xref: /linux/drivers/input/keyboard/tegra-kbc.c (revision 78b7b991838a4a6baeaad934addc4db2c5917eb8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Keyboard class input driver for the NVIDIA Tegra SoC internal matrix
4  * keyboard controller
5  *
6  * Copyright (c) 2009-2011, NVIDIA Corporation.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/input.h>
12 #include <linux/platform_device.h>
13 #include <linux/delay.h>
14 #include <linux/io.h>
15 #include <linux/interrupt.h>
16 #include <linux/of.h>
17 #include <linux/property.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/input/matrix_keypad.h>
21 #include <linux/reset.h>
22 #include <linux/err.h>
23 
24 #define KBC_MAX_KPENT	8
25 
26 /* Maximum row/column supported by Tegra KBC yet  is 16x8 */
27 #define KBC_MAX_GPIO	24
28 /* Maximum keys supported by Tegra KBC yet is 16 x 8*/
29 #define KBC_MAX_KEY	(16 * 8)
30 
31 #define KBC_MAX_DEBOUNCE_CNT	0x3ffu
32 
33 /* KBC row scan time and delay for beginning the row scan. */
34 #define KBC_ROW_SCAN_TIME	16
35 #define KBC_ROW_SCAN_DLY	5
36 
37 /* KBC uses a 32KHz clock so a cycle = 1/32Khz */
38 #define KBC_CYCLE_MS	32
39 
40 /* KBC Registers */
41 
42 /* KBC Control Register */
43 #define KBC_CONTROL_0	0x0
44 #define KBC_FIFO_TH_CNT_SHIFT(cnt)	(cnt << 14)
45 #define KBC_DEBOUNCE_CNT_SHIFT(cnt)	(cnt << 4)
46 #define KBC_CONTROL_FIFO_CNT_INT_EN	(1 << 3)
47 #define KBC_CONTROL_KEYPRESS_INT_EN	(1 << 1)
48 #define KBC_CONTROL_KBC_EN		(1 << 0)
49 
50 /* KBC Interrupt Register */
51 #define KBC_INT_0	0x4
52 #define KBC_INT_FIFO_CNT_INT_STATUS	(1 << 2)
53 #define KBC_INT_KEYPRESS_INT_STATUS	(1 << 0)
54 
55 #define KBC_ROW_CFG0_0	0x8
56 #define KBC_COL_CFG0_0	0x18
57 #define KBC_TO_CNT_0	0x24
58 #define KBC_INIT_DLY_0	0x28
59 #define KBC_RPT_DLY_0	0x2c
60 #define KBC_KP_ENT0_0	0x30
61 #define KBC_KP_ENT1_0	0x34
62 #define KBC_ROW0_MASK_0	0x38
63 
64 #define KBC_ROW_SHIFT	3
65 
66 enum tegra_pin_type {
67 	PIN_CFG_IGNORE,
68 	PIN_CFG_COL,
69 	PIN_CFG_ROW,
70 };
71 
72 /* Tegra KBC hw support */
73 struct tegra_kbc_hw_support {
74 	int max_rows;
75 	int max_columns;
76 };
77 
78 struct tegra_kbc_pin_cfg {
79 	enum tegra_pin_type type;
80 	unsigned char num;
81 };
82 
83 struct tegra_kbc {
84 	struct device *dev;
85 	unsigned int debounce_cnt;
86 	unsigned int repeat_cnt;
87 	struct tegra_kbc_pin_cfg pin_cfg[KBC_MAX_GPIO];
88 	const struct matrix_keymap_data *keymap_data;
89 	bool wakeup;
90 	void __iomem *mmio;
91 	struct input_dev *idev;
92 	int irq;
93 	spinlock_t lock;
94 	unsigned int repoll_dly;
95 	unsigned long cp_dly_jiffies;
96 	unsigned int cp_to_wkup_dly;
97 	bool use_fn_map;
98 	bool use_ghost_filter;
99 	bool keypress_caused_wake;
100 	unsigned short keycode[KBC_MAX_KEY * 2];
101 	unsigned short current_keys[KBC_MAX_KPENT];
102 	unsigned int num_pressed_keys;
103 	u32 wakeup_key;
104 	struct timer_list timer;
105 	struct clk *clk;
106 	struct reset_control *rst;
107 	const struct tegra_kbc_hw_support *hw_support;
