1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * ADXL345/346 Three-Axis Digital Accelerometers
4 *
5 * Enter bugs at http://blackfin.uclinux.org/
6 *
7 * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc.
8 */
9
10 #include <linux/device.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/input/adxl34x.h>
18 #include <linux/module.h>
19
20 #include "adxl34x.h"
21
22 /* ADXL345/6 Register Map */
23 #define DEVID 0x00 /* R Device ID */
24 #define THRESH_TAP 0x1D /* R/W Tap threshold */
25 #define OFSX 0x1E /* R/W X-axis offset */
26 #define OFSY 0x1F /* R/W Y-axis offset */
27 #define OFSZ 0x20 /* R/W Z-axis offset */
28 #define DUR 0x21 /* R/W Tap duration */
29 #define LATENT 0x22 /* R/W Tap latency */
30 #define WINDOW 0x23 /* R/W Tap window */
31 #define THRESH_ACT 0x24 /* R/W Activity threshold */
32 #define THRESH_INACT 0x25 /* R/W Inactivity threshold */
33 #define TIME_INACT 0x26 /* R/W Inactivity time */
34 #define ACT_INACT_CTL 0x27 /* R/W Axis enable control for activity and */
35 /* inactivity detection */
36 #define THRESH_FF 0x28 /* R/W Free-fall threshold */
37 #define TIME_FF 0x29 /* R/W Free-fall time */
38 #define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */
39 #define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */
40 #define BW_RATE 0x2C /* R/W Data rate and power mode control */
41 #define POWER_CTL 0x2D /* R/W Power saving features control */
42 #define INT_ENABLE 0x2E /* R/W Interrupt enable control */
43 #define INT_MAP 0x2F /* R/W Interrupt mapping control */
44 #define INT_SOURCE 0x30 /* R Source of interrupts */
45 #define DATA_FORMAT 0x31 /* R/W Data format control */
46 #define DATAX0 0x32 /* R X-Axis Data 0 */
47 #define DATAX1 0x33 /* R X-Axis Data 1 */
48 #define DATAY0 0x34 /* R Y-Axis Data 0 */
49 #define DATAY1 0x35 /* R Y-Axis Data 1 */
50 #define DATAZ0 0x36 /* R Z-Axis Data 0 */
51 #define DATAZ1 0x37 /* R Z-Axis Data 1 */
52 #define FIFO_CTL 0x38 /* R/W FIFO control */
53 #define FIFO_STATUS 0x39 /* R FIFO status */
54 #define TAP_SIGN 0x3A /* R Sign and source for tap/double tap */
55 /* Orientation ADXL346 only */
56 #define ORIENT_CONF 0x3B /* R/W Orientation configuration */
57 #define ORIENT 0x3C /* R Orientation status */
58
59 /* DEVIDs */
60 #define ID_ADXL345 0xE5
61 #define ID_ADXL346 0xE6
62
63 /* INT_ENABLE/INT_MAP/INT_SOURCE Bits */
64 #define DATA_READY (1 << 7)
65 #define SINGLE_TAP (1 << 6)
66 #define DOUBLE_TAP (1 << 5)
67 #define ACTIVITY (1 << 4)
68 #define INACTIVITY (1 << 3)
69 #define FREE_FALL (1 << 2)
70 #define WATERMARK (1 << 1)
71 #define OVERRUN (1 << 0)
72
73 /* ACT_INACT_CONTROL Bits */
74 #define ACT_ACDC (1 << 7)
75 #define ACT_X_EN (1 << 6)
76 #define ACT_Y_EN (1 << 5)
77 #define ACT_Z_EN (1 << 4)
78 #define INACT_ACDC (1 << 3)
79 #define INACT_X_EN (1 << 2)
80 #define INACT_Y_EN (1 << 1)
81 #define INACT_Z_EN (1 << 0)
82
83 /* TAP_AXES Bits */
84 #define SUPPRESS (1 << 3)
85 #define TAP_X_EN (1 << 2)
86 #define TAP_Y_EN (1 << 1)
87 #define TAP_Z_EN (1 << 0)
88
89 /* ACT_TAP_STATUS Bits */
90 #define ACT_X_SRC (1 << 6)
91 #define ACT_Y_SRC (1 << 5)
92 #define ACT_Z_SRC (1 << 4)
