1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ADXL345/346 Three-Axis Digital Accelerometers 4 * 5 * Enter bugs at http://blackfin.uclinux.org/ 6 * 7 * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc. 8 */ 9 10 #include <linux/device.h> 11 #include <linux/delay.h> 12 #include <linux/input.h> 13 #include <linux/interrupt.h> 14 #include <linux/irq.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/input/adxl34x.h> 18 #include <linux/module.h> 19 20 #include "adxl34x.h" 21 22 /* ADXL345/6 Register Map */ 23 #define DEVID 0x00 /* R Device ID */ 24 #define THRESH_TAP 0x1D /* R/W Tap threshold */ 25 #define OFSX 0x1E /* R/W X-axis offset */ 26 #define OFSY 0x1F /* R/W Y-axis offset */ 27 #define OFSZ 0x20 /* R/W Z-axis offset */ 28 #define DUR 0x21 /* R/W Tap duration */ 29 #define LATENT 0x22 /* R/W Tap latency */ 30 #define WINDOW 0x23 /* R/W Tap window */ 31 #define THRESH_ACT 0x24 /* R/W Activity threshold */ 32 #define THRESH_INACT 0x25 /* R/W Inactivity threshold */ 33 #define TIME_INACT 0x26 /* R/W Inactivity time */ 34 #define ACT_INACT_CTL 0x27 /* R/W Axis enable control for activity and */ 35 /* inactivity detection */ 36 #define THRESH_FF 0x28 /* R/W Free-fall threshold */ 37 #define TIME_FF 0x29 /* R/W Free-fall time */ 38 #define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */ 39 #define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */ 40 #define BW_RATE 0x2C /* R/W Data rate and power mode control */ 41 #define POWER_CTL 0x2D /* R/W Power saving features control */ 42 #define INT_ENABLE 0x2E /* R/W Interrupt enable control */ 43 #define INT_MAP 0x2F /* R/W Interrupt mapping control */ 44 #define INT_SOURCE 0x30 /* R Source of interrupts */ 45 #define DATA_FORMAT 0x31 /* R/W Data format control */ 46 #define DATAX0 0x32 /* R X-Axis Data 0 */ 47 #define DATAX1 0x33 /* R X-Axis Data 1 */ 48 #define DATAY0 0x34 /* R Y-Axis Data 0 */ 49 #define DATAY1 0x35 /* R Y-Axis Data 1 */ 50 #define DATAZ0 0x36 /* R Z-Axis Data 0 */ 51 #define DATAZ1 0x37 /* R Z-Axis Data 1 */ 52 #define FIFO_CTL 0x38 /* R/W FIFO control */ 53 #define FIFO_STATUS 0x39 /* R FIFO status */ 54 #define TAP_SIGN 0x3A /* R Sign and source for tap/double tap */ 55 /* Orientation ADXL346 only */ 56 #define ORIENT_CONF 0x3B /* R/W Orientation configuration */ 57 #define ORIENT 0x3C /* R Orientation status */ 58 59 /* DEVIDs */ 60 #define ID_ADXL345 0xE5 61 #define ID_ADXL346 0xE6 62 63 /* INT_ENABLE/INT_MAP/INT_SOURCE Bits */ 64 #define DATA_READY (1 << 7) 65 #define SINGLE_TAP (1 << 6) 66 #define DOUBLE_TAP (1 << 5) 67 #define ACTIVITY (1 << 4) 68 #define INACTIVITY (1 << 3) 69 #define FREE_FALL (1 << 2) 70 #define WATERMARK (1 << 1) 71 #define OVERRUN (1 << 0) 72 73 /* ACT_INACT_CONTROL Bits */ 74 #define ACT_ACDC (1 << 7) 75 #define ACT_X_EN (1 << 6) 76 #define ACT_Y_EN (1 << 5) 77 #define ACT_Z_EN (1 << 4) 78 #define INACT_ACDC (1 << 3) 79 #define INACT_X_EN (1 << 2) 80 #define INACT_Y_EN (1 << 1) 81 #define INACT_Z_EN (1 << 0) 82 83 /* TAP_AXES Bits */ 84 #define SUPPRESS (1 << 3) 85 #define TAP_X_EN (1 << 2) 86 #define TAP_Y_EN (1 << 1) 87 #define TAP_Z_EN (1 << 0) 88 89 /* ACT_TAP_STATUS Bits */ 90 #define ACT_X_SRC (1 << 6) 91 #define ACT_Y_SRC (1 << 5) 92 #define ACT_Z_SRC (1 << 4) 93 #define ASLEEP (1 << 3) 94 #define TAP_X_SRC (1 << 2) 95 #define TAP_Y_SRC (1 << 1) 96 #define TAP_Z_SRC (1 << 0) 97 98 /* BW_RATE Bits */ 99 #define LOW_POWER (1 << 4) 100 #define RATE(x) ((x) & 0xF) 101 102 /* POWER_CTL Bits */ 103 #define PCTL_LINK (1 << 5) 104 #define PCTL_AUTO_SLEEP (1 << 4) 105 #define PCTL_MEASURE (1 << 3) 106 #define PCTL_SLEEP (1 << 2) 107 #define PCTL_WAKEUP(x) ((x) & 0x3) 108 109 /* DATA_FORMAT Bits */ 110 #define SELF_TEST (1 << 7) 111 #define SPI (1 << 6) 112 #define INT_INVERT (1 << 5) 113 #define FULL_RES (1 << 3) 114 #define JUSTIFY (1 << 2) 115 #define RANGE(x) ((x) & 0x3) 116 #define RANGE_PM_2g 0 117 #define RANGE_PM_4g 1 118 #define RANGE_PM_8g 2 119 #define RANGE_PM_16g 3 120 121 /* 122 * Maximum value our axis may get in full res mode for the input device 123 * (signed 13 bits) 124 */ 125 #define ADXL_FULLRES_MAX_VAL 4096 126 127 /* 128 * Maximum value our axis may get in fixed res mode for the input device 129 * (signed 10 bits) 130 */ 131 #define ADXL_FIXEDRES_MAX_VAL 512 132 133 /* FIFO_CTL Bits */ 134 #define FIFO_MODE(x) (((x) & 0x3) << 6) 135 #define FIFO_BYPASS 0 136 #define FIFO_FIFO 1 137 #define FIFO_STREAM 2 138 #define FIFO_TRIGGER 3 139 #define TRIGGER (1 << 5) 140 #define SAMPLES(x) ((x) & 0x1F) 141 142 /* FIFO_STATUS Bits */ 143 #define FIFO_TRIG (1 << 7) 144 #define ENTRIES(x) ((x) & 0x3F) 145 146 /* TAP_SIGN Bits ADXL346 only */ 147 #define XSIGN (1 << 6) 148 #define YSIGN (1 << 5) 149 #define ZSIGN (1 << 4) 150 #define XTAP (1 << 3) 151 #define YTAP (1 << 2) 152 #define ZTAP (1 << 1) 153 154 /* ORIENT_CONF ADXL346 only */ 155 #define ORIENT_DEADZONE(x) (((x) & 0x7) << 4) 156 #define ORIENT_DIVISOR(x) ((x) & 0x7) 157 158 /* ORIENT ADXL346 only */ 159 #define ADXL346_2D_VALID (1 << 6) 160 #define ADXL346_2D_ORIENT(x) (((x) & 0x30) >> 4) 161 #define ADXL346_3D_VALID (1 << 3) 162 #define ADXL346_3D_ORIENT(x) ((x) & 0x7) 163 #define ADXL346_2D_PORTRAIT_POS 0 /* +X */ 164 #define ADXL346_2D_PORTRAIT_NEG 1 /* -X */ 165 #define ADXL346_2D_LANDSCAPE_POS 2 /* +Y */ 166 #define ADXL346_2D_LANDSCAPE_NEG 3 /* -Y */ 167 168 #define ADXL346_3D_FRONT 3 /* +X */ 169 #define ADXL346_3D_BACK 4 /* -X */ 170 #define ADXL346_3D_RIGHT 2 /* +Y */ 171 #define ADXL346_3D_LEFT 5 /* -Y */ 172 #define ADXL346_3D_TOP 1 /* +Z */ 173 #define ADXL346_3D_BOTTOM 6 /* -Z */ 174 175 #undef ADXL_DEBUG 176 177 #define ADXL_X_AXIS 0 178 #define ADXL_Y_AXIS 1 179 #define ADXL_Z_AXIS 2 180 181 #define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg)) 182 #define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val)) 183 184 struct axis_triple { 185 int x; 186 int y; 187 int z; 188 }; 189 190 struct adxl34x { 191 struct device *dev; 192 struct input_dev *input; 193 struct mutex mutex; /* reentrant protection for struct */ 194 struct adxl34x_platform_data pdata; 195 struct axis_triple swcal; 196 struct axis_triple hwcal; 197 struct axis_triple saved; 198 char phys[32]; 199 unsigned orient2d_saved; 200 unsigned orient3d_saved; 201 bool disabled; /* P: mutex */ 202 bool opened; /* P: mutex */ 203 bool suspended; /* P: mutex */ 204 bool fifo_delay; 205 int irq; 206 unsigned model; 207 unsigned int_mask; 208 209 const struct adxl34x_bus_ops *bops; 210 }; 