1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/i2c/chips/lm8323.c 4 * 5 * Copyright (C) 2007-2009 Nokia Corporation 6 * 7 * Written by Daniel Stone <daniel.stone@nokia.com> 8 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com> 9 * 10 * Updated by Felipe Balbi <felipe.balbi@nokia.com> 11 */ 12 13 #include <linux/module.h> 14 #include <linux/i2c.h> 15 #include <linux/interrupt.h> 16 #include <linux/sched.h> 17 #include <linux/mutex.h> 18 #include <linux/delay.h> 19 #include <linux/input.h> 20 #include <linux/leds.h> 21 #include <linux/platform_data/lm8323.h> 22 #include <linux/pm.h> 23 #include <linux/slab.h> 24 #include <linux/string_choices.h> 25 26 /* Commands to send to the chip. */ 27 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */ 28 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */ 29 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */ 30 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */ 31 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */ 32 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */ 33 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */ 34 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */ 35 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */ 36 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */ 37 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */ 38 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */ 39 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */ 40 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */ 41 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */ 42 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */ 43 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */ 44 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */ 45 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */ 46 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */ 47 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */ 48 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */ 49 50 /* Interrupt status. */ 51 #define INT_KEYPAD 0x01 /* Key event. */ 52 #define INT_ROTATOR 0x02 /* Rotator event. */ 53 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */ 54 #define INT_NOINIT 0x10 /* Lost configuration. */ 55 #define INT_PWM1 0x20 /* PWM1 stopped. */ 56 #define INT_PWM2 0x40 /* PWM2 stopped. */ 57 #define INT_PWM3 0x80 /* PWM3 stopped. */ 58 59 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */ 60 #define ERR_BADPAR 0x01 /* Bad parameter. */ 61 #define ERR_CMDUNK 0x02 /* Unknown command. */ 62 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */ 63 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */ 64 65 /* Configuration keys (CMD_{WRITE,READ}_CFG). */ 66 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */ 67 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */ 68 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */ 69 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */ 70 #define CFG_PSIZE 0x20 /* Package size (must be 0). */ 71 #define CFG_ROTEN 0x40 /* Enable rotator. */ 72 73 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */ 74 #define CLK_RCPWM_INTERNAL 0x00 75 #define CLK_RCPWM_EXTERNAL 0x03 76 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */ 77 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */ 78 79 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */ 80 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */ 81 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */ 82 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */ 83 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */ 84 85 /* Key event fifo length */ 86 #define LM8323_FIFO_LEN 15 87 88 /* Commands for PWM engine; feed in with PWM_WRITE. */ 89 /* Load ramp counter from duty cycle field (range 0 - 0xff). */ 90 #define PWM_SET(v) (0x4000 | ((v) & 0xff)) 91 /* Go to start of script. */ 92 #define PWM_GOTOSTART 0x0000 93 /* 94 * Stop engine (generates interrupt). If reset is 1, clear the program 95 * counter, else leave it. 96 */ 97 #define PWM_END(reset) (0xc000 | (!!