xref: /linux/drivers/input/rmi4/rmi_driver.c (revision 68a052239fc4b351e961f698b824f7654a346091)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011-2016 Synaptics Incorporated
4  * Copyright (c) 2011 Unixphere
5  *
6  * This driver provides the core support for a single RMI4-based device.
7  *
8  * The RMI4 specification can be found here (URL split for line length):
9  *
10  * http://www.synaptics.com/sites/default/files/
11  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
12  */
13 
14 #include <linux/bitmap.h>
15 #include <linux/delay.h>
16 #include <linux/fs.h>
17 #include <linux/irq.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/irqdomain.h>
22 #include <uapi/linux/input.h>
23 #include <linux/rmi.h>
24 #include <linux/export.h>
25 #include "rmi_bus.h"
26 #include "rmi_driver.h"
27 
28 #define HAS_NONSTANDARD_PDT_MASK 0x40
29 #define RMI4_MAX_PAGE 0xff
30 #define RMI4_PAGE_SIZE 0x100
31 #define RMI4_PAGE_MASK 0xFF00
32 
33 #define RMI_DEVICE_RESET_CMD	0x01
34 #define DEFAULT_RESET_DELAY_MS	100
35 
36 void rmi_free_function_list(struct rmi_device *rmi_dev)
37 {
38 	struct rmi_function *fn, *tmp;
39 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
40 
41 	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
42 
43 	/* Doing it in the reverse order so F01 will be removed last */
44 	list_for_each_entry_safe_reverse(fn, tmp,
45 					 &data->function_list, node) {
46 		list_del(&fn->node);
47 		rmi_unregister_function(fn);
48 	}
49 
50 	devm_kfree(&rmi_dev->dev, data->irq_memory);
51 	data->irq_memory = NULL;
52 	data->irq_status = NULL;
53 	data->fn_irq_bits = NULL;
54 	data->current_irq_mask = NULL;
55 	data->new_irq_mask = NULL;
56 
57 	data->f01_container = NULL;
58 	data->f34_container = NULL;
59 }
60 
61 static int reset_one_function(struct rmi_function *fn)
62 {
63 	struct rmi_function_handler *fh;
64 	int retval = 0;
65 
66 	if (!fn || !fn->dev.driver)
67 		return 0;
68 
69 	fh = to_rmi_function_handler(fn->dev.driver);
70 	if (fh->reset) {
71 		retval = fh->reset(fn);
72 		if (retval < 0)
73 			dev_err(&fn->dev, "Reset failed with code %d.\n",
74 				retval);
75 	}
76 
77 	return retval;
78 }
79 
80 static int configure_one_function(struct rmi_function *fn)
81 {
82 	struct rmi_function_handler *fh;
83 	int retval = 0;
84 
85 	if (!fn || !fn->dev.driver)
86 		return 0;
87 
88 	fh = to_rmi_function_handler(fn->dev.driver);
89 	if (fh->config) {
90 		retval = fh->config(fn);
91 		if (retval < 0)
92 			dev_err(&fn->dev, "Config failed with code %d.\n",
93 				retval);
94 	}
95 
96 	return retval;
97 }
98 
99 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
100 {
101 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
102 	struct rmi_function *entry;
103 	int retval;
104 
105 	list_for_each_entry(entry, &data->function_list, node) {
106 		retval = reset_one_function(entry);
107 		if (retval < 0)
108 			return retval;
109 	}
110 
111 	return 0;
112 }
113 
114 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
115 {
116 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
117 	struct rmi_function *entry;
118 	int retval;
119 
120 	list_for_each_entry(entry, &data->function_list, node) {
121 		retval = configure_one_function(entry);
122 		if (retval < 0)
123 			return retval;
124 	}
125 
126 	return 0;
127 }
128 
129 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
130 {
131 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
132 	struct device *dev = &rmi_dev->dev;
133 	int i;
134 	int error;
135 
136 	if (!data)
137 		return 0;
138 
139 	if (!data->attn_data.data) {
140 		error = rmi_read_block(rmi_dev,
141 				data->f01_container->fd.data_base_addr + 1,
142 				data->irq_status, data->num_of_irq_regs);
143 		if (error < 0) {
144 			dev_err(dev, "Failed to read irqs, code=%d\n", error);
145 			return error;
146 		}
147 	}
148 
149 	mutex_lock(&data->irq_mutex);
150 	bitmap_and(data->irq_status, data->irq_status, data->fn_irq_bits,
151 	       data->irq_count);
152 	/*
153 	 * At this point, irq_status has all bits that are set in the
154 	 * interrupt status register and are enabled.