211 212 static const struct adxl34x_platform_data adxl34x_default_init = { 213 .tap_threshold = 35, 214 .tap_duration = 3, 215 .tap_latency = 20, 216 .tap_window = 20, 217 .tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN, 218 .act_axis_control = 0xFF, 219 .activity_threshold = 6, 220 .inactivity_threshold = 4, 221 .inactivity_time = 3, 222 .free_fall_threshold = 8, 223 .free_fall_time = 0x20, 224 .data_rate = 8, 225 .data_range = ADXL_FULL_RES, 226 227 .ev_type = EV_ABS, 228 .ev_code_x = ABS_X, /* EV_REL */ 229 .ev_code_y = ABS_Y, /* EV_REL */ 230 .ev_code_z = ABS_Z, /* EV_REL */ 231 232 .ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */ 233 .power_mode = ADXL_AUTO_SLEEP | ADXL_LINK, 234 .fifo_mode = ADXL_FIFO_STREAM, 235 .watermark = 0, 236 }; 237 238 static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis) 239 { 240 __le16 buf[3]; 241 242 ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf); 243 244 mutex_lock(&ac->mutex); 245 ac->saved.x = (s16) le16_to_cpu(buf[0]); 246 axis->x = ac->saved.x; 247 248 ac->saved.y = (s16) le16_to_cpu(buf[1]); 249 axis->y = ac->saved.y; 250 251 ac->saved.z = (s16) le16_to_cpu(buf[2]); 252 axis->z = ac->saved.z; 253 mutex_unlock(&ac->mutex); 254 } 255 256 static void adxl34x_service_ev_fifo(struct adxl34x *ac) 257 { 258 struct adxl34x_platform_data *pdata = &ac->pdata; 259 struct axis_triple axis; 260 261 adxl34x_get_triple(ac, &axis); 262 263 input_event(ac->input, pdata->ev_type, pdata->ev_code_x, 264 axis.x - ac->swcal.x); 265 input_event(ac->input, pdata->ev_type, pdata->ev_code_y, 266 axis.y - ac->swcal.y); 267 input_event(ac->input, pdata->ev_type, pdata->ev_code_z, 268 axis.z - ac->swcal.z); 269 } 270 271 static void adxl34x_report_key_single(struct input_dev *input, int key) 272 { 273 input_report_key(input, key, true); 274 input_sync(input); 275 input_report_key(input, key, false); 276 } 277 278 static void adxl34x_send_key_events(struct adxl34x *ac, 279 struct adxl34x_platform_data *pdata, int status, int press) 280 { 281 int i; 282 283 for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) { 284 if (status & (1 << (ADXL_Z_AXIS - i))) 285 input_report_key(ac->input, 286 pdata->ev_code_tap[i], press); 287 } 288 } 289 290 static void adxl34x_do_tap(struct adxl34x *ac, 291 struct adxl34x_platform_data *pdata, int status) 292 { 293 adxl34x_send_key_events(ac, pdata, status, true); 294 input_sync(ac->input); 295 adxl34x_send_key_events(ac, pdata, status, false); 296 } 297 298 static irqreturn_t adxl34x_irq(int irq, void *handle) 299 { 300 struct adxl34x *ac = handle; 301 struct adxl34x_platform_data *pdata = &ac->pdata; 302 int int_stat, tap_stat, samples, orient, orient_code; 303 304 /* 305 * ACT_TAP_STATUS should be read before clearing the interrupt 306 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled 307 */ 308 309 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) 310 tap_stat = AC_READ(ac, ACT_TAP_STATUS); 311 else 312 tap_stat = 0; 313 314 int_stat = AC_READ(ac, INT_SOURCE); 315 316 if (int_stat & FREE_FALL) 317 adxl34x_report_key_single(ac->input, pdata->ev_code_ff); 318 319 if (int_stat & OVERRUN) 320 dev_dbg(ac->dev, "OVERRUN\n"); 321 322 if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) { 