(reset) << 11)) 98 /* 99 * Ramp. If s is 1, divide clock by 512, else divide clock by 16. 100 * Take t clock scales (up to 63) per step, for n steps (up to 126). 101 * If u is set, ramp up, else ramp down. 102 */ 103 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \ 104 ((n) & 0x7f) | ((u) ? 0 : 0x80)) 105 /* 106 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63). 107 * If cnt is zero, execute until PWM_END is encountered. 108 */ 109 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \ 110 ((pos) & 0x3f)) 111 /* 112 * Wait for trigger. Argument is a mask of channels, shifted by the channel 113 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered 114 * from 1, not 0. 115 */ 116 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6)) 117 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */ 118 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7)) 119 120 struct lm8323_pwm { 121 int id; 122 int fade_time; 123 int brightness; 124 int desired_brightness; 125 bool enabled; 126 bool running; 127 /* pwm lock */ 128 struct mutex lock; 129 struct work_struct work; 130 struct led_classdev cdev; 131 struct lm8323_chip *chip; 132 }; 133 134 struct lm8323_chip { 135 /* device lock */ 136 struct mutex lock; 137 struct i2c_client *client; 138 struct input_dev *idev; 139 bool kp_enabled; 140 bool pm_suspend; 141 unsigned keys_down; 142 char phys[32]; 143 unsigned short keymap[LM8323_KEYMAP_SIZE]; 144 int size_x; 145 int size_y; 146 int debounce_time; 147 int active_time; 148 struct lm8323_pwm pwm[LM8323_NUM_PWMS]; 149 }; 150 151 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client) 152 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev) 153 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev) 154 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work) 155 156 #define LM8323_MAX_DATA 8 157 158 /* 159 * To write, we just access the chip's address in write mode, and dump the 160 * command and data out on the bus. The command byte and data are taken as 161 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA. 162 */ 163 static int lm8323_write(struct lm8323_chip *lm, int len, ...) 164 { 165 int ret, i; 166 va_list ap; 167 u8 data[LM8323_MAX_DATA]; 168 169 va_start(ap, len); 170 171 if (unlikely(len > LM8323_MAX_DATA)) { 172 dev_err(&lm->client->dev, "tried to send %d bytes\n", len); 173 va_end(ap); 174 return 0; 175 } 176 177 for (i = 0; i < len; i++) 178 data[i] = va_arg(ap, int); 179 180 va_end(ap); 181 182 /* 183 * If the host is asleep while we send the data, we can get a NACK 184 * back while it wakes up, so try again, once. 185 */ 186 ret = i2c_master_send(lm->client, data, len); 187 if (unlikely(ret == -EREMOTEIO)) 188 ret = i2c_master_send(lm->client, data, len); 189 if (unlikely(ret != len)) 190 dev_err(&lm->client->dev, "sent %d bytes of %d total\n", 191 len, ret); 192 193 return ret; 194 } 195 196 /* 197 * To read, we first send the command byte to the chip and end the transaction, 198 * then access the chip in read mode, at which point it will send the data. 199 */ 200 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len) 201 { 202 int ret; 203 204 /* 205 * If the host is asleep while we send the byte, we can get a NACK 206 * back while it wakes up, so try again, once. 207 */ 208 ret = i2c_master_send(lm->client, &cmd, 1); 209 if (unlikely(ret == -EREMOTEIO)) 210 ret = i2c_master_send(lm->client, &cmd, 1); 211 if (unlikely(ret != 1)) { 212 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n", 213 cmd); 214 return 0; 215 } 216 217 ret = i2c_master_recv(lm->client, buf, len); 218 if (unlikely(ret != len)) 219 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n", 220 len, ret); 221 222 return ret; 223 } 224 225 /* 226 * Set the chip active time (idle time before it enters halt). 