1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for IMS Passenger Control Unit Devices 4 * 5 * Copyright (C) 2013 The IMS Company 6 */ 7 8 #include <linux/completion.h> 9 #include <linux/device.h> 10 #include <linux/firmware.h> 11 #include <linux/ihex.h> 12 #include <linux/input.h> 13 #include <linux/kernel.h> 14 #include <linux/leds.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/types.h> 18 #include <linux/usb/input.h> 19 #include <linux/usb/cdc.h> 20 #include <asm/unaligned.h> 21 22 #define IMS_PCU_KEYMAP_LEN 32 23 24 struct ims_pcu_buttons { 25 struct input_dev *input; 26 char name[32]; 27 char phys[32]; 28 unsigned short keymap[IMS_PCU_KEYMAP_LEN]; 29 }; 30 31 struct ims_pcu_gamepad { 32 struct input_dev *input; 33 char name[32]; 34 char phys[32]; 35 }; 36 37 struct ims_pcu_backlight { 38 struct led_classdev cdev; 39 char name[32]; 40 }; 41 42 #define IMS_PCU_PART_NUMBER_LEN 15 43 #define IMS_PCU_SERIAL_NUMBER_LEN 8 44 #define IMS_PCU_DOM_LEN 8 45 #define IMS_PCU_FW_VERSION_LEN 16 46 #define IMS_PCU_BL_VERSION_LEN 16 47 #define IMS_PCU_BL_RESET_REASON_LEN (2 + 1) 48 49 #define IMS_PCU_PCU_B_DEVICE_ID 5 50 51 #define IMS_PCU_BUF_SIZE 128 52 53 struct ims_pcu { 54 struct usb_device *udev; 55 struct device *dev; /* control interface's device, used for logging */ 56 57 unsigned int device_no; 58 59 bool bootloader_mode; 60 61 char part_number[IMS_PCU_PART_NUMBER_LEN]; 62 char serial_number[IMS_PCU_SERIAL_NUMBER_LEN]; 63 char date_of_manufacturing[IMS_PCU_DOM_LEN]; 64 char fw_version[IMS_PCU_FW_VERSION_LEN]; 65 char bl_version[IMS_PCU_BL_VERSION_LEN]; 66 char reset_reason[IMS_PCU_BL_RESET_REASON_LEN]; 67 int update_firmware_status; 68 u8 device_id; 69 70 u8 ofn_reg_addr; 71 72 struct usb_interface *ctrl_intf; 73 74 struct usb_endpoint_descriptor *ep_ctrl; 75 struct urb *urb_ctrl; 76 u8 *urb_ctrl_buf; 77 dma_addr_t ctrl_dma; 78 size_t max_ctrl_size; 79 80 struct usb_interface *data_intf; 81 82 struct usb_endpoint_descriptor *ep_in; 83 struct urb *urb_in; 84 u8 *urb_in_buf; 85 dma_addr_t read_dma; 86 size_t max_in_size; 87 88 struct usb_endpoint_descriptor *ep_out; 89 u8 *urb_out_buf; 90 size_t max_out_size; 91 92 u8 read_buf[IMS_PCU_BUF_SIZE]; 93 u8 read_pos; 94 u8 check_sum; 95 bool have_stx; 96 bool have_dle; 97 98 u8 cmd_buf[IMS_PCU_BUF_SIZE]; 99 u8 ack_id; 100 u8 expected_response; 101 u8 cmd_buf_len; 102 struct completion cmd_done; 103 struct mutex cmd_mutex; 104 105 u32 fw_start_addr; 106 u32 fw_end_addr; 107 struct completion async_firmware_done; 108 109 struct ims_pcu_buttons buttons; 110 struct ims_pcu_gamepad *gamepad; 111 struct ims_pcu_backlight backlight; 112 113 bool setup_complete; /* Input and LED devices have been created */ 114 }; 115 116 117 /********************************************************************* 118 * Buttons Input device support * 119 *********************************************************************/ 120 121 static const unsigned short ims_pcu_keymap_1[] = { 122 [1] = KEY_ATTENDANT_OFF, 123 [2] = KEY_ATTENDANT_ON, 124 [3] = KEY_LIGHTS_TOGGLE, 125 [4] = KEY_VOLUMEUP, 126 [5] = KEY_VOLUMEDOWN, 127 [6] = KEY_INFO, 128 }; 129 130 static const unsigned short ims_pcu_keymap_2[] = { 131 [4] = KEY_VOLUMEUP, 132 [5] = KEY_VOLUMEDOWN, 133 [6] = KEY_INFO, 134 }; 135 136 static const unsigned short ims_pcu_keymap_3[] = { 137 [1] = KEY_HOMEPAGE, 138 [2] = KEY_ATTENDANT_TOGGLE, 139 [3] = KEY_LIGHTS_TOGGLE, 140 [4] = KEY_VOLUMEUP, 141 [5] = KEY_VOLUMEDOWN, 142 [6] = KEY_DISPLAYTOGGLE, 143 [18] = KEY_PLAYPAUSE, 144 }; 145 146 static const unsigned short ims_pcu_keymap_4[] = { 147 [1] = KEY_ATTENDANT_OFF, 148 [2] = KEY_ATTENDANT_ON, 149 [3] = KEY_LIGHTS_TOGGLE, 150 [4] = KEY_VOLUMEUP, 151 [5] = KEY_VOLUMEDOWN, 152 [6] = KEY_INFO, 153 [18] = KEY_PLAYPAUSE, 154 }; 155 156 static const unsigned short ims_pcu_keymap_5[] = { 157 [1] = KEY_ATTENDANT_OFF, 158 [2] = KEY_ATTENDANT_ON, 159 [3] = KEY_LIGHTS_TOGGLE, 160 }; 161 162 struct ims_pcu_device_info { 163 const unsigned short *keymap; 164 size_t keymap_len; 165 bool has_gamepad; 166 }; 167 168 #define IMS_PCU_DEVINFO(_n, _gamepad) \ 169 [_n] = { \ 170 .keymap = ims_pcu_keymap_##_n, \ 171 .keymap_len = ARRAY_SIZE(ims_pcu_keymap_##_n), \ 172 .has_gamepad = _gamepad, \ 173 } 174 175 static const struct ims_pcu_device_info ims_pcu_device_info[] = { 176 IMS_PCU_DEVINFO(1, true), 177 IMS_PCU_DEVINFO(2, true), 178 IMS_PCU_DEVINFO(3, true), 179 IMS_PCU_DEVINFO(4, true), 180 IMS_PCU_DEVINFO(5, false), 181 }; 182 183 static void ims_pcu_buttons_report(struct ims_pcu *pcu, u32 data) 184 { 185 struct ims_pcu_buttons *buttons = &pcu->buttons; 186 struct input_dev *input = buttons->input; 187 int i; 188 189 for (i = 0; i < 32; i++) { 190 unsigned short keycode = buttons->keymap[i]; 191 192 if (keycode != KEY_RESERVED) 193 input_report_key(input, keycode, data & (1UL << i)); 194 } 195 196 input_sync(input); 197 } 198 199 static int ims_pcu_setup_buttons(struct ims_pcu *pcu, 200 const unsigned short *keymap, 201 size_t keymap_len) 202 { 203 struct ims_pcu_buttons *buttons = &pcu->buttons; 204 struct input_dev *input; 205 int i; 206 int error; 207 208 input = input_allocate_device(); 209 if (!input) { 210 dev_err(pcu->dev, 211 "Not enough memory for input input device\n"); 212 return -ENOMEM; 213 } 214 215 snprintf(buttons->name, sizeof(buttons->name), 216 "IMS PCU#%d Button Interface", pcu->device_no); 217 218 usb_make_path(pcu->udev, buttons->phys, sizeof(buttons->phys)); 219 strlcat(buttons->phys, "/input0", sizeof(buttons->phys)); 220 221 memcpy(buttons->keymap, keymap, sizeof(*keymap) * keymap_len); 222 223 input->name = buttons->name; 224 input->phys = buttons->phys; 225 usb_to_input_id(pcu->udev, &input->id); 226 input->dev.parent = &pcu->ctrl_intf->dev; 227 228 input->keycode = buttons->keymap; 229 input->keycodemax = ARRAY_SIZE(buttons->keymap); 230 input->keycodesize = sizeof(buttons->keymap[0]); 231 232 __set_bit(EV_KEY, input->evbit); 233 for (i = 0; i < IMS_PCU_KEYMAP_LEN; i++) 234 __set_bit(buttons->keymap[i], input->keybit); 235 __clear_bit(KEY_RESERVED, input->keybit); 236 237 error = input_register_device(input); 238 if (error) { 239 dev_err(pcu->dev, 240 "Failed to register buttons input device: %d\n", 241 error); 242 input_free_device(input); 243 return error; 244 } 245 246 buttons->input = input; 247 return 0; 248 } 249 250 static void ims_pcu_destroy_buttons(struct ims_pcu *pcu) 251 { 252 struct ims_pcu_buttons *buttons = &pcu->buttons; 253 254 input_unregister_device(buttons->input); 255 } 256 257 258 /********************************************************************* 259 * Gamepad Input device support * 260 *********************************************************************/ 261 262 static void ims_pcu_gamepad_report(struct ims_pcu *pcu, u32 data) 263 { 264 struct ims_pcu_gamepad *gamepad = pcu->gamepad; 265 struct input_dev *input = gamepad->input; 266 int x, y; 267 268 x = !!(data & (1 << 14)) - !!(data & (1 << 13)); 269 y = !!(data & (1 << 12)) - !!