xref: /linux/drivers/input/misc/adxl34x.c (revision c2a96b7f187fb6a455836d4a6e113947ff11de97)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * ADXL345/346 Three-Axis Digital Accelerometers
4  *
5  * Enter bugs at http://blackfin.uclinux.org/
6  *
7  * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc.
8  */
9 
10 #include <linux/device.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/input/adxl34x.h>
18 #include <linux/module.h>
19 
20 #include "adxl34x.h"
21 
22 /* ADXL345/6 Register Map */
23 #define DEVID		0x00	/* R   Device ID */
24 #define THRESH_TAP	0x1D	/* R/W Tap threshold */
25 #define OFSX		0x1E	/* R/W X-axis offset */
26 #define OFSY		0x1F	/* R/W Y-axis offset */
27 #define OFSZ		0x20	/* R/W Z-axis offset */
28 #define DUR		0x21	/* R/W Tap duration */
29 #define LATENT		0x22	/* R/W Tap latency */
30 #define WINDOW		0x23	/* R/W Tap window */
31 #define THRESH_ACT	0x24	/* R/W Activity threshold */
32 #define THRESH_INACT	0x25	/* R/W Inactivity threshold */
33 #define TIME_INACT	0x26	/* R/W Inactivity time */
34 #define ACT_INACT_CTL	0x27	/* R/W Axis enable control for activity and */
35 				/* inactivity detection */
36 #define THRESH_FF	0x28	/* R/W Free-fall threshold */
37 #define TIME_FF		0x29	/* R/W Free-fall time */
38 #define TAP_AXES	0x2A	/* R/W Axis control for tap/double tap */
39 #define ACT_TAP_STATUS	0x2B	/* R   Source of tap/double tap */
40 #define BW_RATE		0x2C	/* R/W Data rate and power mode control */
41 #define POWER_CTL	0x2D	/* R/W Power saving features control */
42 #define INT_ENABLE	0x2E	/* R/W Interrupt enable control */
43 #define INT_MAP		0x2F	/* R/W Interrupt mapping control */
44 #define INT_SOURCE	0x30	/* R   Source of interrupts */
45 #define DATA_FORMAT	0x31	/* R/W Data format control */
46 #define DATAX0		0x32	/* R   X-Axis Data 0 */
47 #define DATAX1		0x33	/* R   X-Axis Data 1 */
48 #define DATAY0		0x34	/* R   Y-Axis Data 0 */
49 #define DATAY1		0x35	/* R   Y-Axis Data 1 */
50 #define DATAZ0		0x36	/* R   Z-Axis Data 0 */
51 #define DATAZ1		0x37	/* R   Z-Axis Data 1 */
52 #define FIFO_CTL	0x38	/* R/W FIFO control */
53 #define FIFO_STATUS	0x39	/* R   FIFO status */
54 #define TAP_SIGN	0x3A	/* R   Sign and source for tap/double tap */
55 /* Orientation ADXL346 only */
56 #define ORIENT_CONF	0x3B	/* R/W Orientation configuration */
57 #define ORIENT		0x3C	/* R   Orientation status */
58 
59 /* DEVIDs */
60 #define ID_ADXL345	0xE5
61 #define ID_ADXL346	0xE6
62 
63 /* INT_ENABLE/INT_MAP/INT_SOURCE Bits */
64 #define DATA_READY	(1 << 7)
65 #define SINGLE_TAP	(1 << 6)
66 #define DOUBLE_TAP	(1 << 5)
67 #define ACTIVITY	(1 << 4)
68 #define INACTIVITY	(1 << 3)
69 #define FREE_FALL	(1 << 2)
70 #define WATERMARK	(1 << 1)
71 #define OVERRUN		(1 << 0)
72 
73 /* ACT_INACT_CONTROL Bits */
74 #define ACT_ACDC	(1 << 7)
75 #define ACT_X_EN	(1 << 6)
76 #define ACT_Y_EN	(1 << 5)
77 #define ACT_Z_EN	(1 << 4)
78 #define INACT_ACDC	(1 << 3)
79 #define INACT_X_EN	(1 << 2)
80 #define INACT_Y_EN	(1 << 1)
81 #define INACT_Z_EN	(1 << 0)
82 
83 /* TAP_AXES Bits */
84 #define SUPPRESS	(1 << 3)
