1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/i2c/chips/lm8323.c 4 * 5 * Copyright (C) 2007-2009 Nokia Corporation 6 * 7 * Written by Daniel Stone <daniel.stone@nokia.com> 8 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com> 9 * 10 * Updated by Felipe Balbi <felipe.balbi@nokia.com> 11 */ 12 13 #include <linux/module.h> 14 #include <linux/i2c.h> 15 #include <linux/interrupt.h> 16 #include <linux/sched.h> 17 #include <linux/mutex.h> 18 #include <linux/delay.h> 19 #include <linux/input.h> 20 #include <linux/leds.h> 21 #include <linux/platform_data/lm8323.h> 22 #include <linux/pm.h> 23 #include <linux/slab.h> 24 25 /* Commands to send to the chip. */ 26 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */ 27 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */ 28 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */ 29 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */ 30 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */ 31 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */ 32 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */ 33 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */ 34 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */ 35 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */ 36 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */ 37 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */ 38 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */ 39 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */ 40 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */ 41 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */ 42 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */ 43 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */ 44 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */ 45 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */ 46 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */ 47 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */ 48 49 /* Interrupt status. */ 50 #define INT_KEYPAD 0x01 /* Key event. */ 51 #define INT_ROTATOR 0x02 /* Rotator event. */ 52 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */ 53 #define INT_NOINIT 0x10 /* Lost configuration. */ 54 #define INT_PWM1 0x20 /* PWM1 stopped. */ 55 #define INT_PWM2 0x40 /* PWM2 stopped. */ 56 #define INT_PWM3 0x80 /* PWM3 stopped. */ 57 58 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */ 59 #define ERR_BADPAR 0x01 /* Bad parameter. */ 60 #define ERR_CMDUNK 0x02 /* Unknown command. */ 61 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */ 62 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */ 63 64 /* Configuration keys (CMD_{WRITE,READ}_CFG). */ 65 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */ 66 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */ 67 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */ 68 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */ 69 #define CFG_PSIZE 0x20 /* Package size (must be 0). */ 70 #define CFG_ROTEN 0x40 /* Enable rotator. */ 71 72 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */ 73 #define CLK_RCPWM_INTERNAL 0x00 74 #define CLK_RCPWM_EXTERNAL 0x03 75 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */ 76 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */ 77 78 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */ 79 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */ 80 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */ 81 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */ 82 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */ 83 84 /* Key event fifo length */ 85 #define LM8323_FIFO_LEN 15 86 87 /* Commands for PWM engine; feed in with PWM_WRITE. */ 88 /* Load ramp counter from duty cycle field (range 0 - 0xff). */ 89 #define PWM_SET(v) (0x4000 | ((v) & 0xff)) 90 /* Go to start of script. */ 91 #define PWM_GOTOSTART 0x0000 92 /* 93 * Stop engine (generates interrupt). If reset is 1, clear the program 94 * counter, else leave it. 95 */ 96 #define PWM_END(reset) (0xc000 | (!!(reset) << 11)) 97 /* 98 * Ramp. If s is 1, divide clock by 512, else divide clock by 16. 99 * Take t clock scales (up to 63) per step, for n steps (up to 126). 