108 	int max_keys;
109 	int num_rows_and_columns;
110 };
111 
112 static void tegra_kbc_report_released_keys(struct input_dev *input,
113 					   unsigned short old_keycodes[],
114 					   unsigned int old_num_keys,
115 					   unsigned short new_keycodes[],
116 					   unsigned int new_num_keys)
117 {
118 	unsigned int i, j;
119 
120 	for (i = 0; i < old_num_keys; i++) {
121 		for (j = 0; j < new_num_keys; j++)
122 			if (old_keycodes[i] == new_keycodes[j])
123 				break;
124 
125 		if (j == new_num_keys)
126 			input_report_key(input, old_keycodes[i], 0);
127 	}
128 }
129 
130 static void tegra_kbc_report_pressed_keys(struct input_dev *input,
131 					  unsigned char scancodes[],
132 					  unsigned short keycodes[],
133 					  unsigned int num_pressed_keys)
134 {
135 	unsigned int i;
136 
137 	for (i = 0; i < num_pressed_keys; i++) {
138 		input_event(input, EV_MSC, MSC_SCAN, scancodes[i]);
139 		input_report_key(input, keycodes[i], 1);
140 	}
141 }
142 
143 static void tegra_kbc_report_keys(struct tegra_kbc *kbc)
144 {
145 	unsigned char scancodes[KBC_MAX_KPENT];
146 	unsigned short keycodes[KBC_MAX_KPENT];
147 	u32 val = 0;
148 	unsigned int i;
149 	unsigned int num_down = 0;
150 	bool fn_keypress = false;
151 	bool key_in_same_row = false;
152 	bool key_in_same_col = false;
153 
154 	for (i = 0; i < KBC_MAX_KPENT; i++) {
155 		if ((i % 4) == 0)
156 			val = readl(kbc->mmio + KBC_KP_ENT0_0 + i);
157 
158 		if (val & 0x80) {
159 			unsigned int col = val & 0x07;
160 			unsigned int row = (val >> 3) & 0x0f;
161 			unsigned char scancode =
162 				MATRIX_SCAN_CODE(row, col, KBC_ROW_SHIFT);
163 
164 			scancodes[num_down] = scancode;
165 			keycodes[num_down] = kbc->keycode[scancode];
166 			/* If driver uses Fn map, do not report the Fn key. */
167 			if ((keycodes[num_down] == KEY_FN) && kbc->use_fn_map)
168 				fn_keypress = true;
169 			else
170 				num_down++;
171 		}
172 
173 		val >>= 8;
174 	}
175 
176 	/*
177 	 * Matrix keyboard designs are prone to keyboard ghosting.
178 	 * Ghosting occurs if there are 3 keys such that -
179 	 * any 2 of the 3 keys share a row, and any 2 of them share a column.
180 	 * If so ignore the key presses for this iteration.
181 	 */
182 	if (kbc->use_ghost_filter && num_down >= 3) {
183 		for (i = 0; i < num_down; i++) {
184 			unsigned int j;
185 			u8 curr_col = scancodes[i] & 0x07;
186 			u8 curr_row = scancodes[i] >> KBC_ROW_SHIFT;
187 
188 			/*
189 			 * Find 2 keys such that one key is in the same row
190 			 * and the other is in the same column as the i-th key.
191 			 */
192 			for (j = i + 1; j < num_down; j++) {
193 				u8 col = scancodes[j] & 0x07;
194 				u8 row = scancodes[j] >> KBC_ROW_SHIFT;
195 
196 				if (col == curr_col)
197 					key_in_same_col = true;
198 				if (row == curr_row)
199 					key_in_same_row = true;
200 			}
201 		}
202 	}
203 
204 	/*
205 	 * If the platform uses Fn keymaps, translate keys on a Fn keypress.
