1 /* 2 * Copyright (c) 2011-2016 Synaptics Incorporated 3 * Copyright (c) 2011 Unixphere 4 * 5 * This driver provides the core support for a single RMI4-based device. 6 * 7 * The RMI4 specification can be found here (URL split for line length): 8 * 9 * http://www.synaptics.com/sites/default/files/ 10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License version 2 as published by 14 * the Free Software Foundation. 15 */ 16 17 #include <linux/bitmap.h> 18 #include <linux/delay.h> 19 #include <linux/fs.h> 20 #include <linux/irq.h> 21 #include <linux/pm.h> 22 #include <linux/slab.h> 23 #include <linux/of.h> 24 #include <linux/irqdomain.h> 25 #include <uapi/linux/input.h> 26 #include <linux/rmi.h> 27 #include "rmi_bus.h" 28 #include "rmi_driver.h" 29 30 #define HAS_NONSTANDARD_PDT_MASK 0x40 31 #define RMI4_MAX_PAGE 0xff 32 #define RMI4_PAGE_SIZE 0x100 33 #define RMI4_PAGE_MASK 0xFF00 34 35 #define RMI_DEVICE_RESET_CMD 0x01 36 #define DEFAULT_RESET_DELAY_MS 100 37 38 void rmi_free_function_list(struct rmi_device *rmi_dev) 39 { 40 struct rmi_function *fn, *tmp; 41 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 42 43 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n"); 44 45 /* Doing it in the reverse order so F01 will be removed last */ 46 list_for_each_entry_safe_reverse(fn, tmp, 47 &data->function_list, node) { 48 list_del(&fn->node); 49 rmi_unregister_function(fn); 50 } 51 52 devm_kfree(&rmi_dev->dev, data->irq_memory); 53 data->irq_memory = NULL; 54 data->irq_status = NULL; 55 data->fn_irq_bits = NULL; 56 data->current_irq_mask = NULL; 57 data->new_irq_mask = NULL; 58 59 data->f01_container = NULL; 60 data->f34_container = NULL; 61 } 62 63 static int reset_one_function(struct rmi_function *fn) 64 { 65 struct rmi_function_handler *fh; 66 int retval = 0; 67 68 if (!fn || !fn->dev.driver) 69 return 0; 70 71 fh = to_rmi_function_handler(fn->dev.driver); 72 if (fh->reset) { 73 retval = fh->reset(fn); 74 if (retval < 0) 75 dev_err(&fn->dev, "Reset failed with code %d.\n", 76 retval); 77 } 78 79 return retval; 80 } 81 82 static int configure_one_function(struct rmi_function *fn) 83 { 84 struct rmi_function_handler *fh; 85 int retval = 0; 86 87 if (!fn || !fn->dev.driver) 88 return 0; 89 90 fh = to_rmi_function_handler(fn->dev.driver); 91 if (fh->config) { 92 retval = fh->config(fn); 93 if (retval < 0) 94 dev_err(&fn->dev, "Config failed with code %d.\n", 95 retval); 96 } 97 98 return retval; 99 } 100 101 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev) 102 { 103 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 104 struct rmi_function *entry; 105 int retval; 106 107 list_for_each_entry(entry, &data->function_list, node) { 108 retval = reset_one_function(entry); 109 if (retval < 0) 110 return retval; 111 } 112 113 return 0; 114 } 115 116 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev) 117 { 118 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 119 struct rmi_function *entry; 120 int retval; 121 122 list_for_each_entry(entry, &data->function_list, node) { 123 retval = configure_one_function(entry); 124 if (retval < 0) 125 return retval; 126 } 127 128 return 0; 129 } 130 131 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev) 132 { 133 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 134 struct device *dev = &rmi_dev->dev; 135 int i; 136 int error; 137 138 if (!data) 139 return 0; 140 141 if (!data->attn_data.data) { 142 error = rmi_read_block(rmi_dev, 143 data->f01_container->fd.data_base_addr + 1, 144 data->irq_status, data->num_of_irq_regs); 145 if (error < 0) { 146 dev_err(dev, "Failed to read irqs, code=%d\n", error); 147 return error; 148 } 149 } 150 151 mutex_lock(&data->irq_mutex); 152 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask, 153 data->irq_count); 154 /* 155 * At this point, irq_status has all bits that are set in the 156 * interrupt status register and are enabled. 