155 	 */
156 	mutex_unlock(&data->irq_mutex);
157 
158 	for_each_set_bit(i, data->irq_status, data->irq_count)
159 		handle_nested_irq(irq_find_mapping(data->irqdomain, i));
160 
161 	if (data->input)
162 		input_sync(data->input);
163 
164 	return 0;
165 }
166 
167 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
168 		       void *data, size_t size)
169 {
170 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
171 	struct rmi4_attn_data attn_data;
172 	void *fifo_data;
173 
174 	if (!drvdata->enabled)
175 		return;
176 
177 	fifo_data = kmemdup(data, size, GFP_ATOMIC);
178 	if (!fifo_data)
179 		return;
180 
181 	attn_data.irq_status = irq_status;
182 	attn_data.size = size;
183 	attn_data.data = fifo_data;
184 
185 	kfifo_put(&drvdata->attn_fifo, attn_data);
186 }
187 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
188 
189 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
190 {
191 	struct rmi_device *rmi_dev = dev_id;
192 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
193 	struct rmi4_attn_data attn_data = {0};
194 	int ret, count;
195 
196 	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
197 	if (count) {
198 		*(drvdata->irq_status) = attn_data.irq_status;
199 		drvdata->attn_data = attn_data;
200 	}
201 
202 	ret = rmi_process_interrupt_requests(rmi_dev);
203 	if (ret)
204 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
205 			"Failed to process interrupt request: %d\n", ret);
206 
207 	if (count) {
208 		kfree(attn_data.data);
209 		drvdata->attn_data.data = NULL;
210 	}
211 
212 	if (!kfifo_is_empty(&drvdata->attn_fifo))
213 		return rmi_irq_fn(irq, dev_id);
214 
215 	return IRQ_HANDLED;
216 }
217 
218 static int rmi_irq_init(struct rmi_device *rmi_dev)
219 {
220 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
221 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
222 	int irq_flags = irq_get_trigger_type(pdata->irq);
223 	int ret;
224 
225 	if (!irq_flags)
226 		irq_flags = IRQF_TRIGGER_LOW;
227 
228 	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
229 					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
230 					dev_driver_string(rmi_dev->xport->dev),
231 					rmi_dev);
232 	if (ret < 0) {
233 		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
234 			pdata->irq);
235 
236 		return ret;
237 	}
238 
239 	data->enabled = true;
240 
241 	return 0;
242 }
243 
244 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
245 {
246 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
247 	struct rmi_function *entry;
248 
249 	list_for_each_entry(entry, &data->function_list, node) {
250 		if (entry->fd.function_number == number)
251 			return entry;
252 	}
253 
254 	return NULL;
255 }
256 
257 static int suspend_one_function(struct rmi_function *fn)
258 {
259 	struct rmi_function_handler *fh;
260 	int retval = 0;
261 
262 	if (!fn || !fn->dev.driver)
263 		return 0;
264 
265 	fh = to_rmi_function_handler(fn->dev.driver);
266 	if (fh->suspend) {
267 		retval = fh->suspend(fn);
268 		if (retval < 0)
269 			dev_err(&fn->dev, "Suspend failed with code %d.\n",
270 				retval);
271 	}
272 
273 	return retval;
274 }
275 
276 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
277 {
278 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
279 	struct rmi_function *entry;
280 	int retval;
281 
282 	list_for_each_entry(entry, &data->function_list, node) {
283 		retval = suspend_one_function(entry);
284 		if (retval < 0)
285 			return retval;
286 	}
287 
288 	return 0;
289 }
290 
291 static int resume_one_function(struct rmi_function *fn)
292 {
293 	struct rmi_function_handler *fh;
294 	int retval = 0;
295 
296 	if (!fn || !fn->dev.driver)
297 		return 0;
298 
299 	fh = to_rmi_function_handler(fn->dev.driver);
300 	if (fh->resume) {
301 		retval = fh->resume(fn);
302 		if (retval < 0)
303 			dev_err(&fn->dev, "Resume failed with code %d.\n",
304 				retval);
305 	}
306 
307 	return retval;
308 }
309 
310 static int rmi_resume_functions(struct rmi_device *rmi_dev)
311 {
312 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
313 	struct rmi_function *entry;
314 	int retval;
315 
316 	list_for_each_entry(entry, &data->function_list, node) {
317 		retval = resume_one_function(entry);
318 		if (retval < 0)
319 			return retval;
320 	}
321 
322 	return 0;
323 }
324 
325 int rmi_enable_sensor(struct rmi_device *rmi_dev)
326 {
327 	int retval = 0;
328 
329 	retval = rmi_driver_process_config_requests(rmi_dev);
330 	if (retval < 0)
331 		return retval;
332 
333 	return rmi_process_interrupt_requests(rmi_dev);
334 }
335 
336 /**
337  * rmi_driver_set_input_params - set input device id and other data.
