xref: /linux/drivers/input/rmi4/rmi_driver.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011-2016 Synaptics Incorporated
4  * Copyright (c) 2011 Unixphere
5  *
6  * This driver provides the core support for a single RMI4-based device.
7  *
8  * The RMI4 specification can be found here (URL split for line length):
9  *
10  * http://www.synaptics.com/sites/default/files/
11  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
12  */
13 
14 #include <linux/bitmap.h>
15 #include <linux/delay.h>
16 #include <linux/fs.h>
17 #include <linux/irq.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/irqdomain.h>
22 #include <uapi/linux/input.h>
23 #include <linux/rmi.h>
24 #include "rmi_bus.h"
25 #include "rmi_driver.h"
26 
27 #define HAS_NONSTANDARD_PDT_MASK 0x40
28 #define RMI4_MAX_PAGE 0xff
29 #define RMI4_PAGE_SIZE 0x100
30 #define RMI4_PAGE_MASK 0xFF00
31 
32 #define RMI_DEVICE_RESET_CMD	0x01
33 #define DEFAULT_RESET_DELAY_MS	100
34 
35 void rmi_free_function_list(struct rmi_device *rmi_dev)
36 {
37 	struct rmi_function *fn, *tmp;
38 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
39 
40 	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
41 
42 	/* Doing it in the reverse order so F01 will be removed last */
43 	list_for_each_entry_safe_reverse(fn, tmp,
44 					 &data->function_list, node) {
45 		list_del(&fn->node);
46 		rmi_unregister_function(fn);
47 	}
48 
49 	devm_kfree(&rmi_dev->dev, data->irq_memory);
50 	data->irq_memory = NULL;
51 	data->irq_status = NULL;
52 	data->fn_irq_bits = NULL;
53 	data->current_irq_mask = NULL;
54 	data->new_irq_mask = NULL;
55 
56 	data->f01_container = NULL;
57 	data->f34_container = NULL;
58 }
59 
60 static int reset_one_function(struct rmi_function *fn)
61 {
62 	struct rmi_function_handler *fh;
63 	int retval = 0;
64 
65 	if (!fn || !fn->dev.driver)
66 		return 0;
67 
68 	fh = to_rmi_function_handler(fn->dev.driver);
69 	if (fh->reset) {
70 		retval = fh->reset(fn);
71 		if (retval < 0)
72 			dev_err(&fn->dev, "Reset failed with code %d.\n",
73 				retval);
74 	}
75 
76 	return retval;
77 }
78 
79 static int configure_one_function(struct rmi_function *fn)
80 {
81 	struct rmi_function_handler *fh;
82 	int retval = 0;
83 
84 	if (!fn || !fn->dev.driver)
85 		return 0;
86 
87 	fh = to_rmi_function_handler(fn->dev.driver);
88 	if (fh->config) {
89 		retval = fh->config(fn);
90 		if (retval < 0)
91 			dev_err(&fn->dev, "Config failed with code %d.\n",
92 				retval);
93 	}
94 
95 	return retval;
96 }
97 
98 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
99 {
100 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
101 	struct rmi_function *entry;
102 	int retval;
103 
104 	list_for_each_entry(entry, &data->function_list, node) {
105 		retval = reset_one_function(entry);
106 		if (retval < 0)
107 			return retval;
108 	}
109 
110 	return 0;
111 }
112 
113 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
114 {
115 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
116 	struct rmi_function *entry;
117 	int retval;
118 
119 	list_for_each_entry(entry, &data->function_list, node) {
120 		retval = configure_one_function(entry);
121 		if (retval < 0)
122 			return retval;
123 	}
124 
125 	return 0;
126 }
127 
128 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
129 {
130 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
131 	struct device *dev = &rmi_dev->dev;
132 	int i;
133 	int error;
134 
135 	if (!data)
136 		return 0;
137 
138 	if (!data->attn_data.data) {
139 		error = rmi_read_block(rmi_dev,
140 				data->f01_container->fd.data_base_addr + 1,
141 				data->irq_status, data->num_of_irq_regs);
142 		if (error < 0) {
143 			dev_err(dev, "Failed to read irqs, code=%d\n", error);
144 			return error;
145 		}
146 	}
147 
148 	mutex_lock(&data->irq_mutex);
149 	bitmap_and(data->irq_status, data->irq_status, data->fn_irq_bits,
150 	       data->irq_count);
151 	/*
152 	 * At this point, irq_status has all bits that are set in the
153 	 * interrupt status register and are enabled.