(data & (1 << 11)); 270 271 input_report_abs(input, ABS_X, x); 272 input_report_abs(input, ABS_Y, y); 273 274 input_report_key(input, BTN_A, data & (1 << 7)); 275 input_report_key(input, BTN_B, data & (1 << 8)); 276 input_report_key(input, BTN_X, data & (1 << 9)); 277 input_report_key(input, BTN_Y, data & (1 << 10)); 278 input_report_key(input, BTN_START, data & (1 << 15)); 279 input_report_key(input, BTN_SELECT, data & (1 << 16)); 280 281 input_sync(input); 282 } 283 284 static int ims_pcu_setup_gamepad(struct ims_pcu *pcu) 285 { 286 struct ims_pcu_gamepad *gamepad; 287 struct input_dev *input; 288 int error; 289 290 gamepad = kzalloc(sizeof(struct ims_pcu_gamepad), GFP_KERNEL); 291 input = input_allocate_device(); 292 if (!gamepad || !input) { 293 dev_err(pcu->dev, 294 "Not enough memory for gamepad device\n"); 295 error = -ENOMEM; 296 goto err_free_mem; 297 } 298 299 gamepad->input = input; 300 301 snprintf(gamepad->name, sizeof(gamepad->name), 302 "IMS PCU#%d Gamepad Interface", pcu->device_no); 303 304 usb_make_path(pcu->udev, gamepad->phys, sizeof(gamepad->phys)); 305 strlcat(gamepad->phys, "/input1", sizeof(gamepad->phys)); 306 307 input->name = gamepad->name; 308 input->phys = gamepad->phys; 309 usb_to_input_id(pcu->udev, &input->id); 310 input->dev.parent = &pcu->ctrl_intf->dev; 311 312 __set_bit(EV_KEY, input->evbit); 313 __set_bit(BTN_A, input->keybit); 314 __set_bit(BTN_B, input->keybit); 315 __set_bit(BTN_X, input->keybit); 316 __set_bit(BTN_Y, input->keybit); 317 __set_bit(BTN_START, input->keybit); 318 __set_bit(BTN_SELECT, input->keybit); 319 320 __set_bit(EV_ABS, input->evbit); 321 input_set_abs_params(input, ABS_X, -1, 1, 0, 0); 322 input_set_abs_params(input, ABS_Y, -1, 1, 0, 0); 323 324 error = input_register_device(input); 325 if (error) { 326 dev_err(pcu->dev, 327 "Failed to register gamepad input device: %d\n", 328 error); 329 goto err_free_mem; 330 } 331 332 pcu->gamepad = gamepad; 333 return 0; 334 335 err_free_mem: 336 input_free_device(input); 337 kfree(gamepad); 338 return error; 339 } 340 341 static void ims_pcu_destroy_gamepad(struct ims_pcu *pcu) 342 { 343 struct ims_pcu_gamepad *gamepad = pcu->gamepad; 344 345 input_unregister_device(gamepad->input); 346 kfree(gamepad); 347 } 348 349 350 /********************************************************************* 351 * PCU Communication protocol handling * 352 *********************************************************************/ 353 354 #define IMS_PCU_PROTOCOL_STX 0x02 355 #define IMS_PCU_PROTOCOL_ETX 0x03 356 #define IMS_PCU_PROTOCOL_DLE 0x10 357 358 /* PCU commands */ 359 #define IMS_PCU_CMD_STATUS 0xa0 360 #define IMS_PCU_CMD_PCU_RESET 0xa1 361 #define IMS_PCU_CMD_RESET_REASON 0xa2 362 #define IMS_PCU_CMD_SEND_BUTTONS 0xa3 363 #define IMS_PCU_CMD_JUMP_TO_BTLDR 0xa4 364 #define IMS_PCU_CMD_GET_INFO 0xa5 365 #define IMS_PCU_CMD_SET_BRIGHTNESS 0xa6 366 #define IMS_PCU_CMD_EEPROM 0xa7 367 #define IMS_PCU_CMD_GET_FW_VERSION 0xa8 368 #define IMS_PCU_CMD_GET_BL_VERSION 0xa9 369 #define IMS_PCU_CMD_SET_INFO 0xab 370 #define IMS_PCU_CMD_GET_BRIGHTNESS 0xac 371 #define IMS_PCU_CMD_GET_DEVICE_ID 0xae 372 #define IMS_PCU_CMD_SPECIAL_INFO 0xb0 373 #define IMS_PCU_CMD_BOOTLOADER 0xb1 /* Pass data to bootloader */ 374 #define IMS_PCU_CMD_OFN_SET_CONFIG 0xb3 375 #define IMS_PCU_CMD_OFN_GET_CONFIG 0xb4 376 377 /* PCU responses */ 378 #define IMS_PCU_RSP_STATUS 0xc0 379 #define IMS_PCU_RSP_PCU_RESET 0 /* Originally 0xc1 */ 380 #define IMS_PCU_RSP_RESET_REASON 0xc2 381 #define IMS_PCU_RSP_SEND_BUTTONS 0xc3 382 #define IMS_PCU_RSP_JUMP_TO_BTLDR 0 /* Originally 0xc4 */ 383 #define IMS_PCU_RSP_GET_INFO 0xc5 384 #define IMS_PCU_RSP_SET_BRIGHTNESS 0xc6 385 #define IMS_PCU_RSP_EEPROM 0xc7 386 #define IMS_PCU_RSP_GET_FW_VERSION 0xc8 387 #define IMS_PCU_RSP_GET_BL_VERSION 0xc9 388 #define IMS_PCU_RSP_SET_INFO 0xcb 389 #define IMS_PCU_RSP_GET_BRIGHTNESS 0xcc 390 #define IMS_PCU_RSP_CMD_INVALID 0xcd 391 #define IMS_PCU_RSP_GET_DEVICE_ID 0xce 392 #define IMS_PCU_RSP_SPECIAL_INFO 0xd0 393 #define IMS_PCU_RSP_BOOTLOADER 0xd1 /* Bootloader response */ 394 #define IMS_PCU_RSP_OFN_SET_CONFIG 0xd2 395 #define IMS_PCU_RSP_OFN_GET_CONFIG 0xd3 396 397 398 #define IMS_PCU_RSP_EVNT_BUTTONS 0xe0 /* Unsolicited, button state */ 399 #define IMS_PCU_GAMEPAD_MASK 0x0001ff80UL /* Bits 7 through 16 */ 400 401 402 #define IMS_PCU_MIN_PACKET_LEN 3 403 #define IMS_PCU_DATA_OFFSET 2 404 405 #define IMS_PCU_CMD_WRITE_TIMEOUT 100 /* msec */ 406 #define IMS_PCU_CMD_RESPONSE_TIMEOUT 500 /* msec */ 407 408 static void ims_pcu_report_events(struct ims_pcu *pcu) 409 { 410 u32 data = get_unaligned_be32(&pcu->read_buf[3]); 411 412 ims_pcu_buttons_report(pcu, data & ~IMS_PCU_GAMEPAD_MASK); 413 if (pcu->gamepad) 414 ims_pcu_gamepad_report(pcu, data); 415 } 416 417 static void ims_pcu_handle_response(struct ims_pcu *pcu) 418 { 419 switch (pcu->read_buf[0]) { 420 case IMS_PCU_RSP_EVNT_BUTTONS: 421 if (likely(pcu->setup_complete)) 422 ims_pcu_report_events(pcu); 423 break; 424 425 default: 426 /* 427 * See if we got command completion. 428 * If both the sequence and response code match save 429 * the data and signal completion. 430 */ 431 if (pcu->read_buf[0] == pcu->expected_response && 432 pcu->read_buf[1] == pcu->ack_id - 1) { 433 434 memcpy(pcu->cmd_buf, pcu->read_buf, pcu->read_pos); 435 pcu->cmd_buf_len = pcu->read_pos; 436 complete(&pcu->cmd_done); 437 } 438 break; 439 } 440 } 441 442 static void ims_pcu_process_data(struct ims_pcu *pcu, struct urb *urb) 443 { 444 int i; 445 446 for (i = 0; i < urb->actual_length; i++) { 447 u8 data = pcu->urb_in_buf[i]; 448 449 /* Skip everything until we get Start Xmit */ 450 if (!pcu->have_stx && data != IMS_PCU_PROTOCOL_STX) 451 continue; 452 453 if (pcu->have_dle) { 454 pcu->have_dle = false; 455 pcu->read_buf[pcu->read_pos++] = data; 456 pcu->check_sum += data; 457 continue; 458 } 459 460 switch (data) { 461 case IMS_PCU_PROTOCOL_STX: 462 if (pcu->have_stx) 463 dev_warn(pcu->dev, 464 "Unexpected STX at byte %d, discarding old data\n", 465 pcu->read_pos); 466 pcu->have_stx = true; 467 pcu->have_dle = false; 468 pcu->read_pos = 0; 469 pcu->check_sum = 0; 470 break; 471 472 case IMS_PCU_PROTOCOL_DLE: 473 pcu->have_dle = true; 474 break; 475 476 case IMS_PCU_PROTOCOL_ETX: 477 if (pcu->read_pos < IMS_PCU_MIN_PACKET_LEN) { 478 dev_warn(pcu->dev, 479 "Short packet received (%d bytes), ignoring\n", 480 pcu->read_pos); 481 } else if (pcu->check_sum != 0) { 482 dev_warn(pcu->dev, 483 "Invalid checksum in packet (%d bytes), ignoring\n", 484 pcu->read_pos); 485 } else { 486 ims_pcu_handle_response(pcu); 487 } 488 489 pcu->have_stx = false; 490 pcu->have_dle = false; 491 pcu->read_pos = 0; 492 break; 493 494 default: 495 pcu->read_buf[pcu->read_pos++] = data; 496 pcu->check_sum += data; 497 break; 498 } 499 } 500 } 501 502 static bool ims_pcu_byte_needs_escape(u8 byte) 503 { 504 return byte == IMS_PCU_PROTOCOL_STX || 505 byte == IMS_PCU_PROTOCOL_ETX || 506 byte == IMS_PCU_PROTOCOL_DLE; 507 } 508 509 static int ims_pcu_send_cmd_chunk(struct ims_pcu *pcu, 510 u8 command, int chunk, int len) 511 { 512 int error; 513 514 error = usb_bulk_msg(pcu->udev, 515 usb_sndbulkpipe(pcu->udev, 516 pcu->ep_out->bEndpointAddress), 517 pcu->urb_out_buf, len, 518 NULL, IMS_PCU_CMD_WRITE_TIMEOUT); 519 if (error < 0) { 520 dev_dbg(pcu->dev, 521 "Sending 0x%02x command failed at chunk %d: %d\n", 522 command, chunk, error); 523 return error; 524 } 525 526 return 0; 527 } 528 529 static int ims_pcu_send_command(struct ims_pcu *pcu, 530 u8 command, const u8 *data, int len) 531 { 532 int count = 0; 533 int chunk = 0; 534 int delta; 535 int i; 536 int error; 537 u8 csum = 0; 538 u8 ack_id; 539 540 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_STX; 541 542 /* We know the command need not be escaped */ 543 pcu->urb_out_buf[count++] = command; 544 csum += command; 545 546 ack_id = pcu->ack_id++; 547 if (ack_id == 0xff) 548 ack_id = pcu->ack_id++; 549 550 if (ims_pcu_byte_needs_escape(ack_id)) 551 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE; 552 553 pcu->urb_out_buf[count++] = ack_id; 554 csum += ack_id; 555 556 for (i = 0; i < len; i++) { 557 558 delta = ims_pcu_byte_needs_escape(data[i]) ? 