338  *
339  * @rmi_dev: Pointer to an RMI device
340  * @input: Pointer to input device
341  *
342  */
343 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
344 				struct input_dev *input)
345 {
346 	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
347 	input->id.vendor  = SYNAPTICS_VENDOR_ID;
348 	input->id.bustype = BUS_RMI;
349 	return 0;
350 }
351 
352 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
353 				struct input_dev *input)
354 {
355 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
356 	const char *device_name = rmi_f01_get_product_ID(data->f01_container);
357 	char *name;
358 
359 	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
360 			      "Synaptics %s", device_name);
361 	if (!name)
362 		return;
363 
364 	input->name = name;
365 }
366 
367 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
368 				   unsigned long *mask)
369 {
370 	int error = 0;
371 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
372 	struct device *dev = &rmi_dev->dev;
373 
374 	mutex_lock(&data->irq_mutex);
375 	bitmap_or(data->new_irq_mask,
376 		  data->current_irq_mask, mask, data->irq_count);
377 
378 	error = rmi_write_block(rmi_dev,
379 			data->f01_container->fd.control_base_addr + 1,
380 			data->new_irq_mask, data->num_of_irq_regs);
381 	if (error < 0) {
382 		dev_err(dev, "%s: Failed to change enabled interrupts!",
383 							__func__);
384 		goto error_unlock;
385 	}
386 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
387 		    data->num_of_irq_regs);
388 
389 	bitmap_or(data->fn_irq_bits, data->fn_irq_bits, mask, data->irq_count);
390 
391 error_unlock:
392 	mutex_unlock(&data->irq_mutex);
393 	return error;
394 }
395 
396 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
397 				     unsigned long *mask)
398 {
399 	int error = 0;
400 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
401 	struct device *dev = &rmi_dev->dev;
402 
403 	mutex_lock(&data->irq_mutex);
404 	bitmap_andnot(data->fn_irq_bits,
405 		      data->fn_irq_bits, mask, data->irq_count);
406 	bitmap_andnot(data->new_irq_mask,
407 		  data->current_irq_mask, mask, data->irq_count);
408 
409 	error = rmi_write_block(rmi_dev,
410 			data->f01_container->fd.control_base_addr + 1,
411 			data->new_irq_mask, data->num_of_irq_regs);
412 	if (error < 0) {
413 		dev_err(dev, "%s: Failed to change enabled interrupts!",
414 							__func__);
415 		goto error_unlock;
416 	}
417 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
418 		    data->num_of_irq_regs);
419 
420 error_unlock:
421 	mutex_unlock(&data->irq_mutex);
422 	return error;
423 }
424 
425 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
426 {
427 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
428 	int error;
429 
430 	/*
431 	 * Can get called before the driver is fully ready to deal with
432 	 * this situation.
433 	 */
434 	if (!data || !data->f01_container) {
435 		dev_warn(&rmi_dev->dev,
436 			 "Not ready to handle reset yet!\n");
437 		return 0;
438 	}
439 
440 	error = rmi_read_block(rmi_dev,
441 			       data->f01_container->fd.control_base_addr + 1,
442 			       data->current_irq_mask, data->num_of_irq_regs);
443 	if (error < 0) {
444 		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
445 			__func__);
446 		return error;
447 	}
448 
449 	error = rmi_driver_process_reset_requests(rmi_dev);
450 	if (error < 0)
451 		return error;
452 
453 	error = rmi_driver_process_config_requests(rmi_dev);
454 	if (error < 0)
455 		return error;
456 
457 	return 0;
458 }
459 
460 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
461 			      struct pdt_entry *entry, u16 pdt_address)
462 {
463 	u8 buf[RMI_PDT_ENTRY_SIZE];
464 	int error;
465 
466 	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
467 	if (error) {
468 		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
469 				pdt_address, error);
470 		return error;
471 	}
472 
473 	entry->page_start = pdt_address & RMI4_PAGE_MASK;
474 	entry->query_base_addr = buf[0];
475 	entry->command_base_addr = buf[1];
476 	entry->control_base_addr = buf[2];
477 	entry->data_base_addr = buf[3];
478 	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
479 	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
480 	entry->function_number = buf[5];
481 
482 	return 0;
483 }
484 
485 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
486 				      struct rmi_function_descriptor *fd)
487 {
488 	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
489 	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
490 	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
491 	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
492 	fd->function_number = pdt->function_number;
493 	fd->interrupt_source_count = pdt->interrupt_source_count;
494 	fd->function_version = pdt->function_version;
495 }
496 
497 #define RMI_SCAN_CONTINUE	0
498 #define RMI_SCAN_DONE		1
499 
500 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
501 			     int page,
502 			     int *empty_pages,
503 			     void *ctx,
504 			     int (*callback)(struct rmi_device *rmi_dev,
505 					     void *ctx,
506 					     const struct pdt_entry *entry))
507 {
508 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
509 	struct pdt_entry pdt_entry;
510 	u16 page_start = RMI4_PAGE_SIZE * page;
511 	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
512 	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
513 	u16 addr;
514 	int error;
515 	int retval;
516 
517 	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
518 		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
519 		if (error)
520 			return error;
521 
522 		if (RMI4_END_OF_PDT(pdt_entry.function_number))
523 			break;
524 
525 		retval = callback(rmi_dev, ctx, &pdt_entry);
526 		if (retval != RMI_SCAN_CONTINUE)
527 			return retval;
528 	}
529 
530 	/*
531 	 * Count number of empty PDT pages. If a gap of two pages
532 	 * or more is found, stop scanning.