93 #define ASLEEP (1 << 3)
94 #define TAP_X_SRC (1 << 2)
95 #define TAP_Y_SRC (1 << 1)
96 #define TAP_Z_SRC (1 << 0)
97
98 /* BW_RATE Bits */
99 #define LOW_POWER (1 << 4)
100 #define RATE(x) ((x) & 0xF)
101
102 /* POWER_CTL Bits */
103 #define PCTL_LINK (1 << 5)
104 #define PCTL_AUTO_SLEEP (1 << 4)
105 #define PCTL_MEASURE (1 << 3)
106 #define PCTL_SLEEP (1 << 2)
107 #define PCTL_WAKEUP(x) ((x) & 0x3)
108
109 /* DATA_FORMAT Bits */
110 #define SELF_TEST (1 << 7)
111 #define SPI (1 << 6)
112 #define INT_INVERT (1 << 5)
113 #define FULL_RES (1 << 3)
114 #define JUSTIFY (1 << 2)
115 #define RANGE(x) ((x) & 0x3)
116 #define RANGE_PM_2g 0
117 #define RANGE_PM_4g 1
118 #define RANGE_PM_8g 2
119 #define RANGE_PM_16g 3
120
121 /*
122 * Maximum value our axis may get in full res mode for the input device
123 * (signed 13 bits)
124 */
125 #define ADXL_FULLRES_MAX_VAL 4096
126
127 /*
128 * Maximum value our axis may get in fixed res mode for the input device
129 * (signed 10 bits)
130 */
131 #define ADXL_FIXEDRES_MAX_VAL 512
132
133 /* FIFO_CTL Bits */
134 #define FIFO_MODE(x) (((x) & 0x3) << 6)
135 #define FIFO_BYPASS 0
136 #define FIFO_FIFO 1
137 #define FIFO_STREAM 2
138 #define FIFO_TRIGGER 3
139 #define TRIGGER (1 << 5)
140 #define SAMPLES(x) ((x) & 0x1F)
141
142 /* FIFO_STATUS Bits */
143 #define FIFO_TRIG (1 << 7)
144 #define ENTRIES(x) ((x) & 0x3F)
145
146 /* TAP_SIGN Bits ADXL346 only */
147 #define XSIGN (1 << 6)
148 #define YSIGN (1 << 5)
149 #define ZSIGN (1 << 4)
150 #define XTAP (1 << 3)
151 #define YTAP (1 << 2)
152 #define ZTAP (1 << 1)
153
154 /* ORIENT_CONF ADXL346 only */
155 #define ORIENT_DEADZONE(x) (((x) & 0x7) << 4)
156 #define ORIENT_DIVISOR(x) ((x) & 0x7)
157
158 /* ORIENT ADXL346 only */
159 #define ADXL346_2D_VALID (1 << 6)
160 #define ADXL346_2D_ORIENT(x) (((x) & 0x30) >> 4)
161 #define ADXL346_3D_VALID (1 << 3)
162 #define ADXL346_3D_ORIENT(x) ((x) & 0x7)
163 #define ADXL346_2D_PORTRAIT_POS 0 /* +X */
164 #define ADXL346_2D_PORTRAIT_NEG 1 /* -X */
165 #define ADXL346_2D_LANDSCAPE_POS 2 /* +Y */
166 #define ADXL346_2D_LANDSCAPE_NEG 3 /* -Y */
167
168 #define ADXL346_3D_FRONT 3 /* +X */
169 #define ADXL346_3D_BACK 4 /* -X */
170 #define ADXL346_3D_RIGHT 2 /* +Y */
171 #define ADXL346_3D_LEFT 5 /* -Y */
172 #define ADXL346_3D_TOP 1 /* +Z */
173 #define ADXL346_3D_BOTTOM 6 /* -Z */
174
175 #undef ADXL_DEBUG
176
177 #define ADXL_X_AXIS 0
178 #define ADXL_Y_AXIS 1
179 #define ADXL_Z_AXIS 2
180
181 #define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg))
182 #define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val))
183
184 struct axis_triple {
185 int x;
186 int y;
187 int z;
188 };
189
190 struct adxl34x {
191 struct device *dev;
192 struct input_dev *input;
193 struct mutex mutex; /* reentrant protection for struct */
194 struct adxl34x_platform_data pdata;
195 struct axis_triple swcal;
196 struct axis_triple hwcal;
197 struct axis_triple saved;
198 char phys[32];
199 unsigned orient2d_saved;
200 unsigned orient3d_saved;
201 bool disabled; /* P: mutex */
202 bool opened; /* P: mutex */
203 bool suspended; /* P: mutex */