2 : 1; 559 if (count + delta >= pcu->max_out_size) { 560 error = ims_pcu_send_cmd_chunk(pcu, command, 561 ++chunk, count); 562 if (error) 563 return error; 564 565 count = 0; 566 } 567 568 if (delta == 2) 569 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE; 570 571 pcu->urb_out_buf[count++] = data[i]; 572 csum += data[i]; 573 } 574 575 csum = 1 + ~csum; 576 577 delta = ims_pcu_byte_needs_escape(csum) ? 3 : 2; 578 if (count + delta >= pcu->max_out_size) { 579 error = ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count); 580 if (error) 581 return error; 582 583 count = 0; 584 } 585 586 if (delta == 3) 587 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE; 588 589 pcu->urb_out_buf[count++] = csum; 590 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_ETX; 591 592 return ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count); 593 } 594 595 static int __ims_pcu_execute_command(struct ims_pcu *pcu, 596 u8 command, const void *data, size_t len, 597 u8 expected_response, int response_time) 598 { 599 int error; 600 601 pcu->expected_response = expected_response; 602 init_completion(&pcu->cmd_done); 603 604 error = ims_pcu_send_command(pcu, command, data, len); 605 if (error) 606 return error; 607 608 if (expected_response && 609 !wait_for_completion_timeout(&pcu->cmd_done, 610 msecs_to_jiffies(response_time))) { 611 dev_dbg(pcu->dev, "Command 0x%02x timed out\n", command); 612 return -ETIMEDOUT; 613 } 614 615 return 0; 616 } 617 618 #define ims_pcu_execute_command(pcu, code, data, len) \ 619 __ims_pcu_execute_command(pcu, \ 620 IMS_PCU_CMD_##code, data, len, \ 621 IMS_PCU_RSP_##code, \ 622 IMS_PCU_CMD_RESPONSE_TIMEOUT) 623 624 #define ims_pcu_execute_query(pcu, code) \ 625 ims_pcu_execute_command(pcu, code, NULL, 0) 626 627 /* Bootloader commands */ 628 #define IMS_PCU_BL_CMD_QUERY_DEVICE 0xa1 629 #define IMS_PCU_BL_CMD_UNLOCK_CONFIG 0xa2 630 #define IMS_PCU_BL_CMD_ERASE_APP 0xa3 631 #define IMS_PCU_BL_CMD_PROGRAM_DEVICE 0xa4 632 #define IMS_PCU_BL_CMD_PROGRAM_COMPLETE 0xa5 633 #define IMS_PCU_BL_CMD_READ_APP 0xa6 634 #define IMS_PCU_BL_CMD_RESET_DEVICE 0xa7 635 #define IMS_PCU_BL_CMD_LAUNCH_APP 0xa8 636 637 /* Bootloader commands */ 638 #define IMS_PCU_BL_RSP_QUERY_DEVICE 0xc1 639 #define IMS_PCU_BL_RSP_UNLOCK_CONFIG 0xc2 640 #define IMS_PCU_BL_RSP_ERASE_APP 0xc3 641 #define IMS_PCU_BL_RSP_PROGRAM_DEVICE 0xc4 642 #define IMS_PCU_BL_RSP_PROGRAM_COMPLETE 0xc5 643 #define IMS_PCU_BL_RSP_READ_APP 0xc6 644 #define IMS_PCU_BL_RSP_RESET_DEVICE 0 /* originally 0xa7 */ 645 #define IMS_PCU_BL_RSP_LAUNCH_APP 0 /* originally 0xa8 */ 646 647 #define IMS_PCU_BL_DATA_OFFSET 3 648 649 static int __ims_pcu_execute_bl_command(struct ims_pcu *pcu, 650 u8 command, const void *data, size_t len, 651 u8 expected_response, int response_time) 652 { 653 int error; 654 655 pcu->cmd_buf[0] = command; 656 if (data) 657 memcpy(&pcu->cmd_buf[1], data, len); 658 659 error = __ims_pcu_execute_command(pcu, 660 IMS_PCU_CMD_BOOTLOADER, pcu->cmd_buf, len + 1, 661 expected_response ? IMS_PCU_RSP_BOOTLOADER : 0, 662 response_time); 663 if (error) { 664 dev_err(pcu->dev, 665 "Failure when sending 0x%02x command to bootloader, error: %d\n", 666 pcu->cmd_buf[0], error); 667 return error; 668 } 669 670 if (expected_response && pcu->cmd_buf[2] != expected_response) { 671 dev_err(pcu->dev, 672 "Unexpected response from bootloader: 0x%02x, wanted 0x%02x\n", 673 pcu->cmd_buf[2], expected_response); 674 return -EINVAL; 675 } 676 677 return 0; 678 } 679 680 #define ims_pcu_execute_bl_command(pcu, code, data, len, timeout) \ 681 __ims_pcu_execute_bl_command(pcu, \ 682 IMS_PCU_BL_CMD_##code, data, len, \ 683 IMS_PCU_BL_RSP_##code, timeout) \ 684 685 #define IMS_PCU_INFO_PART_OFFSET 2 686 #define IMS_PCU_INFO_DOM_OFFSET 17 687 #define IMS_PCU_INFO_SERIAL_OFFSET 25 688 689 #define IMS_PCU_SET_INFO_SIZE 31 690 691 static int ims_pcu_get_info(struct ims_pcu *pcu) 692 { 693 int error; 694 695 error = ims_pcu_execute_query(pcu, GET_INFO); 696 if (error) { 697 dev_err(pcu->dev, 698 "GET_INFO command failed, error: %d\n", error); 699 return error; 700 } 701 702 memcpy(pcu->part_number, 703 &pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET], 704 sizeof(pcu->part_number)); 705 memcpy(pcu->date_of_manufacturing, 706 &pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET], 707 sizeof(pcu->date_of_manufacturing)); 708 memcpy(pcu->serial_number, 709 &pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET], 710 sizeof(pcu->serial_number)); 711 712 return 0; 713 } 714 715 static int ims_pcu_set_info(struct ims_pcu *pcu) 716 { 717 int error; 718 719 memcpy(&pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET], 720 pcu->part_number, sizeof(pcu->part_number)); 721 memcpy(&pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET], 722 pcu->date_of_manufacturing, sizeof(pcu->date_of_manufacturing)); 723 memcpy(&pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET], 724 pcu->serial_number, sizeof(pcu->serial_number)); 725 726 error = ims_pcu_execute_command(pcu, SET_INFO, 727 &pcu->cmd_buf[IMS_PCU_DATA_OFFSET], 728 IMS_PCU_SET_INFO_SIZE); 729 if (error) { 730 dev_err(pcu->dev, 731 "Failed to update device information, error: %d\n", 732 error); 733 return error; 734 } 735 736 return 0; 737 } 738 739 static int ims_pcu_switch_to_bootloader(struct ims_pcu *pcu) 740 { 741 int error; 742 743 /* Execute jump to the bootoloader */ 744 error = ims_pcu_execute_command(pcu, JUMP_TO_BTLDR, NULL, 0); 745 if (error) { 746 dev_err(pcu->dev, 747 "Failure when sending JUMP TO BOOTLOADER command, error: %d\n", 748 error); 749 return error; 750 } 751 752 return 0; 753 } 754 755 /********************************************************************* 756 * Firmware Update handling * 757 *********************************************************************/ 758 759 #define IMS_PCU_FIRMWARE_NAME "imspcu.fw" 760 761 struct ims_pcu_flash_fmt { 762 __le32 addr; 763 u8 len; 764 u8 data[]; 765 }; 766 767 static unsigned int ims_pcu_count_fw_records(const struct firmware *fw) 768 { 769 const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data; 770 unsigned int count = 0; 771 772 while (rec) { 773 count++; 774 rec = ihex_next_binrec(rec); 775 } 776 777 return count; 778 } 779 780 static int ims_pcu_verify_block(struct ims_pcu *pcu, 781 u32 addr, u8 len, const u8 *data) 782 { 783 struct ims_pcu_flash_fmt *fragment; 784 int error; 785 786 fragment = (void *)&pcu->cmd_buf[1]; 787 put_unaligned_le32(addr, &fragment->addr); 788 fragment->len = len; 789 790 error = ims_pcu_execute_bl_command(pcu, READ_APP, NULL, 5, 791 IMS_PCU_CMD_RESPONSE_TIMEOUT); 792 if (error) { 793 dev_err(pcu->dev, 794 "Failed to retrieve block at 0x%08x, len %d, error: %d\n", 795 addr, len, error); 796 return error; 797 } 798 799 fragment = (void *)&pcu->cmd_buf[IMS_PCU_BL_DATA_OFFSET]; 800 if (get_unaligned_le32(&fragment->addr) != addr || 801 fragment->len != len) { 802 dev_err(pcu->dev, 803 "Wrong block when retrieving 0x%08x (0x%08x), len %d (%d)\n", 804 addr, get_unaligned_le32(&fragment->addr), 805 len, fragment->len); 806 return -EINVAL; 807 } 808 809 if (memcmp(fragment->data, data, len)) { 810 dev_err(pcu->dev, 811 "Mismatch in block at 0x%08x, len %d\n", 812 addr, len); 813 return -EINVAL; 814 } 815 816 return 0; 817 } 818 819 static int ims_pcu_flash_firmware(struct ims_pcu *pcu, 820 const struct firmware *fw, 821 unsigned int n_fw_records) 822 { 823 const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data; 824 struct ims_pcu_flash_fmt *fragment; 825 unsigned int count = 0; 826 u32 addr; 827 u8 len; 828 int error; 829 830 error = ims_pcu_execute_bl_command(pcu, ERASE_APP, NULL, 0, 2000); 831 if (error) { 832 dev_err(pcu->dev, 833 "Failed to erase application image, error: %d\n", 834 error); 835 return error; 836 } 837 838 while (rec) { 839 /* 840 * The firmware format is messed up for some reason. 