206 	 * Function keycodes are max_keys apart from the plain keycodes.
207 	 */
208 	if (fn_keypress) {
209 		for (i = 0; i < num_down; i++) {
210 			scancodes[i] += kbc->max_keys;
211 			keycodes[i] = kbc->keycode[scancodes[i]];
212 		}
213 	}
214 
215 	/* Ignore the key presses for this iteration? */
216 	if (key_in_same_col && key_in_same_row)
217 		return;
218 
219 	tegra_kbc_report_released_keys(kbc->idev,
220 				       kbc->current_keys, kbc->num_pressed_keys,
221 				       keycodes, num_down);
222 	tegra_kbc_report_pressed_keys(kbc->idev, scancodes, keycodes, num_down);
223 	input_sync(kbc->idev);
224 
225 	memcpy(kbc->current_keys, keycodes, sizeof(kbc->current_keys));
226 	kbc->num_pressed_keys = num_down;
227 }
228 
229 static void tegra_kbc_set_fifo_interrupt(struct tegra_kbc *kbc, bool enable)
230 {
231 	u32 val;
232 
233 	val = readl(kbc->mmio + KBC_CONTROL_0);
234 	if (enable)
235 		val |= KBC_CONTROL_FIFO_CNT_INT_EN;
236 	else
237 		val &= ~KBC_CONTROL_FIFO_CNT_INT_EN;
238 	writel(val, kbc->mmio + KBC_CONTROL_0);
239 }
240 
241 static void tegra_kbc_keypress_timer(struct timer_list *t)
242 {
243 	struct tegra_kbc *kbc = from_timer(kbc, t, timer);
244 	u32 val;
245 	unsigned int i;
246 
247 	guard(spinlock_irqsave)(&kbc->lock);
248 
249 	val = (readl(kbc->mmio + KBC_INT_0) >> 4) & 0xf;
250 	if (val) {
251 		unsigned long dly;
252 
253 		tegra_kbc_report_keys(kbc);
254 
255 		/*
256 		 * If more than one keys are pressed we need not wait
257 		 * for the repoll delay.
258 		 */
259 		dly = (val == 1) ? kbc->repoll_dly : 1;
260 		mod_timer(&kbc->timer, jiffies + msecs_to_jiffies(dly));
261 	} else {
262 		/* Release any pressed keys and exit the polling loop */
263 		for (i = 0; i < kbc->num_pressed_keys; i++)
264 			input_report_key(kbc->idev, kbc->current_keys[i], 0);
265 		input_sync(kbc->idev);
266 
267 		kbc->num_pressed_keys = 0;
268 
269 		/* All keys are released so enable the keypress interrupt */
270 		tegra_kbc_set_fifo_interrupt(kbc, true);
271 	}
272 }
273 
274 static irqreturn_t tegra_kbc_isr(int irq, void *args)
275 {
276 	struct tegra_kbc *kbc = args;
277 	u32 val;
278 
279 	guard(spinlock_irqsave)(&kbc->lock);
280 
281 	/*
282 	 * Quickly bail out & reenable interrupts if the fifo threshold
283 	 * count interrupt wasn't the interrupt source
284 	 */
285 	val = readl(kbc->mmio + KBC_INT_0);
286 	writel(val, kbc->mmio + KBC_INT_0);
287 
288 	if (val & KBC_INT_FIFO_CNT_INT_STATUS) {
289 		/*
290 		 * Until all keys are released, defer further processing to
291 		 * the polling loop in tegra_kbc_keypress_timer.