204 bool fifo_delay;
205 int irq;
206 unsigned model;
207 unsigned int_mask;
208
209 const struct adxl34x_bus_ops *bops;
210 };
211
212 static const struct adxl34x_platform_data adxl34x_default_init = {
213 .tap_threshold = 35,
214 .tap_duration = 3,
215 .tap_latency = 20,
216 .tap_window = 20,
217 .tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN,
218 .act_axis_control = 0xFF,
219 .activity_threshold = 6,
220 .inactivity_threshold = 4,
221 .inactivity_time = 3,
222 .free_fall_threshold = 8,
223 .free_fall_time = 0x20,
224 .data_rate = 8,
225 .data_range = ADXL_FULL_RES,
226
227 .ev_type = EV_ABS,
228 .ev_code_x = ABS_X, /* EV_REL */
229 .ev_code_y = ABS_Y, /* EV_REL */
230 .ev_code_z = ABS_Z, /* EV_REL */
231
232 .ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */
233 .power_mode = ADXL_AUTO_SLEEP | ADXL_LINK,
234 .fifo_mode = ADXL_FIFO_STREAM,
235 .watermark = 0,
236 };
237
adxl34x_get_triple(struct adxl34x * ac,struct axis_triple * axis)238 static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis)
239 {
240 __le16 buf[3];
241
242 ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf);
243
244 guard(mutex)(&ac->mutex);
245
246 ac->saved.x = (s16) le16_to_cpu(buf[0]);
247 axis->x = ac->saved.x;
248
249 ac->saved.y = (s16) le16_to_cpu(buf[1]);
250 axis->y = ac->saved.y;
251
252 ac->saved.z = (s16) le16_to_cpu(buf[2]);
253 axis->z = ac->saved.z;
254 }
255
adxl34x_service_ev_fifo(struct adxl34x * ac)256 static void adxl34x_service_ev_fifo(struct adxl34x *ac)
257 {
258 struct adxl34x_platform_data *pdata = &ac->pdata;
259 struct axis_triple axis;
260
261 adxl34x_get_triple(ac, &axis);
262
263 input_event(ac->input, pdata->ev_type, pdata->ev_code_x,
264 axis.x - ac->swcal.x);
265 input_event(ac->input, pdata->ev_type, pdata->ev_code_y,
266 axis.y - ac->swcal.y);
267 input_event(ac->input, pdata->ev_type, pdata->ev_code_z,
268 axis.z - ac->swcal.z);
269 }
270
adxl34x_report_key_single(struct input_dev * input,int key)271 static void adxl34x_report_key_single(struct input_dev *input, int key)
272 {
273 input_report_key(input, key, true);
274 input_sync(input);
275 input_report_key(input, key, false);
276 }
277
adxl34x_send_key_events(struct adxl34x * ac,struct adxl34x_platform_data * pdata,int status,int press)278 static void adxl34x_send_key_events(struct adxl34x *ac,
279 struct adxl34x_platform_data *pdata, int status, int press)
280 {
281 int i;
282
283 for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) {
284 if (status & (1 << (ADXL_Z_AXIS - i)))
285 input_report_key(ac->input,
286 pdata->ev_code_tap[i], press);
287 }
288 }
289
adxl34x_do_tap(struct adxl34x * ac,struct adxl34x_platform_data * pdata,int status)290 static void adxl34x_do_tap(struct adxl34x *ac,
291 struct adxl34x_platform_data *pdata, int status)
292 {
293 adxl34x_send_key_events(ac, pdata, status, true);
294 input_sync(ac->input);
295 adxl34x_send_key_events(ac, pdata, status, false);
296 }
297
adxl34x_irq(int irq,void * handle)298 static irqreturn_t adxl34x_irq(int irq, void *handle)
299 {
300 struct adxl34x *ac = handle;
301 struct adxl34x_platform_data *pdata = &ac->pdata;