533 	 */
534 	if (addr == pdt_start)
535 		++*empty_pages;
536 	else
537 		*empty_pages = 0;
538 
539 	return (data->bootloader_mode || *empty_pages >= 2) ?
540 					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
541 }
542 
543 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
544 		 int (*callback)(struct rmi_device *rmi_dev,
545 		 void *ctx, const struct pdt_entry *entry))
546 {
547 	int page;
548 	int empty_pages = 0;
549 	int retval = RMI_SCAN_DONE;
550 
551 	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
552 		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
553 					   ctx, callback);
554 		if (retval != RMI_SCAN_CONTINUE)
555 			break;
556 	}
557 
558 	return retval < 0 ? retval : 0;
559 }
560 
561 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
562 				struct rmi_register_descriptor *rdesc)
563 {
564 	int ret;
565 	u8 size_presence_reg;
566 	u8 buf[35];
567 	int presense_offset = 1;
568 	u8 *struct_buf;
569 	int reg;
570 	int offset = 0;
571 	int map_offset = 0;
572 	int i;
573 	int b;
574 
575 	/*
576 	 * The first register of the register descriptor is the size of
577 	 * the register descriptor's presense register.
578 	 */
579 	ret = rmi_read(d, addr, &size_presence_reg);
580 	if (ret)
581 		return ret;
582 	++addr;
583 
584 	if (size_presence_reg < 0 || size_presence_reg > 35)
585 		return -EIO;
586 
587 	memset(buf, 0, sizeof(buf));
588 
589 	/*
590 	 * The presence register contains the size of the register structure
591 	 * and a bitmap which identified which packet registers are present
592 	 * for this particular register type (ie query, control, or data).
593 	 */
594 	ret = rmi_read_block(d, addr, buf, size_presence_reg);
595 	if (ret)
596 		return ret;
597 	++addr;
598 
599 	if (buf[0] == 0) {
600 		presense_offset = 3;
601 		rdesc->struct_size = buf[1] | (buf[2] << 8);
602 	} else {
603 		rdesc->struct_size = buf[0];
604 	}
605 
606 	for (i = presense_offset; i < size_presence_reg; i++) {
607 		for (b = 0; b < 8; b++) {
608 			if (buf[i] & (0x1 << b))
609 				bitmap_set(rdesc->presense_map, map_offset, 1);
610 			++map_offset;
611 		}
612 	}
613 
614 	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
615 						RMI_REG_DESC_PRESENSE_BITS);
616 
617 	rdesc->registers = devm_kcalloc(&d->dev,
618 					rdesc->num_registers,
619 					sizeof(struct rmi_register_desc_item),
620 					GFP_KERNEL);
621 	if (!rdesc->registers)
622 		return -ENOMEM;
623 
624 	/*
625 	 * Allocate a temporary buffer to hold the register structure.
626 	 * I'm not using devm_kzalloc here since it will not be retained
627 	 * after exiting this function
628 	 */
629 	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
630 	if (!struct_buf)
631 		return -ENOMEM;
632 
633 	/*
634 	 * The register structure contains information about every packet
635 	 * register of this type. This includes the size of the packet
636 	 * register and a bitmap of all subpackets contained in the packet
637 	 * register.