85 #define TAP_X_EN	(1 << 2)
86 #define TAP_Y_EN	(1 << 1)
87 #define TAP_Z_EN	(1 << 0)
88 
89 /* ACT_TAP_STATUS Bits */
90 #define ACT_X_SRC	(1 << 6)
91 #define ACT_Y_SRC	(1 << 5)
92 #define ACT_Z_SRC	(1 << 4)
93 #define ASLEEP		(1 << 3)
94 #define TAP_X_SRC	(1 << 2)
95 #define TAP_Y_SRC	(1 << 1)
96 #define TAP_Z_SRC	(1 << 0)
97 
98 /* BW_RATE Bits */
99 #define LOW_POWER	(1 << 4)
100 #define RATE(x)		((x) & 0xF)
101 
102 /* POWER_CTL Bits */
103 #define PCTL_LINK	(1 << 5)
104 #define PCTL_AUTO_SLEEP (1 << 4)
105 #define PCTL_MEASURE	(1 << 3)
106 #define PCTL_SLEEP	(1 << 2)
107 #define PCTL_WAKEUP(x)	((x) & 0x3)
108 
109 /* DATA_FORMAT Bits */
110 #define SELF_TEST	(1 << 7)
111 #define SPI		(1 << 6)
112 #define INT_INVERT	(1 << 5)
113 #define FULL_RES	(1 << 3)
114 #define JUSTIFY		(1 << 2)
115 #define RANGE(x)	((x) & 0x3)
116 #define RANGE_PM_2g	0
117 #define RANGE_PM_4g	1
118 #define RANGE_PM_8g	2
119 #define RANGE_PM_16g	3
120 
121 /*
122  * Maximum value our axis may get in full res mode for the input device
123  * (signed 13 bits)
124  */
125 #define ADXL_FULLRES_MAX_VAL 4096
126 
127 /*
128  * Maximum value our axis may get in fixed res mode for the input device
129  * (signed 10 bits)
130  */
131 #define ADXL_FIXEDRES_MAX_VAL 512
132 
133 /* FIFO_CTL Bits */
134 #define FIFO_MODE(x)	(((x) & 0x3) << 6)
135 #define FIFO_BYPASS	0
136 #define FIFO_FIFO	1
137 #define FIFO_STREAM	2
138 #define FIFO_TRIGGER	3
139 #define TRIGGER		(1 << 5)
140 #define SAMPLES(x)	((x) & 0x1F)
141 
142 /* FIFO_STATUS Bits */
143 #define FIFO_TRIG	(1 << 7)
144 #define ENTRIES(x)	((x) & 0x3F)
145 
146 /* TAP_SIGN Bits ADXL346 only */
147 #define XSIGN		(1 << 6)
148 #define YSIGN		(1 << 5)
149 #define ZSIGN		(1 << 4)
150 #define XTAP		(1 << 3)
151 #define YTAP		(1 << 2)
152 #define ZTAP		(1 << 1)
153 
154 /* ORIENT_CONF ADXL346 only */
155 #define ORIENT_DEADZONE(x)	(((x) & 0x7) << 4)
156 #define ORIENT_DIVISOR(x)	((x) & 0x7)
157 
158 /* ORIENT ADXL346 only */
159 #define ADXL346_2D_VALID		(1 << 6)
160 #define ADXL346_2D_ORIENT(x)		(((x) & 0x30) >> 4)
161 #define ADXL346_3D_VALID		(1 << 3)
162 #define ADXL346_3D_ORIENT(x)		((x) & 0x7)
163 #define ADXL346_2D_PORTRAIT_POS		0	/* +X */
164 #define ADXL346_2D_PORTRAIT_NEG		1	/* -X */
165 #define ADXL346_2D_LANDSCAPE_POS	2	/* +Y */
166 #define ADXL346_2D_LANDSCAPE_NEG	3	/* -Y */
167 
168 #define ADXL346_3D_FRONT		3	/* +X */
169 #define ADXL346_3D_BACK			4	/* -X */
170 #define ADXL346_3D_RIGHT		2	/* +Y */
171 #define ADXL346_3D_LEFT			5	/* -Y */
172 #define ADXL346_3D_TOP			1	/* +Z */
173 #define ADXL346_3D_BOTTOM		6	/* -Z */
174 
175 #undef ADXL_DEBUG
176 
177 #define ADXL_X_AXIS			0
178 #define ADXL_Y_AXIS			1
179 #define ADXL_Z_AXIS			2
180 
181 #define AC_READ(ac, reg)	((ac)->bops->read((ac)->dev, reg))
182 #define AC_WRITE(ac, reg, val)	((ac)->bops->write((ac)->dev, reg, val))
183 
184 struct axis_triple {
185 	int x;
186 	int y;
187 	int z;
188 };
189 
190 struct adxl34x {
191 	struct device *dev;
192 	struct input_dev *input;
193 	struct mutex mutex;	/* reentrant protection for struct */