302 int int_stat, tap_stat, samples, orient, orient_code;
303
304 /*
305 * ACT_TAP_STATUS should be read before clearing the interrupt
306 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled
307 */
308
309 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
310 tap_stat = AC_READ(ac, ACT_TAP_STATUS);
311 else
312 tap_stat = 0;
313
314 int_stat = AC_READ(ac, INT_SOURCE);
315
316 if (int_stat & FREE_FALL)
317 adxl34x_report_key_single(ac->input, pdata->ev_code_ff);
318
319 if (int_stat & OVERRUN)
320 dev_dbg(ac->dev, "OVERRUN\n");
321
322 if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) {
323 adxl34x_do_tap(ac, pdata, tap_stat);
324
325 if (int_stat & DOUBLE_TAP)
326 adxl34x_do_tap(ac, pdata, tap_stat);
327 }
328
329 if (pdata->ev_code_act_inactivity) {
330 if (int_stat & ACTIVITY)
331 input_report_key(ac->input,
332 pdata->ev_code_act_inactivity, 1);
333 if (int_stat & INACTIVITY)
334 input_report_key(ac->input,
335 pdata->ev_code_act_inactivity, 0);
336 }
337
338 /*
339 * ORIENTATION SENSING ADXL346 only
340 */
341 if (pdata->orientation_enable) {
342 orient = AC_READ(ac, ORIENT);
343 if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) &&
344 (orient & ADXL346_2D_VALID)) {
345
346 orient_code = ADXL346_2D_ORIENT(orient);
347 /* Report orientation only when it changes */
348 if (ac->orient2d_saved != orient_code) {
349 ac->orient2d_saved = orient_code;
350 adxl34x_report_key_single(ac->input,
351 pdata->ev_codes_orient_2d[orient_code]);
352 }
353 }
354
355 if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) &&
356 (orient & ADXL346_3D_VALID)) {
357
358 orient_code = ADXL346_3D_ORIENT(orient) - 1;
359 /* Report orientation only when it changes */
360 if (ac->orient3d_saved != orient_code) {
361 ac->orient3d_saved = orient_code;
362 adxl34x_report_key_single(ac->input,
363 pdata->ev_codes_orient_3d[orient_code]);
364 }
365 }
366 }
367
368 if (int_stat & (DATA_READY | WATERMARK)) {
369
370 if (pdata->fifo_mode)
371 samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1;
372 else
373 samples = 1;
374
375 for (; samples > 0; samples--) {
376 adxl34x_service_ev_fifo(ac);
377 /*
378 * To ensure that the FIFO has
379 * completely popped, there must be at least 5 us between
380 * the end of reading the data registers, signified by the
381 * transition to register 0x38 from 0x37 or the CS pin
382 * going high, and the start of new reads of the FIFO or
383 * reading the FIFO_STATUS register. For SPI operation at
384 * 1.5 MHz or lower, the register addressing portion of the
385 * transmission is sufficient delay to ensure the FIFO has
386 * completely popped. It is necessary for SPI operation
387 * greater than 1.5 MHz to de-assert the CS pin to ensure a
388 * total of 5 us, which is at most 3.4 us at 5 MHz
389 * operation.
390 */
391 if (ac->fifo_delay && (samples > 1))
392 udelay(3);
393 }
394 }
395
396 input_sync(ac->input);
397
398 return IRQ_HANDLED;
399 }
400
__adxl34x_disable(struct adxl34x * ac)401 static void __adxl34x_disable(struct adxl34x *ac)
402 {
403 /*
404 * A '0' places the ADXL34x into standby mode
405 * with minimum power consumption.