227 */ 228 static void lm8323_set_active_time(struct lm8323_chip *lm, int time) 229 { 230 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2); 231 } 232 233 /* 234 * The signals are AT-style: the low 7 bits are the keycode, and the top 235 * bit indicates the state (1 for down, 0 for up). 236 */ 237 static inline u8 lm8323_whichkey(u8 event) 238 { 239 return event & 0x7f; 240 } 241 242 static inline int lm8323_ispress(u8 event) 243 { 244 return (event & 0x80) ? 1 : 0; 245 } 246 247 static void process_keys(struct lm8323_chip *lm) 248 { 249 u8 event; 250 u8 key_fifo[LM8323_FIFO_LEN + 1]; 251 int old_keys_down = lm->keys_down; 252 int ret; 253 int i = 0; 254 255 /* 256 * Read all key events from the FIFO at once. Next READ_FIFO clears the 257 * FIFO even if we didn't read all events previously. 258 */ 259 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN); 260 261 if (ret < 0) { 262 dev_err(&lm->client->dev, "Failed reading fifo \n"); 263 return; 264 } 265 key_fifo[ret] = 0; 266 267 while ((event = key_fifo[i++])) { 268 u8 key = lm8323_whichkey(event); 269 int isdown = lm8323_ispress(event); 270 unsigned short keycode = lm->keymap[key]; 271 272 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n", 273 key, str_down_up(isdown)); 274 275 if (lm->kp_enabled) { 276 input_event(lm->idev, EV_MSC, MSC_SCAN, key); 277 input_report_key(lm->idev, keycode, isdown); 278 input_sync(lm->idev); 279 } 280 281 if (isdown) 282 lm->keys_down++; 283 else 284 lm->keys_down--; 285 } 286 287 /* 288 * Errata: We need to ensure that the chip never enters halt mode 289 * during a keypress, so set active time to 0. When it's released, 290 * we can enter halt again, so set the active time back to normal. 291 */ 292 if (!old_keys_down && lm->keys_down) 293 lm8323_set_active_time(lm, 0); 294 if (old_keys_down && !lm->keys_down) 295 lm8323_set_active_time(lm, lm->active_time); 296 } 297 298 static void lm8323_process_error(struct lm8323_chip *lm) 299 { 300 u8 error; 301 302 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) { 303 if (error & ERR_FIFOOVER) 304 dev_vdbg(&lm->client->dev, "fifo overflow!\n"); 305 if (error & ERR_KEYOVR) 306 dev_vdbg(&lm->client->dev, 307 "more than two keys pressed\n"); 308 if (error & ERR_CMDUNK) 309 dev_vdbg(&lm->client->dev, 310 "unknown command submitted\n"); 311 if (error & ERR_BADPAR) 312 dev_vdbg(&lm->client->dev, "bad command parameter\n"); 313 } 314 } 315 316 static void lm8323_reset(struct lm8323_chip *lm) 317 { 318 /* The docs say we must pass 0xAA as the data byte. */ 319 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA); 320 } 321 322 static int lm8323_configure(struct lm8323_chip *lm) 323 { 324 int keysize = (lm->size_x << 4) | lm->size_y; 325 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL); 326 int debounce = lm->debounce_time >> 2; 327 int active = lm->active_time >> 2; 328 329 /* 330 * Active time must be greater than the debounce time: if it's 331 * a close-run thing, give ourselves a 12ms buffer. 332 */ 333 if (debounce >= active) 334 active = debounce + 3; 335 336 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0); 337 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock); 338 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize); 339 lm8323_set_active_time(lm, lm->active_time); 340 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce); 341 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff); 342 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0); 343 344 /* 345 * Not much we can do about errors at this point, so just hope 346 * for the best. 347 */ 348 349 return 0; 350 } 351 352 static void pwm_done(struct lm8323_pwm *pwm) 353 { 354 guard(mutex)(&pwm->lock); 355 356 pwm->running = false; 357 if (pwm->desired_brightness != pwm->brightness) 358 schedule_work(&pwm->work); 359 } 360 361 /* 362 * Bottom half: handle the interrupt by posting key events, or dealing with 363 * errors appropriately. 