1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2011-2016 Synaptics Incorporated 4 * Copyright (c) 2011 Unixphere 5 * 6 * This driver provides the core support for a single RMI4-based device. 7 * 8 * The RMI4 specification can be found here (URL split for line length): 9 * 10 * http://www.synaptics.com/sites/default/files/ 11 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf 12 */ 13 14 #include <linux/bitmap.h> 15 #include <linux/delay.h> 16 #include <linux/fs.h> 17 #include <linux/irq.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/of.h> 21 #include <linux/irqdomain.h> 22 #include <uapi/linux/input.h> 23 #include <linux/rmi.h> 24 #include <linux/export.h> 25 #include "rmi_bus.h" 26 #include "rmi_driver.h" 27 28 #define HAS_NONSTANDARD_PDT_MASK 0x40 29 #define RMI4_MAX_PAGE 0xff 30 #define RMI4_PAGE_SIZE 0x100 31 #define RMI4_PAGE_MASK 0xFF00 32 33 #define RMI_DEVICE_RESET_CMD 0x01 34 #define DEFAULT_RESET_DELAY_MS 100 35 36 void rmi_free_function_list(struct rmi_device *rmi_dev) 37 { 38 struct rmi_function *fn, *tmp; 39 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 40 41 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n"); 42 43 /* Doing it in the reverse order so F01 will be removed last */ 44 list_for_each_entry_safe_reverse(fn, tmp, 45 &data->function_list, node) { 46 list_del(&fn->node); 47 rmi_unregister_function(fn); 48 } 49 50 devm_kfree(&rmi_dev->dev, data->irq_memory); 51 data->irq_memory = NULL; 52 data->irq_status = NULL; 53 data->fn_irq_bits = NULL; 54 data->current_irq_mask = NULL; 55 data->new_irq_mask = NULL; 56 57 data->f01_container = NULL; 58 data->f34_container = NULL; 59 } 60 61 static int reset_one_function(struct rmi_function *fn) 62 { 63 struct rmi_function_handler *fh; 64 int retval = 0; 65 66 if (!fn || !fn->dev.driver) 67 return 0; 68 69 fh = to_rmi_function_handler(fn->dev.driver); 70 if (fh->reset) { 71 retval = fh->reset(fn); 72 if (retval < 0) 73 dev_err(&fn->dev, "Reset failed with code %d.\n", 74 retval); 75 } 76 77 return retval; 78 } 79 80 static int configure_one_function(struct rmi_function *fn) 81 { 82 struct rmi_function_handler *fh; 83 int retval = 0; 84 85 if (!fn || !fn->dev.driver) 86 return 0; 87 88 fh = to_rmi_function_handler(fn->dev.driver); 89 if (fh->config) { 90 retval = fh->config(fn); 91 if (retval < 0) 92 dev_err(&fn->dev, "Config failed with code %d.\n", 93 retval); 94 } 95 96 return retval; 97 } 98 99 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev) 100 { 101 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 102 struct rmi_function *entry; 103 int retval; 104 105 list_for_each_entry(entry, &data->function_list, node) { 106 retval = reset_one_function(entry); 107 if (retval < 0) 108 return retval; 109 } 110 111 return 0; 112 } 113 114 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev) 115 { 116 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 117 struct rmi_function *entry; 118 int retval; 119 120 list_for_each_entry(entry, &data->function_list, node) { 121 retval = configure_one_function(entry); 122 if (retval < 0) 123 return retval; 124 } 125 126 return 0; 127 } 128 129 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev) 130 { 131 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 132 struct device *dev = &rmi_dev->dev; 133 int i; 134 int error; 135 136 if (!data) 137 return 0; 138 139 if (!data->attn_data.data) { 140 error = rmi_read_block(rmi_dev, 141 data->f01_container->fd.data_base_addr + 1, 142 data->irq_status, data->num_of_irq_regs); 143 if (error < 0) { 144 dev_err(dev, "Failed to read irqs, code=%d\n", error); 145 return error; 146 } 147 } 148 149 mutex_lock(&data->irq_mutex); 150 bitmap_and(data->irq_status, data->irq_status, data->fn_irq_bits, 151 data->irq_count); 152 /* 153 * At this point, irq_status has all bits that are set in the 154 * interrupt status register and are enabled. 