638 	 */
639 	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
640 	if (ret)
641 		goto free_struct_buff;
642 
643 	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
644 	for (i = 0; i < rdesc->num_registers; i++) {
645 		struct rmi_register_desc_item *item = &rdesc->registers[i];
646 		int reg_size = struct_buf[offset];
647 
648 		++offset;
649 		if (reg_size == 0) {
650 			reg_size = struct_buf[offset] |
651 					(struct_buf[offset + 1] << 8);
652 			offset += 2;
653 		}
654 
655 		if (reg_size == 0) {
656 			reg_size = struct_buf[offset] |
657 					(struct_buf[offset + 1] << 8) |
658 					(struct_buf[offset + 2] << 16) |
659 					(struct_buf[offset + 3] << 24);
660 			offset += 4;
661 		}
662 
663 		item->reg = reg;
664 		item->reg_size = reg_size;
665 
666 		map_offset = 0;
667 
668 		do {
669 			for (b = 0; b < 7; b++) {
670 				if (struct_buf[offset] & (0x1 << b))
671 					bitmap_set(item->subpacket_map,
672 						map_offset, 1);
673 				++map_offset;
674 			}
675 		} while (struct_buf[offset++] & 0x80);
676 
677 		item->num_subpackets = bitmap_weight(item->subpacket_map,
678 						RMI_REG_DESC_SUBPACKET_BITS);
679 
680 		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
681 			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
682 			item->reg, item->reg_size, item->num_subpackets);
683 
684 		reg = find_next_bit(rdesc->presense_map,
685 				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
686 	}
687 
688 free_struct_buff:
689 	kfree(struct_buf);
690 	return ret;
691 }
692 
693 const struct rmi_register_desc_item *rmi_get_register_desc_item(
694 				struct rmi_register_descriptor *rdesc, u16 reg)
695 {
696 	const struct rmi_register_desc_item *item;
697 	int i;
698 
699 	for (i = 0; i < rdesc->num_registers; i++) {
700 		item = &rdesc->registers[i];
701 		if (item->reg == reg)
702 			return item;
703 	}
704 
705 	return NULL;
706 }
707 
708 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
709 {
710 	const struct rmi_register_desc_item *item;
711 	int i;
712 	size_t size = 0;
713 
714 	for (i = 0; i < rdesc->num_registers; i++) {
715 		item = &rdesc->registers[i];
716 		size += item->reg_size;
717 	}
718 	return size;
719 }
720 
721 /* Compute the register offset relative to the base address */
722 int rmi_register_desc_calc_reg_offset(
723 		struct rmi_register_descriptor *rdesc, u16 reg)
724 {
725 	const struct rmi_register_desc_item *item;
726 	int offset = 0;
727 	int i;
728 
729 	for (i = 0; i < rdesc->num_registers; i++) {
730 		item = &rdesc->registers[i];
731 		if (item->reg == reg)
732 			return offset;
733 		++offset;
734 	}
735 	return -1;
736 }
737 
738 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
739 	u8 subpacket)
740 {
741 	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
742 				subpacket) == subpacket;
743 }
744 
745 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
746 				     const struct pdt_entry *pdt)
747 {
748 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
749 	int ret;
750 	u8 status;
751 
752 	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
753 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
754 		if (ret) {
755 			dev_err(&rmi_dev->dev,
756 				"Failed to read F34 status: %d.\n", ret);
757 			return ret;
758 		}
759 
760 		if (status & BIT(7))
761 			data->bootloader_mode = true;
762 	} else if (pdt->function_number == 0x01) {
763 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
764 		if (ret) {
765 			dev_err(&rmi_dev->dev,
766 				"Failed to read F01 status: %d.\n", ret);
767 			return ret;
768 		}
769 
770 		if (status & BIT(6))
771 			data->bootloader_mode = true;
772 	}
773 
774 	return 0;
775 }
776 
777 static int rmi_count_irqs(struct rmi_device *rmi_dev,
778 			 void *ctx, const struct pdt_entry *pdt)
779 {
780 	int *irq_count = ctx;
781 	int ret;
782 
783 	*irq_count += pdt->interrupt_source_count;
784 
785 	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
786 	if (ret < 0)
787 		return ret;
788 
789 	return RMI_SCAN_CONTINUE;
790 }
791 
792 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
793 		      const struct pdt_entry *pdt)
794 {
795 	int error;
796 
797 	if (pdt->function_number == 0x01) {
798 		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
799 		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
800 		const struct rmi_device_platform_data *pdata =
801 				rmi_get_platform_data(rmi_dev);
802 
803 		if (rmi_dev->xport->ops->reset) {
804 			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
805 								cmd_addr);
806 			if (error)
807 				return error;
808 
809 			return RMI_SCAN_DONE;
810 		}
811 
812 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
813 		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
814 		if (error) {
815 			dev_err(&rmi_dev->dev,
816 				"Initial reset failed. Code = %d.\n", error);
817 			return error;
818 		}
819 
820 		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
821 
822 		return RMI_SCAN_DONE;
823 	}
824 
825 	/* F01 should always be on page 0. If we don't find it there, fail. */
826 	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
827 }
828 
829 static int rmi_create_function(struct rmi_device *rmi_dev,
830 			       void *ctx, const struct pdt_entry *pdt)
831 {
832 	struct device *dev = &rmi_dev->dev;