157 */ 158 mutex_unlock(&data->irq_mutex); 159 160 for_each_set_bit(i, data->irq_status, data->irq_count) 161 handle_nested_irq(irq_find_mapping(data->irqdomain, i)); 162 163 if (data->input) 164 input_sync(data->input); 165 166 return 0; 167 } 168 169 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status, 170 void *data, size_t size) 171 { 172 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev); 173 struct rmi4_attn_data attn_data; 174 void *fifo_data; 175 176 if (!drvdata->enabled) 177 return; 178 179 fifo_data = kmemdup(data, size, GFP_ATOMIC); 180 if (!fifo_data) 181 return; 182 183 attn_data.irq_status = irq_status; 184 attn_data.size = size; 185 attn_data.data = fifo_data; 186 187 kfifo_put(&drvdata->attn_fifo, attn_data); 188 } 189 EXPORT_SYMBOL_GPL(rmi_set_attn_data); 190 191 static irqreturn_t rmi_irq_fn(int irq, void *dev_id) 192 { 193 struct rmi_device *rmi_dev = dev_id; 194 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev); 195 struct rmi4_attn_data attn_data = {0}; 196 int ret, count; 197 198 count = kfifo_get(&drvdata->attn_fifo, &attn_data); 199 if (count) { 200 *(drvdata->irq_status) = attn_data.irq_status; 201 drvdata->attn_data = attn_data; 202 } 203 204 ret = rmi_process_interrupt_requests(rmi_dev); 205 if (ret) 206 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, 207 "Failed to process interrupt request: %d\n", ret); 208 209 if (count) { 210 kfree(attn_data.data); 211 attn_data.data = NULL; 212 } 213 214 if (!kfifo_is_empty(&drvdata->attn_fifo)) 215 return rmi_irq_fn(irq, dev_id); 216 217 return IRQ_HANDLED; 218 } 219 220 static int rmi_irq_init(struct rmi_device *rmi_dev) 221 { 222 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); 223 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 224 int irq_flags = irq_get_trigger_type(pdata->irq); 225 int ret; 226 227 if (!irq_flags) 228 irq_flags = IRQF_TRIGGER_LOW; 229 230 ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL, 231 rmi_irq_fn, irq_flags | IRQF_ONESHOT, 232 dev_driver_string(rmi_dev->xport->dev), 233 rmi_dev); 234 if (ret < 0) { 235 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n", 236 pdata->irq); 237 238 return ret; 239 } 240 241 data->enabled = true; 242 243 return 0; 244 } 245 246 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number) 247 { 248 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 249 struct rmi_function *entry; 250 251 list_for_each_entry(entry, &data->function_list, node) { 252 if (entry->fd.function_number == number) 253 return entry; 254 } 255 256 return NULL; 257 } 258 259 static int suspend_one_function(struct rmi_function *fn) 260 { 261 struct rmi_function_handler *fh; 262 int retval = 0; 263 264 if (!fn || !fn->dev.driver) 265 return 0; 266 267 fh = to_rmi_function_handler(fn->dev.driver); 268 if (fh->suspend) { 269 retval = fh->suspend(fn); 270 if (retval < 0) 271 dev_err(&fn->dev, "Suspend failed with code %d.\n", 272 retval); 273 } 274 275 return retval; 276 } 277 278 static int rmi_suspend_functions(struct rmi_device *rmi_dev) 279 { 280 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 281 struct rmi_function *entry; 282 int retval; 283 284 list_for_each_entry(entry, &data->function_list, node) { 285 retval = suspend_one_function(entry); 286 if (retval < 0) 287 return retval; 288 } 289 290 return 0; 291 } 292 293 static int resume_one_function(struct rmi_function *fn) 294 { 295 struct rmi_function_handler *fh; 296 int retval = 0; 297 298 if (!fn || !fn->dev.driver) 299 return 0; 300 301 fh = to_rmi_function_handler(fn->dev.driver); 302 if (fh->resume) { 303 retval = fh->resume(fn); 304 if (retval < 0) 305 dev_err(&fn->dev, "Resume failed with code %d.\n", 306 retval); 307 } 308 309 return retval; 310 } 311 312 static int rmi_resume_functions(struct rmi_device *rmi_dev) 313 { 314 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 315 struct rmi_function *entry; 316 int retval; 317 318 list_for_each_entry(entry, &data->function_list, node) { 319 retval = resume_one_function(entry); 320 if (retval < 0) 321 return retval; 322 } 323 324 return 0; 325 } 326 327 int rmi_enable_sensor(struct rmi_device *rmi_dev) 328 { 329 int retval = 0; 330 331 retval = rmi_driver_process_config_requests(rmi_dev); 332 if (retval < 0) 333 return retval; 334 335 return rmi_process_interrupt_requests(rmi_dev); 336 } 337 338 /** 339 * rmi_driver_set_input_params - set input device id and other data. 340 * 341 * @rmi_dev: Pointer to an RMI device 342 * @input: Pointer to input device 343 * 344 */ 345 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev, 346 struct input_dev *input) 347 { 348 input->name = SYNAPTICS_INPUT_DEVICE_NAME; 349 input->id.vendor = SYNAPTICS_VENDOR_ID; 350 input->id.bustype = BUS_RMI; 351 return 0; 352 } 353 354 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev, 355 struct input_dev *input) 356 { 357 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 358 const char *device_name = rmi_f01_get_product_ID(data->f01_container); 359 char *name; 360 361 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL, 362 "Synaptics %s", device_name); 363 if (!name) 364 return; 365 366 input->name = name; 367 } 368 369 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev, 370 unsigned long *mask) 371 { 372 int error = 0; 373 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 374 struct device *dev = &rmi_dev->dev; 375 376 mutex_lock(&data->irq_mutex); 377 bitmap_or(data->new_irq_mask, 378 data->current_irq_mask, mask, data->irq_count); 379 380 error = rmi_write_block(rmi_dev, 381 data->f01_container->fd.control_base_addr + 1, 382 data->new_irq_mask, data->num_of_irq_regs); 383 if (error < 0) { 384 dev_err(dev, "%s: Failed to change enabled interrupts!", 385 __func__); 386 goto error_unlock; 387 } 388 bitmap_copy(data->current_irq_mask, data->new_irq_mask, 389 data->num_of_irq_regs); 390 391 error_unlock: 392 mutex_unlock(&data->irq_mutex); 393 return error; 394 } 395 396 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev, 397 unsigned long *mask) 398 { 399 int error = 0; 400 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 401 struct device *dev = &rmi_dev->dev; 402 403 mutex_lock(&data->irq_mutex); 404 bitmap_andnot(data->new_irq_mask, 405 data->current_irq_mask, mask, data->irq_count); 406 407 error = rmi_write_block(rmi_dev, 408 data->f01_container->fd.control_base_addr + 1, 409 data->new_irq_mask, data->num_of_irq_regs); 410 if (error < 0) { 411 dev_err(dev, "%s: Failed to change enabled interrupts!", 412 __func__); 413 goto error_unlock; 414 } 415 bitmap_copy(data->current_irq_mask, data->new_irq_mask, 416 data->num_of_irq_regs); 417 418 error_unlock: 419 mutex_unlock(&data->irq_mutex); 420 return error; 421 } 422 423 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev) 424 { 425 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 426 int error; 427 428 /* 429 * Can get called before the driver is fully ready to deal with 430 * this situation. 431 */ 432 if (!data || !data->f01_container) { 433 dev_warn(&rmi_dev->dev, 434 "Not ready to handle reset yet!\n"); 435 return 0; 436 } 437 438 error = rmi_read_block(rmi_dev, 439 data->f01_container->fd.control_base_addr + 1, 440 data->current_irq_mask, data->num_of_irq_regs); 441 if (error < 0) { 442 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n", 443 __func__); 444 return error; 445 } 446 447 error = rmi_driver_process_reset_requests(rmi_dev); 448 if (error < 0) 449 return error; 450 451 error = rmi_driver_process_config_requests(rmi_dev); 452 if (error < 0) 453 return error; 454 455 return 0; 456 } 457 458 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev, 459 struct pdt_entry *entry, u16 pdt_address) 460 { 461 u8 buf[RMI_PDT_ENTRY_SIZE]; 462 int error; 463 464 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE); 465 if (error) { 466 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n", 467 pdt_address, error); 468 return error; 469 } 470 471 entry->page_start = pdt_address & RMI4_PAGE_MASK; 472 entry->query_base_addr = buf[0]; 473 entry->command_base_addr = buf[1]; 474 entry->control_base_addr = buf[2]; 475 entry->data_base_addr = buf[3]; 476 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK; 477 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5; 478 entry->function_number = buf[5]; 479 480 return 0; 481 } 482 483 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt, 484 struct rmi_function_descriptor *fd) 485 { 486 fd->query_base_addr = pdt->query_base_addr + pdt->page_start; 487 fd->command_base_addr = pdt->command_base_addr + pdt->page_start; 488 fd->control_base_addr = pdt->control_base_addr + pdt->page_start; 489 fd->data_base_addr = pdt->data_base_addr + pdt->page_start; 490 fd->function_number = pdt->function_number; 491 fd->interrupt_source_count = pdt->interrupt_source_count; 492 fd->function_version = pdt->function_version; 493 } 494 495 #define RMI_SCAN_CONTINUE 0 496 #define RMI_SCAN_DONE 1 497 498 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev, 499 int page, 500 int *empty_pages, 