155 */ 156 mutex_unlock(&data->irq_mutex); 157 158 for_each_set_bit(i, data->irq_status, data->irq_count) 159 handle_nested_irq(irq_find_mapping(data->irqdomain, i)); 160 161 if (data->input) 162 input_sync(data->input); 163 164 return 0; 165 } 166 167 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status, 168 void *data, size_t size) 169 { 170 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev); 171 struct rmi4_attn_data attn_data; 172 void *fifo_data; 173 174 if (!drvdata->enabled) 175 return; 176 177 fifo_data = kmemdup(data, size, GFP_ATOMIC); 178 if (!fifo_data) 179 return; 180 181 attn_data.irq_status = irq_status; 182 attn_data.size = size; 183 attn_data.data = fifo_data; 184 185 kfifo_put(&drvdata->attn_fifo, attn_data); 186 } 187 EXPORT_SYMBOL_GPL(rmi_set_attn_data); 188 189 static irqreturn_t rmi_irq_fn(int irq, void *dev_id) 190 { 191 struct rmi_device *rmi_dev = dev_id; 192 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev); 193 struct rmi4_attn_data attn_data = {0}; 194 int ret, count; 195 196 count = kfifo_get(&drvdata->attn_fifo, &attn_data); 197 if (count) { 198 *(drvdata->irq_status) = attn_data.irq_status; 199 drvdata->attn_data = attn_data; 200 } 201 202 ret = rmi_process_interrupt_requests(rmi_dev); 203 if (ret) 204 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, 205 "Failed to process interrupt request: %d\n", ret); 206 207 if (count) { 208 kfree(attn_data.data); 209 drvdata->attn_data.data = NULL; 210 } 211 212 if (!kfifo_is_empty(&drvdata->attn_fifo)) 213 return rmi_irq_fn(irq, dev_id); 214 215 return IRQ_HANDLED; 216 } 217 218 static int rmi_irq_init(struct rmi_device *rmi_dev) 219 { 220 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); 221 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 222 int irq_flags = irq_get_trigger_type(pdata->irq); 223 int ret; 224 225 if (!irq_flags) 226 irq_flags = IRQF_TRIGGER_LOW; 227 228 ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL, 229 rmi_irq_fn, irq_flags | IRQF_ONESHOT, 230 dev_driver_string(rmi_dev->xport->dev), 231 rmi_dev); 232 if (ret < 0) { 233 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n", 234 pdata->irq); 235 236 return ret; 237 } 238 239 data->enabled = true; 240 241 return 0; 242 } 243 244 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number) 245 { 246 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 247 struct rmi_function *entry; 248 249 list_for_each_entry(entry, &data->function_list, node) { 250 if (entry->fd.function_number == number) 251 return entry; 252 } 253 254 return NULL; 255 } 256 257 static int suspend_one_function(struct rmi_function *fn) 258 { 259 struct rmi_function_handler *fh; 260 int retval = 0; 261 262 if (!fn || !fn->dev.driver) 263 return 0; 264 265 fh = to_rmi_function_handler(fn->dev.driver); 266 if (fh->suspend) { 267 retval = fh->suspend(fn); 268 if (retval < 0) 269 dev_err(&fn->dev, "Suspend failed with code %d.\n", 270 retval); 271 } 272 273 return retval; 274 } 275 276 static int rmi_suspend_functions(struct rmi_device *rmi_dev) 277 { 278 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 279 struct rmi_function *entry; 280 int retval; 281 282 list_for_each_entry(entry, &data->function_list, node) { 283 retval = suspend_one_function(entry); 284 if (retval < 0) 285 return retval; 286 } 287 288 return 0; 289 } 290 291 static int resume_one_function(struct rmi_function *fn) 292 { 293 struct rmi_function_handler *fh; 294 int retval = 0; 295 296 if (!fn || !fn->dev.driver) 297 return 0; 298 299 fh = to_rmi_function_handler(fn->dev.driver); 300 if (fh->resume) { 301 retval = fh->resume(fn); 302 if (retval < 0) 303 dev_err(&fn->dev, "Resume failed with code %d.\n", 304 retval); 305 } 306 307 return retval; 308 } 309 310 static int rmi_resume_functions(struct rmi_device *rmi_dev) 311 { 312 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 313 struct rmi_function *entry; 314 int retval; 315 316 list_for_each_entry(entry, &data->function_list, node) { 317 retval = resume_one_function(entry); 318 if (retval < 0) 319 return retval; 320 } 321 322 return 0; 323 } 324 325 int rmi_enable_sensor(struct rmi_device *rmi_dev) 326 { 327 int retval = 0; 328 329 retval = rmi_driver_process_config_requests(rmi_dev); 330 if (retval < 0) 331 return retval; 332 333 return rmi_process_interrupt_requests(rmi_dev); 334 } 335 336 /** 337 * rmi_driver_set_input_params - set input device id and other data. 338 * 339 * @rmi_dev: Pointer to an RMI device 340 * @input: Pointer to input device 341 * 342 */ 343 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev, 344 struct input_dev *input) 345 { 346 input->name = SYNAPTICS_INPUT_DEVICE_NAME; 347 input->id.vendor = SYNAPTICS_VENDOR_ID; 348 input->id.bustype = BUS_RMI; 349 return 0; 350 } 351 352 