406 */
407 AC_WRITE(ac, POWER_CTL, 0);
408 }
409
__adxl34x_enable(struct adxl34x * ac)410 static void __adxl34x_enable(struct adxl34x *ac)
411 {
412 AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
413 }
414
adxl34x_suspend(struct device * dev)415 static int adxl34x_suspend(struct device *dev)
416 {
417 struct adxl34x *ac = dev_get_drvdata(dev);
418
419 guard(mutex)(&ac->mutex);
420
421 if (!ac->suspended && !ac->disabled && ac->opened)
422 __adxl34x_disable(ac);
423
424 ac->suspended = true;
425
426 return 0;
427 }
428
adxl34x_resume(struct device * dev)429 static int adxl34x_resume(struct device *dev)
430 {
431 struct adxl34x *ac = dev_get_drvdata(dev);
432
433 guard(mutex)(&ac->mutex);
434
435 if (ac->suspended && !ac->disabled && ac->opened)
436 __adxl34x_enable(ac);
437
438 ac->suspended = false;
439
440 return 0;
441 }
442
adxl34x_disable_show(struct device * dev,struct device_attribute * attr,char * buf)443 static ssize_t adxl34x_disable_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct adxl34x *ac = dev_get_drvdata(dev);
447
448 return sprintf(buf, "%u\n", ac->disabled);
449 }
450
adxl34x_disable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)451 static ssize_t adxl34x_disable_store(struct device *dev,
452 struct device_attribute *attr,
453 const char *buf, size_t count)
454 {
455 struct adxl34x *ac = dev_get_drvdata(dev);
456 unsigned int val;
457 int error;
458
459 error = kstrtouint(buf, 10, &val);
460 if (error)
461 return error;
462
463 guard(mutex)(&ac->mutex);
464
465 if (!ac->suspended && ac->opened) {
466 if (val) {
467 if (!ac->disabled)
468 __adxl34x_disable(ac);
469 } else {
470 if (ac->disabled)
471 __adxl34x_enable(ac);
472 }
473 }
474
475 ac->disabled = !!val;
476
477 return count;
478 }
479
480 static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store);
481
adxl34x_calibrate_show(struct device * dev,struct device_attribute * attr,char * buf)482 static ssize_t adxl34x_calibrate_show(struct device *dev,
483 struct device_attribute *attr, char *buf)
484 {
485 struct adxl34x *ac = dev_get_drvdata(dev);
486
487 guard(mutex)(&ac->mutex);
488
489 return sprintf(buf, "%d,%d,%d\n",
490 ac->hwcal.x * 4 + ac->swcal.x,
491 ac->hwcal.y * 4 + ac->swcal.y,
492 ac->hwcal.z * 4 + ac->swcal.z);
493 }
494
adxl34x_calibrate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)495 static ssize_t adxl34x_calibrate_store(struct device *dev,
496 struct device_attribute *attr,
497 const char *buf, size_t count)
498 {
499 struct adxl34x *ac = dev_get_drvdata(dev);
500
501 /*
502 * Hardware offset calibration has a resolution of 15.6 mg/LSB.