154 	 */
155 	mutex_unlock(&data->irq_mutex);
156 
157 	for_each_set_bit(i, data->irq_status, data->irq_count)
158 		handle_nested_irq(irq_find_mapping(data->irqdomain, i));
159 
160 	if (data->input)
161 		input_sync(data->input);
162 
163 	return 0;
164 }
165 
166 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
167 		       void *data, size_t size)
168 {
169 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
170 	struct rmi4_attn_data attn_data;
171 	void *fifo_data;
172 
173 	if (!drvdata->enabled)
174 		return;
175 
176 	fifo_data = kmemdup(data, size, GFP_ATOMIC);
177 	if (!fifo_data)
178 		return;
179 
180 	attn_data.irq_status = irq_status;
181 	attn_data.size = size;
182 	attn_data.data = fifo_data;
183 
184 	kfifo_put(&drvdata->attn_fifo, attn_data);
185 }
186 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
187 
188 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
189 {
190 	struct rmi_device *rmi_dev = dev_id;
191 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
192 	struct rmi4_attn_data attn_data = {0};
193 	int ret, count;
194 
195 	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
196 	if (count) {
197 		*(drvdata->irq_status) = attn_data.irq_status;
198 		drvdata->attn_data = attn_data;
199 	}
200 
201 	ret = rmi_process_interrupt_requests(rmi_dev);
202 	if (ret)
203 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
204 			"Failed to process interrupt request: %d\n", ret);
205 
206 	if (count) {
207 		kfree(attn_data.data);
208 		drvdata->attn_data.data = NULL;
209 	}
210 
211 	if (!kfifo_is_empty(&drvdata->attn_fifo))
212 		return rmi_irq_fn(irq, dev_id);
213 
214 	return IRQ_HANDLED;
215 }
216 
217 static int rmi_irq_init(struct rmi_device *rmi_dev)
218 {
219 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
220 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
221 	int irq_flags = irq_get_trigger_type(pdata->irq);
222 	int ret;
223 
224 	if (!irq_flags)
225 		irq_flags = IRQF_TRIGGER_LOW;
226 
227 	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
228 					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
229 					dev_driver_string(rmi_dev->xport->dev),
230 					rmi_dev);
231 	if (ret < 0) {
232 		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
233 			pdata->irq);
234 
235 		return ret;
236 	}
237 
238 	data->enabled = true;
239 
240 	return 0;
241 }
242 
243 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
244 {
245 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246 	struct rmi_function *entry;
247 
248 	list_for_each_entry(entry, &data->function_list, node) {
249 		if (entry->fd.function_number == number)
250 			return entry;
251 	}
252 
253 	return NULL;
254 }
255 
256 static int suspend_one_function(struct rmi_function *fn)
257 {
258 	struct rmi_function_handler *fh;
259 	int retval = 0;
260 
261 	if (!fn || !fn->dev.driver)
262 		return 0;
263 
264 	fh = to_rmi_function_handler(fn->dev.driver);
265 	if (fh->suspend) {
266 		retval = fh->suspend(fn);
267 		if (retval < 0)
268 			dev_err(&fn->dev, "Suspend failed with code %d.\n",
269 				retval);
270 	}
271 
272 	return retval;
273 }
274 
275 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
276 {
277 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
278 	struct rmi_function *entry;
279 	int retval;
280 
281 	list_for_each_entry(entry, &data->function_list, node) {
282 		retval = suspend_one_function(entry);
283 		if (retval < 0)
284 			return retval;
285 	}
286 
287 	return 0;
288 }
289 
290 static int resume_one_function(struct rmi_function *fn)
291 {
292 	struct rmi_function_handler *fh;
293 	int retval = 0;
294 
295 	if (!fn || !fn->dev.driver)
296 		return 0;
297 
298 	fh = to_rmi_function_handler(fn->dev.driver);
299 	if (fh->resume) {
300 		retval = fh->resume(fn);
301 		if (retval < 0)
302 			dev_err(&fn->dev, "Resume failed with code %d.\n",
303 				retval);
304 	}
305 
306 	return retval;
307 }
308 
309 static int rmi_resume_functions(struct rmi_device *rmi_dev)
310 {
311 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
312 	struct rmi_function *entry;
313 	int retval;
314 
315 	list_for_each_entry(entry, &data->function_list, node) {
316 		retval = resume_one_function(entry);
317 		if (retval < 0)
318 			return retval;
319 	}
320 
321 	return 0;
322 }
323 
324 int rmi_enable_sensor(struct rmi_device *rmi_dev)
325 {
326 	int retval = 0;
327 
328 	retval = rmi_driver_process_config_requests(rmi_dev);
329 	if (retval < 0)
330 		return retval;
331 
332 	return rmi_process_interrupt_requests(rmi_dev);
333 }
334 
335 /**
336  * rmi_driver_set_input_params - set input device id and other data.