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev, 353 struct input_dev *input) 354 { 355 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 356 const char *device_name = rmi_f01_get_product_ID(data->f01_container); 357 char *name; 358 359 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL, 360 "Synaptics %s", device_name); 361 if (!name) 362 return; 363 364 input->name = name; 365 } 366 367 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev, 368 unsigned long *mask) 369 { 370 int error = 0; 371 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 372 struct device *dev = &rmi_dev->dev; 373 374 mutex_lock(&data->irq_mutex); 375 bitmap_or(data->new_irq_mask, 376 data->current_irq_mask, mask, data->irq_count); 377 378 error = rmi_write_block(rmi_dev, 379 data->f01_container->fd.control_base_addr + 1, 380 data->new_irq_mask, data->num_of_irq_regs); 381 if (error < 0) { 382 dev_err(dev, "%s: Failed to change enabled interrupts!", 383 __func__); 384 goto error_unlock; 385 } 386 bitmap_copy(data->current_irq_mask, data->new_irq_mask, 387 data->num_of_irq_regs); 388 389 bitmap_or(data->fn_irq_bits, data->fn_irq_bits, mask, data->irq_count); 390 391 error_unlock: 392 mutex_unlock(&data->irq_mutex); 393 return error; 394 } 395 396 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev, 397 unsigned long *mask) 398 { 399 int error = 0; 400 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 401 struct device *dev = &rmi_dev->dev; 402 403 mutex_lock(&data->irq_mutex); 404 bitmap_andnot(data->fn_irq_bits, 405 data->fn_irq_bits, mask, data->irq_count); 406 bitmap_andnot(data->new_irq_mask, 407 data->current_irq_mask, mask, data->irq_count); 408 409 error = rmi_write_block(rmi_dev, 410 data->f01_container->fd.control_base_addr + 1, 411 data->new_irq_mask, data->num_of_irq_regs); 412 if (error < 0) { 413 dev_err(dev, "%s: Failed to change enabled interrupts!", 414 __func__); 415 goto error_unlock; 416 } 417 bitmap_copy(data->current_irq_mask, data->new_irq_mask, 418 data->num_of_irq_regs); 419 420 error_unlock: 421 mutex_unlock(&data->irq_mutex); 422 return error; 423 } 424 425 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev) 426 { 427 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 428 int error; 429 430 /* 431 * Can get called before the driver is fully ready to deal with 432 * this situation. 433 */ 434 if (!data || !data->f01_container) { 435 dev_warn(&rmi_dev->dev, 436 "Not ready to handle reset yet!\n"); 437 return 0; 438 } 439 440 error = rmi_read_block(rmi_dev, 441 data->f01_container->fd.control_base_addr + 1, 442 data->current_irq_mask, data->num_of_irq_regs); 443 if (error < 0) { 444 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n", 445 __func__); 446 return error; 447 } 448 449 error = rmi_driver_process_reset_requests(rmi_dev); 450 if (error < 0) 451 return error; 452 453 error = rmi_driver_process_config_requests(rmi_dev); 454 if (error < 0) 455 return error; 456 457 return 0; 458 } 459 460 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev, 461 struct pdt_entry *entry, u16 pdt_address) 462 { 463 u8 buf[RMI_PDT_ENTRY_SIZE]; 464 int error; 465 466 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE); 467 if (error) { 468 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n", 469 pdt_address, error); 470 return error; 471 } 472 473 entry->page_start = pdt_address & RMI4_PAGE_MASK; 474 entry->query_base_addr = buf[0]; 475 entry->command_base_addr = buf[1]; 476 entry->control_base_addr = buf[2]; 477 entry->data_base_addr = buf[3]; 478 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK; 479 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5; 480 entry->function_number = buf[5]; 481 482 return 0; 483 } 484 485 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt, 486 struct rmi_function_descriptor *fd) 487 { 488 fd->query_base_addr = pdt->query_base_addr + pdt->page_start; 489 fd->command_base_addr = pdt->command_base_addr + pdt->page_start; 490 fd->control_base_addr = pdt->control_base_addr + pdt->page_start; 491 fd->data_base_addr = pdt->data_base_addr + pdt->page_start; 492 fd->function_number = pdt->function_number; 493 fd->interrupt_source_count = pdt->interrupt_source_count; 494 fd->function_version = pdt->function_version; 495 } 496 497 #define RMI_SCAN_CONTINUE 0 498 #define RMI_SCAN_DONE 1 499 500 