503 * We use HW calibration and handle the remaining bits in SW. (4mg/LSB)
504 */
505
506 guard(mutex)(&ac->mutex);
507
508 ac->hwcal.x -= (ac->saved.x / 4);
509 ac->swcal.x = ac->saved.x % 4;
510
511 ac->hwcal.y -= (ac->saved.y / 4);
512 ac->swcal.y = ac->saved.y % 4;
513
514 ac->hwcal.z -= (ac->saved.z / 4);
515 ac->swcal.z = ac->saved.z % 4;
516
517 AC_WRITE(ac, OFSX, (s8) ac->hwcal.x);
518 AC_WRITE(ac, OFSY, (s8) ac->hwcal.y);
519 AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z);
520
521 return count;
522 }
523
524 static DEVICE_ATTR(calibrate, 0664,
525 adxl34x_calibrate_show, adxl34x_calibrate_store);
526
adxl34x_rate_show(struct device * dev,struct device_attribute * attr,char * buf)527 static ssize_t adxl34x_rate_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
529 {
530 struct adxl34x *ac = dev_get_drvdata(dev);
531
532 return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate));
533 }
534
adxl34x_rate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)535 static ssize_t adxl34x_rate_store(struct device *dev,
536 struct device_attribute *attr,
537 const char *buf, size_t count)
538 {
539 struct adxl34x *ac = dev_get_drvdata(dev);
540 unsigned char val;
541 int error;
542
543 error = kstrtou8(buf, 10, &val);
544 if (error)
545 return error;
546
547 guard(mutex)(&ac->mutex);
548
549 ac->pdata.data_rate = RATE(val);
550 AC_WRITE(ac, BW_RATE,
551 ac->pdata.data_rate |
552 (ac->pdata.low_power_mode ? LOW_POWER : 0));
553
554 return count;
555 }
556
557 static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store);
558
adxl34x_autosleep_show(struct device * dev,struct device_attribute * attr,char * buf)559 static ssize_t adxl34x_autosleep_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561 {
562 struct adxl34x *ac = dev_get_drvdata(dev);
563
564 return sprintf(buf, "%u\n",
565 ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0);
566 }
567
adxl34x_autosleep_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)568 static ssize_t adxl34x_autosleep_store(struct device *dev,
569 struct device_attribute *attr,
570 const char *buf, size_t count)
571 {
572 struct adxl34x *ac = dev_get_drvdata(dev);
573 unsigned int val;
574 int error;
575
576 error = kstrtouint(buf, 10, &val);
577 if (error)
578 return error;
579
580 guard(mutex)(&ac->mutex);
581
582 if (val)
583 ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK);
584 else
585 ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK);
586
587 if (!ac->disabled && !ac->suspended && ac->opened)
588 AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
589
590 return count;
591 }
592
593 static DEVICE_ATTR(autosleep, 0664,
594 adxl34x_autosleep_show, adxl34x_autosleep_store);
595
adxl34x_position_show(struct device * dev,struct device_attribute * attr,char * buf)596 static ssize_t adxl34x_position_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598 {
599 struct adxl34x *ac = dev_get_drvdata(dev);
600
601 guard(mutex)(&ac->mutex);
602
603 return sprintf(buf, "(%d, %d, %d)\n",
604 ac->saved.x, ac->saved.y, ac->saved.z);
605 }
606
607 static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL);
608
609 #ifdef ADXL_DEBUG
adxl34x_write_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)610 static ssize_t adxl34x_write_store(struct device *dev,
611 struct device_attribute *attr,
612 const char *buf, size_t count)
613 {
614 struct adxl34x *ac = dev_get_drvdata(dev);
615 unsigned int val;
616 int error;
617
618 /*
619 * This allows basic ADXL register write access for debug purposes.