292 		 */
293 		tegra_kbc_set_fifo_interrupt(kbc, false);
294 		mod_timer(&kbc->timer, jiffies + kbc->cp_dly_jiffies);
295 	} else if (val & KBC_INT_KEYPRESS_INT_STATUS) {
296 		/* We can be here only through system resume path */
297 		kbc->keypress_caused_wake = true;
298 	}
299 
300 	return IRQ_HANDLED;
301 }
302 
303 static void tegra_kbc_setup_wakekeys(struct tegra_kbc *kbc, bool filter)
304 {
305 	int i;
306 	unsigned int rst_val;
307 
308 	/* Either mask all keys or none. */
309 	rst_val = (filter && !kbc->wakeup) ? ~0 : 0;
310 
311 	for (i = 0; i < kbc->hw_support->max_rows; i++)
312 		writel(rst_val, kbc->mmio + KBC_ROW0_MASK_0 + i * 4);
313 }
314 
315 static void tegra_kbc_config_pins(struct tegra_kbc *kbc)
316 {
317 	int i;
318 
319 	for (i = 0; i < KBC_MAX_GPIO; i++) {
320 		u32 r_shft = 5 * (i % 6);
321 		u32 c_shft = 4 * (i % 8);
322 		u32 r_mask = 0x1f << r_shft;
323 		u32 c_mask = 0x0f << c_shft;
324 		u32 r_offs = (i / 6) * 4 + KBC_ROW_CFG0_0;
325 		u32 c_offs = (i / 8) * 4 + KBC_COL_CFG0_0;
326 		u32 row_cfg = readl(kbc->mmio + r_offs);
327 		u32 col_cfg = readl(kbc->mmio + c_offs);
328 
329 		row_cfg &= ~r_mask;
330 		col_cfg &= ~c_mask;
331 
332 		switch (kbc->pin_cfg[i].type) {
333 		case PIN_CFG_ROW:
334 			row_cfg |= ((kbc->pin_cfg[i].num << 1) | 1) << r_shft;
335 			break;
336 
337 		case PIN_CFG_COL:
338 			col_cfg |= ((kbc->pin_cfg[i].num << 1) | 1) << c_shft;
339 			break;
340 
341 		case PIN_CFG_IGNORE:
342 			break;
343 		}
344 
345 		writel(row_cfg, kbc->mmio + r_offs);
346 		writel(col_cfg, kbc->mmio + c_offs);
347 	}
348 }
349 
350 static int tegra_kbc_start(struct tegra_kbc *kbc)
351 {
352 	unsigned int debounce_cnt;
353 	u32 val = 0;
354 	int ret;
355 
356 	ret = clk_prepare_enable(kbc->clk);
357 	if (ret)
358 		return ret;
359 
360 	/* Reset the KBC controller to clear all previous status.*/
361 	reset_control_assert(kbc->rst);
362 	udelay(100);
363 	reset_control_deassert(kbc->rst);
364 	udelay(100);
365 
366 	tegra_kbc_config_pins(kbc);
367 	tegra_kbc_setup_wakekeys(kbc, false);
368 
369 	writel(kbc->repeat_cnt, kbc->mmio + KBC_RPT_DLY_0);
370 
371 	/* Keyboard debounce count is maximum of 12 bits. */
372 	debounce_cnt = min(kbc->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
373 	val = KBC_DEBOUNCE_CNT_SHIFT(debounce_cnt);
374 	val |= KBC_FIFO_TH_CNT_SHIFT(1); /* set fifo interrupt threshold to 1 */
375 	val |= KBC_CONTROL_FIFO_CNT_INT_EN;  /* interrupt on FIFO threshold */
376 	val |= KBC_CONTROL_KBC_EN;     /* enable */
377 	writel(val, kbc->mmio + KBC_CONTROL_0);
378 
379 	/*
380 	 * Compute the delay(ns) from interrupt mode to continuous polling
381 	 * mode so the timer routine is scheduled appropriately.
382 	 */
383 	val = readl(kbc->mmio + KBC_INIT_DLY_0);
384 	kbc->cp_dly_jiffies = usecs_to_jiffies((val & 0xfffff) * 32);
385 
386 	kbc->num_pressed_keys = 0;
387 
388 	/*
389 	 * Atomically clear out any remaining entries in the key FIFO
390 	 * and enable keyboard interrupts.