833 	struct rmi_driver_data *data = dev_get_drvdata(dev);
834 	int *current_irq_count = ctx;
835 	struct rmi_function *fn;
836 	int i;
837 	int error;
838 
839 	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
840 			pdt->function_number);
841 
842 	fn = kzalloc(sizeof(struct rmi_function) +
843 			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
844 		     GFP_KERNEL);
845 	if (!fn) {
846 		dev_err(dev, "Failed to allocate memory for F%02X\n",
847 			pdt->function_number);
848 		return -ENOMEM;
849 	}
850 
851 	INIT_LIST_HEAD(&fn->node);
852 	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
853 
854 	fn->rmi_dev = rmi_dev;
855 
856 	fn->num_of_irqs = pdt->interrupt_source_count;
857 	fn->irq_pos = *current_irq_count;
858 	*current_irq_count += fn->num_of_irqs;
859 
860 	for (i = 0; i < fn->num_of_irqs; i++)
861 		set_bit(fn->irq_pos + i, fn->irq_mask);
862 
863 	error = rmi_register_function(fn);
864 	if (error)
865 		return error;
866 
867 	if (pdt->function_number == 0x01)
868 		data->f01_container = fn;
869 	else if (pdt->function_number == 0x34)
870 		data->f34_container = fn;
871 
872 	list_add_tail(&fn->node, &data->function_list);
873 
874 	return RMI_SCAN_CONTINUE;
875 }
876 
877 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
878 {
879 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
880 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
881 	int irq = pdata->irq;
882 	int irq_flags;
883 	int retval;
884 
885 	mutex_lock(&data->enabled_mutex);
886 
887 	if (data->enabled)
888 		goto out;
889 
890 	enable_irq(irq);
891 	data->enabled = true;
892 	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
893 		retval = disable_irq_wake(irq);
894 		if (retval)
895 			dev_warn(&rmi_dev->dev,
896 				 "Failed to disable irq for wake: %d\n",
897 				 retval);
898 	}
899 
900 	/*
901 	 * Call rmi_process_interrupt_requests() after enabling irq,
902 	 * otherwise we may lose interrupt on edge-triggered systems.
903 	 */
904 	irq_flags = irq_get_trigger_type(pdata->irq);
905 	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
906 		rmi_process_interrupt_requests(rmi_dev);
907 
908 out:
909 	mutex_unlock(&data->enabled_mutex);
910 }
911 
912 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
913 {
914 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
915 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
916 	struct rmi4_attn_data attn_data = {0};
917 	int irq = pdata->irq;
918 	int retval, count;
919 
920 	mutex_lock(&data->enabled_mutex);
921 
922 	if (!data->enabled)
923 		goto out;
924 
925 	data->enabled = false;
926 	disable_irq(irq);
927 	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
928 		retval = enable_irq_wake(irq);
929 		if (retval)
930 			dev_warn(&rmi_dev->dev,
931 				 "Failed to enable irq for wake: %d\n",
932 				 retval);
933 	}
934 
935 	/* make sure the fifo is clean */
936 	while (!kfifo_is_empty(&data->attn_fifo)) {
937 		count = kfifo_get(&data->attn_fifo, &attn_data);
938 		if (count)
939 			kfree(attn_data.data);
940 	}
941 
942 out:
943 	mutex_unlock(&data->enabled_mutex);
944 }
945 
946 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
947 {
948 	int retval;
949 
950 	retval = rmi_suspend_functions(rmi_dev);
951 	if (retval)
952 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
953 			retval);
954 
955 	rmi_disable_irq(rmi_dev, enable_wake);
956 	return retval;
957 }
958 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
959 
960 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
961 {
962 	int retval;
963 
964 	rmi_enable_irq(rmi_dev, clear_wake);
965 
966 	retval = rmi_resume_functions(rmi_dev);
967 	if (retval)
968 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
969 			retval);
970 
971 	return retval;
972 }
973 EXPORT_SYMBOL_GPL(rmi_driver_resume);
974 
975 static int rmi_driver_remove(struct device *dev)
976 {
977 	struct rmi_device *rmi_dev = to_rmi_device(dev);
978 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
979 
980 	rmi_disable_irq(rmi_dev, false);
981 
982 	rmi_f34_remove_sysfs(rmi_dev);
983 	rmi_free_function_list(rmi_dev);
984 
985 	irq_domain_remove(data->irqdomain);
986 	data->irqdomain = NULL;
987 
988 	return 0;
989 }
990 
991 #ifdef CONFIG_OF
992 static int rmi_driver_of_probe(struct device *dev,
993 				struct rmi_device_platform_data *pdata)
994 {
995 	int retval;
996 
997 	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
998 					"syna,reset-delay-ms", 1);
999 	if (retval)
1000 		return retval;
1001 
1002 	return 0;
1003 }
1004 #else
1005 static inline int rmi_driver_of_probe(struct device *dev,
1006 					struct rmi_device_platform_data *pdata)
1007 {
1008 	return -ENODEV;
1009 }
1010 #endif
1011 
1012 int rmi_probe_interrupts(struct rmi_driver_data *data)
1013 {
1014 	struct rmi_device *rmi_dev = data->rmi_dev;
1015 	struct device *dev = &rmi_dev->dev;
1016 	struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1017 	int irq_count = 0;
1018 	size_t size;
1019 	int retval;
1020 
1021 	/*
1022 	 * We need to count the IRQs and allocate their storage before scanning
1023 	 * the PDT and creating the function entries, because adding a new
1024 	 * function can trigger events that result in the IRQ related storage
1025 	 * being accessed.