194 	struct adxl34x_platform_data pdata;
195 	struct axis_triple swcal;
196 	struct axis_triple hwcal;
197 	struct axis_triple saved;
198 	char phys[32];
199 	unsigned orient2d_saved;
200 	unsigned orient3d_saved;
201 	bool disabled;	/* P: mutex */
202 	bool opened;	/* P: mutex */
203 	bool suspended;	/* P: mutex */
204 	bool fifo_delay;
205 	int irq;
206 	unsigned model;
207 	unsigned int_mask;
208 
209 	const struct adxl34x_bus_ops *bops;
210 };
211 
212 static const struct adxl34x_platform_data adxl34x_default_init = {
213 	.tap_threshold = 35,
214 	.tap_duration = 3,
215 	.tap_latency = 20,
216 	.tap_window = 20,
217 	.tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN,
218 	.act_axis_control = 0xFF,
219 	.activity_threshold = 6,
220 	.inactivity_threshold = 4,
221 	.inactivity_time = 3,
222 	.free_fall_threshold = 8,
223 	.free_fall_time = 0x20,
224 	.data_rate = 8,
225 	.data_range = ADXL_FULL_RES,
226 
227 	.ev_type = EV_ABS,
228 	.ev_code_x = ABS_X,	/* EV_REL */
229 	.ev_code_y = ABS_Y,	/* EV_REL */
230 	.ev_code_z = ABS_Z,	/* EV_REL */
231 
232 	.ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */
233 	.power_mode = ADXL_AUTO_SLEEP | ADXL_LINK,
234 	.fifo_mode = ADXL_FIFO_STREAM,
235 	.watermark = 0,
236 };
237 
238 static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis)
239 {
240 	__le16 buf[3];
241 
242 	ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf);
243 
244 	guard(mutex)(&ac->mutex);
245 
246 	ac->saved.x = (s16) le16_to_cpu(buf[0]);
247 	axis->x = ac->saved.x;
248 
249 	ac->saved.y = (s16) le16_to_cpu(buf[1]);
250 	axis->y = ac->saved.y;
251 
252 	ac->saved.z = (s16) le16_to_cpu(buf[2]);
253 	axis->z = ac->saved.z;
254 }
255 
256 static void adxl34x_service_ev_fifo(struct adxl34x *ac)
257 {
258 	struct adxl34x_platform_data *pdata = &ac->pdata;
259 	struct axis_triple axis;
260 
261 	adxl34x_get_triple(ac, &axis);
262 
263 	input_event(ac->input, pdata->ev_type, pdata->ev_code_x,
264 		    axis.x - ac->swcal.x);
265 	input_event(ac->input, pdata->ev_type, pdata->ev_code_y,
266 		    axis.y - ac->swcal.y);
267 	input_event(ac->input, pdata->ev_type, pdata->ev_code_z,
268 		    axis.z - ac->swcal.z);
269 }
270 
271 static void adxl34x_report_key_single(struct input_dev *input, int key)
272 {
273 	input_report_key(input, key, true);
274 	input_sync(input);
275 	input_report_key(input, key, false);
276 }
277 
278 static void adxl34x_send_key_events(struct adxl34x *ac,
279 		struct adxl34x_platform_data *pdata, int status, int press)
280 {
281 	int i;
282 
283 	for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) {
284 		if (status & (1 << (ADXL_Z_AXIS - i)))
285 			input_report_key(ac->input,
286 					 pdata->ev_code_tap[i], press);
287 	}
288 }
289 
290 static void adxl34x_do_tap(struct adxl34x *ac,
291 		struct adxl34x_platform_data *pdata, int status)
292 {
293 	adxl34x_send_key_events(ac, pdata, status, true);
294 	input_sync(ac->input);
295 	adxl34x_send_key_events(ac, pdata, status, false);
296 }
297 
298 static irqreturn_t adxl34x_irq(int irq, void *handle)
299 {
300 	struct adxl34x *ac = handle;