841 * The address twice that of what is needed for some 842 * reason and we end up overwriting half of the data 843 * with the next record. 844 */ 845 addr = be32_to_cpu(rec->addr) / 2; 846 len = be16_to_cpu(rec->len); 847 848 fragment = (void *)&pcu->cmd_buf[1]; 849 put_unaligned_le32(addr, &fragment->addr); 850 fragment->len = len; 851 memcpy(fragment->data, rec->data, len); 852 853 error = ims_pcu_execute_bl_command(pcu, PROGRAM_DEVICE, 854 NULL, len + 5, 855 IMS_PCU_CMD_RESPONSE_TIMEOUT); 856 if (error) { 857 dev_err(pcu->dev, 858 "Failed to write block at 0x%08x, len %d, error: %d\n", 859 addr, len, error); 860 return error; 861 } 862 863 if (addr >= pcu->fw_start_addr && addr < pcu->fw_end_addr) { 864 error = ims_pcu_verify_block(pcu, addr, len, rec->data); 865 if (error) 866 return error; 867 } 868 869 count++; 870 pcu->update_firmware_status = (count * 100) / n_fw_records; 871 872 rec = ihex_next_binrec(rec); 873 } 874 875 error = ims_pcu_execute_bl_command(pcu, PROGRAM_COMPLETE, 876 NULL, 0, 2000); 877 if (error) 878 dev_err(pcu->dev, 879 "Failed to send PROGRAM_COMPLETE, error: %d\n", 880 error); 881 882 return 0; 883 } 884 885 static int ims_pcu_handle_firmware_update(struct ims_pcu *pcu, 886 const struct firmware *fw) 887 { 888 unsigned int n_fw_records; 889 int retval; 890 891 dev_info(pcu->dev, "Updating firmware %s, size: %zu\n", 892 IMS_PCU_FIRMWARE_NAME, fw->size); 893 894 n_fw_records = ims_pcu_count_fw_records(fw); 895 896 retval = ims_pcu_flash_firmware(pcu, fw, n_fw_records); 897 if (retval) 898 goto out; 899 900 retval = ims_pcu_execute_bl_command(pcu, LAUNCH_APP, NULL, 0, 0); 901 if (retval) 902 dev_err(pcu->dev, 903 "Failed to start application image, error: %d\n", 904 retval); 905 906 out: 907 pcu->update_firmware_status = retval; 908 sysfs_notify(&pcu->dev->kobj, NULL, "update_firmware_status"); 909 return retval; 910 } 911 912 static void ims_pcu_process_async_firmware(const struct firmware *fw, 913 void *context) 914 { 915 struct ims_pcu *pcu = context; 916 int error; 917 918 if (!fw) { 919 dev_err(pcu->dev, "Failed to get firmware %s\n", 920 IMS_PCU_FIRMWARE_NAME); 921 goto out; 922 } 923 924 error = ihex_validate_fw(fw); 925 if (error) { 926 dev_err(pcu->dev, "Firmware %s is invalid\n", 927 IMS_PCU_FIRMWARE_NAME); 928 goto out; 929 } 930 931 mutex_lock(&pcu->cmd_mutex); 932 ims_pcu_handle_firmware_update(pcu, fw); 933 mutex_unlock(&pcu->cmd_mutex); 934 935 release_firmware(fw); 936 937 out: 938 complete(&pcu->async_firmware_done); 939 } 940 941 /********************************************************************* 942 * Backlight LED device support * 943 *********************************************************************/ 944 945 #define IMS_PCU_MAX_BRIGHTNESS 31998 946 947 static int ims_pcu_backlight_set_brightness(struct led_classdev *cdev, 948 enum led_brightness value) 949 { 950 struct ims_pcu_backlight *backlight = 951 container_of(cdev, struct ims_pcu_backlight, cdev); 952 struct ims_pcu *pcu = 953 container_of(backlight, struct ims_pcu, backlight); 954 __le16 br_val = cpu_to_le16(value); 955 int error; 956 957 mutex_lock(&pcu->cmd_mutex); 958 959 error = ims_pcu_execute_command(pcu, SET_BRIGHTNESS, 960 &br_val, sizeof(br_val)); 961 if (error && error != -ENODEV) 962 dev_warn(pcu->dev, 963 "Failed to set desired brightness %u, error: %d\n", 964 value, error); 965 966 mutex_unlock(&pcu->cmd_mutex); 967 968 return error; 969 } 970 971 static enum led_brightness 972 ims_pcu_backlight_get_brightness(struct led_classdev *cdev) 973 { 974 struct ims_pcu_backlight *backlight = 975 container_of(cdev, struct ims_pcu_backlight, cdev); 976 struct ims_pcu *pcu = 977 container_of(backlight, struct ims_pcu, backlight); 978 int brightness; 979 int error; 980 981 mutex_lock(&pcu->cmd_mutex); 982 983 error = ims_pcu_execute_query(pcu, GET_BRIGHTNESS); 984 if (error) { 985 dev_warn(pcu->dev, 986 "Failed to get current brightness, error: %d\n", 987 error); 988 /* Assume the LED is OFF */ 989 brightness = LED_OFF; 990 } else { 991 brightness = 992 get_unaligned_le16(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET]); 993 } 994 995 mutex_unlock(&pcu->cmd_mutex); 996 997 return brightness; 998 } 999 1000 static int ims_pcu_setup_backlight(struct ims_pcu *pcu) 1001 { 1002 struct ims_pcu_backlight *backlight = &pcu->backlight; 1003 int error; 1004 1005 snprintf(backlight->name, sizeof(backlight->name), 1006 "pcu%d::kbd_backlight", pcu->device_no); 1007 1008 backlight->cdev.name = backlight->name; 1009 backlight->cdev.max_brightness = IMS_PCU_MAX_BRIGHTNESS; 1010 backlight->cdev.brightness_get = ims_pcu_backlight_get_brightness; 1011 backlight->cdev.brightness_set_blocking = 1012 ims_pcu_backlight_set_brightness; 1013 1014 error = led_classdev_register(pcu->dev, &backlight->cdev); 1015 if (error) { 1016 dev_err(pcu->dev, 1017 "Failed to register backlight LED device, error: %d\n", 1018 error); 1019 return error; 1020 } 1021 1022 return 0; 1023 } 1024 1025 static void ims_pcu_destroy_backlight(struct ims_pcu *pcu) 1026 { 1027 struct ims_pcu_backlight *backlight = &pcu->backlight; 1028 1029 led_classdev_unregister(&backlight->cdev); 1030 } 1031 1032 1033 /********************************************************************* 1034 * Sysfs attributes handling * 1035 *********************************************************************/ 1036 1037 struct ims_pcu_attribute { 1038 struct device_attribute dattr; 1039 size_t field_offset; 1040 int field_length; 1041 }; 1042 1043 static ssize_t ims_pcu_attribute_show(struct device *dev, 1044 struct device_attribute *dattr, 1045 char *buf) 1046 { 1047 struct usb_interface *intf = to_usb_interface(dev); 1048 struct ims_pcu *pcu = usb_get_intfdata(intf); 1049 struct ims_pcu_attribute *attr = 1050 container_of(dattr, struct ims_pcu_attribute, dattr); 1051 char *field = (char *)pcu + attr->field_offset; 1052 1053 return sysfs_emit(buf, "%.*s\n", attr->field_length, field); 1054 } 1055 1056 static ssize_t ims_pcu_attribute_store(struct device *dev, 1057 struct device_attribute *dattr, 1058 const char *buf, size_t count) 1059 { 1060 1061 struct usb_interface *intf = to_usb_interface(dev); 1062 struct ims_pcu *pcu = usb_get_intfdata(intf); 1063 struct ims_pcu_attribute *attr = 1064 container_of(dattr, struct ims_pcu_attribute, dattr); 1065 char *field = (char *)pcu + attr->field_offset; 1066 size_t data_len; 1067 int error; 1068 1069 if (count > attr->field_length) 1070 return -EINVAL; 1071 1072 data_len = strnlen(buf, attr->field_length); 1073 if (data_len > attr->field_length) 1074 return -EINVAL; 1075 1076 error = mutex_lock_interruptible(&pcu->cmd_mutex); 1077 if (error) 1078 return error; 1079 1080 memset(field, 0, attr->field_length); 1081 memcpy(field, buf, data_len); 1082 1083 error = ims_pcu_set_info(pcu); 1084 1085 /* 1086 * Even if update failed, let's fetch the info again as we just 1087 * clobbered one of the fields. 