501 void *ctx, 502 int (*callback)(struct rmi_device *rmi_dev, 503 void *ctx, 504 const struct pdt_entry *entry)) 505 { 506 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 507 struct pdt_entry pdt_entry; 508 u16 page_start = RMI4_PAGE_SIZE * page; 509 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION; 510 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION; 511 u16 addr; 512 int error; 513 int retval; 514 515 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) { 516 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr); 517 if (error) 518 return error; 519 520 if (RMI4_END_OF_PDT(pdt_entry.function_number)) 521 break; 522 523 retval = callback(rmi_dev, ctx, &pdt_entry); 524 if (retval != RMI_SCAN_CONTINUE) 525 return retval; 526 } 527 528 /* 529 * Count number of empty PDT pages. If a gap of two pages 530 * or more is found, stop scanning. 531 */ 532 if (addr == pdt_start) 533 ++*empty_pages; 534 else 535 *empty_pages = 0; 536 537 return (data->bootloader_mode || *empty_pages >= 2) ? 538 RMI_SCAN_DONE : RMI_SCAN_CONTINUE; 539 } 540 541 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx, 542 int (*callback)(struct rmi_device *rmi_dev, 543 void *ctx, const struct pdt_entry *entry)) 544 { 545 int page; 546 int empty_pages = 0; 547 int retval = RMI_SCAN_DONE; 548 549 for (page = 0; page <= RMI4_MAX_PAGE; page++) { 550 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages, 551 ctx, callback); 552 if (retval != RMI_SCAN_CONTINUE) 553 break; 554 } 555 556 return retval < 0 ? retval : 0; 557 } 558 559 int rmi_read_register_desc(struct rmi_device *d, u16 addr, 560 struct rmi_register_descriptor *rdesc) 561 { 562 int ret; 563 u8 size_presence_reg; 564 u8 buf[35]; 565 int presense_offset = 1; 566 u8 *struct_buf; 567 int reg; 568 int offset = 0; 569 int map_offset = 0; 570 int i; 571 int b; 572 573 /* 574 * The first register of the register descriptor is the size of 575 * the register descriptor's presense register. 576 */ 577 ret = rmi_read(d, addr, &size_presence_reg); 578 if (ret) 579 return ret; 580 ++addr; 581 582 if (size_presence_reg < 0 || size_presence_reg > 35) 583 return -EIO; 584 585 memset(buf, 0, sizeof(buf)); 586 587 /* 588 * The presence register contains the size of the register structure 589 * and a bitmap which identified which packet registers are present 590 * for this particular register type (ie query, control, or data). 591 */ 592 ret = rmi_read_block(d, addr, buf, size_presence_reg); 593 if (ret) 594 return ret; 595 ++addr; 596 597 if (buf[0] == 0) { 598 presense_offset = 3; 599 rdesc->struct_size = buf[1] | (buf[2] << 8); 600 } else { 601 rdesc->struct_size = buf[0]; 602 } 603 604 for (i = presense_offset; i < size_presence_reg; i++) { 605 for (b = 0; b < 8; b++) { 606 if (buf[i] & (0x1 << b)) 607 bitmap_set(rdesc->presense_map, map_offset, 1); 608 ++map_offset; 609 } 610 } 611 612 rdesc->num_registers = bitmap_weight(rdesc->presense_map, 613 RMI_REG_DESC_PRESENSE_BITS); 614 615 rdesc->registers = devm_kcalloc(&d->dev, 616 rdesc->num_registers, 617 sizeof(struct rmi_register_desc_item), 618 GFP_KERNEL); 619 if (!rdesc->registers) 620 return -ENOMEM; 621 622 /* 623 * Allocate a temporary buffer to hold the register structure. 624 * I'm not using devm_kzalloc here since it will not be retained 625 * after exiting this function 626 */ 627 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL); 628 if (!struct_buf) 629 return -ENOMEM; 630 631 /* 632 * The register structure contains information about every packet 633 * register of this type. This includes the size of the packet 634 * register and a bitmap of all subpackets contained in the packet 635 * register. 