301 	struct adxl34x_platform_data *pdata = &ac->pdata;
302 	int int_stat, tap_stat, samples, orient, orient_code;
303 
304 	/*
305 	 * ACT_TAP_STATUS should be read before clearing the interrupt
306 	 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled
307 	 */
308 
309 	if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
310 		tap_stat = AC_READ(ac, ACT_TAP_STATUS);
311 	else
312 		tap_stat = 0;
313 
314 	int_stat = AC_READ(ac, INT_SOURCE);
315 
316 	if (int_stat & FREE_FALL)
317 		adxl34x_report_key_single(ac->input, pdata->ev_code_ff);
318 
319 	if (int_stat & OVERRUN)
320 		dev_dbg(ac->dev, "OVERRUN\n");
321 
322 	if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) {
323 		adxl34x_do_tap(ac, pdata, tap_stat);
324 
325 		if (int_stat & DOUBLE_TAP)
326 			adxl34x_do_tap(ac, pdata, tap_stat);
327 	}
328 
329 	if (pdata->ev_code_act_inactivity) {
330 		if (int_stat & ACTIVITY)
331 			input_report_key(ac->input,
332 					 pdata->ev_code_act_inactivity, 1);
333 		if (int_stat & INACTIVITY)
334 			input_report_key(ac->input,
335 					 pdata->ev_code_act_inactivity, 0);
336 	}
337 
338 	/*
339 	 * ORIENTATION SENSING ADXL346 only
340 	 */
341 	if (pdata->orientation_enable) {
342 		orient = AC_READ(ac, ORIENT);
343 		if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) &&
344 		    (orient & ADXL346_2D_VALID)) {
345 
346 			orient_code = ADXL346_2D_ORIENT(orient);
347 			/* Report orientation only when it changes */
348 			if (ac->orient2d_saved != orient_code) {
349 				ac->orient2d_saved = orient_code;
350 				adxl34x_report_key_single(ac->input,
351 					pdata->ev_codes_orient_2d[orient_code]);
352 			}
353 		}
354 
355 		if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) &&
356 		    (orient & ADXL346_3D_VALID)) {
357 
358 			orient_code = ADXL346_3D_ORIENT(orient) - 1;
359 			/* Report orientation only when it changes */
360 			if (ac->orient3d_saved != orient_code) {
361 				ac->orient3d_saved = orient_code;
362 				adxl34x_report_key_single(ac->input,
363 					pdata->ev_codes_orient_3d[orient_code]);
364 			}
365 		}
366 	}
367 
368 	if (int_stat & (DATA_READY | WATERMARK)) {
369 
370 		if (pdata->fifo_mode)
371 			samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1;
372 		else
373 			samples = 1;
374 
375 		for (; samples > 0; samples--) {
376 			adxl34x_service_ev_fifo(ac);
377 			/*
378 			 * To ensure that the FIFO has
379 			 * completely popped, there must be at least 5 us between
380 			 * the end of reading the data registers, signified by the
381 			 * transition to register 0x38 from 0x37 or the CS pin
382 			 * going high, and the start of new reads of the FIFO or
383 			 * reading the FIFO_STATUS register. For SPI operation at
384 			 * 1.5 MHz or lower, the register addressing portion of the
385 			 * transmission is sufficient delay to ensure the FIFO has
386 			 * completely popped. It is necessary for SPI operation
387 			 * greater than 1.5 MHz to de-assert the CS pin to ensure a
388 			 * total of 5 us, which is at most 3.4 us at 5 MHz
389 			 * operation.