391 	 */
392 	while (1) {
393 		val = readl(kbc->mmio + KBC_INT_0);
394 		val >>= 4;
395 		if (!val)
396 			break;
397 
398 		val = readl(kbc->mmio + KBC_KP_ENT0_0);
399 		val = readl(kbc->mmio + KBC_KP_ENT1_0);
400 	}
401 	writel(0x7, kbc->mmio + KBC_INT_0);
402 
403 	enable_irq(kbc->irq);
404 
405 	return 0;
406 }
407 
408 static void tegra_kbc_stop(struct tegra_kbc *kbc)
409 {
410 	u32 val;
411 
412 	scoped_guard(spinlock_irqsave, &kbc->lock) {
413 		val = readl(kbc->mmio + KBC_CONTROL_0);
414 		val &= ~1;
415 		writel(val, kbc->mmio + KBC_CONTROL_0);
416 	}
417 
418 	disable_irq(kbc->irq);
419 	del_timer_sync(&kbc->timer);
420 
421 	clk_disable_unprepare(kbc->clk);
422 }
423 
424 static int tegra_kbc_open(struct input_dev *dev)
425 {
426 	struct tegra_kbc *kbc = input_get_drvdata(dev);
427 
428 	return tegra_kbc_start(kbc);
429 }
430 
431 static void tegra_kbc_close(struct input_dev *dev)
432 {
433 	struct tegra_kbc *kbc = input_get_drvdata(dev);
434 
435 	return tegra_kbc_stop(kbc);
436 }
437 
438 static bool tegra_kbc_check_pin_cfg(const struct tegra_kbc *kbc,
439 					unsigned int *num_rows)
440 {
441 	int i;
442 
443 	*num_rows = 0;
444 
445 	for (i = 0; i < KBC_MAX_GPIO; i++) {
446 		const struct tegra_kbc_pin_cfg *pin_cfg = &kbc->pin_cfg[i];
447 
448 		switch (pin_cfg->type) {
449 		case PIN_CFG_ROW:
450 			if (pin_cfg->num >= kbc->hw_support->max_rows) {
451 				dev_err(kbc->dev,
452 					"pin_cfg[%d]: invalid row number %d\n",
453 					i, pin_cfg->num);
454 				return false;
455 			}
456 			(*num_rows)++;
457 			break;
458 
459 		case PIN_CFG_COL:
460 			if (pin_cfg->num >= kbc->hw_support->max_columns) {
461 				dev_err(kbc->dev,
462 					"pin_cfg[%d]: invalid column number %d\n",
463 					i, pin_cfg->num);
464 				return false;
465 			}
466 			break;
467 
468 		case PIN_CFG_IGNORE:
469 			break;
470 
471 		default:
472 			dev_err(kbc->dev,
473 				"pin_cfg[%d]: invalid entry type %d\n",
474 				pin_cfg->type, pin_cfg->num);
475 			return false;
476 		}
477 	}
478 
479 	return true;
480 }
481 
482 static int tegra_kbc_parse_dt(struct tegra_kbc *kbc)
483 {
484 	struct device_node *np = kbc->dev->of_node;
485 	u32 prop;
486 	int i;
487 	int num_rows;
488 	int num_cols;
489 	u32 cols_cfg[KBC_MAX_GPIO];
490 	u32 rows_cfg[KBC_MAX_GPIO];
491 
492 	if (!of_property_read_u32(np, "nvidia,debounce-delay-ms", &prop))
493 		kbc->debounce_cnt = prop;
494 
495 	if (!of_property_read_u32(np, "nvidia,repeat-delay-ms", &prop))
496 		kbc->repeat_cnt = prop;
497 
498 	kbc->use_ghost_filter = of_property_present(np, "nvidia,needs-ghost-filter");
499 
500 	if (of_property_read_bool(np, "wakeup-source") ||
501 	    of_property_read_bool(np, "nvidia,wakeup-source")) /* legacy */
502 		kbc->wakeup = true;
503 
504 	if (!of_property_present(np, "linux,keymap")) {
505 		dev_err(kbc->dev, "property linux,keymap not found\n");
506 		return -ENOENT;
507 	}
508 
509 	/* Set all pins as non-configured */
510 	for (i = 0; i < kbc->num_rows_and_columns; i++)
511 		kbc->pin_cfg[i].type = PIN_CFG_IGNORE;
512 
513 	num_rows = of_property_read_variable_u32_array(np, "nvidia,kbc-row-pins",