636 */ 637 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size); 638 if (ret) 639 goto free_struct_buff; 640 641 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS); 642 for (i = 0; i < rdesc->num_registers; i++) { 643 struct rmi_register_desc_item *item = &rdesc->registers[i]; 644 int reg_size = struct_buf[offset]; 645 646 ++offset; 647 if (reg_size == 0) { 648 reg_size = struct_buf[offset] | 649 (struct_buf[offset + 1] << 8); 650 offset += 2; 651 } 652 653 if (reg_size == 0) { 654 reg_size = struct_buf[offset] | 655 (struct_buf[offset + 1] << 8) | 656 (struct_buf[offset + 2] << 16) | 657 (struct_buf[offset + 3] << 24); 658 offset += 4; 659 } 660 661 item->reg = reg; 662 item->reg_size = reg_size; 663 664 map_offset = 0; 665 666 do { 667 for (b = 0; b < 7; b++) { 668 if (struct_buf[offset] & (0x1 << b)) 669 bitmap_set(item->subpacket_map, 670 map_offset, 1); 671 ++map_offset; 672 } 673 } while (struct_buf[offset++] & 0x80); 674 675 item->num_subpackets = bitmap_weight(item->subpacket_map, 676 RMI_REG_DESC_SUBPACKET_BITS); 677 678 rmi_dbg(RMI_DEBUG_CORE, &d->dev, 679 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__, 680 item->reg, item->reg_size, item->num_subpackets); 681 682 reg = find_next_bit(rdesc->presense_map, 683 RMI_REG_DESC_PRESENSE_BITS, reg + 1); 684 } 685 686 free_struct_buff: 687 kfree(struct_buf); 688 return ret; 689 } 690 691 const struct rmi_register_desc_item *rmi_get_register_desc_item( 692 struct rmi_register_descriptor *rdesc, u16 reg) 693 { 694 const struct rmi_register_desc_item *item; 695 int i; 696 697 for (i = 0; i < rdesc->num_registers; i++) { 698 item = &rdesc->registers[i]; 699 if (item->reg == reg) 700 return item; 701 } 702 703 return NULL; 704 } 705 706 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc) 707 { 708 const struct rmi_register_desc_item *item; 709 int i; 710 size_t size = 0; 711 712 for (i = 0; i < rdesc->num_registers; i++) { 713 item = &rdesc->registers[i]; 714 size += item->reg_size; 715 } 716 return size; 717 } 718 719 /* Compute the register offset relative to the base address */ 720 int rmi_register_desc_calc_reg_offset( 721 struct rmi_register_descriptor *rdesc, u16 reg) 722 { 723 const struct rmi_register_desc_item *item; 724 int offset = 0; 725 int i; 726 727 for (i = 0; i < rdesc->num_registers; i++) { 728 item = &rdesc->registers[i]; 729 if (item->reg == reg) 730 return offset; 731 ++offset; 732 } 733 return -1; 734 } 735 736 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item, 737 u8 subpacket) 738 { 739 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS, 740 subpacket) == subpacket; 741 } 742 743 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev, 744 const struct pdt_entry *pdt) 745 { 746 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 747 int ret; 748 u8 status; 749 750 if (pdt->function_number == 0x34 && pdt->function_version > 1) { 751 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status); 752 if (ret) { 753 dev_err(&rmi_dev->dev, 754 "Failed to read F34 status: %d.\n", ret); 755 return ret; 756 } 757 758 if (status & BIT(7)) 759 data->bootloader_mode = true; 760 } else if (pdt->function_number == 0x01) { 761 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status); 762 if (ret) { 763 dev_err(&rmi_dev->dev, 764 "Failed to read F01 status: %d.\n", ret); 765 return ret; 766 } 767 768 if (status & BIT(6)) 769 data->bootloader_mode = true; 770 } 771 772 return 0; 773 } 774 775 static int rmi_count_irqs(struct rmi_device *rmi_dev, 776 void *ctx, const struct pdt_entry *pdt) 777 { 778 int *irq_count = ctx; 779 int ret; 780 781 *irq_count += pdt->interrupt_source_count; 782 783 ret = rmi_check_bootloader_mode(rmi_dev, pdt); 784 if (ret < 0) 785 return ret; 786 787 return RMI_SCAN_CONTINUE; 788 } 789 790 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx, 791 const struct pdt_entry *pdt) 792 { 793 int error; 794 795 if (pdt->function_number == 0x01) { 796 u16 cmd_addr = pdt->page_start + pdt->command_base_addr; 797 u8 cmd_buf = RMI_DEVICE_RESET_CMD; 798 const struct rmi_device_platform_data *pdata = 799 rmi_get_platform_data(rmi_dev); 800 801 if (rmi_dev->xport->ops->reset) { 802 error = rmi_dev->xport->ops->reset(rmi_dev->xport, 803 cmd_addr); 804 if (error) 805 return error; 806 807 return RMI_SCAN_DONE; 808 } 809 810 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n"); 811 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1); 812 if (error) { 813 dev_err(&rmi_dev->dev, 814 "Initial reset failed. Code = %d.