337  *
338  * @rmi_dev: Pointer to an RMI device
339  * @input: Pointer to input device
340  *
341  */
342 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
343 				struct input_dev *input)
344 {
345 	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
346 	input->id.vendor  = SYNAPTICS_VENDOR_ID;
347 	input->id.bustype = BUS_RMI;
348 	return 0;
349 }
350 
351 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
352 				struct input_dev *input)
353 {
354 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
355 	const char *device_name = rmi_f01_get_product_ID(data->f01_container);
356 	char *name;
357 
358 	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
359 			      "Synaptics %s", device_name);
360 	if (!name)
361 		return;
362 
363 	input->name = name;
364 }
365 
366 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
367 				   unsigned long *mask)
368 {
369 	int error = 0;
370 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
371 	struct device *dev = &rmi_dev->dev;
372 
373 	mutex_lock(&data->irq_mutex);
374 	bitmap_or(data->new_irq_mask,
375 		  data->current_irq_mask, mask, data->irq_count);
376 
377 	error = rmi_write_block(rmi_dev,
378 			data->f01_container->fd.control_base_addr + 1,
379 			data->new_irq_mask, data->num_of_irq_regs);
380 	if (error < 0) {
381 		dev_err(dev, "%s: Failed to change enabled interrupts!",
382 							__func__);
383 		goto error_unlock;
384 	}
385 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
386 		    data->num_of_irq_regs);
387 
388 	bitmap_or(data->fn_irq_bits, data->fn_irq_bits, mask, data->irq_count);
389 
390 error_unlock:
391 	mutex_unlock(&data->irq_mutex);
392 	return error;
393 }
394 
395 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
396 				     unsigned long *mask)
397 {
398 	int error = 0;
399 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
400 	struct device *dev = &rmi_dev->dev;
401 
402 	mutex_lock(&data->irq_mutex);
403 	bitmap_andnot(data->fn_irq_bits,
404 		      data->fn_irq_bits, mask, data->irq_count);
405 	bitmap_andnot(data->new_irq_mask,
406 		  data->current_irq_mask, mask, data->irq_count);
407 
408 	error = rmi_write_block(rmi_dev,
409 			data->f01_container->fd.control_base_addr + 1,
410 			data->new_irq_mask, data->num_of_irq_regs);
411 	if (error < 0) {
412 		dev_err(dev, "%s: Failed to change enabled interrupts!",
413 							__func__);
414 		goto error_unlock;
415 	}
416 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
417 		    data->num_of_irq_regs);
418 
419 error_unlock:
420 	mutex_unlock(&data->irq_mutex);
421 	return error;
422 }
423 
424 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
425 {
426 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
427 	int error;
428 
429 	/*
430 	 * Can get called before the driver is fully ready to deal with
431 	 * this situation.
432 	 */
433 	if (!data || !data->f01_container) {
434 		dev_warn(&rmi_dev->dev,
435 			 "Not ready to handle reset yet!\n");
436 		return 0;
437 	}
438 
439 	error = rmi_read_block(rmi_dev,
440 			       data->f01_container->fd.control_base_addr + 1,
441 			       data->current_irq_mask, data->num_of_irq_regs);
442 	if (error < 0) {
443 		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
444 			__func__);
445 		return error;
446 	}
447 
448 	error = rmi_driver_process_reset_requests(rmi_dev);
449 	if (error < 0)
450 		return error;
451 
452 	error = rmi_driver_process_config_requests(rmi_dev);
453 	if (error < 0)
454 		return error;
455 
456 	return 0;
457 }
458 
459 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
460 			      struct pdt_entry *entry, u16 pdt_address)
461 {
462 	u8 buf[RMI_PDT_ENTRY_SIZE];
463 	int error;
464 
465 	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
466 	if (error) {
467 		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
468 				pdt_address, error);
469 		return error;
470 	}
471 
472 	entry->page_start = pdt_address & RMI4_PAGE_MASK;
473 	entry->query_base_addr = buf[0];
474 	entry->command_base_addr = buf[1];
475 	entry->control_base_addr = buf[2];
476 	entry->data_base_addr = buf[3];
477 	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
478 	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
479 	entry->function_number = buf[5];
480 
481 	return 0;
482 }
483 
484 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
485 				      struct rmi_function_descriptor *fd)
486 {
487 	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
488 	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
489 	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
490 	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
491 	fd->function_number = pdt->function_number;
492 	fd->interrupt_source_count = pdt->interrupt_source_count;
493 	fd->function_version = pdt->function_version;
494 }
495 
496 #define RMI_SCAN_CONTINUE	0
497 #define RMI_SCAN_DONE		1
498 
499 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
500 			     int page,
501 			     int *empty_pages,
502 			     void *ctx,
503 			     int (*callback)(struct rmi_device *rmi_dev,
504 					     void *ctx,
505 					     const struct pdt_entry *entry))
506 {
507 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
508 	struct pdt_entry pdt_entry;
509 	u16 page_start = RMI4_PAGE_SIZE * page;
510 	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
511 	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
512 	u16 addr;
513 	int error;
514 	int retval;
515 
516 	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
517 		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
518 		if (error)
519 			return error;
520 
521 		if (RMI4_END_OF_PDT(pdt_entry.function_number))
522 			break;
523 
524 		retval = callback(rmi_dev, ctx, &pdt_entry);
525 		if (retval != RMI_SCAN_CONTINUE)
526 			return retval;
527 	}
528 
529 	/*
530 	 * Count number of empty PDT pages. If a gap of two pages
531 	 * or more is found, stop scanning.