620 */
621 error = kstrtouint(buf, 16, &val);
622 if (error)
623 return error;
624
625 guard(mutex)(&ac->mutex);
626 AC_WRITE(ac, val >> 8, val & 0xFF);
627
628 return count;
629 }
630
631 static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store);
632 #endif
633
634 static struct attribute *adxl34x_attributes[] = {
635 &dev_attr_disable.attr,
636 &dev_attr_calibrate.attr,
637 &dev_attr_rate.attr,
638 &dev_attr_autosleep.attr,
639 &dev_attr_position.attr,
640 #ifdef ADXL_DEBUG
641 &dev_attr_write.attr,
642 #endif
643 NULL
644 };
645
646 static const struct attribute_group adxl34x_attr_group = {
647 .attrs = adxl34x_attributes,
648 };
649
650 const struct attribute_group *adxl34x_groups[] = {
651 &adxl34x_attr_group,
652 NULL
653 };
654 EXPORT_SYMBOL_GPL(adxl34x_groups);
655
adxl34x_input_open(struct input_dev * input)656 static int adxl34x_input_open(struct input_dev *input)
657 {
658 struct adxl34x *ac = input_get_drvdata(input);
659
660 guard(mutex)(&ac->mutex);
661
662 if (!ac->suspended && !ac->disabled)
663 __adxl34x_enable(ac);
664
665 ac->opened = true;
666
667 return 0;
668 }
669
adxl34x_input_close(struct input_dev * input)670 static void adxl34x_input_close(struct input_dev *input)
671 {
672 struct adxl34x *ac = input_get_drvdata(input);
673
674 guard(mutex)(&ac->mutex);
675
676 if (!ac->suspended && !ac->disabled)
677 __adxl34x_disable(ac);
678
679 ac->opened = false;
680 }
681
adxl34x_probe(struct device * dev,int irq,bool fifo_delay_default,const struct adxl34x_bus_ops * bops)682 struct adxl34x *adxl34x_probe(struct device *dev, int irq,
683 bool fifo_delay_default,
684 const struct adxl34x_bus_ops *bops)
685 {
686 struct adxl34x *ac;
687 struct input_dev *input_dev;
688 const struct adxl34x_platform_data *pdata;
689 int error, range, i;
690 int revid;
691
692 if (!irq) {
693 dev_err(dev, "no IRQ?\n");
694 return ERR_PTR(-ENODEV);
695 }
696
697 ac = devm_kzalloc(dev, sizeof(*ac), GFP_KERNEL);
698 if (!ac)
699 return ERR_PTR(-ENOMEM);
700
701 input_dev = devm_input_allocate_device(dev);
702 if (!input_dev)
703 return ERR_PTR(-ENOMEM);
704
705 ac->fifo_delay = fifo_delay_default;
706
707 pdata = dev_get_platdata(dev);
708 if (!pdata) {
709 dev_dbg(dev,
710 "No platform data: Using default initialization\n");
711 pdata = &adxl34x_default_init;
712 }
713
714 ac->pdata = *pdata;
715 pdata = &ac->pdata;
716
717 ac->input = input_dev;
718 ac->dev = dev;
719 ac->irq = irq;
720 ac->bops = bops;
721
722 mutex_init(&ac->mutex);
723
724 input_dev->name = "ADXL34x accelerometer";
725 revid = AC_READ(ac, DEVID);
726
727 switch (revid) {
728 case ID_ADXL345:
729 ac->model = 345;
730 break;
731 case ID_ADXL346:
732 ac->model = 346;
733 break;
734 default:
735 dev_err(dev, "Failed to probe %s\n", input_dev->name);
736 return ERR_PTR(-ENODEV);
737 }
738
739 snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev));
740
741 input_dev->phys = ac->phys;
742 input_dev->id.product = ac->model;
743 input_dev->id.bustype = bops->bustype;
744 input_dev->open = adxl34x_input_open;
745 input_dev->close = adxl34x_input_close;
746
747 input_set_drvdata(input_dev, ac);
748
749 if (ac->pdata.ev_type == EV_REL) {
750 input_set_capability(input_dev, EV_REL, REL_X);
751 input_set_capability(input_dev, EV_REL, REL_Y);
752 input_set_capability(input_dev, EV_REL, REL_Z);
753 } else {
754 /* EV_ABS */
755 if (pdata->data_range & FULL_RES)
756 range = ADXL_FULLRES_MAX_VAL; /* Signed 13-bit */
757 else
758 range = ADXL_FIXEDRES_MAX_VAL; /* Signed 10-bit */
759
760 input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3);
761 input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3);
762 input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3);
763 }
764