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev, 501 int page, 502 int *empty_pages, 503 void *ctx, 504 int (*callback)(struct rmi_device *rmi_dev, 505 void *ctx, 506 const struct pdt_entry *entry)) 507 { 508 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 509 struct pdt_entry pdt_entry; 510 u16 page_start = RMI4_PAGE_SIZE * page; 511 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION; 512 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION; 513 u16 addr; 514 int error; 515 int retval; 516 517 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) { 518 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr); 519 if (error) 520 return error; 521 522 if (RMI4_END_OF_PDT(pdt_entry.function_number)) 523 break; 524 525 retval = callback(rmi_dev, ctx, &pdt_entry); 526 if (retval != RMI_SCAN_CONTINUE) 527 return retval; 528 } 529 530 /* 531 * Count number of empty PDT pages. If a gap of two pages 532 * or more is found, stop scanning. 533 */ 534 if (addr == pdt_start) 535 ++*empty_pages; 536 else 537 *empty_pages = 0; 538 539 return (data->bootloader_mode || *empty_pages >= 2) ? 540 RMI_SCAN_DONE : RMI_SCAN_CONTINUE; 541 } 542 543 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx, 544 int (*callback)(struct rmi_device *rmi_dev, 545 void *ctx, const struct pdt_entry *entry)) 546 { 547 int page; 548 int empty_pages = 0; 549 int retval = RMI_SCAN_DONE; 550 551 for (page = 0; page <= RMI4_MAX_PAGE; page++) { 552 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages, 553 ctx, callback); 554 if (retval != RMI_SCAN_CONTINUE) 555 break; 556 } 557 558 return retval < 0 ? retval : 0; 559 } 560 561 int rmi_read_register_desc(struct rmi_device *d, u16 addr, 562 struct rmi_register_descriptor *rdesc) 563 { 564 int ret; 565 u8 size_presence_reg; 566 u8 buf[35]; 567 int presense_offset = 1; 568 u8 *struct_buf; 569 int reg; 570 int offset = 0; 571 int map_offset = 0; 572 int i; 573 int b; 574 575 /* 576 * The first register of the register descriptor is the size of 577 * the register descriptor's presense register. 578 */ 579 ret = rmi_read(d, addr, &size_presence_reg); 580 if (ret) 581 return ret; 582 ++addr; 583 584 if (size_presence_reg < 0 || size_presence_reg > 35) 585 return -EIO; 586 587 memset(buf, 0, sizeof(buf)); 588 589 /* 590 * The presence register contains the size of the register structure 591 * and a bitmap which identified which packet registers are present 592 * for this particular register type (ie query, control, or data). 593 */ 594 ret = rmi_read_block(d, addr, buf, size_presence_reg); 595 if (ret) 596 return ret; 597 ++addr; 598 599 if (buf[0] == 0) { 600 presense_offset = 3; 601 rdesc->struct_size = buf[1] | (buf[2] << 8); 602 } else { 603 rdesc->struct_size = buf[0]; 604 } 605 606 for (i = presense_offset; i < size_presence_reg; i++) { 607 for (b = 0; b < 8; b++) { 608 if (buf[i] & (0x1 << b)) 609 bitmap_set(rdesc->presense_map, map_offset, 1); 610 ++map_offset; 611 } 612 } 613 614 rdesc->num_registers = bitmap_weight(rdesc->presense_map, 615 RMI_REG_DESC_PRESENSE_BITS); 616 617 rdesc->registers = devm_kcalloc(&d->dev, 618 rdesc->num_registers, 619 sizeof(struct rmi_register_desc_item), 620 GFP_KERNEL); 621 if (!rdesc->registers) 622 return -ENOMEM; 623 624 /* 625 * Allocate a temporary buffer to hold the register structure. 626 * I'm not using devm_kzalloc here since it will not be retained 627 * after exiting this function 628 */ 629 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL); 630 if (!struct_buf) 631 return -ENOMEM; 632 633 /* 634 * The register structure contains information about every packet 635 * register of this type. This includes the size of the packet 636 * register and a bitmap of all subpackets contained in the packet 637 * register. 