323 adxl34x_do_tap(ac, pdata, tap_stat); 324 325 if (int_stat & DOUBLE_TAP) 326 adxl34x_do_tap(ac, pdata, tap_stat); 327 } 328 329 if (pdata->ev_code_act_inactivity) { 330 if (int_stat & ACTIVITY) 331 input_report_key(ac->input, 332 pdata->ev_code_act_inactivity, 1); 333 if (int_stat & INACTIVITY) 334 input_report_key(ac->input, 335 pdata->ev_code_act_inactivity, 0); 336 } 337 338 /* 339 * ORIENTATION SENSING ADXL346 only 340 */ 341 if (pdata->orientation_enable) { 342 orient = AC_READ(ac, ORIENT); 343 if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) && 344 (orient & ADXL346_2D_VALID)) { 345 346 orient_code = ADXL346_2D_ORIENT(orient); 347 /* Report orientation only when it changes */ 348 if (ac->orient2d_saved != orient_code) { 349 ac->orient2d_saved = orient_code; 350 adxl34x_report_key_single(ac->input, 351 pdata->ev_codes_orient_2d[orient_code]); 352 } 353 } 354 355 if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) && 356 (orient & ADXL346_3D_VALID)) { 357 358 orient_code = ADXL346_3D_ORIENT(orient) - 1; 359 /* Report orientation only when it changes */ 360 if (ac->orient3d_saved != orient_code) { 361 ac->orient3d_saved = orient_code; 362 adxl34x_report_key_single(ac->input, 363 pdata->ev_codes_orient_3d[orient_code]); 364 } 365 } 366 } 367 368 if (int_stat & (DATA_READY | WATERMARK)) { 369 370 if (pdata->fifo_mode) 371 samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1; 372 else 373 samples = 1; 374 375 for (; samples > 0; samples--) { 376 adxl34x_service_ev_fifo(ac); 377 /* 378 * To ensure that the FIFO has 379 * completely popped, there must be at least 5 us between 380 * the end of reading the data registers, signified by the 381 * transition to register 0x38 from 0x37 or the CS pin 382 * going high, and the start of new reads of the FIFO or 383 * reading the FIFO_STATUS register. For SPI operation at 384 * 1.5 MHz or lower, the register addressing portion of the 385 * transmission is sufficient delay to ensure the FIFO has 386 * completely popped. It is necessary for SPI operation 387 * greater than 1.5 MHz to de-assert the CS pin to ensure a 388 * total of 5 us, which is at most 3.4 us at 5 MHz 389 * operation. 390 */ 391 if (ac->fifo_delay && (samples > 1)) 392 udelay(3); 393 } 394 } 395 396 input_sync(ac->input); 397 398 return IRQ_HANDLED; 399 } 400 401 static void __adxl34x_disable(struct adxl34x *ac) 402 { 403 /* 404 * A '0' places the ADXL34x into standby mode 405 * with minimum power consumption. 406 */ 407 AC_WRITE(ac, POWER_CTL, 0); 408 } 409 410 static void __adxl34x_enable(struct adxl34x *ac) 411 { 412 AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE); 413 } 414 415 static int adxl34x_suspend(struct device *dev) 416 { 417 struct adxl34x *ac = dev_get_drvdata(dev); 418 419 mutex_lock(&ac->mutex); 420 421 if (!ac->suspended && !ac->disabled && ac->opened) 422 __adxl34x_disable(ac); 423 424 ac->suspended = true; 425 426 mutex_unlock(&ac->mutex); 427 428 return 0; 429 } 430 431 static int adxl34x_resume(struct device *dev) 432 { 433 struct adxl34x *ac = dev_get_drvdata(dev); 434 435 mutex_lock(&ac->mutex); 436 437 if (ac->suspended && !ac->disabled && ac->opened) 438 __adxl34x_enable(ac); 439 440 ac->suspended = false; 441 442 