100 * If u is set, ramp up, else ramp down. 101 */ 102 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \ 103 ((n) & 0x7f) | ((u) ? 0 : 0x80)) 104 /* 105 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63). 106 * If cnt is zero, execute until PWM_END is encountered. 107 */ 108 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \ 109 ((pos) & 0x3f)) 110 /* 111 * Wait for trigger. Argument is a mask of channels, shifted by the channel 112 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered 113 * from 1, not 0. 114 */ 115 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6)) 116 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */ 117 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7)) 118 119 struct lm8323_pwm { 120 int id; 121 int fade_time; 122 int brightness; 123 int desired_brightness; 124 bool enabled; 125 bool running; 126 /* pwm lock */ 127 struct mutex lock; 128 struct work_struct work; 129 struct led_classdev cdev; 130 struct lm8323_chip *chip; 131 }; 132 133 struct lm8323_chip { 134 /* device lock */ 135 struct mutex lock; 136 struct i2c_client *client; 137 struct input_dev *idev; 138 bool kp_enabled; 139 bool pm_suspend; 140 unsigned keys_down; 141 char phys[32]; 142 unsigned short keymap[LM8323_KEYMAP_SIZE]; 143 int size_x; 144 int size_y; 145 int debounce_time; 146 int active_time; 147 struct lm8323_pwm pwm[LM8323_NUM_PWMS]; 148 }; 149 150 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client) 151 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev) 152 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev) 153 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work) 154 155 #define LM8323_MAX_DATA 8 156 157 /* 158 * To write, we just access the chip's address in write mode, and dump the 159 * command and data out on the bus. The command byte and data are taken as 160 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA. 161 */ 162 static int lm8323_write(struct lm8323_chip *lm, int len, ...) 163 { 164 int ret, i; 165 va_list ap; 166 u8 data[LM8323_MAX_DATA]; 167 168 va_start(ap, len); 169 170 if (unlikely(len > LM8323_MAX_DATA)) { 171 dev_err(&lm->client->dev, "tried to send %d bytes\n", len); 172 va_end(ap); 173 return 0; 174 } 175 176 for (i = 0; i < len; i++) 177 data[i] = va_arg(ap, int); 178 179 va_end(ap); 180 181 /* 182 * If the host is asleep while we send the data, we can get a NACK 183 * back while it wakes up, so try again, once. 184 */ 185 ret = i2c_master_send(lm->client, data, len); 186 if (unlikely(ret == -EREMOTEIO)) 187 ret = i2c_master_send(lm->client, data, len); 188 if (unlikely(ret != len)) 189 dev_err(&lm->client->dev, "sent %d bytes of %d total\n", 190 len, ret); 191 192 return ret; 193 } 194 195 /* 196 * To read, we first send the command byte to the chip and end the transaction, 197 * then access the chip in read mode, at which point it will send the data. 198 */ 199 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len) 200 { 201 int ret; 202 203 /* 204 * If the host is asleep while we send the byte, we can get a NACK 205 * back while it wakes up, so try again, once. 206 */ 207 ret = i2c_master_send(lm->client, &cmd, 1); 208 if (unlikely(ret == -EREMOTEIO)) 209 ret = i2c_master_send(lm->client, &cmd, 1); 210 if (unlikely(ret != 1)) { 211 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n", 212 cmd); 213 return 0; 214 } 215 216 ret = i2c_master_recv(lm->client, buf, len); 217 if (unlikely(ret != len)) 218 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n", 219 len, ret); 220 221 return ret; 222 } 223 224 /* 225 * Set the chip active time (idle time before it enters halt). 226 */ 227 static void lm8323_set_active_time(struct lm8323_chip *lm, int time) 228 { 229 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2); 230 } 231 232 /* 233 * The signals are AT-style: the low 7 bits are the keycode, and the top 234 * bit indicates the state (1 for down, 0 for up). 235 */ 236 static inline u8 lm8323_whichkey(u8 event) 237 { 238 return event & 0x7f; 239 } 240 241 static inline int lm8323_ispress(u8 event) 242 { 243 return (event & 0x80) ? 1 : 0; 244 } 245 246 static void process_keys(struct lm8323_chip *lm) 247 { 248 u8 event; 249 u8 key_fifo[LM8323_FIFO_LEN + 1]; 250 int old_keys_down = lm->keys_down; 251 int ret; 252 int i = 0; 253 254 /* 255 * Read all key events from the FIFO at once. Next READ_FIFO clears the 256 * FIFO even if we didn't read all events previously. 