638 */ 639 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size); 640 if (ret) 641 goto free_struct_buff; 642 643 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS); 644 for (i = 0; i < rdesc->num_registers; i++) { 645 struct rmi_register_desc_item *item = &rdesc->registers[i]; 646 int reg_size = struct_buf[offset]; 647 648 ++offset; 649 if (reg_size == 0) { 650 reg_size = struct_buf[offset] | 651 (struct_buf[offset + 1] << 8); 652 offset += 2; 653 } 654 655 if (reg_size == 0) { 656 reg_size = struct_buf[offset] | 657 (struct_buf[offset + 1] << 8) | 658 (struct_buf[offset + 2] << 16) | 659 (struct_buf[offset + 3] << 24); 660 offset += 4; 661 } 662 663 item->reg = reg; 664 item->reg_size = reg_size; 665 666 map_offset = 0; 667 668 do { 669 for (b = 0; b < 7; b++) { 670 if (struct_buf[offset] & (0x1 << b)) 671 bitmap_set(item->subpacket_map, 672 map_offset, 1); 673 ++map_offset; 674 } 675 } while (struct_buf[offset++] & 0x80); 676 677 item->num_subpackets = bitmap_weight(item->subpacket_map, 678 RMI_REG_DESC_SUBPACKET_BITS); 679 680 rmi_dbg(RMI_DEBUG_CORE, &d->dev, 681 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__, 682 item->reg, item->reg_size, item->num_subpackets); 683 684 reg = find_next_bit(rdesc->presense_map, 685 RMI_REG_DESC_PRESENSE_BITS, reg + 1); 686 } 687 688 free_struct_buff: 689 kfree(struct_buf); 690 return ret; 691 } 692 693 const struct rmi_register_desc_item *rmi_get_register_desc_item( 694 struct rmi_register_descriptor *rdesc, u16 reg) 695 { 696 const struct rmi_register_desc_item *item; 697 int i; 698 699 for (i = 0; i < rdesc->num_registers; i++) { 700 item = &rdesc->registers[i]; 701 if (item->reg == reg) 702 return item; 703 } 704 705 return NULL; 706 } 707 708 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc) 709 { 710 const struct rmi_register_desc_item *item; 711 int i; 712 size_t size = 0; 713 714 for (i = 0; i < rdesc->num_registers; i++) { 715 item = &rdesc->registers[i]; 716 size += item->reg_size; 717 } 718 return size; 719 } 720 721 /* Compute the register offset relative to the base address */ 722 int rmi_register_desc_calc_reg_offset( 723 struct rmi_register_descriptor *rdesc, u16 reg) 724 { 725 const struct rmi_register_desc_item *item; 726 int offset = 0; 727 int i; 728 729 for (i = 0; i < rdesc->num_registers; i++) { 730 item = &rdesc->registers[i]; 731 if (item->reg == reg) 732 return offset; 733 ++offset; 734 } 735 return -1; 736 } 737 738 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item, 739 u8 subpacket) 740 { 741 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS, 742 subpacket) == subpacket; 743 } 744 745 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev, 746 const struct pdt_entry *pdt) 747 { 748 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 749 int ret; 750 u8 status; 751 752 if (pdt->function_number == 0x34 && pdt->function_version > 1) { 753 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status); 754 if (ret) { 755 dev_err(&rmi_dev->dev, 756 "Failed to read F34 status: %d.\n", ret); 757 return ret; 758 } 759 760 if (status & BIT(7)) 761 data->bootloader_mode = true; 762 } else if (pdt->function_number == 0x01) { 763 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status); 764 if (ret) { 765 dev_err(&rmi_dev->dev, 766 "Failed to read F01 status: %d.\n", ret); 767 return ret; 768 } 769 770 if (status & BIT(6)) 771 data->bootloader_mode = true; 772 } 773 774 return 0; 775 } 776 777 static int rmi_count_irqs(struct rmi_device *rmi_dev, 778 void *ctx, const struct pdt_entry *pdt) 779 { 780 int *irq_count = ctx; 781 int ret; 782 783 *irq_count += pdt->interrupt_source_count; 784 785 ret = rmi_check_bootloader_mode(rmi_dev, pdt); 786 if (ret < 0) 787 return ret; 788 789 return RMI_SCAN_CONTINUE; 790 } 791 792 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx, 793 const struct pdt_entry *pdt) 794 { 795 int error; 796 797 if (pdt->function_number == 0x01) { 798 u16 cmd_addr = pdt->page_start + pdt->command_base_addr; 799 u8 cmd_buf = RMI_DEVICE_RESET_CMD; 800 const struct rmi_device_platform_data *pdata = 801 rmi_get_platform_data(rmi_dev); 802 803 if (rmi_dev->xport->ops->reset) { 804 error = rmi_dev->xport->ops->reset(rmi_dev->xport, 805 cmd_addr); 806 if (error) 807 return error; 808 809 return RMI_SCAN_DONE; 810 } 811 812 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n"); 813 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1); 814 if (error) { 815 dev_err(&rmi_dev->dev, 816 "Initial reset failed. Code = %d.