\n", error); 815 return error; 816 } 817 818 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS); 819 820 return RMI_SCAN_DONE; 821 } 822 823 /* F01 should always be on page 0. If we don't find it there, fail. */ 824 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV; 825 } 826 827 static int rmi_create_function(struct rmi_device *rmi_dev, 828 void *ctx, const struct pdt_entry *pdt) 829 { 830 struct device *dev = &rmi_dev->dev; 831 struct rmi_driver_data *data = dev_get_drvdata(dev); 832 int *current_irq_count = ctx; 833 struct rmi_function *fn; 834 int i; 835 int error; 836 837 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n", 838 pdt->function_number); 839 840 fn = kzalloc(sizeof(struct rmi_function) + 841 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long), 842 GFP_KERNEL); 843 if (!fn) { 844 dev_err(dev, "Failed to allocate memory for F%02X\n", 845 pdt->function_number); 846 return -ENOMEM; 847 } 848 849 INIT_LIST_HEAD(&fn->node); 850 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd); 851 852 fn->rmi_dev = rmi_dev; 853 854 fn->num_of_irqs = pdt->interrupt_source_count; 855 fn->irq_pos = *current_irq_count; 856 *current_irq_count += fn->num_of_irqs; 857 858 for (i = 0; i < fn->num_of_irqs; i++) 859 set_bit(fn->irq_pos + i, fn->irq_mask); 860 861 error = rmi_register_function(fn); 862 if (error) 863 goto err_put_fn; 864 865 if (pdt->function_number == 0x01) 866 data->f01_container = fn; 867 else if (pdt->function_number == 0x34) 868 data->f34_container = fn; 869 870 list_add_tail(&fn->node, &data->function_list); 871 872 return RMI_SCAN_CONTINUE; 873 874 err_put_fn: 875 put_device(&fn->dev); 876 return error; 877 } 878 879 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake) 880 { 881 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); 882 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 883 int irq = pdata->irq; 884 int irq_flags; 885 int retval; 886 887 mutex_lock(&data->enabled_mutex); 888 889 if (data->enabled) 890 goto out; 891 892 enable_irq(irq); 893 data->enabled = true; 894 if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) { 895 retval = disable_irq_wake(irq); 896 if (retval) 897 dev_warn(&rmi_dev->dev, 898 "Failed to disable irq for wake: %d\n", 899 retval); 900 } 901 902 /* 903 * Call rmi_process_interrupt_requests() after enabling irq, 904 * otherwise we may lose interrupt on edge-triggered systems. 905 */ 906 irq_flags = irq_get_trigger_type(pdata->irq); 907 if (irq_flags & IRQ_TYPE_EDGE_BOTH) 908 rmi_process_interrupt_requests(rmi_dev); 909 910 out: 911 mutex_unlock(&data->enabled_mutex); 912 } 913 914 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake) 915 { 916 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); 917 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 918 struct rmi4_attn_data attn_data = {0}; 919 int irq = pdata->irq; 920 int retval, count; 921 922 mutex_lock(&data->enabled_mutex); 923 924 if (!data->enabled) 925 goto out; 926 927 data->enabled = false; 928 disable_irq(irq); 929 if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) { 930 retval = enable_irq_wake(irq); 931 if (retval) 932 dev_warn(&rmi_dev->dev, 933 "Failed to enable irq for wake: %d\n", 934 retval); 935 } 936 937 /* make sure the fifo is clean */ 938 while (!kfifo_is_empty(&data->attn_fifo)) { 939 count = kfifo_get(&data->attn_fifo, &attn_data); 940 if (count) 941 kfree(attn_data.data); 942 } 943 944 out: 945 mutex_unlock(&data->enabled_mutex); 946 } 947 948 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake) 949 { 950 int retval; 951 952 retval = rmi_suspend_functions(rmi_dev); 953 if (retval) 954 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", 955 retval); 956 957 rmi_disable_irq(rmi_dev, enable_wake); 958 return retval; 959 } 960 EXPORT_SYMBOL_GPL(rmi_driver_suspend); 961 962 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake) 963 { 964 int retval; 965 966 rmi_enable_irq(rmi_dev, clear_wake); 967 968 retval = rmi_resume_functions(rmi_dev); 969 if (retval) 970 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", 971 retval); 972 973 return retval; 974 } 975 EXPORT_SYMBOL_GPL(rmi_driver_resume); 976 977 static int rmi_driver_remove(struct device *dev) 978 { 979 struct rmi_device *rmi_dev = to_rmi_device(dev); 980 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 981 982 rmi_disable_irq(rmi_dev, false); 983 984 irq_domain_remove(data->irqdomain); 985 data->irqdomain = NULL; 986 987 rmi_f34_remove_sysfs(rmi_dev); 988 rmi_free_function_list(rmi_dev); 989 990 return 0; 991 } 992 993 #ifdef CONFIG_OF 994 static int rmi_driver_of_probe(struct device *dev, 995 struct rmi_device_platform_data *pdata) 996 { 997 int retval; 998 999 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms, 