mutex_unlock(&ac->mutex); 443 444 return 0; 445 } 446 447 static ssize_t adxl34x_disable_show(struct device *dev, 448 struct device_attribute *attr, char *buf) 449 { 450 struct adxl34x *ac = dev_get_drvdata(dev); 451 452 return sprintf(buf, "%u\n", ac->disabled); 453 } 454 455 static ssize_t adxl34x_disable_store(struct device *dev, 456 struct device_attribute *attr, 457 const char *buf, size_t count) 458 { 459 struct adxl34x *ac = dev_get_drvdata(dev); 460 unsigned int val; 461 int error; 462 463 error = kstrtouint(buf, 10, &val); 464 if (error) 465 return error; 466 467 mutex_lock(&ac->mutex); 468 469 if (!ac->suspended && ac->opened) { 470 if (val) { 471 if (!ac->disabled) 472 __adxl34x_disable(ac); 473 } else { 474 if (ac->disabled) 475 __adxl34x_enable(ac); 476 } 477 } 478 479 ac->disabled = !!val; 480 481 mutex_unlock(&ac->mutex); 482 483 return count; 484 } 485 486 static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store); 487 488 static ssize_t adxl34x_calibrate_show(struct device *dev, 489 struct device_attribute *attr, char *buf) 490 { 491 struct adxl34x *ac = dev_get_drvdata(dev); 492 ssize_t count; 493 494 mutex_lock(&ac->mutex); 495 count = sprintf(buf, "%d,%d,%d\n", 496 ac->hwcal.x * 4 + ac->swcal.x, 497 ac->hwcal.y * 4 + ac->swcal.y, 498 ac->hwcal.z * 4 + ac->swcal.z); 499 mutex_unlock(&ac->mutex); 500 501 return count; 502 } 503 504 static ssize_t adxl34x_calibrate_store(struct device *dev, 505 struct device_attribute *attr, 506 const char *buf, size_t count) 507 { 508 struct adxl34x *ac = dev_get_drvdata(dev); 509 510 /* 511 * Hardware offset calibration has a resolution of 15.6 mg/LSB. 512 * We use HW calibration and handle the remaining bits in SW. (4mg/LSB) 513 */ 514 515 mutex_lock(&ac->mutex); 516 ac->hwcal.x -= (ac->saved.x / 4); 517 ac->swcal.x = ac->saved.x % 4; 518 519 ac->hwcal.y -= (ac->saved.y / 4); 520 ac->swcal.y = ac->saved.y % 4; 521 522 ac->hwcal.z -= (ac->saved.z / 4); 523 ac->swcal.z = ac->saved.z % 4; 524 525 AC_WRITE(ac, OFSX, (s8) ac->hwcal.x); 526 AC_WRITE(ac, OFSY, (s8) ac->hwcal.y); 527 AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z); 528 mutex_unlock(&ac->mutex); 529 530 return count; 531 } 532 533 static DEVICE_ATTR(calibrate, 0664, 534 adxl34x_calibrate_show, adxl34x_calibrate_store); 535 536 static ssize_t adxl34x_rate_show(struct device *dev, 537 struct device_attribute *attr, char *buf) 538 { 539 struct adxl34x *ac = dev_get_drvdata(dev); 540 541 return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate)); 542 } 543 544 static ssize_t adxl34x_rate_store(struct device *dev, 545 struct device_attribute *attr, 546 const char *buf, size_t count) 547 { 548 struct adxl34x *ac = dev_get_drvdata(dev); 549 unsigned char val; 550 int error; 551 552 error = kstrtou8(buf, 10, &val); 553 if (error) 554 return error; 555 556 mutex_lock(&ac->mutex); 557 558 ac->pdata.data_rate = RATE(val); 559 AC_WRITE(ac, BW_RATE, 560 ac->pdata.data_rate | 561 (ac->pdata.low_power_mode ? LOW_POWER : 0)); 562 563 mutex_unlock(&ac->mutex); 564 565 return count; 566 } 567 568 static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store); 569 570 static ssize_t adxl34x_autosleep_show(struct device *dev, 571 struct device_attribute *attr, char *buf) 