1026 	 */
1027 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1028 	data->bootloader_mode = false;
1029 
1030 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1031 	if (retval < 0) {
1032 		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1033 		return retval;
1034 	}
1035 
1036 	if (data->bootloader_mode)
1037 		dev_warn(dev, "Device in bootloader mode.\n");
1038 
1039 	/* Allocate and register a linear revmap irq_domain */
1040 	data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1041 						   &irq_domain_simple_ops,
1042 						   data);
1043 	if (!data->irqdomain) {
1044 		dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1045 		return -ENOMEM;
1046 	}
1047 
1048 	data->irq_count = irq_count;
1049 	data->num_of_irq_regs = (data->irq_count + 7) / 8;
1050 
1051 	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1052 	data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1053 	if (!data->irq_memory) {
1054 		dev_err(dev, "Failed to allocate memory for irq masks.\n");
1055 		return -ENOMEM;
1056 	}
1057 
1058 	data->irq_status	= data->irq_memory + size * 0;
1059 	data->fn_irq_bits	= data->irq_memory + size * 1;
1060 	data->current_irq_mask	= data->irq_memory + size * 2;
1061 	data->new_irq_mask	= data->irq_memory + size * 3;
1062 
1063 	return retval;
1064 }
1065 
1066 int rmi_init_functions(struct rmi_driver_data *data)
1067 {
1068 	struct rmi_device *rmi_dev = data->rmi_dev;
1069 	struct device *dev = &rmi_dev->dev;
1070 	int irq_count = 0;
1071 	int retval;
1072 
1073 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1074 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1075 	if (retval < 0) {
1076 		dev_err(dev, "Function creation failed with code %d.\n",
1077 			retval);
1078 		goto err_destroy_functions;
1079 	}
1080 
1081 	if (!data->f01_container) {
1082 		dev_err(dev, "Missing F01 container!\n");
1083 		retval = -EINVAL;
1084 		goto err_destroy_functions;
1085 	}
1086 
1087 	retval = rmi_read_block(rmi_dev,
1088 				data->f01_container->fd.control_base_addr + 1,
1089 				data->current_irq_mask, data->num_of_irq_regs);
1090 	if (retval < 0) {
1091 		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1092 			__func__);
1093 		goto err_destroy_functions;
1094 	}
1095 
1096 	return 0;
1097 
1098 err_destroy_functions:
1099 	rmi_free_function_list(rmi_dev);
1100 	return retval;
1101 }
1102 
1103 static int rmi_driver_probe(struct device *dev)
1104 {
1105 	struct rmi_driver *rmi_driver;
1106 	struct rmi_driver_data *data;
1107 	struct rmi_device_platform_data *pdata;
1108 	struct rmi_device *rmi_dev;
1109 	int retval;
1110 
1111 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1112 			__func__);
1113 
1114 	if (!rmi_is_physical_device(dev)) {
1115 		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1116 		return -ENODEV;
1117 	}
1118 
1119 	rmi_dev = to_rmi_device(dev);
1120 	rmi_driver = to_rmi_driver(dev->driver);
1121 	rmi_dev->driver = rmi_driver;
1122 
1123 	pdata = rmi_get_platform_data(rmi_dev);
1124 
1125 	if (rmi_dev->xport->dev->of_node) {
1126 		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1127 		if (retval)
1128 			return retval;
1129 	}
1130 
1131 	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1132 	if (!data)
1133 		return -ENOMEM;
1134 
1135 	INIT_LIST_HEAD(&data->function_list);
1136 	data->rmi_dev = rmi_dev;
1137 	dev_set_drvdata(&rmi_dev->dev, data);
1138 
1139 	/*
1140 	 * Right before a warm boot, the sensor might be in some unusual state,
1141 	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1142 	 * or configuration update.  In order to clear the sensor to a known
1143 	 * state and/or apply any updates, we issue a initial reset to clear any
1144 	 * previous settings and force it into normal operation.
1145 	 *
1146 	 * We have to do this before actually building the PDT because
1147 	 * the reflash updates (if any) might cause various registers to move
1148 	 * around.