\n", error); 817 return error; 818 } 819 820 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS); 821 822 return RMI_SCAN_DONE; 823 } 824 825 /* F01 should always be on page 0. If we don't find it there, fail. */ 826 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV; 827 } 828 829 static int rmi_create_function(struct rmi_device *rmi_dev, 830 void *ctx, const struct pdt_entry *pdt) 831 { 832 struct device *dev = &rmi_dev->dev; 833 struct rmi_driver_data *data = dev_get_drvdata(dev); 834 int *current_irq_count = ctx; 835 struct rmi_function *fn; 836 int i; 837 int error; 838 839 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n", 840 pdt->function_number); 841 842 fn = kzalloc(sizeof(struct rmi_function) + 843 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long), 844 GFP_KERNEL); 845 if (!fn) { 846 dev_err(dev, "Failed to allocate memory for F%02X\n", 847 pdt->function_number); 848 return -ENOMEM; 849 } 850 851 INIT_LIST_HEAD(&fn->node); 852 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd); 853 854 fn->rmi_dev = rmi_dev; 855 856 fn->num_of_irqs = pdt->interrupt_source_count; 857 fn->irq_pos = *current_irq_count; 858 *current_irq_count += fn->num_of_irqs; 859 860 for (i = 0; i < fn->num_of_irqs; i++) 861 set_bit(fn->irq_pos + i, fn->irq_mask); 862 863 error = rmi_register_function(fn); 864 if (error) 865 return error; 866 867 if (pdt->function_number == 0x01) 868 data->f01_container = fn; 869 else if (pdt->function_number == 0x34) 870 data->f34_container = fn; 871 872 list_add_tail(&fn->node, &data->function_list); 873 874 return RMI_SCAN_CONTINUE; 875 } 876 877 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake) 878 { 879 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); 880 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 881 int irq = pdata->irq; 882 int irq_flags; 883 int retval; 884 885 mutex_lock(&data->enabled_mutex); 886 887 if (data->enabled) 888 goto out; 889 890 enable_irq(irq); 891 data->enabled = true; 892 if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) { 893 retval = disable_irq_wake(irq); 894 if (retval) 895 dev_warn(&rmi_dev->dev, 896 "Failed to disable irq for wake: %d\n", 897 retval); 898 } 899 900 /* 901 * Call rmi_process_interrupt_requests() after enabling irq, 902 * otherwise we may lose interrupt on edge-triggered systems. 903 */ 904 irq_flags = irq_get_trigger_type(pdata->irq); 905 if (irq_flags & IRQ_TYPE_EDGE_BOTH) 906 rmi_process_interrupt_requests(rmi_dev); 907 908 out: 909 mutex_unlock(&data->enabled_mutex); 910 } 911 912 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake) 913 { 914 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); 915 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 916 struct rmi4_attn_data attn_data = {0}; 917 int irq = pdata->irq; 918 int retval, count; 919 920 mutex_lock(&data->enabled_mutex); 921 922 if (!data->enabled) 923 goto out; 924 925 data->enabled = false; 926 disable_irq(irq); 927 if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) { 928 retval = enable_irq_wake(irq); 929 if (retval) 930 dev_warn(&rmi_dev->dev, 931 "Failed to enable irq for wake: %d\n", 932 retval); 933 } 934 935 /* make sure the fifo is clean */ 936 while (!kfifo_is_empty(&data->attn_fifo)) { 937 count = kfifo_get(&data->attn_fifo, &attn_data); 938 if (count) 939 kfree(attn_data.data); 940 } 941 942 out: 943 mutex_unlock(&data->enabled_mutex); 944 } 945 946 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake) 947 { 948 int retval; 949 950 retval = rmi_suspend_functions(rmi_dev); 951 if (retval) 952 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", 953 retval); 954 955 rmi_disable_irq(rmi_dev, enable_wake); 956 return retval; 957 } 958 EXPORT_SYMBOL_GPL(rmi_driver_suspend); 959 960 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake) 961 { 962 int retval; 963 964 rmi_enable_irq(rmi_dev, clear_wake); 965 966 retval = rmi_resume_functions(rmi_dev); 967 if (retval) 968 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", 969 retval); 970 971 return retval; 972 } 973 EXPORT_SYMBOL_GPL(rmi_driver_resume); 974 975 static int rmi_driver_remove(struct device *dev) 976 { 977 struct rmi_device *rmi_dev = to_rmi_device(dev); 978 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 979 980 rmi_disable_irq(rmi_dev, false); 981 982 rmi_f34_remove_sysfs(rmi_dev); 983 rmi_free_function_list(rmi_dev); 984 985 irq_domain_remove(data->irqdomain); 986 data->irqdomain = NULL; 987 988 return 0; 989 } 990 991 #ifdef CONFIG_OF 992 static int rmi_driver_of_probe(struct device *dev, 993 struct rmi_device_platform_data *pdata) 994 { 995 int retval; 996 997 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms, 998 "syna,reset-delay-ms", 1); 999 if (retval) 1000 return retval; 1001 1002 return 0; 1003 } 1004 #else 1005 static inline int rmi_driver_of_probe(struct device *dev, 1006 struct rmi_device_platform_data *pdata) 1007 { 1008 return -ENODEV; 1009 } 1010 #endif 1011 1012 int rmi_probe_interrupts(struct rmi_driver_data *data) 1013 { 1014 struct rmi_device *rmi_dev = data->rmi_dev; 1015 struct device *dev = &rmi_dev->dev; 1016 struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode; 1017 int irq_count = 0; 1018 size_t size; 1019 int retval; 1020 1021 /* 1022 * We need to count the IRQs and allocate their storage before scanning 1023 * the PDT and creating the function entries, because adding a new 1024 * function can trigger events that result in the IRQ related storage 1025 * being accessed. 1026 */ 1027 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__); 1028 data->bootloader_mode = false; 1029 1030 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs); 1031 if (retval < 0) { 1032 dev_err(dev, "IRQ counting failed with code %d.\n", retval); 1033 return retval; 1034 } 1035 1036 if (data->bootloader_mode) 1037 dev_warn(dev, "Device in bootloader mode.\n"); 1038 1039 /* Allocate and register a linear revmap irq_domain */ 1040 data->irqdomain = irq_domain_create_linear(fwnode, irq_count, 1041 &irq_domain_simple_ops, 1042 data); 1043 if (!data->irqdomain) { 1044 dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n"); 1045 return -ENOMEM; 1046 } 1047 1048 data->irq_count = irq_count; 1049 data->num_of_irq_regs = (data->irq_count + 7) / 8; 1050 1051 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long); 1052 data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL); 1053 if (!data->irq_memory) { 1054 dev_err(dev, "Failed to allocate memory for irq masks.\n"); 1055 return -ENOMEM; 1056 } 1057 1058 data->irq_status = data->irq_memory + size * 0; 1059 data->fn_irq_bits = data->irq_memory + size * 1; 1060 data->current_irq_mask = data->irq_memory + size * 2; 1061 data->new_irq_mask = data->irq_memory + size * 3; 1062 1063 return retval; 1064 } 1065 1066 int rmi_init_functions(struct rmi_driver_data *data) 1067 { 1068 struct rmi_device *rmi_dev = data->rmi_dev; 1069 struct device *dev = &rmi_dev->dev; 1070 int irq_count = 0; 1071 int retval; 1072 1073 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__); 1074 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function); 1075 if (retval < 0) { 1076 dev_err(dev, "Function creation failed with code %d.\n", 1077 retval); 1078 goto err_destroy_functions; 1079 } 1080 1081 if (!data->f01_container) { 1082 dev_err(dev, "Missing F01 container!\n"); 1083 retval = -EINVAL; 1084 goto err_destroy_functions; 1085 } 1086 1087 retval = rmi_read_block(rmi_dev, 1088 data->f01_container->fd.control_base_addr + 1, 1089 data->current_irq_mask, data->num_of_irq_regs); 1090 if (retval < 0) { 1091 dev_err(dev, "%s: Failed to read current IRQ mask.\n", 1092 __func__); 1093 goto err_destroy_functions; 1094 } 1095 1096 return 0; 1097 1098 err_destroy_functions: 1099 rmi_free_function_list(rmi_dev); 1100 return retval; 1101 } 1102 1103 static int rmi_driver_probe(struct device *dev) 1104 { 1105 struct rmi_driver *rmi_driver; 1106 struct rmi_driver_data *data; 1107 struct rmi_device_platform_data *pdata; 1108 struct rmi_device *rmi_dev; 1109 int retval; 1110 1111 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n", 1112 __func__); 1113 1114 if (!rmi_is_physical_device(dev)) { 1115 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n"); 1116 return -ENODEV; 1117 } 1118 1119 rmi_dev = to_rmi_device(dev); 1120 rmi_driver = to_rmi_driver(dev->driver); 1121 rmi_dev->driver = rmi_driver; 1122 1123 pdata = rmi_get_platform_data(rmi_dev); 1124 1125 if (rmi_dev->xport->dev->of_node) { 1126 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata); 1127 if (retval) 1128 return retval; 1129 } 1130 1131 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL); 1132 if (!data) 1133 return -ENOMEM; 1134 1135 INIT_LIST_HEAD(&data->function_list); 1136 data->rmi_dev = rmi_dev; 1137 dev_set_drvdata(&rmi_dev->dev, data); 1138 1139 /* 1140 * Right before a warm boot, the sensor might be in some unusual state, 1141 * such as F54 diagnostics, or F34 bootloader mode after a firmware 1142 * or configuration update. In order to clear the sensor to a known 1143 * state and/or apply any updates, we issue a initial reset to clear any 1144 * previous settings and force it into normal operation. 