514 				rows_cfg, 1, KBC_MAX_GPIO);
515 	if (num_rows < 0) {
516 		dev_err(kbc->dev, "Rows configurations are not proper\n");
517 		return num_rows;
518 	} else if (num_rows > kbc->hw_support->max_rows) {
519 		dev_err(kbc->dev,
520 			"Number of rows is more than supported by hardware\n");
521 		return -EINVAL;
522 	}
523 
524 	for (i = 0; i < num_rows; i++) {
525 		kbc->pin_cfg[rows_cfg[i]].type = PIN_CFG_ROW;
526 		kbc->pin_cfg[rows_cfg[i]].num = i;
527 	}
528 
529 	num_cols = of_property_read_variable_u32_array(np, "nvidia,kbc-col-pins",
530 				cols_cfg, 1, KBC_MAX_GPIO);
531 	if (num_cols < 0) {
532 		dev_err(kbc->dev, "Cols configurations are not proper\n");
533 		return num_cols;
534 	} else if (num_cols > kbc->hw_support->max_columns) {
535 		dev_err(kbc->dev,
536 			"Number of cols is more than supported by hardware\n");
537 		return -EINVAL;
538 	}
539 
540 	for (i = 0; i < num_cols; i++) {
541 		kbc->pin_cfg[cols_cfg[i]].type = PIN_CFG_COL;
542 		kbc->pin_cfg[cols_cfg[i]].num = i;
543 	}
544 
545 	if (!num_rows || !num_cols || ((num_rows + num_cols) > KBC_MAX_GPIO)) {
546 		dev_err(kbc->dev,
547 			"keypad rows/columns not properly specified\n");
548 		return -EINVAL;
549 	}
550 
551 	return 0;
552 }
553 
554 static const struct tegra_kbc_hw_support tegra20_kbc_hw_support = {
555 	.max_rows	= 16,
556 	.max_columns	= 8,
557 };
558 
559 static const struct tegra_kbc_hw_support tegra11_kbc_hw_support = {
560 	.max_rows	= 11,
561 	.max_columns	= 8,
562 };
563 
564 static const struct of_device_id tegra_kbc_of_match[] = {
565 	{ .compatible = "nvidia,tegra114-kbc", .data = &tegra11_kbc_hw_support},
566 	{ .compatible = "nvidia,tegra30-kbc", .data = &tegra20_kbc_hw_support},
567 	{ .compatible = "nvidia,tegra20-kbc", .data = &tegra20_kbc_hw_support},
568 	{ },
569 };
570 MODULE_DEVICE_TABLE(of, tegra_kbc_of_match);
571 
572 static int tegra_kbc_probe(struct platform_device *pdev)
573 {
574 	struct tegra_kbc *kbc;
575 	int err;
576 	int num_rows = 0;
577 	unsigned int debounce_cnt;
578 	unsigned int scan_time_rows;
579 	unsigned int keymap_rows;
580 
581 	kbc = devm_kzalloc(&pdev->dev, sizeof(*kbc), GFP_KERNEL);
582 	if (!kbc) {
583 		dev_err(&pdev->dev, "failed to alloc memory for kbc\n");
584 		return -ENOMEM;
585 	}
586 
587 	kbc->dev = &pdev->dev;
588 	kbc->hw_support = device_get_match_data(&pdev->dev);
589 	kbc->max_keys = kbc->hw_support->max_rows *
590 				kbc->hw_support->max_columns;
591 	kbc->num_rows_and_columns = kbc->hw_support->max_rows +
592 					kbc->hw_support->max_columns;
593 	keymap_rows = kbc->max_keys;
594 	spin_lock_init(&kbc->lock);
595 
596 	err = tegra_kbc_parse_dt(kbc);
597 	if (err)
598 		return err;
599 
600 	if (!tegra_kbc_check_pin_cfg(kbc, &num_rows))
601 		return -EINVAL;
602 
603 	kbc->irq = platform_get_irq(pdev, 0);
604 	if (kbc->irq < 0)
605 		return -ENXIO;
606 
607 	kbc->idev = devm_input_allocate_device(&pdev->dev);
608 	if (!kbc->idev) {
609 		dev_err(&pdev->dev, "failed to allocate input device\n");
610 		return -ENOMEM;
611 	}
612 
613 	timer_setup(&kbc->timer, tegra_kbc_keypress_timer, 0);
614 
615 	kbc->mmio = devm_platform_ioremap_resource(pdev, 0);