1088 */ 1089 ims_pcu_get_info(pcu); 1090 1091 mutex_unlock(&pcu->cmd_mutex); 1092 1093 return error < 0 ? error : count; 1094 } 1095 1096 #define IMS_PCU_ATTR(_field, _mode) \ 1097 struct ims_pcu_attribute ims_pcu_attr_##_field = { \ 1098 .dattr = __ATTR(_field, _mode, \ 1099 ims_pcu_attribute_show, \ 1100 ims_pcu_attribute_store), \ 1101 .field_offset = offsetof(struct ims_pcu, _field), \ 1102 .field_length = sizeof(((struct ims_pcu *)NULL)->_field), \ 1103 } 1104 1105 #define IMS_PCU_RO_ATTR(_field) \ 1106 IMS_PCU_ATTR(_field, S_IRUGO) 1107 #define IMS_PCU_RW_ATTR(_field) \ 1108 IMS_PCU_ATTR(_field, S_IRUGO | S_IWUSR) 1109 1110 static IMS_PCU_RW_ATTR(part_number); 1111 static IMS_PCU_RW_ATTR(serial_number); 1112 static IMS_PCU_RW_ATTR(date_of_manufacturing); 1113 1114 static IMS_PCU_RO_ATTR(fw_version); 1115 static IMS_PCU_RO_ATTR(bl_version); 1116 static IMS_PCU_RO_ATTR(reset_reason); 1117 1118 static ssize_t ims_pcu_reset_device(struct device *dev, 1119 struct device_attribute *dattr, 1120 const char *buf, size_t count) 1121 { 1122 static const u8 reset_byte = 1; 1123 struct usb_interface *intf = to_usb_interface(dev); 1124 struct ims_pcu *pcu = usb_get_intfdata(intf); 1125 int value; 1126 int error; 1127 1128 error = kstrtoint(buf, 0, &value); 1129 if (error) 1130 return error; 1131 1132 if (value != 1) 1133 return -EINVAL; 1134 1135 dev_info(pcu->dev, "Attempting to reset device\n"); 1136 1137 error = ims_pcu_execute_command(pcu, PCU_RESET, &reset_byte, 1); 1138 if (error) { 1139 dev_info(pcu->dev, 1140 "Failed to reset device, error: %d\n", 1141 error); 1142 return error; 1143 } 1144 1145 return count; 1146 } 1147 1148 static DEVICE_ATTR(reset_device, S_IWUSR, NULL, ims_pcu_reset_device); 1149 1150 static ssize_t ims_pcu_update_firmware_store(struct device *dev, 1151 struct device_attribute *dattr, 1152 const char *buf, size_t count) 1153 { 1154 struct usb_interface *intf = to_usb_interface(dev); 1155 struct ims_pcu *pcu = usb_get_intfdata(intf); 1156 const struct firmware *fw = NULL; 1157 int value; 1158 int error; 1159 1160 error = kstrtoint(buf, 0, &value); 1161 if (error) 1162 return error; 1163 1164 if (value != 1) 1165 return -EINVAL; 1166 1167 error = mutex_lock_interruptible(&pcu->cmd_mutex); 1168 if (error) 1169 return error; 1170 1171 error = request_ihex_firmware(&fw, IMS_PCU_FIRMWARE_NAME, pcu->dev); 1172 if (error) { 1173 dev_err(pcu->dev, "Failed to request firmware %s, error: %d\n", 1174 IMS_PCU_FIRMWARE_NAME, error); 1175 goto out; 1176 } 1177 1178 /* 1179 * If we are already in bootloader mode we can proceed with 1180 * flashing the firmware. 1181 * 1182 * If we are in application mode, then we need to switch into 1183 * bootloader mode, which will cause the device to disconnect 1184 * and reconnect as different device. 1185 */ 1186 if (pcu->bootloader_mode) 1187 error = ims_pcu_handle_firmware_update(pcu, fw); 1188 else 1189 error = ims_pcu_switch_to_bootloader(pcu); 1190 1191 release_firmware(fw); 1192 1193 out: 1194 mutex_unlock(&pcu->cmd_mutex); 1195 return error ?: count; 1196 } 1197 1198 static DEVICE_ATTR(update_firmware, S_IWUSR, 1199 NULL, ims_pcu_update_firmware_store); 1200 1201 static ssize_t 1202 ims_pcu_update_firmware_status_show(struct device *dev, 1203 struct device_attribute *dattr, 1204 char *buf) 1205 { 1206 struct usb_interface *intf = to_usb_interface(dev); 1207 struct ims_pcu *pcu = usb_get_intfdata(intf); 1208 1209 return sysfs_emit(buf, "%d\n", pcu->update_firmware_status); 1210 } 1211 1212 static DEVICE_ATTR(update_firmware_status, S_IRUGO, 1213 ims_pcu_update_firmware_status_show, NULL); 1214 1215 static struct attribute *ims_pcu_attrs[] = { 1216 &ims_pcu_attr_part_number.dattr.attr, 1217 &ims_pcu_attr_serial_number.dattr.attr, 1218 &ims_pcu_attr_date_of_manufacturing.dattr.attr, 1219 &ims_pcu_attr_fw_version.dattr.attr, 1220 &ims_pcu_attr_bl_version.dattr.attr, 1221 &ims_pcu_attr_reset_reason.dattr.attr, 1222 &dev_attr_reset_device.attr, 1223 &dev_attr_update_firmware.attr, 1224 &dev_attr_update_firmware_status.attr, 1225 NULL 1226 }; 1227 1228 static umode_t ims_pcu_is_attr_visible(struct kobject *kobj, 1229 struct attribute *attr, int n) 1230 { 1231 struct device *dev = kobj_to_dev(kobj); 1232 struct usb_interface *intf = to_usb_interface(dev); 1233 struct ims_pcu *pcu = usb_get_intfdata(intf); 1234 umode_t mode = attr->mode; 1235 1236 if (pcu->bootloader_mode) { 1237 if (attr != &dev_attr_update_firmware_status.attr && 1238 attr != &dev_attr_update_firmware.attr && 1239 attr != &dev_attr_reset_device.attr) { 1240 mode = 0; 1241 } 1242 } else { 1243 if (attr == &dev_attr_update_firmware_status.attr) 1244 mode = 0; 1245 } 1246 1247 return mode; 1248 } 1249 1250 static const struct attribute_group ims_pcu_attr_group = { 1251 .is_visible = ims_pcu_is_attr_visible, 1252 .attrs = ims_pcu_attrs, 1253 }; 1254 1255 /* Support for a separate OFN attribute group */ 1256 1257 #define OFN_REG_RESULT_OFFSET 2 1258 1259 static int ims_pcu_read_ofn_config(struct ims_pcu *pcu, u8 addr, u8 *data) 1260 { 1261 int error; 1262 s16 result; 1263 1264 error = ims_pcu_execute_command(pcu, OFN_GET_CONFIG, 1265 &addr, sizeof(addr)); 1266 if (error) 1267 return error; 1268 1269 result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET); 1270 if (result < 0) 1271 return -EIO; 1272 1273 /* We only need LSB */ 1274 *data = pcu->cmd_buf[OFN_REG_RESULT_OFFSET]; 1275 return 0; 1276 } 1277 1278 static int ims_pcu_write_ofn_config(struct ims_pcu *pcu, u8 addr, u8 data) 1279 { 1280 u8 buffer[] = { addr, data }; 1281 int error; 1282 s16 result; 1283 1284 error = ims_pcu_execute_command(pcu, OFN_SET_CONFIG, 1285 &buffer, sizeof(buffer)); 1286 if (error) 1287 return error; 1288 1289 result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET); 1290 if (result < 0) 1291 return -EIO; 1292 1293 return 0; 1294 } 1295 1296 static ssize_t ims_pcu_ofn_reg_data_show(struct device *dev, 1297 struct device_attribute *dattr, 1298 char *buf) 1299 { 1300 struct usb_interface *intf = to_usb_interface(dev); 1301 struct ims_pcu *pcu = usb_get_intfdata(intf); 1302 int error; 1303 u8 data; 1304 1305 mutex_lock(&pcu->cmd_mutex); 1306 error = ims_pcu_read_ofn_config(pcu, pcu->ofn_reg_addr, &data); 1307 mutex_unlock(&pcu->cmd_mutex); 1308 1309 if (error) 1310 return error; 1311 1312 return sysfs_emit(buf, "%x\n", data); 1313 } 1314 1315 static ssize_t ims_pcu_ofn_reg_data_store(struct device *dev, 1316 struct device_attribute *dattr, 1317 const char *buf, size_t count) 1318 { 1319 struct usb_interface *intf = to_usb_interface(dev); 1320 struct ims_pcu *pcu = usb_get_intfdata(intf); 1321 int error; 1322 u8 value; 1323 1324 error = kstrtou8(buf, 0, &value); 1325 if (error) 1326 return error; 1327 1328 mutex_lock(&pcu->cmd_mutex); 1329 error = ims_pcu_write_ofn_config(pcu, pcu->ofn_reg_addr, value); 1330 mutex_unlock(&pcu->cmd_mutex); 1331 1332 return error ?: count; 1333 } 1334 1335 static DEVICE_ATTR(reg_data, S_IRUGO | S_IWUSR, 1336 ims_pcu_ofn_reg_data_show, ims_pcu_ofn_reg_data_store); 1337 1338 static ssize_t ims_pcu_ofn_reg_addr_show(struct device *dev, 1339 struct device_attribute *dattr, 1340 char *buf) 1341 { 1342 struct usb_interface *intf = to_usb_interface(dev); 1343 struct ims_pcu *pcu = usb_get_intfdata(intf); 1344 int error; 1345 1346 mutex_lock(&pcu->cmd_mutex); 1347 error = sysfs_emit(buf, "%x\n", pcu->ofn_reg_addr); 1348 mutex_unlock(&pcu->cmd_mutex); 1349 1350 return error; 1351 } 1352 1353 static ssize_t