1145 * 1146 * We have to do this before actually building the PDT because 1147 * the reflash updates (if any) might cause various registers to move 1148 * around. 1149 * 1150 * For a number of reasons, this initial reset may fail to return 1151 * within the specified time, but we'll still be able to bring up the 1152 * driver normally after that failure. This occurs most commonly in 1153 * a cold boot situation (where then firmware takes longer to come up 1154 * than from a warm boot) and the reset_delay_ms in the platform data 1155 * has been set too short to accommodate that. Since the sensor will 1156 * eventually come up and be usable, we don't want to just fail here 1157 * and leave the customer's device unusable. So we warn them, and 1158 * continue processing. 1159 */ 1160 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset); 1161 if (retval < 0) 1162 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n"); 1163 1164 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props); 1165 if (retval < 0) { 1166 /* 1167 * we'll print out a warning and continue since 1168 * failure to get the PDT properties is not a cause to fail 1169 */ 1170 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n", 1171 PDT_PROPERTIES_LOCATION, retval); 1172 } 1173 1174 mutex_init(&data->irq_mutex); 1175 mutex_init(&data->enabled_mutex); 1176 1177 retval = rmi_probe_interrupts(data); 1178 if (retval) 1179 goto err; 1180 1181 if (rmi_dev->xport->input) { 1182 /* 1183 * The transport driver already has an input device. 1184 * In some cases it is preferable to reuse the transport 1185 * devices input device instead of creating a new one here. 1186 * One example is some HID touchpads report "pass-through" 1187 * button events are not reported by rmi registers. 1188 */ 1189 data->input = rmi_dev->xport->input; 1190 } else { 1191 data->input = devm_input_allocate_device(dev); 1192 if (!data->input) { 1193 dev_err(dev, "%s: Failed to allocate input device.\n", 1194 __func__); 1195 retval = -ENOMEM; 1196 goto err; 1197 } 1198 rmi_driver_set_input_params(rmi_dev, data->input); 1199 data->input->phys = devm_kasprintf(dev, GFP_KERNEL, 1200 "%s/input0", dev_name(dev)); 1201 if (!data->input->phys) { 1202 retval = -ENOMEM; 1203 goto err; 1204 } 1205 } 1206 1207 retval = rmi_init_functions(data); 1208 if (retval) 1209 goto err; 1210 1211 retval = rmi_f34_create_sysfs(rmi_dev); 1212 if (retval) 1213 goto err; 1214 1215 if (data->input) { 1216 rmi_driver_set_input_name(rmi_dev, data->input); 1217 if (!rmi_dev->xport->input) { 1218 retval = input_register_device(data->input); 1219 if (retval) { 1220 dev_err(dev, "%s: Failed to register input device.\n", 1221 __func__); 1222 goto err_destroy_functions; 1223 } 1224 } 1225 } 1226 1227 retval = rmi_irq_init(rmi_dev); 1228 if (retval < 0) 1229 goto err_destroy_functions; 1230 1231 if (data->f01_container->dev.driver) { 1232 /* Driver already bound, so enable ATTN now. */ 1233 retval = rmi_enable_sensor(rmi_dev); 1234 if (retval) 1235 goto err_disable_irq; 1236 } 1237 1238 return 0; 1239 1240 err_disable_irq: 1241 rmi_disable_irq(rmi_dev, false); 1242 err_destroy_functions: 1243 rmi_free_function_list(rmi_dev); 1244 err: 1245 return retval; 1246 } 1247 1248 static struct rmi_driver rmi_physical_driver = { 1249 .driver = { 1250 .owner = THIS_MODULE, 1251 .name = "rmi4_physical", 1252 .bus = &rmi_bus_type, 1253 .probe = rmi_driver_probe, 1254 .remove = rmi_driver_remove, 1255 }, 1256 .reset_handler = rmi_driver_reset_handler, 1257 .clear_irq_bits = rmi_driver_clear_irq_bits, 1258 .set_irq_bits = rmi_driver_set_irq_bits, 1259 .set_input_params = rmi_driver_set_input_params, 1260 }; 1261 1262 bool rmi_is_physical_driver(const struct device_driver *drv) 1263 { 1264 return drv == &rmi_physical_driver.driver; 1265 } 1266 1267 int __init rmi_register_physical_driver(void) 1268 { 1269 int error; 1270 1271 error = driver_register(&rmi_physical_driver.driver); 1272 if (error) { 1273 pr_err("%s: driver register failed, code=%d.\n", __func__, 1274 error); 1275 return error; 1276 } 1277 1278 return 0; 1279 } 1280 1281 void __exit rmi_unregister_physical_driver(void) 1282 { 1283 driver_unregister(&rmi_physical_driver.driver); 1284 } 1285