->rx_buf = &packet->tc.z1;
1118 		x->len = 2;
1119 		spi_message_add_tail(x, m);
1120 
1121 		/* ... maybe discard first sample ... */
1122 		if (pdata->settle_delay_usecs) {
1123 			x->delay_usecs = pdata->settle_delay_usecs;
1124 
1125 			x++;
1126 			x->tx_buf = &packet->read_z1;
1127 			x->len = 1;
1128 			spi_message_add_tail(x, m);
1129 
1130 			x++;
1131 			x->rx_buf = &packet->tc.z1;
1132 			x->len = 2;
1133 			spi_message_add_tail(x, m);
1134 		}
1135 
1136 		ts->msg_count++;
1137 		m++;
1138 		spi_message_init(m);
1139 		m->context = ts;
1140 
1141 		x++;
1142 		packet->read_z2 = READ_Z2(vref);
1143 		x->tx_buf = &packet->read_z2;
1144 		x->len = 1;
1145 		spi_message_add_tail(x, m);
1146 
1147 		x++;
1148 		x->rx_buf = &packet->tc.z2;
1149 		x->len = 2;
1150 		spi_message_add_tail(x, m);
1151 
1152 		/* ... maybe discard first sample ... */
1153 		if (pdata->settle_delay_usecs) {
1154 			x->delay_usecs = pdata->settle_delay_usecs;
1155 
1156 			x++;
1157 			x->tx_buf = &packet->read_z2;
1158 			x->len = 1;
1159 			spi_message_add_tail(x, m);
1160 
1161 			x++;
1162 			x->rx_buf = &packet->tc.z2;
1163 			x->len = 2;
1164 			spi_message_add_tail(x, m);
1165 		}
1166 	}
1167 
1168 	/* power down */
1169 	ts->msg_count++;
1170 	m++;
1171 	spi_message_init(m);
1172 	m->context = ts;
1173 
1174 	if (ts->model == 7845) {
1175 		x++;
1176 		packet->pwrdown_cmd[0] = PWRDOWN;
1177 		packet->pwrdown_cmd[1] = 0;
1178 		packet->pwrdown_cmd[2] = 0;
1179 		x->tx_buf = &packet->pwrdown_cmd[0];
1180 		x->len = 3;
1181 	} else {
1182 		x++;
1183 		packet->pwrdown = PWRDOWN;
1184 		x->tx_buf = &packet->pwrdown;
1185 		x->len = 1;
1186 		spi_message_add_tail(x, m);
1187 
1188 		x++;
1189 		x->rx_buf = &packet->dummy;
1190 		x->len = 2;
1191 	}
1192 
1193 	CS_CHANGE(*x);
1194 	spi_message_add_tail(x, m);
1195 }
1196 
1197 static int __devinit ads7846_probe(struct spi_device *spi)
1198 {
1199 	struct ads7846 *ts;
1200 	struct ads7846_packet *packet;
1201 	struct input_dev *input_dev;
1202 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
1203 	unsigned long irq_flags;
1204 	int err;
1205 
1206 	if (!spi->irq) {
1207 		dev_dbg(&spi->dev, "no IRQ?\n");
1208 		return -ENODEV;
1209 	}
1210 
1211 	if (!pdata) {
1212 		dev_dbg(&spi->dev, "no platform data?\n");
1213 		return -ENODEV;
1214 	}
1215 
1216 	/* don't exceed max specified sample rate */
1217 	if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1218 		dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1219 				(spi->max_speed_hz/SAMPLE_BITS)/1000);
1220 		return -EINVAL;
1221 	}
1222 
1223 	/* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1224 	 * that even if the hardware can do that, the SPI controller driver
1225 	 * may not.  So we stick to very-portable 8 bit words, both RX and TX.