616 	if (IS_ERR(kbc->mmio))
617 		return PTR_ERR(kbc->mmio);
618 
619 	kbc->clk = devm_clk_get(&pdev->dev, NULL);
620 	if (IS_ERR(kbc->clk)) {
621 		dev_err(&pdev->dev, "failed to get keyboard clock\n");
622 		return PTR_ERR(kbc->clk);
623 	}
624 
625 	kbc->rst = devm_reset_control_get(&pdev->dev, "kbc");
626 	if (IS_ERR(kbc->rst)) {
627 		dev_err(&pdev->dev, "failed to get keyboard reset\n");
628 		return PTR_ERR(kbc->rst);
629 	}
630 
631 	/*
632 	 * The time delay between two consecutive reads of the FIFO is
633 	 * the sum of the repeat time and the time taken for scanning
634 	 * the rows. There is an additional delay before the row scanning
635 	 * starts. The repoll delay is computed in milliseconds.
636 	 */
637 	debounce_cnt = min(kbc->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
638 	scan_time_rows = (KBC_ROW_SCAN_TIME + debounce_cnt) * num_rows;
639 	kbc->repoll_dly = KBC_ROW_SCAN_DLY + scan_time_rows + kbc->repeat_cnt;
640 	kbc->repoll_dly = DIV_ROUND_UP(kbc->repoll_dly, KBC_CYCLE_MS);
641 
642 	kbc->idev->name = pdev->name;
643 	kbc->idev->id.bustype = BUS_HOST;
644 	kbc->idev->dev.parent = &pdev->dev;
645 	kbc->idev->open = tegra_kbc_open;
646 	kbc->idev->close = tegra_kbc_close;
647 
648 	if (kbc->keymap_data && kbc->use_fn_map)
649 		keymap_rows *= 2;
650 
651 	err = matrix_keypad_build_keymap(kbc->keymap_data, NULL,
652 					 keymap_rows,
653 					 kbc->hw_support->max_columns,
654 					 kbc->keycode, kbc->idev);
655 	if (err) {
656 		dev_err(&pdev->dev, "failed to setup keymap\n");
657 		return err;
658 	}
659 
660 	__set_bit(EV_REP, kbc->idev->evbit);
661 	input_set_capability(kbc->idev, EV_MSC, MSC_SCAN);
662 
663 	input_set_drvdata(kbc->idev, kbc);
664 
665 	err = devm_request_irq(&pdev->dev, kbc->irq, tegra_kbc_isr,
666 			       IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
667 			       pdev->name, kbc);
668 	if (err) {
669 		dev_err(&pdev->dev, "failed to request keyboard IRQ\n");
670 		return err;
671 	}
672 
673 	err = input_register_device(kbc->idev);
674 	if (err) {
675 		dev_err(&pdev->dev, "failed to register input device\n");
676 		return err;
677 	}
678 
679 	platform_set_drvdata(pdev, kbc);
680 	device_init_wakeup(&pdev->dev, kbc->wakeup);
681 
682 	return 0;
683 }
684 
685 static void tegra_kbc_set_keypress_interrupt(struct tegra_kbc *kbc, bool enable)
686 {
687 	u32 val;
688 
689 	val = readl(kbc->mmio + KBC_CONTROL_0);
690 	if (enable)
691 		val |= KBC_CONTROL_KEYPRESS_INT_EN;
692 	else
693 		val &= ~KBC_CONTROL_KEYPRESS_INT_EN;
694 	writel(val, kbc->mmio + KBC_CONTROL_0);
695 }
696 
697 static int tegra_kbc_suspend(struct device *dev)
698 {
699 	struct platform_device *pdev = to_platform_device(dev);
700 	struct tegra_kbc *kbc = platform_get_drvdata(pdev);
701 
702 	guard(mutex)(&kbc->idev->mutex);
703 
704 	if (device_may_wakeup(&pdev->dev)) {
705 		disable_irq(kbc->irq);
706 		del_timer_sync(&kbc->timer);
707 		tegra_kbc_set_fifo_interrupt(kbc, false);
708 
709 		/* Forcefully clear the interrupt status */
710 		writel(0x7, kbc->mmio + KBC_INT_0);
711 		/*
712 		 * Store the previous resident time of continuous polling mode.