390 			 */
391 			if (ac->fifo_delay && (samples > 1))
392 				udelay(3);
393 		}
394 	}
395 
396 	input_sync(ac->input);
397 
398 	return IRQ_HANDLED;
399 }
400 
401 static void __adxl34x_disable(struct adxl34x *ac)
402 {
403 	/*
404 	 * A '0' places the ADXL34x into standby mode
405 	 * with minimum power consumption.
406 	 */
407 	AC_WRITE(ac, POWER_CTL, 0);
408 }
409 
410 static void __adxl34x_enable(struct adxl34x *ac)
411 {
412 	AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
413 }
414 
415 static int adxl34x_suspend(struct device *dev)
416 {
417 	struct adxl34x *ac = dev_get_drvdata(dev);
418 
419 	guard(mutex)(&ac->mutex);
420 
421 	if (!ac->suspended && !ac->disabled && ac->opened)
422 		__adxl34x_disable(ac);
423 
424 	ac->suspended = true;
425 
426 	return 0;
427 }
428 
429 static int adxl34x_resume(struct device *dev)
430 {
431 	struct adxl34x *ac = dev_get_drvdata(dev);
432 
433 	guard(mutex)(&ac->mutex);
434 
435 	if (ac->suspended && !ac->disabled && ac->opened)
436 		__adxl34x_enable(ac);
437 
438 	ac->suspended = false;
439 
440 	return 0;
441 }
442 
443 static ssize_t adxl34x_disable_show(struct device *dev,
444 				    struct device_attribute *attr, char *buf)
445 {
446 	struct adxl34x *ac = dev_get_drvdata(dev);
447 
448 	return sprintf(buf, "%u\n", ac->disabled);
449 }
450 
451 static ssize_t adxl34x_disable_store(struct device *dev,
452 				     struct device_attribute *attr,
453 				     const char *buf, size_t count)
454 {
455 	struct adxl34x *ac = dev_get_drvdata(dev);
456 	unsigned int val;
457 	int error;
458 
459 	error = kstrtouint(buf, 10, &val);
460 	if (error)
461 		return error;
462 
463 	guard(mutex)(&ac->mutex);
464 
465 	if (!ac->suspended && ac->opened) {
466 		if (val) {
467 			if (!ac->disabled)
468 				__adxl34x_disable(ac);
469 		} else {
470 			if (ac->disabled)
471 				__adxl34x_enable(ac);
472 		}
473 	}
474 
475 	ac->disabled = !!val;
476 
477 	return count;
478 }
479 
480 static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store);
481 
482 static ssize_t adxl34x_calibrate_show(struct device *dev,
483 				      struct device_attribute *attr, char *buf)
484 {
485 	struct adxl34x *ac = dev_get_drvdata(dev);
486 
487 	guard(mutex)(&ac->mutex);
488 
489 	return sprintf(buf, "%d,%d,%d\n",
490 		       ac->hwcal.x * 4 + ac->swcal.x,
491 		       ac->hwcal.y * 4 + ac->swcal.y,
492 		       ac->hwcal.z * 4 + ac->swcal.z);
493 }
494 
495 static ssize_t adxl34x_calibrate_store(struct device *dev,
496 				       struct device_attribute *attr,
497 				       const char *buf, size_t count)
498 {
499 	struct adxl34x *ac = dev_get_drvdata(dev);
500 
501 	/*
502 	 * Hardware offset calibration has a resolution of 15.6 mg/LSB.