532 	 */
533 	if (addr == pdt_start)
534 		++*empty_pages;
535 	else
536 		*empty_pages = 0;
537 
538 	return (data->bootloader_mode || *empty_pages >= 2) ?
539 					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
540 }
541 
542 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
543 		 int (*callback)(struct rmi_device *rmi_dev,
544 		 void *ctx, const struct pdt_entry *entry))
545 {
546 	int page;
547 	int empty_pages = 0;
548 	int retval = RMI_SCAN_DONE;
549 
550 	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
551 		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
552 					   ctx, callback);
553 		if (retval != RMI_SCAN_CONTINUE)
554 			break;
555 	}
556 
557 	return retval < 0 ? retval : 0;
558 }
559 
560 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
561 				struct rmi_register_descriptor *rdesc)
562 {
563 	int ret;
564 	u8 size_presence_reg;
565 	u8 buf[35];
566 	int presense_offset = 1;
567 	u8 *struct_buf;
568 	int reg;
569 	int offset = 0;
570 	int map_offset = 0;
571 	int i;
572 	int b;
573 
574 	/*
575 	 * The first register of the register descriptor is the size of
576 	 * the register descriptor's presense register.
577 	 */
578 	ret = rmi_read(d, addr, &size_presence_reg);
579 	if (ret)
580 		return ret;
581 	++addr;
582 
583 	if (size_presence_reg < 0 || size_presence_reg > 35)
584 		return -EIO;
585 
586 	memset(buf, 0, sizeof(buf));
587 
588 	/*
589 	 * The presence register contains the size of the register structure
590 	 * and a bitmap which identified which packet registers are present
591 	 * for this particular register type (ie query, control, or data).
592 	 */
593 	ret = rmi_read_block(d, addr, buf, size_presence_reg);
594 	if (ret)
595 		return ret;
596 	++addr;
597 
598 	if (buf[0] == 0) {
599 		presense_offset = 3;
600 		rdesc->struct_size = buf[1] | (buf[2] << 8);
601 	} else {
602 		rdesc->struct_size = buf[0];
603 	}
604 
605 	for (i = presense_offset; i < size_presence_reg; i++) {
606 		for (b = 0; b < 8; b++) {
607 			if (buf[i] & (0x1 << b))
608 				bitmap_set(rdesc->presense_map, map_offset, 1);
609 			++map_offset;
610 		}
611 	}
612 
613 	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
614 						RMI_REG_DESC_PRESENSE_BITS);
615 
616 	rdesc->registers = devm_kcalloc(&d->dev,
617 					rdesc->num_registers,
618 					sizeof(struct rmi_register_desc_item),
619 					GFP_KERNEL);
620 	if (!rdesc->registers)
621 		return -ENOMEM;
622 
623 	/*
624 	 * Allocate a temporary buffer to hold the register structure.
625 	 * I'm not using devm_kzalloc here since it will not be retained
626 	 * after exiting this function
627 	 */
628 	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
629 	if (!struct_buf)
630 		return -ENOMEM;
631 
632 	/*
633 	 * The register structure contains information about every packet
634 	 * register of this type. This includes the size of the packet
635 	 * register and a bitmap of all subpackets contained in the packet
636 	 * register.