257 */ 258 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN); 259 260 if (ret < 0) { 261 dev_err(&lm->client->dev, "Failed reading fifo \n"); 262 return; 263 } 264 key_fifo[ret] = 0; 265 266 while ((event = key_fifo[i++])) { 267 u8 key = lm8323_whichkey(event); 268 int isdown = lm8323_ispress(event); 269 unsigned short keycode = lm->keymap[key]; 270 271 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n", 272 key, isdown ? "down" : "up"); 273 274 if (lm->kp_enabled) { 275 input_event(lm->idev, EV_MSC, MSC_SCAN, key); 276 input_report_key(lm->idev, keycode, isdown); 277 input_sync(lm->idev); 278 } 279 280 if (isdown) 281 lm->keys_down++; 282 else 283 lm->keys_down--; 284 } 285 286 /* 287 * Errata: We need to ensure that the chip never enters halt mode 288 * during a keypress, so set active time to 0. When it's released, 289 * we can enter halt again, so set the active time back to normal. 290 */ 291 if (!old_keys_down && lm->keys_down) 292 lm8323_set_active_time(lm, 0); 293 if (old_keys_down && !lm->keys_down) 294 lm8323_set_active_time(lm, lm->active_time); 295 } 296 297 static void lm8323_process_error(struct lm8323_chip *lm) 298 { 299 u8 error; 300 301 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) { 302 if (error & ERR_FIFOOVER) 303 dev_vdbg(&lm->client->dev, "fifo overflow!\n"); 304 if (error & ERR_KEYOVR) 305 dev_vdbg(&lm->client->dev, 306 "more than two keys pressed\n"); 307 if (error & ERR_CMDUNK) 308 dev_vdbg(&lm->client->dev, 309 "unknown command submitted\n"); 310 if (error & ERR_BADPAR) 311 dev_vdbg(&lm->client->dev, "bad command parameter\n"); 312 } 313 } 314 315 static void lm8323_reset(struct lm8323_chip *lm) 316 { 317 /* The docs say we must pass 0xAA as the data byte. */ 318 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA); 319 } 320 321 static int lm8323_configure(struct lm8323_chip *lm) 322 { 323 int keysize = (lm->size_x << 4) | lm->size_y; 324 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL); 325 int debounce = lm->debounce_time >> 2; 326 int active = lm->active_time >> 2; 327 328 /* 329 * Active time must be greater than the debounce time: if it's 330 * a close-run thing, give ourselves a 12ms buffer. 331 */ 332 if (debounce >= active) 333 active = debounce + 3; 334 335 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0); 336 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock); 337 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize); 338 lm8323_set_active_time(lm, lm->active_time); 339 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce); 340 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff); 341 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0); 342 343 /* 344 * Not much we can do about errors at this point, so just hope 345 * for the best. 346 */ 347 348 return 0; 349 } 350 351 static void pwm_done(struct lm8323_pwm *pwm) 352 { 353 mutex_lock(&pwm->lock); 354 pwm->running = false; 355 if (pwm->desired_brightness != pwm->brightness) 356 schedule_work(&pwm->work); 357 mutex_unlock(&pwm->lock); 358 } 359 360 /* 361 * Bottom half: handle the interrupt by posting key events, or dealing with 362 * errors appropriately. 363 */ 364 static irqreturn_t lm8323_irq(int irq, void *_lm) 365 { 366 struct lm8323_chip *lm = _lm; 367 u8 ints; 368 int i; 369 370 mutex_lock(&lm->lock); 371 372 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) { 373 if (likely(ints & INT_KEYPAD)) 374 process_keys(lm); 375 if (ints & INT_ROTATOR) { 376 /* We don't currently support the rotator. */ 377 dev_vdbg(&lm->client->dev, "rotator fired\n"); 378 } 379 if (ints & INT_ERROR) { 380 dev_vdbg(&lm->client->dev, "error!