364 */ 365 static irqreturn_t lm8323_irq(int irq, void *_lm) 366 { 367 struct lm8323_chip *lm = _lm; 368 u8 ints; 369 int i; 370 371 guard(mutex)(&lm->lock); 372 373 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) { 374 if (likely(ints & INT_KEYPAD)) 375 process_keys(lm); 376 if (ints & INT_ROTATOR) { 377 /* We don't currently support the rotator. */ 378 dev_vdbg(&lm->client->dev, "rotator fired\n"); 379 } 380 if (ints & INT_ERROR) { 381 dev_vdbg(&lm->client->dev, "error!\n"); 382 lm8323_process_error(lm); 383 } 384 if (ints & INT_NOINIT) { 385 dev_err(&lm->client->dev, "chip lost config; " 386 "reinitialising\n"); 387 lm8323_configure(lm); 388 } 389 for (i = 0; i < LM8323_NUM_PWMS; i++) { 390 if (ints & (INT_PWM1 << i)) { 391 dev_vdbg(&lm->client->dev, 392 "pwm%d engine completed\n", i); 393 pwm_done(&lm->pwm[i]); 394 } 395 } 396 } 397 398 return IRQ_HANDLED; 399 } 400 401 /* 402 * Read the chip ID. 403 */ 404 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf) 405 { 406 int bytes; 407 408 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2); 409 if (unlikely(bytes != 2)) 410 return -EIO; 411 412 return 0; 413 } 414 415 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd) 416 { 417 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id, 418 (cmd & 0xff00) >> 8, cmd & 0x00ff); 419 } 420 421 /* 422 * Write a script into a given PWM engine, concluding with PWM_END. 423 * If 'kill' is nonzero, the engine will be shut down at the end 424 * of the script, producing a zero output. Otherwise the engine 425 * will be kept running at the final PWM level indefinitely. 426 */ 427 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill, 428 int len, const u16 *cmds) 429 { 430 int i; 431 432 for (i = 0; i < len; i++) 433 lm8323_write_pwm_one(pwm, i, cmds[i]); 434 435 lm8323_write_pwm_one(pwm, i++, PWM_END(kill)); 436 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id); 437 pwm->running = true; 438 } 439 440 static void lm8323_pwm_work(struct work_struct *work) 441 { 442 struct lm8323_pwm *pwm = work_to_pwm(work); 443 int div512, perstep, steps, hz, up, kill; 444 u16 pwm_cmds[3]; 445 int num_cmds = 0; 446 447 guard(mutex)(&pwm->lock); 448 449 /* 450 * Do nothing if we're already at the requested level, 451 * or previous setting is not yet complete. In the latter 452 * case we will be called again when the previous PWM script 453 * finishes. 454 */ 455 if (pwm->running || pwm->desired_brightness == pwm->brightness) 456 return; 457 458 kill = (pwm->desired_brightness == 0); 459 up = (pwm->desired_brightness > pwm->brightness); 460 steps = abs(pwm->desired_brightness - pwm->brightness); 461 462 /* 463 * Convert time (in ms) into a divisor (512 or 16 on a refclk of 464 * 32768Hz), and number of ticks per step. 465 */ 466 if ((pwm->fade_time / steps) > (32768 / 512)) { 467 div512 = 1; 468 hz = 32768 / 512; 469 } else { 470 div512 = 0; 471 hz = 32768 / 16; 472 } 473 474 perstep = (hz * pwm->fade_time) / (steps * 1000); 475 476 if (perstep == 0) 477 perstep = 1; 478 else if (perstep > 63) 479 perstep = 63; 480 481 while (steps) { 482 int s; 483 484 s = min(126, steps); 485 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up); 486 steps -= s; 487 } 488 489 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds); 490 pwm->brightness = pwm->desired_brightness; 491 } 492 493 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev, 494 enum led_brightness brightness) 495 { 496 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 497 struct lm8323_chip *lm = pwm->chip; 498 499 scoped_guard(mutex, &pwm->lock) { 500 pwm->desired_brightness = brightness; 