1226 	 */
1227 	spi->bits_per_word = 8;
1228 	spi->mode = SPI_MODE_0;
1229 	err = spi_setup(spi);
1230 	if (err < 0)
1231 		return err;
1232 
1233 	ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1234 	packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1235 	input_dev = input_allocate_device();
1236 	if (!ts || !packet || !input_dev) {
1237 		err = -ENOMEM;
1238 		goto err_free_mem;
1239 	}
1240 
1241 	dev_set_drvdata(&spi->dev, ts);
1242 
1243 	ts->packet = packet;
1244 	ts->spi = spi;
1245 	ts->input = input_dev;
1246 	ts->vref_mv = pdata->vref_mv;
1247 	ts->swap_xy = pdata->swap_xy;
1248 
1249 	mutex_init(&ts->lock);
1250 	init_waitqueue_head(&ts->wait);
1251 
1252 	ts->model = pdata->model ? : 7846;
1253 	ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1254 	ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1255 	ts->pressure_max = pdata->pressure_max ? : ~0;
1256 
1257 	if (pdata->filter != NULL) {
1258 		if (pdata->filter_init != NULL) {
1259 			err = pdata->filter_init(pdata, &ts->filter_data);
1260 			if (err < 0)
1261 				goto err_free_mem;
1262 		}
1263 		ts->filter = pdata->filter;
1264 		ts->filter_cleanup = pdata->filter_cleanup;
1265 	} else if (pdata->debounce_max) {
1266 		ts->debounce_max = pdata->debounce_max;
1267 		if (ts->debounce_max < 2)
1268 			ts->debounce_max = 2;
1269 		ts->debounce_tol = pdata->debounce_tol;
1270 		ts->debounce_rep = pdata->debounce_rep;
1271 		ts->filter = ads7846_debounce_filter;
1272 		ts->filter_data = ts;
1273 	} else {
1274 		ts->filter = ads7846_no_filter;
1275 	}
1276 
1277 	err = ads7846_setup_pendown(spi, ts);
1278 	if (err)
1279 		goto err_cleanup_filter;
1280 
1281 	if (pdata->penirq_recheck_delay_usecs)
1282 		ts->penirq_recheck_delay_usecs =
1283 				pdata->penirq_recheck_delay_usecs;
1284 
1285 	ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1286 
1287 	snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1288 	snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1289 
1290 	input_dev->name = ts->name;
1291 	input_dev->phys = ts->phys;
1292 	input_dev->dev.parent = &spi->dev;
1293 
1294 	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1295 	input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1296 	input_set_abs_params(input_dev, ABS_X,
1297 			pdata->x_min ? : 0,
1298 			pdata->x_max ? : MAX_12BIT,
1299 			0, 0);
1300 	input_set_abs_params(input_dev, ABS_Y,
1301 			pdata->y_min ? : 0,
1302 			pdata->y_max ? : MAX_12BIT,
1303 			0, 0);
1304 	input_set_abs_params(input_dev, ABS_PRESSURE,
1305 			pdata->pressure_min, pdata->pressure_max, 0, 0);
1306 
1307 	ads7846_setup_spi_msg(ts, pdata);
1308 
1309 	ts->reg = regulator_get(&spi->dev, "vcc");
1310 	if (IS_ERR(ts->reg)) {
1311 		err = PTR_ERR(ts->reg);
1312 		dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1313 		goto err_free_gpio;
1314 	}
1315 
1316 	err = regulator_enable(ts->reg);
1317 	if (err) {
1318 		dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1319 		goto err_put_regulator;
1320 	}
1321 
1322 	irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1323 	irq_flags |= IRQF_ONESHOT;
1324 
1325 	err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1326 				   irq_flags, spi->dev.driver->name, ts);
1327 	if (err && !pdata->irq_flags) {
1328 		dev_info(&spi->dev,
1329 			"trying pin change workaround on irq %d\n", spi->irq);
1330 		irq_flags |= IRQF_TRIGGER_RISING;
1331 		err = request_threaded_irq(spi->irq,
1332 				  ads7846_hard_irq, ads7846_irq,
1333 				  irq_flags, spi->dev.driver->name, ts);
1334 	}
1335 
1336 	if (err) {
1337 		dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1338 		goto err_disable_regulator;
1339 	}
1340 
1341 	err = ads784x_hwmon_register(spi, ts);
1342 	if (err)
1343 		goto err_free_irq;
1344 
1345 	dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1346 
1347 	/*
1348 	 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1349 	 * the touchscreen, in case it's not connected.