572 { 573 struct adxl34x *ac = dev_get_drvdata(dev); 574 575 return sprintf(buf, "%u\n", 576 ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0); 577 } 578 579 static ssize_t adxl34x_autosleep_store(struct device *dev, 580 struct device_attribute *attr, 581 const char *buf, size_t count) 582 { 583 struct adxl34x *ac = dev_get_drvdata(dev); 584 unsigned int val; 585 int error; 586 587 error = kstrtouint(buf, 10, &val); 588 if (error) 589 return error; 590 591 mutex_lock(&ac->mutex); 592 593 if (val) 594 ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK); 595 else 596 ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK); 597 598 if (!ac->disabled && !ac->suspended && ac->opened) 599 AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE); 600 601 mutex_unlock(&ac->mutex); 602 603 return count; 604 } 605 606 static DEVICE_ATTR(autosleep, 0664, 607 adxl34x_autosleep_show, adxl34x_autosleep_store); 608 609 static ssize_t adxl34x_position_show(struct device *dev, 610 struct device_attribute *attr, char *buf) 611 { 612 struct adxl34x *ac = dev_get_drvdata(dev); 613 ssize_t count; 614 615 mutex_lock(&ac->mutex); 616 count = sprintf(buf, "(%d, %d, %d)\n", 617 ac->saved.x, ac->saved.y, ac->saved.z); 618 mutex_unlock(&ac->mutex); 619 620 return count; 621 } 622 623 static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL); 624 625 #ifdef ADXL_DEBUG 626 static ssize_t adxl34x_write_store(struct device *dev, 627 struct device_attribute *attr, 628 const char *buf, size_t count) 629 { 630 struct adxl34x *ac = dev_get_drvdata(dev); 631 unsigned int val; 632 int error; 633 634 /* 635 * This allows basic ADXL register write access for debug purposes. 636 */ 637 error = kstrtouint(buf, 16, &val); 638 if (error) 639 return error; 640 641 mutex_lock(&ac->mutex); 642 AC_WRITE(ac, val >> 8, val & 0xFF); 643 mutex_unlock(&ac->mutex); 644 645 return count; 646 } 647 648 static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store); 649 #endif 650 651 static struct attribute *adxl34x_attributes[] = { 652 &dev_attr_disable.attr, 653 &dev_attr_calibrate.attr, 654 &dev_attr_rate.attr, 655 &dev_attr_autosleep.attr, 656 &dev_attr_position.attr, 657 #ifdef ADXL_DEBUG 658 &dev_attr_write.attr, 659 #endif 660 NULL 661 }; 662 663 static const struct attribute_group adxl34x_attr_group = { 664 .attrs = adxl34x_attributes, 665 }; 666 667 static int adxl34x_input_open(struct input_dev *input) 668 { 669 struct adxl34x *ac = input_get_drvdata(input); 670 671 mutex_lock(&ac->mutex); 672 673 if (!ac->suspended && !ac->disabled) 674 __adxl34x_enable(ac); 675 676 ac->opened = true; 677 678 mutex_unlock(&ac->mutex); 679 680 return 0; 681 } 682 683 static void adxl34x_input_close(struct input_dev *input) 684 { 685 struct adxl34x *ac = input_get_drvdata(input); 686 687 mutex_lock(&ac->mutex); 688 689 if (!ac->suspended && !ac->disabled) 690 __adxl34x_disable(ac); 691 692 ac->opened = false; 693 694 mutex_unlock(&ac->mutex); 695 } 696 697 struct adxl34x *adxl34x_probe(struct device *dev, int irq, 698 bool fifo_delay_default, 699 const struct adxl34x_bus_ops *bops) 700 { 701 struct adxl34x *ac; 702 struct input_dev *input_dev; 703 const struct adxl34x_platform_data *pdata; 704 int err, range, i; 705 int revid; 706 707 if (!irq) { 708 dev_err(dev, "no IRQ?