1000 "syna,reset-delay-ms", 1); 1001 if (retval) 1002 return retval; 1003 1004 return 0; 1005 } 1006 #else 1007 static inline int rmi_driver_of_probe(struct device *dev, 1008 struct rmi_device_platform_data *pdata) 1009 { 1010 return -ENODEV; 1011 } 1012 #endif 1013 1014 int rmi_probe_interrupts(struct rmi_driver_data *data) 1015 { 1016 struct rmi_device *rmi_dev = data->rmi_dev; 1017 struct device *dev = &rmi_dev->dev; 1018 struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode; 1019 int irq_count = 0; 1020 size_t size; 1021 int retval; 1022 1023 /* 1024 * We need to count the IRQs and allocate their storage before scanning 1025 * the PDT and creating the function entries, because adding a new 1026 * function can trigger events that result in the IRQ related storage 1027 * being accessed. 1028 */ 1029 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__); 1030 data->bootloader_mode = false; 1031 1032 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs); 1033 if (retval < 0) { 1034 dev_err(dev, "IRQ counting failed with code %d.\n", retval); 1035 return retval; 1036 } 1037 1038 if (data->bootloader_mode) 1039 dev_warn(dev, "Device in bootloader mode.\n"); 1040 1041 /* Allocate and register a linear revmap irq_domain */ 1042 data->irqdomain = irq_domain_create_linear(fwnode, irq_count, 1043 &irq_domain_simple_ops, 1044 data); 1045 if (!data->irqdomain) { 1046 dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n"); 1047 return -ENOMEM; 1048 } 1049 1050 data->irq_count = irq_count; 1051 data->num_of_irq_regs = (data->irq_count + 7) / 8; 1052 1053 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long); 1054 data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL); 1055 if (!data->irq_memory) { 1056 dev_err(dev, "Failed to allocate memory for irq masks.\n"); 1057 return -ENOMEM; 1058 } 1059 1060 data->irq_status = data->irq_memory + size * 0; 1061 data->fn_irq_bits = data->irq_memory + size * 1; 1062 data->current_irq_mask = data->irq_memory + size * 2; 1063 data->new_irq_mask = data->irq_memory + size * 3; 1064 1065 return retval; 1066 } 1067 1068 int rmi_init_functions(struct rmi_driver_data *data) 1069 { 1070 struct rmi_device *rmi_dev = data->rmi_dev; 1071 struct device *dev = &rmi_dev->dev; 1072 int irq_count = 0; 1073 int retval; 1074 1075 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__); 1076 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function); 1077 if (retval < 0) { 1078 dev_err(dev, "Function creation failed with code %d.\n", 1079 retval); 1080 goto err_destroy_functions; 1081 } 1082 1083 if (!data->f01_container) { 1084 dev_err(dev, "Missing F01 container!\n"); 1085 retval = -EINVAL; 1086 goto err_destroy_functions; 1087 } 1088 1089 retval = rmi_read_block(rmi_dev, 1090 data->f01_container->fd.control_base_addr + 1, 1091 data->current_irq_mask, data->num_of_irq_regs); 1092 if (retval < 0) { 1093 dev_err(dev, "%s: Failed to read current IRQ mask.\n", 1094 __func__); 1095 goto err_destroy_functions; 1096 } 1097 1098 return 0; 1099 1100 err_destroy_functions: 1101 rmi_free_function_list(rmi_dev); 1102 return retval; 1103 } 1104 1105 static int rmi_driver_probe(struct device *dev) 1106 { 1107 struct rmi_driver *rmi_driver; 1108 struct rmi_driver_data *data; 1109 struct rmi_device_platform_data *pdata; 1110 struct rmi_device *rmi_dev; 1111 int retval; 1112 1113 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n", 1114 __func__); 1115 1116 if (!rmi_is_physical_device(dev)) { 1117 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n"); 1118 return -ENODEV; 1119 } 1120 1121 rmi_dev = to_rmi_device(dev); 1122 rmi_driver = to_rmi_driver(dev->driver); 1123 rmi_dev->driver = rmi_driver; 1124 1125 pdata = rmi_get_platform_data(rmi_dev); 1126 1127 if (rmi_dev->xport->dev->of_node) { 1128 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata); 1129 if (retval) 1130 return retval; 1131 } 1132 1133 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL); 1134 if (!data) 1135 return -ENOMEM; 1136 1137 INIT_LIST_HEAD(&data->function_list); 1138 data->rmi_dev = rmi_dev; 1139 dev_set_drvdata(&rmi_dev->dev, data); 1140 1141 /* 1142 * Right before a warm boot, the sensor might be in some unusual state, 1143 * such as F54 diagnostics, or F34 bootloader mode after a firmware 1144 * or configuration update. In order to clear the sensor to a known 1145 * state and/or apply any updates, we issue a initial reset to clear any 1146 * previous settings and force it into normal operation. 