503 	 * We use HW calibration and handle the remaining bits in SW. (4mg/LSB)
504 	 */
505 
506 	guard(mutex)(&ac->mutex);
507 
508 	ac->hwcal.x -= (ac->saved.x / 4);
509 	ac->swcal.x = ac->saved.x % 4;
510 
511 	ac->hwcal.y -= (ac->saved.y / 4);
512 	ac->swcal.y = ac->saved.y % 4;
513 
514 	ac->hwcal.z -= (ac->saved.z / 4);
515 	ac->swcal.z = ac->saved.z % 4;
516 
517 	AC_WRITE(ac, OFSX, (s8) ac->hwcal.x);
518 	AC_WRITE(ac, OFSY, (s8) ac->hwcal.y);
519 	AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z);
520 
521 	return count;
522 }
523 
524 static DEVICE_ATTR(calibrate, 0664,
525 		   adxl34x_calibrate_show, adxl34x_calibrate_store);
526 
527 static ssize_t adxl34x_rate_show(struct device *dev,
528 				 struct device_attribute *attr, char *buf)
529 {
530 	struct adxl34x *ac = dev_get_drvdata(dev);
531 
532 	return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate));
533 }
534 
535 static ssize_t adxl34x_rate_store(struct device *dev,
536 				  struct device_attribute *attr,
537 				  const char *buf, size_t count)
538 {
539 	struct adxl34x *ac = dev_get_drvdata(dev);
540 	unsigned char val;
541 	int error;
542 
543 	error = kstrtou8(buf, 10, &val);
544 	if (error)
545 		return error;
546 
547 	guard(mutex)(&ac->mutex);
548 
549 	ac->pdata.data_rate = RATE(val);
550 	AC_WRITE(ac, BW_RATE,
551 		 ac->pdata.data_rate |
552 			(ac->pdata.low_power_mode ? LOW_POWER : 0));
553 
554 	return count;
555 }
556 
557 static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store);
558 
559 static ssize_t adxl34x_autosleep_show(struct device *dev,
560 				 struct device_attribute *attr, char *buf)
561 {
562 	struct adxl34x *ac = dev_get_drvdata(dev);
563 
564 	return sprintf(buf, "%u\n",
565 		ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0);
566 }
567 
568 static ssize_t adxl34x_autosleep_store(struct device *dev,
569 				  struct device_attribute *attr,
570 				  const char *buf, size_t count)
571 {
572 	struct adxl34x *ac = dev_get_drvdata(dev);
573 	unsigned int val;
574 	int error;
575 
576 	error = kstrtouint(buf, 10, &val);
577 	if (error)
578 		return error;
579 
580 	guard(mutex)(&ac->mutex);
581 
582 	if (val)
583 		ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK);
584 	else
585 		ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK);
586 
587 	if (!ac->disabled && !ac->suspended && ac->opened)
588 		AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
589 
590 	return count;
591 }
592 
593 static DEVICE_ATTR(autosleep, 0664,
594 		   adxl34x_autosleep_show, adxl34x_autosleep_store);
595 
596 static ssize_t adxl34x_position_show(struct device *dev,
597 				 struct device_attribute *attr, char *buf)
598 {
599 	struct adxl34x *ac = dev_get_drvdata(dev);
600 
601 	guard(mutex)(&ac->mutex);
602 
603 	return sprintf(buf, "(%d, %d, %d)\n",
604 		       ac->saved.x, ac->saved.y, ac->saved.z);
605 }
606 
607 static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL);
608 
609 #ifdef ADXL_DEBUG
610 static ssize_t adxl34x_write_store(struct device *dev,
611 				   struct device_attribute *attr,
612 				   const char *buf, size_t count)
613 {
614 	struct adxl34x *ac = dev_get_drvdata(dev);
615 	unsigned int val;
616 	int error;
617 
618 	/*
619 	 * This allows basic ADXL register write access for debug purposes.