ims_pcu_ofn_reg_addr_store(struct device *dev, 1354 struct device_attribute *dattr, 1355 const char *buf, size_t count) 1356 { 1357 struct usb_interface *intf = to_usb_interface(dev); 1358 struct ims_pcu *pcu = usb_get_intfdata(intf); 1359 int error; 1360 u8 value; 1361 1362 error = kstrtou8(buf, 0, &value); 1363 if (error) 1364 return error; 1365 1366 mutex_lock(&pcu->cmd_mutex); 1367 pcu->ofn_reg_addr = value; 1368 mutex_unlock(&pcu->cmd_mutex); 1369 1370 return count; 1371 } 1372 1373 static DEVICE_ATTR(reg_addr, S_IRUGO | S_IWUSR, 1374 ims_pcu_ofn_reg_addr_show, ims_pcu_ofn_reg_addr_store); 1375 1376 struct ims_pcu_ofn_bit_attribute { 1377 struct device_attribute dattr; 1378 u8 addr; 1379 u8 nr; 1380 }; 1381 1382 static ssize_t ims_pcu_ofn_bit_show(struct device *dev, 1383 struct device_attribute *dattr, 1384 char *buf) 1385 { 1386 struct usb_interface *intf = to_usb_interface(dev); 1387 struct ims_pcu *pcu = usb_get_intfdata(intf); 1388 struct ims_pcu_ofn_bit_attribute *attr = 1389 container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr); 1390 int error; 1391 u8 data; 1392 1393 mutex_lock(&pcu->cmd_mutex); 1394 error = ims_pcu_read_ofn_config(pcu, attr->addr, &data); 1395 mutex_unlock(&pcu->cmd_mutex); 1396 1397 if (error) 1398 return error; 1399 1400 return sysfs_emit(buf, "%d\n", !!(data & (1 << attr->nr))); 1401 } 1402 1403 static ssize_t ims_pcu_ofn_bit_store(struct device *dev, 1404 struct device_attribute *dattr, 1405 const char *buf, size_t count) 1406 { 1407 struct usb_interface *intf = to_usb_interface(dev); 1408 struct ims_pcu *pcu = usb_get_intfdata(intf); 1409 struct ims_pcu_ofn_bit_attribute *attr = 1410 container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr); 1411 int error; 1412 int value; 1413 u8 data; 1414 1415 error = kstrtoint(buf, 0, &value); 1416 if (error) 1417 return error; 1418 1419 if (value > 1) 1420 return -EINVAL; 1421 1422 mutex_lock(&pcu->cmd_mutex); 1423 1424 error = ims_pcu_read_ofn_config(pcu, attr->addr, &data); 1425 if (!error) { 1426 if (value) 1427 data |= 1U << attr->nr; 1428 else 1429 data &= ~(1U << attr->nr); 1430 1431 error = ims_pcu_write_ofn_config(pcu, attr->addr, data); 1432 } 1433 1434 mutex_unlock(&pcu->cmd_mutex); 1435 1436 return error ?: count; 1437 } 1438 1439 #define IMS_PCU_OFN_BIT_ATTR(_field, _addr, _nr) \ 1440 struct ims_pcu_ofn_bit_attribute ims_pcu_ofn_attr_##_field = { \ 1441 .dattr = __ATTR(_field, S_IWUSR | S_IRUGO, \ 1442 ims_pcu_ofn_bit_show, ims_pcu_ofn_bit_store), \ 1443 .addr = _addr, \ 1444 .nr = _nr, \ 1445 } 1446 1447 static IMS_PCU_OFN_BIT_ATTR(engine_enable, 0x60, 7); 1448 static IMS_PCU_OFN_BIT_ATTR(speed_enable, 0x60, 6); 1449 static IMS_PCU_OFN_BIT_ATTR(assert_enable, 0x60, 5); 1450 static IMS_PCU_OFN_BIT_ATTR(xyquant_enable, 0x60, 4); 1451 static IMS_PCU_OFN_BIT_ATTR(xyscale_enable, 0x60, 1); 1452 1453 static IMS_PCU_OFN_BIT_ATTR(scale_x2, 0x63, 6); 1454 static IMS_PCU_OFN_BIT_ATTR(scale_y2, 0x63, 7); 1455 1456 static struct attribute *ims_pcu_ofn_attrs[] = { 1457 &dev_attr_reg_data.attr, 1458 &dev_attr_reg_addr.attr, 1459 &ims_pcu_ofn_attr_engine_enable.dattr.attr, 1460 &ims_pcu_ofn_attr_speed_enable.dattr.attr, 1461 &ims_pcu_ofn_attr_assert_enable.dattr.attr, 1462 &ims_pcu_ofn_attr_xyquant_enable.dattr.attr, 1463 &ims_pcu_ofn_attr_xyscale_enable.dattr.attr, 1464 &ims_pcu_ofn_attr_scale_x2.dattr.attr, 1465 &ims_pcu_ofn_attr_scale_y2.dattr.attr, 1466 NULL 1467 }; 1468 1469 static const struct attribute_group ims_pcu_ofn_attr_group = { 1470 .name = "ofn", 1471 .attrs = ims_pcu_ofn_attrs, 1472 }; 1473 1474 static void ims_pcu_irq(struct urb *urb) 1475 { 1476 struct ims_pcu *pcu = urb->context; 1477 int retval, status; 1478 1479 status = urb->status; 1480 1481 switch (status) { 1482 case 0: 1483 /* success */ 1484 break; 1485 case -ECONNRESET: 1486 case -ENOENT: 1487 case -ESHUTDOWN: 1488 /* this urb is terminated, clean up */ 1489 dev_dbg(pcu->dev, "%s - urb shutting down with status: %d\n", 1490 __func__, status); 1491 return; 1492 default: 1493 dev_dbg(pcu->dev, "%s - nonzero urb status received: %d\n", 1494 __func__, status); 1495 goto exit; 1496 } 1497 1498 dev_dbg(pcu->dev, "%s: received %d: %*ph\n", __func__, 1499 urb->actual_length, urb->actual_length, pcu->urb_in_buf); 1500 1501 if (urb == pcu->urb_in) 1502 ims_pcu_process_data(pcu, urb); 1503 1504 exit: 1505 retval = usb_submit_urb(urb, GFP_ATOMIC); 1506 if (retval && retval != -ENODEV) 1507 dev_err(pcu->dev, "%s - usb_submit_urb failed with result %d\n", 1508 __func__, retval); 1509 } 1510 1511 static int ims_pcu_buffers_alloc(struct ims_pcu *pcu) 1512 { 1513 int error; 1514 1515 pcu->urb_in_buf = usb_alloc_coherent(pcu->udev, pcu->max_in_size, 1516 GFP_KERNEL, &pcu->read_dma); 1517 if (!pcu->urb_in_buf) { 1518 dev_err(pcu->dev, 1519 "Failed to allocate memory for read buffer\n"); 1520 return -ENOMEM; 1521 } 1522 1523 pcu->urb_in = usb_alloc_urb(0, GFP_KERNEL); 1524 if (!pcu->urb_in) { 1525 dev_err(pcu->dev, "Failed to allocate input URB\n"); 1526 error = -ENOMEM; 1527 goto err_free_urb_in_buf; 1528 } 1529 1530 pcu->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 1531 pcu->urb_in->transfer_dma = pcu->read_dma; 1532 1533 usb_fill_bulk_urb(pcu->urb_in, pcu->udev, 1534 usb_rcvbulkpipe(pcu->udev, 1535 pcu->ep_in->bEndpointAddress), 1536 pcu->urb_in_buf, pcu->max_in_size, 1537 ims_pcu_irq, pcu); 1538 1539 /* 1540 * We are using usb_bulk_msg() for sending so there is no point 1541 * in allocating memory with usb_alloc_coherent(). 1542 */ 1543 pcu->urb_out_buf = kmalloc(pcu->max_out_size, GFP_KERNEL); 1544 if (!pcu->urb_out_buf) { 1545 dev_err(pcu->dev, "Failed to allocate memory for write buffer\n"); 1546 error = -ENOMEM; 1547 goto err_free_in_urb; 1548 } 1549 1550 pcu->urb_ctrl_buf = usb_alloc_coherent(pcu->udev, pcu->max_ctrl_size, 1551 GFP_KERNEL, &pcu->ctrl_dma); 1552 if (!pcu->urb_ctrl_buf) { 1553 dev_err(pcu->dev, 1554 "Failed to allocate memory for read buffer\n"); 1555 error = -ENOMEM; 1556 goto err_free_urb_out_buf; 1557 } 1558 1559 pcu->urb_ctrl = usb_alloc_urb(0, GFP_KERNEL); 1560 if (!pcu->urb_ctrl) { 1561 dev_err(pcu->dev, "Failed to allocate input URB\n"); 1562 error = -ENOMEM; 1563 goto err_free_urb_ctrl_buf; 1564 } 1565 1566 pcu->urb_ctrl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 1567 pcu->urb_ctrl->transfer_dma = pcu->ctrl_dma; 1568 1569 usb_fill_int_urb(pcu->urb_ctrl, pcu->udev, 1570 usb_rcvintpipe(pcu->udev, 1571 pcu->ep_ctrl->bEndpointAddress), 1572 pcu->urb_ctrl_buf, pcu->max_ctrl_size, 1573 ims_pcu_irq, pcu, pcu->ep_ctrl->bInterval); 1574 1575 return 0; 1576 1577 err_free_urb_ctrl_buf: 1578 usb_free_coherent(pcu->udev, pcu->max_ctrl_size, 1579 pcu->urb_ctrl_buf, pcu->ctrl_dma); 1580 err_free_urb_out_buf: 1581 kfree(pcu->urb_out_buf); 1582 err_free_in_urb: 1583 usb_free_urb(pcu->urb_in); 1584 err_free_urb_in_buf: 1585 usb_free_coherent(pcu->udev, pcu->max_in_size, 1586 pcu->urb_in_buf, pcu->read_dma); 1587 return error; 1588 } 1589 1590 static void ims_pcu_buffers_free(struct ims_pcu *pcu) 1591 { 1592 usb_kill_urb(pcu->urb_in); 1593 usb_free_urb(pcu->urb_in); 1594 1595 usb_free_coherent(pcu->udev, pcu->max_out_size, 1596 pcu->urb_in_buf, pcu->read_dma); 1597 1598 kfree(pcu->urb_out_buf); 1599 1600 usb_kill_urb(pcu->urb_ctrl); 1601 usb_free_urb(pcu->urb_ctrl); 1602 1603 usb_free_coherent(pcu->udev, pcu->max_ctrl_size, 1604 pcu->urb_ctrl_buf, pcu->ctrl_dma); 1605 } 1606 1607 static const struct usb_cdc_union_desc * 1608 ims_pcu_get_cdc_union_desc(struct usb_interface *intf) 1609 { 1610 const void *buf = intf->altsetting->extra; 1611 size_t buflen = intf->altsetting->extralen; 1612 struct usb_cdc_union_desc *union_desc; 1613 1614 if (!buf) { 1615 dev_err(&intf->dev, "Missing descriptor data\n"); 1616 return NULL; 1617 } 1618 1619 if (!buflen) { 1620 dev_err(&intf->dev, "Zero length descriptor\n"); 1621 return NULL; 1622 } 1623 1624 while (buflen >= sizeof(*union_desc)) { 1625 union_desc = (struct usb_cdc_union_desc *)buf; 1626 1627 if (union_desc->bLength > buflen) { 1628 dev_err(&intf->dev, "Too large descriptor\n"); 1629 return NULL; 1630 } 1631 1632 if (union_desc->bDescriptorType == USB_DT_CS_INTERFACE && 1633 union_desc->bDescriptorSubType == USB_CDC_UNION_TYPE) { 1634 dev_dbg(&intf->dev, "Found union header\n"); 1635 1636 if (union_desc->bLength >= sizeof(*union_desc)) 1637 return union_desc; 1638 1639 dev_err(&intf->dev, 1640 "Union descriptor too short (%d vs %zd)\n", 1641 union_desc->bLength, sizeof(*union_desc)); 1642 return NULL; 1643 } 1644 1645 buflen -= union_desc->bLength; 1646 buf += union_desc->bLength; 1647 } 1648 1649 dev_err(&intf->dev, "Missing CDC union descriptor\n"); 1650 return NULL; 1651 } 1652 1653 static int ims_pcu_parse_cdc_data(struct usb_interface *intf, struct ims_pcu *pcu) 1654 { 1655 const struct usb_cdc_union_desc *union_desc; 1656 struct usb_host_interface *alt; 1657 1658 union_desc = ims_pcu_get_cdc_union_desc(intf); 1659 if (!union_desc) 1660 return -EINVAL; 1661 1662 pcu->ctrl_intf = usb_ifnum_to_if(pcu->udev, 1663 union_desc->bMasterInterface0); 1664 if (!pcu->ctrl_intf) 1665 return -EINVAL; 1666 1667 alt = pcu->ctrl_intf->cur_altsetting; 1668 1669 if (alt->desc.bNumEndpoints < 1) 1670 return -ENODEV; 1671 1672 pcu->ep_ctrl = &alt->endpoint[0].desc; 1673 pcu->max_ctrl_size = usb_endpoint_maxp(pcu->ep_ctrl); 1674 1675 pcu->data_intf = usb_ifnum_to_if(pcu->udev, 1676 union_desc->bSlaveInterface0); 1677 if (!pcu->data_intf) 1678 return -EINVAL; 1679 1680 alt = pcu->data_intf->cur_altsetting; 1681 if (alt->desc.bNumEndpoints != 2) { 1682 dev_err(pcu->dev, 1683 "Incorrect number of endpoints on data interface (%d)\n", 1684 alt->desc.bNumEndpoints); 1685 return -EINVAL; 1686 } 1687 1688 pcu->ep_out = &alt->endpoint[0].desc; 1689 if (!usb_endpoint_is_bulk_out(pcu->ep_out)) { 1690 dev_err(pcu->dev, 1691 "First endpoint on data interface is not BULK OUT\n"); 1692 return -EINVAL; 1693 } 1694 1695 pcu->max_out_size = usb_endpoint_maxp(pcu->ep_out); 1696 if (pcu->max_out_size < 8) { 1697 dev_err(pcu->dev, 1698 "Max OUT packet size is too small (%zd)\n", 1699 pcu->max_out_size); 1700 return -EINVAL; 1701 } 1702 1703 pcu->ep_in = &alt->endpoint[1].desc; 1704 if (!usb_endpoint_is_bulk_in(pcu->ep_in)) { 1705 dev_err(pcu->dev, 1706 "Second endpoint on data interface is not BULK IN\n"); 1707 return -EINVAL; 1708 } 1709 1710 pcu->max_in_size = usb_endpoint_maxp(pcu->ep_in); 1711 if (pcu->max_in_size < 8) { 1712 dev_err(pcu->dev, 1713 "Max IN packet size is too small (%zd)\n", 1714 pcu->max_in_size); 1715 return -EINVAL; 1716 } 1717 1718 return 0; 1719 } 1720 1721 static int ims_pcu_start_io(struct ims_pcu *pcu) 1722 { 1723 int error; 1724 1725 error = usb_submit_urb(pcu->urb_ctrl, GFP_KERNEL); 1726 if (error) { 1727 dev_err(pcu->dev, 1728 "Failed to start control IO - usb_submit_urb failed with result: %d\n", 1729 error); 1730 return -EIO; 1731 } 1732 1733 error = usb_submit_urb(pcu->urb_in, GFP_KERNEL); 1734 if (error) { 1735 dev_err(pcu->dev, 1736 "Failed to start IO - usb_submit_urb failed with result: %d\n", 1737 error); 1738 usb_kill_urb(pcu->urb_ctrl); 1739 return -EIO; 1740 } 1741 1742 return 0; 1743 } 1744 1745 static void ims_pcu_stop_io(struct ims_pcu *pcu) 1746 { 1747 usb_kill_urb(pcu->urb_in); 1748 usb_kill_urb(pcu->urb_ctrl); 1749 } 1750 1751 static int ims_pcu_line_setup(struct ims_pcu *pcu) 1752 { 1753 struct usb_host_interface *interface = pcu->ctrl_intf->cur_altsetting; 1754 struct usb_cdc_line_coding *line = (void *)pcu->cmd_buf; 1755 int error; 1756 1757 memset(line, 0, sizeof(*line)); 1758 line->dwDTERate = cpu_to_le32(57600); 1759 line->bDataBits = 8; 1760 1761 error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0), 1762 USB_CDC_REQ_SET_LINE_CODING, 1763 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1764 0, interface->desc.bInterfaceNumber, 1765 line, sizeof(struct usb_cdc_line_coding), 1766 5000); 1767 if (error < 0) { 1768 dev_err(pcu->dev, "Failed to set line coding, error: %d\n", 1769 error); 1770 return error; 1771 } 1772 1773 error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0), 1774 USB_CDC_REQ_SET_CONTROL_LINE_STATE, 1775 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1776 0x03, interface->desc.bInterfaceNumber, 1777 NULL, 0, 5000); 1778 if (error < 0) { 1779 dev_err(pcu->dev, "Failed to set line state, error: %d\n", 1780 error); 1781 return error; 1782 } 1783 1784 return 0; 1785 } 1786 1787 static int ims_pcu_get_device_info(struct ims_pcu *pcu) 1788 { 1789 int error; 1790 1791 error = ims_pcu_get_info(pcu); 1792 if (error) 1793 return error; 1794 1795 error = ims_pcu_execute_query(pcu, GET_FW_VERSION); 1796 if (error) { 1797 dev_err(pcu->dev, 1798 "GET_FW_VERSION command failed, error: %d\n", error); 1799 return error; 1800 } 1801 1802 snprintf(pcu->fw_version, sizeof(pcu->fw_version), 1803 "%02d%02d%02d%02d.%c%c", 1804 pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5], 1805 pcu->cmd_buf[6], pcu->cmd_buf[7]); 1806 1807 error = ims_pcu_execute_query(pcu, GET_BL_VERSION); 1808 if (error) { 1809 dev_err(pcu->dev, 1810 "GET_BL_VERSION command failed, error: %d\n", error); 1811 return error; 1812 } 1813 1814 snprintf(pcu->bl_version, sizeof(pcu->bl_version), 1815 "%02d%02d%02d%02d.%c%c", 1816 pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5], 1817 pcu->cmd_buf[6], pcu->cmd_buf[7]); 1818 1819 error = ims_pcu_execute_query(pcu, RESET_REASON); 1820 if (error) { 1821 dev_err(pcu->dev, 1822 "RESET_REASON command failed, error: %d\n", error); 1823 return error; 1824 } 1825 1826 snprintf(pcu->reset_reason, sizeof(pcu->reset_reason), 1827 "%02x", pcu->cmd_buf[IMS_PCU_DATA_OFFSET]); 1828 1829 dev_dbg(pcu->dev, 1830 "P/N: %s, MD: %s, S/N: %s, FW: %s, BL: %s, RR: %s\n", 1831 pcu->part_number, 1832 pcu->date_of_manufacturing, 1833 pcu->serial_number, 1834 pcu->fw_version, 1835 pcu->bl_version, 1836 pcu->reset_reason); 1837 1838 return 0; 1839 } 1840 1841 static int ims_pcu_identify_type(struct ims_pcu *pcu, u8 *device_id) 1842 { 1843 int error; 1844 1845 error = ims_pcu_execute_query(pcu, GET_DEVICE_ID); 1846 if (error) { 1847 dev_err(pcu->dev, 1848 "GET_DEVICE_ID command failed, error: %d\n", error); 1849 return error; 1850 } 1851 1852 *device_id = pcu->cmd_buf[IMS_PCU_DATA_OFFSET]; 1853 dev_dbg(pcu->dev, "Detected device ID: %d\n", *device_id); 1854 1855 return 0; 1856 } 1857 1858 static int ims_pcu_init_application_mode(struct ims_pcu *pcu) 1859 { 1860 static atomic_t device_no = ATOMIC_INIT(-1); 1861 1862 const struct ims_pcu_device_info *info; 1863 int error; 1864 1865 error = ims_pcu_get_device_info(pcu); 1866 if (error) { 1867 /* Device does not respond to basic queries, hopeless */ 1868 return error; 1869 } 1870 1871 error = ims_pcu_identify_type(pcu, &pcu->device_id); 1872 if (error) { 1873 dev_err(pcu->dev, 1874 "Failed to identify device, error: %d\n", error); 1875 /* 1876 * Do not signal error, but do not create input nor 1877 * backlight devices either, let userspace figure this 1878 * out (flash a new firmware?). 