501 } 502 503 if (in_interrupt()) { 504 schedule_work(&pwm->work); 505 } else { 506 /* 507 * Schedule PWM work as usual unless we are going into suspend 508 */ 509 scoped_guard(mutex, &lm->lock) { 510 if (likely(!lm->pm_suspend)) 511 schedule_work(&pwm->work); 512 else 513 lm8323_pwm_work(&pwm->work); 514 } 515 } 516 } 517 518 static ssize_t lm8323_pwm_show_time(struct device *dev, 519 struct device_attribute *attr, char *buf) 520 { 521 struct led_classdev *led_cdev = dev_get_drvdata(dev); 522 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 523 524 return sprintf(buf, "%d\n", pwm->fade_time); 525 } 526 527 static ssize_t lm8323_pwm_store_time(struct device *dev, 528 struct device_attribute *attr, const char *buf, size_t len) 529 { 530 struct led_classdev *led_cdev = dev_get_drvdata(dev); 531 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 532 int ret, time; 533 534 ret = kstrtoint(buf, 10, &time); 535 /* Numbers only, please. */ 536 if (ret) 537 return ret; 538 539 pwm->fade_time = time; 540 541 return strlen(buf); 542 } 543 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time); 544 545 static struct attribute *lm8323_pwm_attrs[] = { 546 &dev_attr_time.attr, 547 NULL 548 }; 549 ATTRIBUTE_GROUPS(lm8323_pwm); 550 551 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev, 552 const char *name) 553 { 554 struct lm8323_pwm *pwm; 555 int err; 556 557 BUG_ON(id > 3); 558 559 pwm = &lm->pwm[id - 1]; 560 561 pwm->id = id; 562 pwm->fade_time = 0; 563 pwm->brightness = 0; 564 pwm->desired_brightness = 0; 565 pwm->running = false; 566 pwm->enabled = false; 567 INIT_WORK(&pwm->work, lm8323_pwm_work); 568 mutex_init(&pwm->lock); 569 pwm->chip = lm; 570 571 if (name) { 572 pwm->cdev.name = name; 573 pwm->cdev.brightness_set = lm8323_pwm_set_brightness; 574 pwm->cdev.groups = lm8323_pwm_groups; 575 576 err = devm_led_classdev_register(dev, &pwm->cdev); 577 if (err) { 578 dev_err(dev, "couldn't register PWM %d: %d\n", id, err); 579 return err; 580 } 581 pwm->enabled = true; 582 } 583 584 return 0; 585 } 586 587 static ssize_t lm8323_show_disable(struct device *dev, 588 struct device_attribute *attr, char *buf) 589 { 590 struct lm8323_chip *lm = dev_get_drvdata(dev); 591 592 return sprintf(buf, "%u\n", !lm->kp_enabled); 593 } 594 595 static ssize_t lm8323_set_disable(struct device *dev, 596 struct device_attribute *attr, 597 const char *buf, size_t count) 598 { 599 struct lm8323_chip *lm = dev_get_drvdata(dev); 600 int ret; 601 unsigned int i; 602 603 ret = kstrtouint(buf, 10, &i); 604 if (ret) 605 return ret; 606 607 guard(mutex)(&lm->lock); 608 609 lm->kp_enabled = !i; 610 611 return count; 612 } 613 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable); 614 615 static struct attribute *lm8323_attrs[] = { 616 &dev_attr_disable_kp.attr, 617 NULL, 618 }; 619 ATTRIBUTE_GROUPS(lm8323); 620 621 static int lm8323_probe(struct i2c_client *client) 622 { 623 struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev); 624 struct input_dev *idev; 625 struct lm8323_chip *lm; 626 int pwm; 627 int i, err; 628 unsigned long tmo; 629 u8 data[2]; 630 631 if (!pdata || !pdata->size_x || !pdata->size_y) { 632 dev_err(&client->dev, "missing platform_data\n"); 633 return -EINVAL; 634 } 635 636 if (pdata->size_x > 8) { 637 dev_err(&client->dev, "invalid x size %d specified\n", 638 pdata->size_x); 639 return -EINVAL; 640 } 641 642 if (pdata->size_y > 12) { 643 dev_err(&client->dev, "invalid y size %d specified\n", 644 pdata->size_y); 645 return -EINVAL; 646 } 647 648 lm = devm_kzalloc(&client->dev, sizeof(*lm), GFP_KERNEL); 649 if (!lm) 650 return -ENOMEM; 651 652 idev = devm_input_allocate_device(&client->dev); 653 if (!idev) 654 return -ENOMEM; 655 656 lm->client = client; 657 lm->idev = idev; 658 mutex_init(&lm->lock); 659 660 lm->size_x = pdata->size_x; 661 lm->size_y = pdata->size_y; 662 dev_vdbg(&client->dev, "Keypad size: %d x %d\n", 663 lm->size_x, lm->size_y); 664 665 lm->debounce_time = pdata->debounce_time; 666 lm->active_time = pdata->active_time; 667 668 lm8323_reset(lm); 669 670 /* 671 * Nothing's set up to service the IRQ yet, so just spin for max. 672 * 100ms until we can configure. 