620 	 */
621 	error = kstrtouint(buf, 16, &val);
622 	if (error)
623 		return error;
624 
625 	guard(mutex)(&ac->mutex);
626 	AC_WRITE(ac, val >> 8, val & 0xFF);
627 
628 	return count;
629 }
630 
631 static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store);
632 #endif
633 
634 static struct attribute *adxl34x_attributes[] = {
635 	&dev_attr_disable.attr,
636 	&dev_attr_calibrate.attr,
637 	&dev_attr_rate.attr,
638 	&dev_attr_autosleep.attr,
639 	&dev_attr_position.attr,
640 #ifdef ADXL_DEBUG
641 	&dev_attr_write.attr,
642 #endif
643 	NULL
644 };
645 
646 static const struct attribute_group adxl34x_attr_group = {
647 	.attrs = adxl34x_attributes,
648 };
649 
650 const struct attribute_group *adxl34x_groups[] = {
651 	&adxl34x_attr_group,
652 	NULL
653 };
654 EXPORT_SYMBOL_GPL(adxl34x_groups);
655 
656 static int adxl34x_input_open(struct input_dev *input)
657 {
658 	struct adxl34x *ac = input_get_drvdata(input);
659 
660 	guard(mutex)(&ac->mutex);
661 
662 	if (!ac->suspended && !ac->disabled)
663 		__adxl34x_enable(ac);
664 
665 	ac->opened = true;
666 
667 	return 0;
668 }
669 
670 static void adxl34x_input_close(struct input_dev *input)
671 {
672 	struct adxl34x *ac = input_get_drvdata(input);
673 
674 	guard(mutex)(&ac->mutex);
675 
676 	if (!ac->suspended && !ac->disabled)
677 		__adxl34x_disable(ac);
678 
679 	ac->opened = false;
680 }
681 
682 struct adxl34x *adxl34x_probe(struct device *dev, int irq,
683 			      bool fifo_delay_default,
684 			      const struct adxl34x_bus_ops *bops)
685 {
686 	struct adxl34x *ac;
687 	struct input_dev *input_dev;
688 	const struct adxl34x_platform_data *pdata;
689 	int error, range, i;
690 	int revid;
691 
692 	if (!irq) {
693 		dev_err(dev, "no IRQ?\n");
694 		return ERR_PTR(-ENODEV);
695 	}
696 
697 	ac = devm_kzalloc(dev, sizeof(*ac), GFP_KERNEL);
698 	if (!ac)
699 		return ERR_PTR(-ENOMEM);
700 
701 	input_dev = devm_input_allocate_device(dev);
702 	if (!input_dev)
703 		return ERR_PTR(-ENOMEM);
704 
705 	ac->fifo_delay = fifo_delay_default;
706 
707 	pdata = dev_get_platdata(dev);
708 	if (!pdata) {
709 		dev_dbg(dev,
710 			"No platform data: Using default initialization\n");
711 		pdata = &adxl34x_default_init;
712 	}
713 
714 	ac->pdata = *pdata;
715 	pdata = &ac->pdata;
716 
717 	ac->input = input_dev;
718 	ac->dev = dev;
719 	ac->irq = irq;
720 	ac->bops = bops;
721 
722 	mutex_init(&ac->mutex);
723 
724 	input_dev->name = "ADXL34x accelerometer";
725 	revid = AC_READ(ac, DEVID);
726 
727 	switch (revid) {
728 	case ID_ADXL345:
729 		ac->model = 345;
730 		break;
731 	case ID_ADXL346:
732 		ac->model = 346;
733 		break;
734 	default:
735 		dev_err(dev, "Failed to probe %s\n", input_dev->name);
736 		return ERR_PTR(-ENODEV);
737 	}
738 
739 	snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev));
740 
741 	input_dev->phys = ac->phys;
742 	input_dev->id.product = ac->model;
743 	input_dev->id.bustype = bops->bustype;
744 	input_dev->open = adxl34x_input_open;
745 	input_dev->close = adxl34x_input_close;
746 
747 	input_set_drvdata(input_dev, ac);
748 
749 	if (ac->pdata.ev_type == EV_REL) {
750 		input_set_capability(input_dev, EV_REL, REL_X);
751 		input_set_capability(input_dev, EV_REL, REL_Y);
752 		input_set_capability(input_dev, EV_REL, REL_Z);
753 	} else {
754 		/* EV_ABS */
755 		if (pdata->data_range & FULL_RES)
756 			range = ADXL_FULLRES_MAX_VAL;	/* Signed 13-bit */
757 		else
758 			range = ADXL_FIXEDRES_MAX_VAL;	/* Signed 10-bit */
759 
760 		input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3);
761 		input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3);
762 		input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3);
763 	}
764 
765 	input_set_capability(input_dev, EV_KEY, pdata->ev_code_tap[ADXL_X_AXIS]);
766 	input_set_capability(input_dev, EV_KEY, pdata->ev_code_tap[ADXL_Y_AXIS]);