1879 */ 1880 return 0; 1881 } 1882 1883 if (pcu->device_id >= ARRAY_SIZE(ims_pcu_device_info) || 1884 !ims_pcu_device_info[pcu->device_id].keymap) { 1885 dev_err(pcu->dev, "Device ID %d is not valid\n", pcu->device_id); 1886 /* Same as above, punt to userspace */ 1887 return 0; 1888 } 1889 1890 /* Device appears to be operable, complete initialization */ 1891 pcu->device_no = atomic_inc_return(&device_no); 1892 1893 /* 1894 * PCU-B devices, both GEN_1 and GEN_2 do not have OFN sensor 1895 */ 1896 if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID) { 1897 error = sysfs_create_group(&pcu->dev->kobj, 1898 &ims_pcu_ofn_attr_group); 1899 if (error) 1900 return error; 1901 } 1902 1903 error = ims_pcu_setup_backlight(pcu); 1904 if (error) 1905 return error; 1906 1907 info = &ims_pcu_device_info[pcu->device_id]; 1908 error = ims_pcu_setup_buttons(pcu, info->keymap, info->keymap_len); 1909 if (error) 1910 goto err_destroy_backlight; 1911 1912 if (info->has_gamepad) { 1913 error = ims_pcu_setup_gamepad(pcu); 1914 if (error) 1915 goto err_destroy_buttons; 1916 } 1917 1918 pcu->setup_complete = true; 1919 1920 return 0; 1921 1922 err_destroy_buttons: 1923 ims_pcu_destroy_buttons(pcu); 1924 err_destroy_backlight: 1925 ims_pcu_destroy_backlight(pcu); 1926 return error; 1927 } 1928 1929 static void ims_pcu_destroy_application_mode(struct ims_pcu *pcu) 1930 { 1931 if (pcu->setup_complete) { 1932 pcu->setup_complete = false; 1933 mb(); /* make sure flag setting is not reordered */ 1934 1935 if (pcu->gamepad) 1936 ims_pcu_destroy_gamepad(pcu); 1937 ims_pcu_destroy_buttons(pcu); 1938 ims_pcu_destroy_backlight(pcu); 1939 1940 if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID) 1941 sysfs_remove_group(&pcu->dev->kobj, 1942 &ims_pcu_ofn_attr_group); 1943 } 1944 } 1945 1946 static int ims_pcu_init_bootloader_mode(struct ims_pcu *pcu) 1947 { 1948 int error; 1949 1950 error = ims_pcu_execute_bl_command(pcu, QUERY_DEVICE, NULL, 0, 1951 IMS_PCU_CMD_RESPONSE_TIMEOUT); 1952 if (error) { 1953 dev_err(pcu->dev, "Bootloader does not respond, aborting\n"); 1954 return error; 1955 } 1956 1957 pcu->fw_start_addr = 1958 get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 11]); 1959 pcu->fw_end_addr = 1960 get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 15]); 1961 1962 dev_info(pcu->dev, 1963 "Device is in bootloader mode (addr 0x%08x-0x%08x), requesting firmware\n", 1964 pcu->fw_start_addr, pcu->fw_end_addr); 1965 1966 error = request_firmware_nowait(THIS_MODULE, true, 1967 IMS_PCU_FIRMWARE_NAME, 1968 pcu->dev, GFP_KERNEL, pcu, 1969 ims_pcu_process_async_firmware); 1970 if (error) { 1971 /* This error is not fatal, let userspace have another chance */ 1972 complete(&pcu->async_firmware_done); 1973 } 1974 1975 return 0; 1976 } 1977 1978 static void ims_pcu_destroy_bootloader_mode(struct ims_pcu *pcu) 1979 { 1980 /* Make sure our initial firmware request has completed */ 1981 wait_for_completion(&pcu->async_firmware_done); 1982 } 1983 1984 #define IMS_PCU_APPLICATION_MODE 0 1985 #define IMS_PCU_BOOTLOADER_MODE 1 1986 1987 static struct usb_driver ims_pcu_driver; 1988 1989 static int ims_pcu_probe(struct usb_interface *intf, 1990 const struct usb_device_id *id) 1991 { 1992 struct usb_device *udev = interface_to_usbdev(intf); 1993 struct ims_pcu *pcu; 1994 int error; 1995 1996 pcu = kzalloc(sizeof(struct ims_pcu), GFP_KERNEL); 1997 if (!pcu) 1998 return -ENOMEM; 1999 2000 pcu->dev = &intf->dev; 2001 pcu->udev = udev; 2002 pcu->bootloader_mode = id->driver_info == IMS_PCU_BOOTLOADER_MODE; 2003 mutex_init(&pcu->cmd_mutex); 2004 init_completion(&pcu->cmd_done); 2005 init_completion(&pcu->async_firmware_done); 2006 2007 error = ims_pcu_parse_cdc_data(intf, pcu); 2008 if (error) 2009 goto err_free_mem; 2010 2011 error = usb_driver_claim_interface(&ims_pcu_driver, 2012 pcu->data_intf, pcu); 2013 if (error) { 2014 dev_err(&intf->dev, 2015 "Unable to claim corresponding data interface: %d\n", 2016 error); 2017 goto err_free_mem; 2018 } 2019 2020 usb_set_intfdata(pcu->ctrl_intf, pcu); 2021 2022 error = ims_pcu_buffers_alloc(pcu); 2023 if (error) 2024 goto err_unclaim_intf; 2025 2026 error = ims_pcu_start_io(pcu); 2027 if (error) 2028 goto err_free_buffers; 2029 2030 error = ims_pcu_line_setup(pcu); 2031 if (error) 2032 goto err_stop_io; 2033 2034 error = sysfs_create_group(&intf->dev.kobj, &ims_pcu_attr_group); 2035 if (error) 2036 goto err_stop_io; 2037 2038 error = pcu->bootloader_mode ? 2039 ims_pcu_init_bootloader_mode(pcu) : 2040 ims_pcu_init_application_mode(pcu); 2041 if (error) 2042 goto err_remove_sysfs; 2043 2044 return 0; 2045 2046 err_remove_sysfs: 2047 sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group); 2048 err_stop_io: 2049 ims_pcu_stop_io(pcu); 2050 err_free_buffers: 2051 ims_pcu_buffers_free(pcu); 2052 err_unclaim_intf: 2053 usb_driver_release_interface(&ims_pcu_driver, pcu->data_intf); 2054 err_free_mem: 2055 kfree(pcu); 2056 return error; 2057 } 2058 2059 static void ims_pcu_disconnect(struct usb_interface *intf) 2060 { 2061 struct ims_pcu *pcu = usb_get_intfdata(intf); 2062 struct usb_host_interface *alt = intf->cur_altsetting; 2063 2064 usb_set_intfdata(intf, NULL); 2065 2066 /* 2067 * See if we are dealing with control or data interface. The cleanup 2068 * happens when we unbind primary (control) interface. 2069 */ 2070 if (alt->desc.bInterfaceClass != USB_CLASS_COMM) 2071 return; 2072 2073 sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group); 2074 2075 ims_pcu_stop_io(pcu); 2076 2077 if (pcu->bootloader_mode) 2078 ims_pcu_destroy_bootloader_mode(pcu); 2079 else 2080 ims_pcu_destroy_application_mode(pcu); 2081 2082 ims_pcu_buffers_free(pcu); 2083 kfree(pcu); 2084 } 2085 2086 #ifdef CONFIG_PM 2087 static int ims_pcu_suspend(struct usb_interface *intf, 2088 pm_message_t message) 2089 { 2090 struct ims_pcu *pcu = usb_get_intfdata(intf); 2091 struct usb_host_interface *alt = intf->cur_altsetting; 2092 2093 if (alt->desc.bInterfaceClass == USB_CLASS_COMM) 2094 ims_pcu_stop_io(pcu); 2095 2096 return 0; 2097 } 2098 2099 static int ims_pcu_resume(struct usb_interface *intf) 2100 { 2101 struct ims_pcu *pcu = usb_get_intfdata(intf); 2102 struct usb_host_interface *alt = intf->cur_altsetting; 2103 int retval = 0; 2104 2105 if (alt->desc.bInterfaceClass == USB_CLASS_COMM) { 2106 retval = ims_pcu_start_io(pcu); 2107 if (retval == 0) 2108 retval = ims_pcu_line_setup(pcu); 2109 } 2110 2111 return retval; 2112 } 2113 #endif 2114 2115 static const struct usb_device_id ims_pcu_id_table[] = { 2116 { 2117 USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0082, 2118 USB_CLASS_COMM, 2119 USB_CDC_SUBCLASS_ACM, 2120 USB_CDC_ACM_PROTO_AT_V25TER), 2121 .driver_info = IMS_PCU_APPLICATION_MODE, 2122 }, 2123 { 2124 USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0083, 2125 USB_CLASS_COMM, 2126 USB_CDC_SUBCLASS_ACM, 2127 USB_CDC_ACM_PROTO_AT_V25TER), 2128 .driver_info = IMS_PCU_BOOTLOADER_MODE, 2129 }, 2130 { } 2131 }; 2132 2133 static struct usb_driver ims_pcu_driver = { 2134 .name = "ims_pcu", 2135 .id_table = ims_pcu_id_table, 2136 .probe = ims_pcu_probe, 2137 .disconnect = ims_pcu_disconnect, 2138 #ifdef CONFIG_PM 2139 .suspend = ims_pcu_suspend, 2140 .resume = ims_pcu_resume, 2141 .reset_resume = ims_pcu_resume, 2142 #endif 2143 }; 2144 2145 module_usb_driver(ims_pcu_driver); 2146 2147 MODULE_DESCRIPTION("IMS Passenger Control Unit driver"); 2148 MODULE_AUTHOR("Dmitry Torokhov <dmitry.torokhov@gmail.com>"); 2149 MODULE_LICENSE("GPL"); 2150