637 	 */
638 	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
639 	if (ret)
640 		goto free_struct_buff;
641 
642 	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
643 	for (i = 0; i < rdesc->num_registers; i++) {
644 		struct rmi_register_desc_item *item = &rdesc->registers[i];
645 		int reg_size = struct_buf[offset];
646 
647 		++offset;
648 		if (reg_size == 0) {
649 			reg_size = struct_buf[offset] |
650 					(struct_buf[offset + 1] << 8);
651 			offset += 2;
652 		}
653 
654 		if (reg_size == 0) {
655 			reg_size = struct_buf[offset] |
656 					(struct_buf[offset + 1] << 8) |
657 					(struct_buf[offset + 2] << 16) |
658 					(struct_buf[offset + 3] << 24);
659 			offset += 4;
660 		}
661 
662 		item->reg = reg;
663 		item->reg_size = reg_size;
664 
665 		map_offset = 0;
666 
667 		do {
668 			for (b = 0; b < 7; b++) {
669 				if (struct_buf[offset] & (0x1 << b))
670 					bitmap_set(item->subpacket_map,
671 						map_offset, 1);
672 				++map_offset;
673 			}
674 		} while (struct_buf[offset++] & 0x80);
675 
676 		item->num_subpackets = bitmap_weight(item->subpacket_map,
677 						RMI_REG_DESC_SUBPACKET_BITS);
678 
679 		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
680 			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
681 			item->reg, item->reg_size, item->num_subpackets);
682 
683 		reg = find_next_bit(rdesc->presense_map,
684 				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
685 	}
686 
687 free_struct_buff:
688 	kfree(struct_buf);
689 	return ret;
690 }
691 
692 const struct rmi_register_desc_item *rmi_get_register_desc_item(
693 				struct rmi_register_descriptor *rdesc, u16 reg)
694 {
695 	const struct rmi_register_desc_item *item;
696 	int i;
697 
698 	for (i = 0; i < rdesc->num_registers; i++) {
699 		item = &rdesc->registers[i];
700 		if (item->reg == reg)
701 			return item;
702 	}
703 
704 	return NULL;
705 }
706 
707 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
708 {
709 	const struct rmi_register_desc_item *item;
710 	int i;
711 	size_t size = 0;
712 
713 	for (i = 0; i < rdesc->num_registers; i++) {
714 		item = &rdesc->registers[i];
715 		size += item->reg_size;
716 	}
717 	return size;
718 }
719 
720 /* Compute the register offset relative to the base address */
721 int rmi_register_desc_calc_reg_offset(
722 		struct rmi_register_descriptor *rdesc, u16 reg)
723 {
724 	const struct rmi_register_desc_item *item;
725 	int offset = 0;
726 	int i;
727 
728 	for (i = 0; i < rdesc->num_registers; i++) {
729 		item = &rdesc->registers[i];
730 		if (item->reg == reg)
731 			return offset;
732 		++offset;
733 	}
734 	return -1;
735 }
736 
737 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
738 	u8 subpacket)
739 {
740 	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
741 				subpacket) == subpacket;
742 }
743 
744 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
745 				     const struct pdt_entry *pdt)
746 {
747 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
748 	int ret;
749 	u8 status;
750 
751 	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
752 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
753 		if (ret) {
754 			dev_err(&rmi_dev->dev,
755 				"Failed to read F34 status: %d.\n", ret);
756 			return ret;
757 		}
758 
759 		if (status & BIT(7))
760 			data->bootloader_mode = true;
761 	} else if (pdt->function_number == 0x01) {
762 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
763 		if (ret) {
764 			dev_err(&rmi_dev->dev,
765 				"Failed to read F01 status: %d.\n", ret);
766 			return ret;
767 		}
768 
769 		if (status & BIT(6))
770 			data->bootloader_mode = true;
771 	}
772 
773 	return 0;
774 }
775 
776 static int rmi_count_irqs(struct rmi_device *rmi_dev,
777 			 void *ctx, const struct pdt_entry *pdt)
778 {
779 	int *irq_count = ctx;
780 	int ret;
781 
782 	*irq_count += pdt->interrupt_source_count;
783 
784 	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
785 	if (ret < 0)
786 		return ret;
787 
788 	return RMI_SCAN_CONTINUE;
789 }
790 
791 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
792 		      const struct pdt_entry *pdt)
793 {
794 	int error;
795 
796 	if (pdt->function_number == 0x01) {
797 		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
798 		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
799 		const struct rmi_device_platform_data *pdata =
800 				rmi_get_platform_data(rmi_dev);
801 
802 		if (rmi_dev->xport->ops->reset) {
803 			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
804 								cmd_addr);
805 			if (error)
806 				return error;
807 
808 			return RMI_SCAN_DONE;
809 		}
810 
811 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
812 		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
813 		if (error) {
814 			dev_err(&rmi_dev->dev,
815 				"Initial reset failed. Code = %d.\n", error);
816 			return error;
817 		}
818 
819 		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
820 
821 		return RMI_SCAN_DONE;
822 	}
823 
824 	/* F01 should always be on page 0. If we don't find it there, fail. */
825 	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
826 }
827 
828 static int rmi_create_function(struct rmi_device *rmi_dev,
829 			       void *ctx, const struct pdt_entry *pdt)
830 {
831 	struct device *dev = &rmi_dev->dev;