1350 	 */
1351 	if (ts->model == 7845)
1352 		ads7845_read12_ser(&spi->dev, PWRDOWN);
1353 	else
1354 		(void) ads7846_read12_ser(&spi->dev, READ_12BIT_SER(vaux));
1355 
1356 	err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1357 	if (err)
1358 		goto err_remove_hwmon;
1359 
1360 	err = input_register_device(input_dev);
1361 	if (err)
1362 		goto err_remove_attr_group;
1363 
1364 	device_init_wakeup(&spi->dev, pdata->wakeup);
1365 
1366 	return 0;
1367 
1368  err_remove_attr_group:
1369 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1370  err_remove_hwmon:
1371 	ads784x_hwmon_unregister(spi, ts);
1372  err_free_irq:
1373 	free_irq(spi->irq, ts);
1374  err_disable_regulator:
1375 	regulator_disable(ts->reg);
1376  err_put_regulator:
1377 	regulator_put(ts->reg);
1378  err_free_gpio:
1379 	if (!ts->get_pendown_state)
1380 		gpio_free(ts->gpio_pendown);
1381  err_cleanup_filter:
1382 	if (ts->filter_cleanup)
1383 		ts->filter_cleanup(ts->filter_data);
1384  err_free_mem:
1385 	input_free_device(input_dev);
1386 	kfree(packet);
1387 	kfree(ts);
1388 	return err;
1389 }
1390 
1391 static int __devexit ads7846_remove(struct spi_device *spi)
1392 {
1393 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1394 
1395 	device_init_wakeup(&spi->dev, false);
1396 
1397 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1398 
1399 	ads7846_disable(ts);
1400 	free_irq(ts->spi->irq, ts);
1401 
1402 	input_unregister_device(ts->input);
1403 
1404 	ads784x_hwmon_unregister(spi, ts);
1405 
1406 	regulator_disable(ts->reg);
1407 	regulator_put(ts->reg);
1408 
1409 	if (!ts->get_pendown_state) {
1410 		/*
1411 		 * If we are not using specialized pendown method we must
1412 		 * have been relying on gpio we set up ourselves.
1413 		 */
1414 		gpio_free(ts->gpio_pendown);
1415 	}
1416 
1417 	if (ts->filter_cleanup)
1418 		ts->filter_cleanup(ts->filter_data);
1419 
1420 	kfree(ts->packet);
1421 	kfree(ts);
1422 
1423 	dev_dbg(&spi->dev, "unregistered touchscreen\n");
1424 
1425 	return 0;
1426 }
1427 
1428 static struct spi_driver ads7846_driver = {
1429 	.driver = {
1430 		.name	= "ads7846",
1431 		.bus	= &spi_bus_type,
1432 		.owner	= THIS_MODULE,
1433 		.pm	= &ads7846_pm,
1434 	},
1435 	.probe		= ads7846_probe,
1436 	.remove		= __devexit_p(ads7846_remove),
1437 };
1438 
1439 static int __init ads7846_init(void)
1440 {
1441 	return spi_register_driver(&ads7846_driver);
1442 }
1443 module_init(ads7846_init);
1444 
1445 static void __exit ads7846_exit(void)
1446 {
1447 	spi_unregister_driver(&ads7846_driver);
1448 }
1449 module_exit(ads7846_exit);
1450 
1451 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1452 MODULE_LICENSE("GPL");
1453 MODULE_ALIAS("spi:ads7846");
1454