767 	input_set_capability(input_dev, EV_KEY, pdata->ev_code_tap[ADXL_Z_AXIS]);
768 
769 	if (pdata->ev_code_ff) {
770 		ac->int_mask = FREE_FALL;
771 		input_set_capability(input_dev, EV_KEY, pdata->ev_code_ff);
772 	}
773 
774 	if (pdata->ev_code_act_inactivity)
775 		input_set_capability(input_dev, EV_KEY,
776 				     pdata->ev_code_act_inactivity);
777 
778 	ac->int_mask |= ACTIVITY | INACTIVITY;
779 
780 	if (pdata->watermark) {
781 		ac->int_mask |= WATERMARK;
782 		if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS)
783 			ac->pdata.fifo_mode |= FIFO_STREAM;
784 	} else {
785 		ac->int_mask |= DATA_READY;
786 	}
787 
788 	if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
789 		ac->int_mask |= SINGLE_TAP | DOUBLE_TAP;
790 
791 	if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS)
792 		ac->fifo_delay = false;
793 
794 	AC_WRITE(ac, POWER_CTL, 0);
795 
796 	error = devm_request_threaded_irq(dev, ac->irq, NULL, adxl34x_irq,
797 					  IRQF_ONESHOT, dev_name(dev), ac);
798 	if (error) {
799 		dev_err(dev, "irq %d busy?\n", ac->irq);
800 		return ERR_PTR(error);
801 	}
802 
803 	error = input_register_device(input_dev);
804 	if (error)
805 		return ERR_PTR(error);
806 
807 	AC_WRITE(ac, OFSX, pdata->x_axis_offset);
808 	ac->hwcal.x = pdata->x_axis_offset;
809 	AC_WRITE(ac, OFSY, pdata->y_axis_offset);
810 	ac->hwcal.y = pdata->y_axis_offset;
811 	AC_WRITE(ac, OFSZ, pdata->z_axis_offset);
812 	ac->hwcal.z = pdata->z_axis_offset;
813 	AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
814 	AC_WRITE(ac, DUR, pdata->tap_duration);
815 	AC_WRITE(ac, LATENT, pdata->tap_latency);
816 	AC_WRITE(ac, WINDOW, pdata->tap_window);
817 	AC_WRITE(ac, THRESH_ACT, pdata->activity_threshold);
818 	AC_WRITE(ac, THRESH_INACT, pdata->inactivity_threshold);
819 	AC_WRITE(ac, TIME_INACT, pdata->inactivity_time);
820 	AC_WRITE(ac, THRESH_FF, pdata->free_fall_threshold);
821 	AC_WRITE(ac, TIME_FF, pdata->free_fall_time);
822 	AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control);
823 	AC_WRITE(ac, ACT_INACT_CTL, pdata->act_axis_control);
824 	AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) |
825 		 (pdata->low_power_mode ? LOW_POWER : 0));
826 	AC_WRITE(ac, DATA_FORMAT, pdata->data_range);
827 	AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) |
828 			SAMPLES(pdata->watermark));
829 
830 	if (pdata->use_int2) {
831 		/* Map all INTs to INT2 */
832 		AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN);
833 	} else {
834 		/* Map all INTs to INT1 */
835 		AC_WRITE(ac, INT_MAP, 0);
836 	}
837 
838 	if (ac->model == 346 && ac->pdata.orientation_enable) {
839 		AC_WRITE(ac, ORIENT_CONF,
840 			ORIENT_DEADZONE(ac->pdata.deadzone_angle) |
841 			ORIENT_DIVISOR(ac->pdata.divisor_length));
842 
843 		ac->orient2d_saved = 1234;
844 		ac->orient3d_saved = 1234;
845 
846 		if (pdata->orientation_enable & ADXL_EN_ORIENTATION_3D)
847 			for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++)
848 				input_set_capability(input_dev, EV_KEY,
849 						     pdata->ev_codes_orient_3d[i]);
850 
851 		if (pdata->orientation_enable & ADXL_EN_ORIENTATION_2D)
852 			for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++)
853 				input_set_capability(input_dev, EV_KEY,
854 						     pdata->ev_codes_orient_2d[i]);
855 	} else {
856 		ac->pdata.orientation_enable = 0;
857 	}
858 
859 	AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN);
860 
861 	ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK);
862 
863 	return ac;
864 }
865 EXPORT_SYMBOL_GPL(adxl34x_probe);
866 
867 EXPORT_GPL_SIMPLE_DEV_PM_OPS(adxl34x_pm, adxl34x_suspend, adxl34x_resume);
868 
869 MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
870 MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver");
871 MODULE_LICENSE("GPL");
872