\n"); 709 err = -ENODEV; 710 goto err_out; 711 } 712 713 ac = kzalloc(sizeof(*ac), GFP_KERNEL); 714 input_dev = input_allocate_device(); 715 if (!ac || !input_dev) { 716 err = -ENOMEM; 717 goto err_free_mem; 718 } 719 720 ac->fifo_delay = fifo_delay_default; 721 722 pdata = dev_get_platdata(dev); 723 if (!pdata) { 724 dev_dbg(dev, 725 "No platform data: Using default initialization\n"); 726 pdata = &adxl34x_default_init; 727 } 728 729 ac->pdata = *pdata; 730 pdata = &ac->pdata; 731 732 ac->input = input_dev; 733 ac->dev = dev; 734 ac->irq = irq; 735 ac->bops = bops; 736 737 mutex_init(&ac->mutex); 738 739 input_dev->name = "ADXL34x accelerometer"; 740 revid = AC_READ(ac, DEVID); 741 742 switch (revid) { 743 case ID_ADXL345: 744 ac->model = 345; 745 break; 746 case ID_ADXL346: 747 ac->model = 346; 748 break; 749 default: 750 dev_err(dev, "Failed to probe %s\n", input_dev->name); 751 err = -ENODEV; 752 goto err_free_mem; 753 } 754 755 snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev)); 756 757 input_dev->phys = ac->phys; 758 input_dev->dev.parent = dev; 759 input_dev->id.product = ac->model; 760 input_dev->id.bustype = bops->bustype; 761 input_dev->open = adxl34x_input_open; 762 input_dev->close = adxl34x_input_close; 763 764 input_set_drvdata(input_dev, ac); 765 766 __set_bit(ac->pdata.ev_type, input_dev->evbit); 767 768 if (ac->pdata.ev_type == EV_REL) { 769 __set_bit(REL_X, input_dev->relbit); 770 __set_bit(REL_Y, input_dev->relbit); 771 __set_bit(REL_Z, input_dev->relbit); 772 } else { 773 /* EV_ABS */ 774 __set_bit(ABS_X, input_dev->absbit); 775 __set_bit(ABS_Y, input_dev->absbit); 776 __set_bit(ABS_Z, input_dev->absbit); 777 778 if (pdata->data_range & FULL_RES) 779 range = ADXL_FULLRES_MAX_VAL; /* Signed 13-bit */ 780 else 781 range = ADXL_FIXEDRES_MAX_VAL; /* Signed 10-bit */ 782 783 input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3); 784 input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3); 785 input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3); 786 } 787 788 __set_bit(EV_KEY, input_dev->evbit); 789 __set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit); 790 __set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit); 791 __set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit); 792 793 if (pdata->ev_code_ff) { 794 ac->int_mask = FREE_FALL; 795 __set_bit(pdata->ev_code_ff, input_dev->keybit); 796 } 797 798 if (pdata->ev_code_act_inactivity) 799 __set_bit(pdata->ev_code_act_inactivity, input_dev->keybit); 800 801 ac->int_mask |= ACTIVITY | INACTIVITY; 802 803 if (pdata->watermark) { 804 ac->int_mask |= WATERMARK; 805 if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS) 806 ac->pdata.fifo_mode |= FIFO_STREAM; 807 } else { 808 ac->int_mask |= DATA_READY; 809 } 810 811 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) 812 ac->int_mask |= SINGLE_TAP | DOUBLE_TAP; 813 814 if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS) 815 ac->fifo_delay = false; 816 817 AC_WRITE(ac, POWER_CTL, 0); 818 819 err = request_threaded_irq(ac->irq, NULL, adxl34x_irq, 820 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 821 dev_name(dev), ac); 822 if (err) { 823 dev_err(dev, "irq %d busy?