832 	struct rmi_driver_data *data = dev_get_drvdata(dev);
833 	int *current_irq_count = ctx;
834 	struct rmi_function *fn;
835 	int i;
836 	int error;
837 
838 	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
839 			pdt->function_number);
840 
841 	fn = kzalloc(sizeof(struct rmi_function) +
842 			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
843 		     GFP_KERNEL);
844 	if (!fn) {
845 		dev_err(dev, "Failed to allocate memory for F%02X\n",
846 			pdt->function_number);
847 		return -ENOMEM;
848 	}
849 
850 	INIT_LIST_HEAD(&fn->node);
851 	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
852 
853 	fn->rmi_dev = rmi_dev;
854 
855 	fn->num_of_irqs = pdt->interrupt_source_count;
856 	fn->irq_pos = *current_irq_count;
857 	*current_irq_count += fn->num_of_irqs;
858 
859 	for (i = 0; i < fn->num_of_irqs; i++)
860 		set_bit(fn->irq_pos + i, fn->irq_mask);
861 
862 	error = rmi_register_function(fn);
863 	if (error)
864 		return error;
865 
866 	if (pdt->function_number == 0x01)
867 		data->f01_container = fn;
868 	else if (pdt->function_number == 0x34)
869 		data->f34_container = fn;
870 
871 	list_add_tail(&fn->node, &data->function_list);
872 
873 	return RMI_SCAN_CONTINUE;
874 }
875 
876 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
877 {
878 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
879 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
880 	int irq = pdata->irq;
881 	int irq_flags;
882 	int retval;
883 
884 	mutex_lock(&data->enabled_mutex);
885 
886 	if (data->enabled)
887 		goto out;
888 
889 	enable_irq(irq);
890 	data->enabled = true;
891 	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
892 		retval = disable_irq_wake(irq);
893 		if (retval)
894 			dev_warn(&rmi_dev->dev,
895 				 "Failed to disable irq for wake: %d\n",
896 				 retval);
897 	}
898 
899 	/*
900 	 * Call rmi_process_interrupt_requests() after enabling irq,
901 	 * otherwise we may lose interrupt on edge-triggered systems.
902 	 */
903 	irq_flags = irq_get_trigger_type(pdata->irq);
904 	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
905 		rmi_process_interrupt_requests(rmi_dev);
906 
907 out:
908 	mutex_unlock(&data->enabled_mutex);
909 }
910 
911 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
912 {
913 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
914 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
915 	struct rmi4_attn_data attn_data = {0};
916 	int irq = pdata->irq;
917 	int retval, count;
918 
919 	mutex_lock(&data->enabled_mutex);
920 
921 	if (!data->enabled)
922 		goto out;
923 
924 	data->enabled = false;
925 	disable_irq(irq);
926 	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
927 		retval = enable_irq_wake(irq);
928 		if (retval)
929 			dev_warn(&rmi_dev->dev,
930 				 "Failed to enable irq for wake: %d\n",
931 				 retval);
932 	}
933 
934 	/* make sure the fifo is clean */
935 	while (!kfifo_is_empty(&data->attn_fifo)) {
936 		count = kfifo_get(&data->attn_fifo, &attn_data);
937 		if (count)
938 			kfree(attn_data.data);
939 	}
940 
941 out:
942 	mutex_unlock(&data->enabled_mutex);
943 }
944 
945 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
946 {
947 	int retval;
948 
949 	retval = rmi_suspend_functions(rmi_dev);
950 	if (retval)
951 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
952 			retval);
953 
954 	rmi_disable_irq(rmi_dev, enable_wake);
955 	return retval;
956 }
957 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
958 
959 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
960 {
961 	int retval;
962 
963 	rmi_enable_irq(rmi_dev, clear_wake);
964 
965 	retval = rmi_resume_functions(rmi_dev);
966 	if (retval)
967 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
968 			retval);
969 
970 	return retval;
971 }
972 EXPORT_SYMBOL_GPL(rmi_driver_resume);
973 
974 static int rmi_driver_remove(struct device *dev)
975 {
976 	struct rmi_device *rmi_dev = to_rmi_device(dev);
977 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
978 
979 	rmi_disable_irq(rmi_dev, false);
980 
981 	irq_domain_remove(data->irqdomain);
982 	data->irqdomain = NULL;
983 
984 	rmi_f34_remove_sysfs(rmi_dev);
985 	rmi_free_function_list(rmi_dev);
986 
987 	return 0;
988 }
989 
990 #ifdef CONFIG_OF
991 static int rmi_driver_of_probe(struct device *dev,
992 				struct rmi_device_platform_data *pdata)
993 {
994 	int retval;
995 
996 	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
997 					"syna,reset-delay-ms", 1);
998 	if (retval)
999 		return retval;
1000 
1001 	return 0;
1002 }
1003 #else
1004 static inline int rmi_driver_of_probe(struct device *dev,
1005 					struct rmi_device_platform_data *pdata)
1006 {
1007 	return -ENODEV;
1008 }
1009 #endif
1010 
1011 int rmi_probe_interrupts(struct rmi_driver_data *data)
1012 {
1013 	struct rmi_device *rmi_dev = data->rmi_dev;
1014 	struct device *dev = &rmi_dev->dev;
1015 	struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1016 	int irq_count = 0;
1017 	size_t size;
1018 	int retval;
1019 
1020 	/*
1021 	 * We need to count the IRQs and allocate their storage before scanning
1022 	 * the PDT and creating the function entries, because adding a new
1023 	 * function can trigger events that result in the IRQ related storage
1024 	 * being accessed.