765 input_set_capability(input_dev, EV_KEY, pdata->ev_code_tap[ADXL_X_AXIS]);
766 input_set_capability(input_dev, EV_KEY, pdata->ev_code_tap[ADXL_Y_AXIS]);
767 input_set_capability(input_dev, EV_KEY, pdata->ev_code_tap[ADXL_Z_AXIS]);
768
769 if (pdata->ev_code_ff) {
770 ac->int_mask = FREE_FALL;
771 input_set_capability(input_dev, EV_KEY, pdata->ev_code_ff);
772 }
773
774 if (pdata->ev_code_act_inactivity)
775 input_set_capability(input_dev, EV_KEY,
776 pdata->ev_code_act_inactivity);
777
778 ac->int_mask |= ACTIVITY | INACTIVITY;
779
780 if (pdata->watermark) {
781 ac->int_mask |= WATERMARK;
782 if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS)
783 ac->pdata.fifo_mode |= FIFO_STREAM;
784 } else {
785 ac->int_mask |= DATA_READY;
786 }
787
788 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
789 ac->int_mask |= SINGLE_TAP | DOUBLE_TAP;
790
791 if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS)
792 ac->fifo_delay = false;
793
794 AC_WRITE(ac, POWER_CTL, 0);
795
796 error = devm_request_threaded_irq(dev, ac->irq, NULL, adxl34x_irq,
797 IRQF_ONESHOT, dev_name(dev), ac);
798 if (error) {
799 dev_err(dev, "irq %d busy?\n", ac->irq);
800 return ERR_PTR(error);
801 }
802
803 error = input_register_device(input_dev);
804 if (error)
805 return ERR_PTR(error);
806
807 AC_WRITE(ac, OFSX, pdata->x_axis_offset);
808 ac->hwcal.x = pdata->x_axis_offset;
809 AC_WRITE(ac, OFSY, pdata->y_axis_offset);
810 ac->hwcal.y = pdata->y_axis_offset;
811 AC_WRITE(ac, OFSZ, pdata->z_axis_offset);
812 ac->hwcal.z = pdata->z_axis_offset;
813 AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
814 AC_WRITE(ac, DUR, pdata->tap_duration);
815 AC_WRITE(ac, LATENT, pdata->tap_latency);
816 AC_WRITE(ac, WINDOW, pdata->tap_window);
817 AC_WRITE(ac, THRESH_ACT, pdata->activity_threshold);
818 AC_WRITE(ac, THRESH_INACT, pdata->inactivity_threshold);
819 AC_WRITE(ac, TIME_INACT, pdata->inactivity_time);
820 AC_WRITE(ac, THRESH_FF, pdata->free_fall_threshold);
821 AC_WRITE(ac, TIME_FF, pdata->free_fall_time);
822 AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control);
823 AC_WRITE(ac, ACT_INACT_CTL, pdata->act_axis_control);
824 AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) |
825 (pdata->low_power_mode ? LOW_POWER : 0));
826 AC_WRITE(ac, DATA_FORMAT, pdata->data_range);
827 AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) |
828 SAMPLES(pdata->watermark));
829
830 if (pdata->use_int2) {
831 /* Map all INTs to INT2 */
832 AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN);
833 } else {
834 /* Map all INTs to INT1 */
835 AC_WRITE(ac, INT_MAP, 0);
836 }
837
838 if (ac->model == 346 && ac->pdata.orientation_enable) {
839 AC_WRITE(ac, ORIENT_CONF,
840 ORIENT_DEADZONE(ac->pdata.deadzone_angle) |
841 ORIENT_DIVISOR(ac->pdata.divisor_length));
842
843 ac->orient2d_saved = 1234;
844 ac->orient3d_saved = 1234;
845
846 if (pdata->orientation_enable & ADXL_EN_ORIENTATION_3D)
847 for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++)
848 input_set_capability(input_dev, EV_KEY,
849 pdata->ev_codes_orient_3d[i]);
850
851 if (pdata->orientation_enable & ADXL_EN_ORIENTATION_2D)
852 for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++)
853 input_set_capability(input_dev, EV_KEY,
854 pdata->ev_codes_orient_2d[i]);
855 } else {
856 ac->pdata.orientation_enable = 0;
857 }
858
859 AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN);
860
861 ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK);
862
863 return ac;
864 }
865 EXPORT_SYMBOL_GPL(adxl34x_probe);
866
867 EXPORT_GPL_SIMPLE_DEV_PM_OPS(adxl34x_pm, adxl34x_suspend, adxl34x_resume);
868
869 MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
870 MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver");
871 MODULE_LICENSE("GPL");
872