\n", ac->irq); 824 goto err_free_mem; 825 } 826 827 err = sysfs_create_group(&dev->kobj, &adxl34x_attr_group); 828 if (err) 829 goto err_free_irq; 830 831 err = input_register_device(input_dev); 832 if (err) 833 goto err_remove_attr; 834 835 AC_WRITE(ac, OFSX, pdata->x_axis_offset); 836 ac->hwcal.x = pdata->x_axis_offset; 837 AC_WRITE(ac, OFSY, pdata->y_axis_offset); 838 ac->hwcal.y = pdata->y_axis_offset; 839 AC_WRITE(ac, OFSZ, pdata->z_axis_offset); 840 ac->hwcal.z = pdata->z_axis_offset; 841 AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold); 842 AC_WRITE(ac, DUR, pdata->tap_duration); 843 AC_WRITE(ac, LATENT, pdata->tap_latency); 844 AC_WRITE(ac, WINDOW, pdata->tap_window); 845 AC_WRITE(ac, THRESH_ACT, pdata->activity_threshold); 846 AC_WRITE(ac, THRESH_INACT, pdata->inactivity_threshold); 847 AC_WRITE(ac, TIME_INACT, pdata->inactivity_time); 848 AC_WRITE(ac, THRESH_FF, pdata->free_fall_threshold); 849 AC_WRITE(ac, TIME_FF, pdata->free_fall_time); 850 AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control); 851 AC_WRITE(ac, ACT_INACT_CTL, pdata->act_axis_control); 852 AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) | 853 (pdata->low_power_mode ? LOW_POWER : 0)); 854 AC_WRITE(ac, DATA_FORMAT, pdata->data_range); 855 AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) | 856 SAMPLES(pdata->watermark)); 857 858 if (pdata->use_int2) { 859 /* Map all INTs to INT2 */ 860 AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN); 861 } else { 862 /* Map all INTs to INT1 */ 863 AC_WRITE(ac, INT_MAP, 0); 864 } 865 866 if (ac->model == 346 && ac->pdata.orientation_enable) { 867 AC_WRITE(ac, ORIENT_CONF, 868 ORIENT_DEADZONE(ac->pdata.deadzone_angle) | 869 ORIENT_DIVISOR(ac->pdata.divisor_length)); 870 871 ac->orient2d_saved = 1234; 872 ac->orient3d_saved = 1234; 873 874 if (pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) 875 for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++) 876 __set_bit(pdata->ev_codes_orient_3d[i], 877 input_dev->keybit); 878 879 if (pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) 880 for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++) 881 __set_bit(pdata->ev_codes_orient_2d[i], 882 input_dev->keybit); 883 } else { 884 ac->pdata.orientation_enable = 0; 885 } 886 887 AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN); 888 889 ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK); 890 891 return ac; 892 893 err_remove_attr: 894 sysfs_remove_group(&dev->kobj, &adxl34x_attr_group); 895 err_free_irq: 896 free_irq(ac->irq, ac); 897 err_free_mem: 898 input_free_device(input_dev); 899 kfree(ac); 900 err_out: 901 return ERR_PTR(err); 902 } 903 EXPORT_SYMBOL_GPL(adxl34x_probe); 904 905 void adxl34x_remove(struct adxl34x *ac) 906 { 907 sysfs_remove_group(&ac->dev->kobj, &adxl34x_attr_group); 908 free_irq(ac->irq, ac); 909 input_unregister_device(ac->input); 910 dev_dbg(ac->dev, "unregistered accelerometer\n"); 911 kfree(ac); 912 } 913 EXPORT_SYMBOL_GPL(adxl34x_remove); 914 915 EXPORT_GPL_SIMPLE_DEV_PM_OPS(adxl34x_pm, adxl34x_suspend, adxl34x_resume); 916 917 MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>"); 918 MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver"); 919 MODULE_LICENSE("GPL"); 920