1025 	 */
1026 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1027 	data->bootloader_mode = false;
1028 
1029 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1030 	if (retval < 0) {
1031 		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1032 		return retval;
1033 	}
1034 
1035 	if (data->bootloader_mode)
1036 		dev_warn(dev, "Device in bootloader mode.\n");
1037 
1038 	/* Allocate and register a linear revmap irq_domain */
1039 	data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1040 						   &irq_domain_simple_ops,
1041 						   data);
1042 	if (!data->irqdomain) {
1043 		dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1044 		return -ENOMEM;
1045 	}
1046 
1047 	data->irq_count = irq_count;
1048 	data->num_of_irq_regs = (data->irq_count + 7) / 8;
1049 
1050 	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1051 	data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1052 	if (!data->irq_memory) {
1053 		dev_err(dev, "Failed to allocate memory for irq masks.\n");
1054 		return -ENOMEM;
1055 	}
1056 
1057 	data->irq_status	= data->irq_memory + size * 0;
1058 	data->fn_irq_bits	= data->irq_memory + size * 1;
1059 	data->current_irq_mask	= data->irq_memory + size * 2;
1060 	data->new_irq_mask	= data->irq_memory + size * 3;
1061 
1062 	return retval;
1063 }
1064 
1065 int rmi_init_functions(struct rmi_driver_data *data)
1066 {
1067 	struct rmi_device *rmi_dev = data->rmi_dev;
1068 	struct device *dev = &rmi_dev->dev;
1069 	int irq_count = 0;
1070 	int retval;
1071 
1072 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1073 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1074 	if (retval < 0) {
1075 		dev_err(dev, "Function creation failed with code %d.\n",
1076 			retval);
1077 		goto err_destroy_functions;
1078 	}
1079 
1080 	if (!data->f01_container) {
1081 		dev_err(dev, "Missing F01 container!\n");
1082 		retval = -EINVAL;
1083 		goto err_destroy_functions;
1084 	}
1085 
1086 	retval = rmi_read_block(rmi_dev,
1087 				data->f01_container->fd.control_base_addr + 1,
1088 				data->current_irq_mask, data->num_of_irq_regs);
1089 	if (retval < 0) {
1090 		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1091 			__func__);
1092 		goto err_destroy_functions;
1093 	}
1094 
1095 	return 0;
1096 
1097 err_destroy_functions:
1098 	rmi_free_function_list(rmi_dev);
1099 	return retval;
1100 }
1101 
1102 static int rmi_driver_probe(struct device *dev)
1103 {
1104 	struct rmi_driver *rmi_driver;
1105 	struct rmi_driver_data *data;
1106 	struct rmi_device_platform_data *pdata;
1107 	struct rmi_device *rmi_dev;
1108 	int retval;
1109 
1110 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1111 			__func__);
1112 
1113 	if (!rmi_is_physical_device(dev)) {
1114 		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1115 		return -ENODEV;
1116 	}
1117 
1118 	rmi_dev = to_rmi_device(dev);
1119 	rmi_driver = to_rmi_driver(dev->driver);
1120 	rmi_dev->driver = rmi_driver;
1121 
1122 	pdata = rmi_get_platform_data(rmi_dev);
1123 
1124 	if (rmi_dev->xport->dev->of_node) {
1125 		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1126 		if (retval)
1127 			return retval;
1128 	}
1129 
1130 	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1131 	if (!data)
1132 		return -ENOMEM;
1133 
1134 	INIT_LIST_HEAD(&data->function_list);
1135 	data->rmi_dev = rmi_dev;
1136 	dev_set_drvdata(&rmi_dev->dev, data);
1137 
1138 	/*
1139 	 * Right before a warm boot, the sensor might be in some unusual state,
1140 	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1141 	 * or configuration update.  In order to clear the sensor to a known
1142 	 * state and/or apply any updates, we issue a initial reset to clear any
1143 	 * previous settings and force it into normal operation.