713 		 * Force the keyboard into interrupt mode.
714 		 */
715 		kbc->cp_to_wkup_dly = readl(kbc->mmio + KBC_TO_CNT_0);
716 		writel(0, kbc->mmio + KBC_TO_CNT_0);
717 
718 		tegra_kbc_setup_wakekeys(kbc, true);
719 		msleep(30);
720 
721 		kbc->keypress_caused_wake = false;
722 		/* Enable keypress interrupt before going into suspend. */
723 		tegra_kbc_set_keypress_interrupt(kbc, true);
724 		enable_irq(kbc->irq);
725 		enable_irq_wake(kbc->irq);
726 	} else if (input_device_enabled(kbc->idev)) {
727 		tegra_kbc_stop(kbc);
728 	}
729 
730 	return 0;
731 }
732 
733 static int tegra_kbc_resume(struct device *dev)
734 {
735 	struct platform_device *pdev = to_platform_device(dev);
736 	struct tegra_kbc *kbc = platform_get_drvdata(pdev);
737 	int err;
738 
739 	guard(mutex)(&kbc->idev->mutex);
740 
741 	if (device_may_wakeup(&pdev->dev)) {
742 		disable_irq_wake(kbc->irq);
743 		tegra_kbc_setup_wakekeys(kbc, false);
744 		/* We will use fifo interrupts for key detection. */
745 		tegra_kbc_set_keypress_interrupt(kbc, false);
746 
747 		/* Restore the resident time of continuous polling mode. */
748 		writel(kbc->cp_to_wkup_dly, kbc->mmio + KBC_TO_CNT_0);
749 
750 		tegra_kbc_set_fifo_interrupt(kbc, true);
751 
752 		if (kbc->keypress_caused_wake && kbc->wakeup_key) {
753 			/*
754 			 * We can't report events directly from the ISR
755 			 * because timekeeping is stopped when processing
756 			 * wakeup request and we get a nasty warning when
757 			 * we try to call do_gettimeofday() in evdev
758 			 * handler.
759 			 */
760 			input_report_key(kbc->idev, kbc->wakeup_key, 1);
761 			input_sync(kbc->idev);
762 			input_report_key(kbc->idev, kbc->wakeup_key, 0);
763 			input_sync(kbc->idev);
764 		}
765 	} else if (input_device_enabled(kbc->idev)) {
766 		err = tegra_kbc_start(kbc);
767 		if (err)
768 			return err;
769 	}
770 
771 	return 0;
772 }
773 
774 static DEFINE_SIMPLE_DEV_PM_OPS(tegra_kbc_pm_ops,
775 				tegra_kbc_suspend, tegra_kbc_resume);
776 
777 static struct platform_driver tegra_kbc_driver = {
778 	.probe		= tegra_kbc_probe,
779 	.driver	= {
780 		.name	= "tegra-kbc",
781 		.pm	= pm_sleep_ptr(&tegra_kbc_pm_ops),
782 		.of_match_table = tegra_kbc_of_match,
783 	},
784 };
785 module_platform_driver(tegra_kbc_driver);
786 
787 MODULE_LICENSE("GPL");
788 MODULE_AUTHOR("Rakesh Iyer <riyer@nvidia.com>");
789 MODULE_DESCRIPTION("Tegra matrix keyboard controller driver");
790 MODULE_ALIAS("platform:tegra-kbc");
791