1149 	 *
1150 	 * For a number of reasons, this initial reset may fail to return
1151 	 * within the specified time, but we'll still be able to bring up the
1152 	 * driver normally after that failure.  This occurs most commonly in
1153 	 * a cold boot situation (where then firmware takes longer to come up
1154 	 * than from a warm boot) and the reset_delay_ms in the platform data
1155 	 * has been set too short to accommodate that.  Since the sensor will
1156 	 * eventually come up and be usable, we don't want to just fail here
1157 	 * and leave the customer's device unusable.  So we warn them, and
1158 	 * continue processing.
1159 	 */
1160 	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1161 	if (retval < 0)
1162 		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1163 
1164 	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1165 	if (retval < 0) {
1166 		/*
1167 		 * we'll print out a warning and continue since
1168 		 * failure to get the PDT properties is not a cause to fail
1169 		 */
1170 		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1171 			 PDT_PROPERTIES_LOCATION, retval);
1172 	}
1173 
1174 	mutex_init(&data->irq_mutex);
1175 	mutex_init(&data->enabled_mutex);
1176 
1177 	retval = rmi_probe_interrupts(data);
1178 	if (retval)
1179 		goto err;
1180 
1181 	if (rmi_dev->xport->input) {
1182 		/*
1183 		 * The transport driver already has an input device.
1184 		 * In some cases it is preferable to reuse the transport
1185 		 * devices input device instead of creating a new one here.
1186 		 * One example is some HID touchpads report "pass-through"
1187 		 * button events are not reported by rmi registers.
1188 		 */
1189 		data->input = rmi_dev->xport->input;
1190 	} else {
1191 		data->input = devm_input_allocate_device(dev);
1192 		if (!data->input) {
1193 			dev_err(dev, "%s: Failed to allocate input device.\n",
1194 				__func__);
1195 			retval = -ENOMEM;
1196 			goto err;
1197 		}
1198 		rmi_driver_set_input_params(rmi_dev, data->input);
1199 		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1200 						   "%s/input0", dev_name(dev));
1201 		if (!data->input->phys) {
1202 			retval = -ENOMEM;
1203 			goto err;
1204 		}
1205 	}
1206 
1207 	retval = rmi_init_functions(data);
1208 	if (retval)
1209 		goto err;
1210 
1211 	retval = rmi_f34_create_sysfs(rmi_dev);
1212 	if (retval)
1213 		goto err;
1214 
1215 	if (data->input) {
1216 		rmi_driver_set_input_name(rmi_dev, data->input);
1217 		if (!rmi_dev->xport->input) {
1218 			retval = input_register_device(data->input);
1219 			if (retval) {
1220 				dev_err(dev, "%s: Failed to register input device.\n",
1221 					__func__);
1222 				goto err_destroy_functions;
1223 			}
1224 		}
1225 	}
1226 
1227 	retval = rmi_irq_init(rmi_dev);
1228 	if (retval < 0)
1229 		goto err_destroy_functions;
1230 
1231 	if (data->f01_container->dev.driver) {
1232 		/* Driver already bound, so enable ATTN now. */
1233 		retval = rmi_enable_sensor(rmi_dev);
1234 		if (retval)
1235 			goto err_disable_irq;
1236 	}
1237 
1238 	return 0;
1239 
1240 err_disable_irq:
1241 	rmi_disable_irq(rmi_dev, false);
1242 err_destroy_functions:
1243 	rmi_free_function_list(rmi_dev);
1244 err:
1245 	return retval;
1246 }
1247 
1248 static struct rmi_driver rmi_physical_driver = {
1249 	.driver = {
1250 		.owner	= THIS_MODULE,
1251 		.name	= "rmi4_physical",
1252 		.bus	= &rmi_bus_type,
1253 		.probe = rmi_driver_probe,
1254 		.remove = rmi_driver_remove,
1255 	},
1256 	.reset_handler = rmi_driver_reset_handler,
1257 	.clear_irq_bits = rmi_driver_clear_irq_bits,
1258 	.set_irq_bits = rmi_driver_set_irq_bits,
1259 	.set_input_params = rmi_driver_set_input_params,
1260 };
1261 
1262 bool rmi_is_physical_driver(const struct device_driver *drv)
1263 {
1264 	return drv == &rmi_physical_driver.driver;
1265 }
1266 
1267 int __init rmi_register_physical_driver(void)
1268 {
1269 	int error;
1270 
1271 	error = driver_register(&rmi_physical_driver.driver);
1272 	if (error) {
1273 		pr_err("%s: driver register failed, code=%d.\n", __func__,
1274 		       error);
1275 		return error;
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 void __exit rmi_unregister_physical_driver(void)
1282 {
1283 	driver_unregister(&rmi_physical_driver.driver);
1284 }
1285