673 */ 674 tmo = jiffies + msecs_to_jiffies(100); 675 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) { 676 if (data[0] & INT_NOINIT) 677 break; 678 679 if (time_after(jiffies, tmo)) { 680 dev_err(&client->dev, 681 "timeout waiting for initialisation\n"); 682 break; 683 } 684 685 msleep(1); 686 } 687 688 lm8323_configure(lm); 689 690 /* If a true probe check the device */ 691 if (lm8323_read_id(lm, data) != 0) { 692 dev_err(&client->dev, "device not found\n"); 693 return -ENODEV; 694 } 695 696 for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) { 697 err = init_pwm(lm, pwm + 1, &client->dev, 698 pdata->pwm_names[pwm]); 699 if (err) 700 return err; 701 } 702 703 lm->kp_enabled = true; 704 705 idev->name = pdata->name ? : "LM8323 keypad"; 706 snprintf(lm->phys, sizeof(lm->phys), 707 "%s/input-kp", dev_name(&client->dev)); 708 idev->phys = lm->phys; 709 710 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC); 711 __set_bit(MSC_SCAN, idev->mscbit); 712 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) { 713 __set_bit(pdata->keymap[i], idev->keybit); 714 lm->keymap[i] = pdata->keymap[i]; 715 } 716 __clear_bit(KEY_RESERVED, idev->keybit); 717 718 if (pdata->repeat) 719 __set_bit(EV_REP, idev->evbit); 720 721 err = input_register_device(idev); 722 if (err) { 723 dev_dbg(&client->dev, "error registering input device\n"); 724 return err; 725 } 726 727 err = devm_request_threaded_irq(&client->dev, client->irq, 728 NULL, lm8323_irq, 729 IRQF_TRIGGER_LOW | IRQF_ONESHOT, 730 "lm8323", lm); 731 if (err) { 732 dev_err(&client->dev, "could not get IRQ %d\n", client->irq); 733 return err; 734 } 735 736 i2c_set_clientdata(client, lm); 737 738 device_init_wakeup(&client->dev, 1); 739 enable_irq_wake(client->irq); 740 741 return 0; 742 } 743 744 /* 745 * We don't need to explicitly suspend the chip, as it already switches off 746 * when there's no activity. 747 */ 748 static int lm8323_suspend(struct device *dev) 749 { 750 struct i2c_client *client = to_i2c_client(dev); 751 struct lm8323_chip *lm = i2c_get_clientdata(client); 752 int i; 753 754 irq_set_irq_wake(client->irq, 0); 755 disable_irq(client->irq); 756 757 scoped_guard(mutex, &lm->lock) { 758 lm->pm_suspend = true; 759 } 760 761 for (i = 0; i < 3; i++) 762 if (lm->pwm[i].enabled) 763 led_classdev_suspend(&lm->pwm[i].cdev); 764 765 return 0; 766 } 767 768 static int lm8323_resume(struct device *dev) 769 { 770 struct i2c_client *client = to_i2c_client(dev); 771 struct lm8323_chip *lm = i2c_get_clientdata(client); 772 int i; 773 774 scoped_guard(mutex, &lm->lock) { 775 lm->pm_suspend = false; 776 } 777 778 for (i = 0; i < 3; i++) 779 if (lm->pwm[i].enabled) 780 led_classdev_resume(&lm->pwm[i].cdev); 781 782 enable_irq(client->irq); 783 irq_set_irq_wake(client->irq, 1); 784 785 return 0; 786 } 787 788 static DEFINE_SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume); 789 790 static const struct i2c_device_id lm8323_id[] = { 791 { "lm8323" }, 792 { } 793 }; 794 795 static struct i2c_driver lm8323_i2c_driver = { 796 .driver = { 797 .name = "lm8323", 798 .pm = pm_sleep_ptr(&lm8323_pm_ops), 799 .dev_groups = lm8323_groups, 800 }, 801 .probe = lm8323_probe, 802 .id_table = lm8323_id, 803 }; 804 MODULE_DEVICE_TABLE(i2c, lm8323_id); 805 806 module_i2c_driver(lm8323_i2c_driver); 807 808 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>"); 809 MODULE_AUTHOR("Daniel Stone"); 810 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>"); 811 MODULE_DESCRIPTION("LM8323 keypad driver"); 812 MODULE_LICENSE("GPL"); 813 814