1144 	 *
1145 	 * We have to do this before actually building the PDT because
1146 	 * the reflash updates (if any) might cause various registers to move
1147 	 * around.
1148 	 *
1149 	 * For a number of reasons, this initial reset may fail to return
1150 	 * within the specified time, but we'll still be able to bring up the
1151 	 * driver normally after that failure.  This occurs most commonly in
1152 	 * a cold boot situation (where then firmware takes longer to come up
1153 	 * than from a warm boot) and the reset_delay_ms in the platform data
1154 	 * has been set too short to accommodate that.  Since the sensor will
1155 	 * eventually come up and be usable, we don't want to just fail here
1156 	 * and leave the customer's device unusable.  So we warn them, and
1157 	 * continue processing.
1158 	 */
1159 	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1160 	if (retval < 0)
1161 		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1162 
1163 	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1164 	if (retval < 0) {
1165 		/*
1166 		 * we'll print out a warning and continue since
1167 		 * failure to get the PDT properties is not a cause to fail
1168 		 */
1169 		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1170 			 PDT_PROPERTIES_LOCATION, retval);
1171 	}
1172 
1173 	mutex_init(&data->irq_mutex);
1174 	mutex_init(&data->enabled_mutex);
1175 
1176 	retval = rmi_probe_interrupts(data);
1177 	if (retval)
1178 		goto err;
1179 
1180 	if (rmi_dev->xport->input) {
1181 		/*
1182 		 * The transport driver already has an input device.
1183 		 * In some cases it is preferable to reuse the transport
1184 		 * devices input device instead of creating a new one here.
1185 		 * One example is some HID touchpads report "pass-through"
1186 		 * button events are not reported by rmi registers.
1187 		 */
1188 		data->input = rmi_dev->xport->input;
1189 	} else {
1190 		data->input = devm_input_allocate_device(dev);
1191 		if (!data->input) {
1192 			dev_err(dev, "%s: Failed to allocate input device.\n",
1193 				__func__);
1194 			retval = -ENOMEM;
1195 			goto err;
1196 		}
1197 		rmi_driver_set_input_params(rmi_dev, data->input);
1198 		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1199 						"%s/input0", dev_name(dev));
1200 	}
1201 
1202 	retval = rmi_init_functions(data);
1203 	if (retval)
1204 		goto err;
1205 
1206 	retval = rmi_f34_create_sysfs(rmi_dev);
1207 	if (retval)
1208 		goto err;
1209 
1210 	if (data->input) {
1211 		rmi_driver_set_input_name(rmi_dev, data->input);
1212 		if (!rmi_dev->xport->input) {
1213 			retval = input_register_device(data->input);
1214 			if (retval) {
1215 				dev_err(dev, "%s: Failed to register input device.\n",
1216 					__func__);
1217 				goto err_destroy_functions;
1218 			}
1219 		}
1220 	}
1221 
1222 	retval = rmi_irq_init(rmi_dev);
1223 	if (retval < 0)
1224 		goto err_destroy_functions;
1225 
1226 	if (data->f01_container->dev.driver) {
1227 		/* Driver already bound, so enable ATTN now. */
1228 		retval = rmi_enable_sensor(rmi_dev);
1229 		if (retval)
1230 			goto err_disable_irq;
1231 	}
1232 
1233 	return 0;
1234 
1235 err_disable_irq:
1236 	rmi_disable_irq(rmi_dev, false);
1237 err_destroy_functions:
1238 	rmi_free_function_list(rmi_dev);
1239 err:
1240 	return retval;
1241 }
1242 
1243 static struct rmi_driver rmi_physical_driver = {
1244 	.driver = {
1245 		.owner	= THIS_MODULE,
1246 		.name	= "rmi4_physical",
1247 		.bus	= &rmi_bus_type,
1248 		.probe = rmi_driver_probe,
1249 		.remove = rmi_driver_remove,
1250 	},
1251 	.reset_handler = rmi_driver_reset_handler,
1252 	.clear_irq_bits = rmi_driver_clear_irq_bits,
1253 	.set_irq_bits = rmi_driver_set_irq_bits,
1254 	.set_input_params = rmi_driver_set_input_params,
1255 };
1256 
1257 bool rmi_is_physical_driver(struct device_driver *drv)
1258 {
1259 	return drv == &rmi_physical_driver.driver;
1260 }
1261 
1262 int __init rmi_register_physical_driver(void)
1263 {
1264 	int error;
1265 
1266 	error = driver_register(&rmi_physical_driver.driver);
1267 	if (error) {
1268 		pr_err("%s: driver register failed, code=%d.\n", __func__,
1269 		       error);
1270 		return error;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 void __exit rmi_unregister_physical_driver(void)
1277 {
1278 	driver_unregister(&rmi_physical_driver.driver);
1279 }
1280