1147 * 1148 * We have to do this before actually building the PDT because 1149 * the reflash updates (if any) might cause various registers to move 1150 * around. 1151 * 1152 * For a number of reasons, this initial reset may fail to return 1153 * within the specified time, but we'll still be able to bring up the 1154 * driver normally after that failure. This occurs most commonly in 1155 * a cold boot situation (where then firmware takes longer to come up 1156 * than from a warm boot) and the reset_delay_ms in the platform data 1157 * has been set too short to accommodate that. Since the sensor will 1158 * eventually come up and be usable, we don't want to just fail here 1159 * and leave the customer's device unusable. So we warn them, and 1160 * continue processing. 1161 */ 1162 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset); 1163 if (retval < 0) 1164 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n"); 1165 1166 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props); 1167 if (retval < 0) { 1168 /* 1169 * we'll print out a warning and continue since 1170 * failure to get the PDT properties is not a cause to fail 1171 */ 1172 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n", 1173 PDT_PROPERTIES_LOCATION, retval); 1174 } 1175 1176 mutex_init(&data->irq_mutex); 1177 mutex_init(&data->enabled_mutex); 1178 1179 retval = rmi_probe_interrupts(data); 1180 if (retval) 1181 goto err; 1182 1183 if (rmi_dev->xport->input) { 1184 /* 1185 * The transport driver already has an input device. 1186 * In some cases it is preferable to reuse the transport 1187 * devices input device instead of creating a new one here. 1188 * One example is some HID touchpads report "pass-through" 1189 * button events are not reported by rmi registers. 1190 */ 1191 data->input = rmi_dev->xport->input; 1192 } else { 1193 data->input = devm_input_allocate_device(dev); 1194 if (!data->input) { 1195 dev_err(dev, "%s: Failed to allocate input device.\n", 1196 __func__); 1197 retval = -ENOMEM; 1198 goto err; 1199 } 1200 rmi_driver_set_input_params(rmi_dev, data->input); 1201 data->input->phys = devm_kasprintf(dev, GFP_KERNEL, 1202 "%s/input0", dev_name(dev)); 1203 } 1204 1205 retval = rmi_init_functions(data); 1206 if (retval) 1207 goto err; 1208 1209 retval = rmi_f34_create_sysfs(rmi_dev); 1210 if (retval) 1211 goto err; 1212 1213 if (data->input) { 1214 rmi_driver_set_input_name(rmi_dev, data->input); 1215 if (!rmi_dev->xport->input) { 1216 if (input_register_device(data->input)) { 1217 dev_err(dev, "%s: Failed to register input device.\n", 1218 __func__); 1219 goto err_destroy_functions; 1220 } 1221 } 1222 } 1223 1224 retval = rmi_irq_init(rmi_dev); 1225 if (retval < 0) 1226 goto err_destroy_functions; 1227 1228 if (data->f01_container->dev.driver) { 1229 /* Driver already bound, so enable ATTN now. */ 1230 retval = rmi_enable_sensor(rmi_dev); 1231 if (retval) 1232 goto err_disable_irq; 1233 } 1234 1235 return 0; 1236 1237 err_disable_irq: 1238 rmi_disable_irq(rmi_dev, false); 1239 err_destroy_functions: 1240 rmi_free_function_list(rmi_dev); 1241 err: 1242 return retval; 1243 } 1244 1245 static struct rmi_driver rmi_physical_driver = { 1246 .driver = { 1247 .owner = THIS_MODULE, 1248 .name = "rmi4_physical", 1249 .bus = &rmi_bus_type, 1250 .probe = rmi_driver_probe, 1251 .remove = rmi_driver_remove, 1252 }, 1253 .reset_handler = rmi_driver_reset_handler, 1254 .clear_irq_bits = rmi_driver_clear_irq_bits, 1255 .set_irq_bits = rmi_driver_set_irq_bits, 1256 .set_input_params = rmi_driver_set_input_params, 1257 }; 1258 1259 bool rmi_is_physical_driver(struct device_driver *drv) 1260 { 1261 return drv == &rmi_physical_driver.driver; 1262 } 1263 1264 int __init rmi_register_physical_driver(void) 1265 { 1266 int error; 1267 1268 error = driver_register(&rmi_physical_driver.driver); 1269 if (error) { 1270 pr_err("%s: driver register failed, code=%d.\n", __func__, 1271 error); 1272 return error; 1273 } 1274 1275 return 0; 1276 } 1277 1278 void __exit rmi_unregister_physical_driver(void) 1279 { 1280 driver_unregister(&rmi_physical_driver.driver); 1281 } 1282