\n"); 381 lm8323_process_error(lm); 382 } 383 if (ints & INT_NOINIT) { 384 dev_err(&lm->client->dev, "chip lost config; " 385 "reinitialising\n"); 386 lm8323_configure(lm); 387 } 388 for (i = 0; i < LM8323_NUM_PWMS; i++) { 389 if (ints & (INT_PWM1 << i)) { 390 dev_vdbg(&lm->client->dev, 391 "pwm%d engine completed\n", i); 392 pwm_done(&lm->pwm[i]); 393 } 394 } 395 } 396 397 mutex_unlock(&lm->lock); 398 399 return IRQ_HANDLED; 400 } 401 402 /* 403 * Read the chip ID. 404 */ 405 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf) 406 { 407 int bytes; 408 409 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2); 410 if (unlikely(bytes != 2)) 411 return -EIO; 412 413 return 0; 414 } 415 416 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd) 417 { 418 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id, 419 (cmd & 0xff00) >> 8, cmd & 0x00ff); 420 } 421 422 /* 423 * Write a script into a given PWM engine, concluding with PWM_END. 424 * If 'kill' is nonzero, the engine will be shut down at the end 425 * of the script, producing a zero output. Otherwise the engine 426 * will be kept running at the final PWM level indefinitely. 427 */ 428 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill, 429 int len, const u16 *cmds) 430 { 431 int i; 432 433 for (i = 0; i < len; i++) 434 lm8323_write_pwm_one(pwm, i, cmds[i]); 435 436 lm8323_write_pwm_one(pwm, i++, PWM_END(kill)); 437 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id); 438 pwm->running = true; 439 } 440 441 static void lm8323_pwm_work(struct work_struct *work) 442 { 443 struct lm8323_pwm *pwm = work_to_pwm(work); 444 int div512, perstep, steps, hz, up, kill; 445 u16 pwm_cmds[3]; 446 int num_cmds = 0; 447 448 mutex_lock(&pwm->lock); 449 450 /* 451 * Do nothing if we're already at the requested level, 452 * or previous setting is not yet complete. In the latter 453 * case we will be called again when the previous PWM script 454 * finishes. 455 */ 456 if (pwm->running || pwm->desired_brightness == pwm->brightness) 457 goto out; 458 459 kill = (pwm->desired_brightness == 0); 460 up = (pwm->desired_brightness > pwm->brightness); 461 steps = abs(pwm->desired_brightness - pwm->brightness); 462 463 /* 464 * Convert time (in ms) into a divisor (512 or 16 on a refclk of 465 * 32768Hz), and number of ticks per step. 466 */ 467 if ((pwm->fade_time / steps) > (32768 / 512)) { 468 div512 = 1; 469 hz = 32768 / 512; 470 } else { 471 div512 = 0; 472 hz = 32768 / 16; 473 } 474 475 perstep = (hz * pwm->fade_time) / (steps * 1000); 476 477 if (perstep == 0) 478 perstep = 1; 479 else if (perstep > 63) 480 perstep = 63; 481 482 while (steps) { 483 int s; 484 485 s = min(126, steps); 486 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up); 487 steps -= s; 488 } 489 490 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds); 491 pwm->brightness = pwm->desired_brightness; 492 493 out: 494 mutex_unlock(&pwm->lock); 495 } 496 497 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev, 498 enum led_brightness brightness) 499 { 500 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 501 struct lm8323_chip *lm = pwm->chip; 502 503 mutex_lock(&pwm->lock); 504 pwm->desired_brightness = brightness; 505 mutex_unlock(&pwm->lock); 506 507 if (in_interrupt()) { 508 schedule_work(&pwm->work); 509 } else { 510 /* 511 * Schedule PWM work as usual unless we are going into suspend 512 */ 513 mutex_lock(&lm->lock); 514 if (likely(!lm->pm_suspend)) 515 schedule_work(&pwm->work); 516 else 517 lm8323_pwm_work(&pwm->work); 518 mutex_unlock(&lm->lock); 519 } 520 } 521 522 static ssize_t lm8323_pwm_show_time(struct device *dev, 523 struct device_attribute *attr, char *buf) 524 { 525 struct led_classdev *led_cdev = dev_get_drvdata(dev); 526 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 527 528 return sprintf(buf, "%d\n", pwm->fade_time); 529 } 530 531 static ssize_t lm8323_pwm_store_time(struct device *dev, 532 struct device_attribute *attr, const char *buf, size_t len) 533 { 534 struct led_classdev *led_cdev = dev_get_drvdata(dev); 535 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 536 int ret, time; 537 538 ret = kstrtoint(buf, 10, &time); 539 /* Numbers only, please. */ 540 if (ret) 541 return ret; 542 543 pwm->fade_time = time; 544 545 return strlen(buf); 546 } 547 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time); 548 549 static struct attribute *lm8323_pwm_attrs[] = { 550 &dev_attr_time.attr, 551 NULL 552 }; 553 ATTRIBUTE_GROUPS(lm8323_pwm); 554 555 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev, 556 const char *name) 557 { 558 struct lm8323_pwm *pwm; 559 560 BUG_ON(id > 3); 561 562 pwm = &lm->pwm[id - 1]; 563 564 pwm->id = id; 565 pwm->fade_time = 0; 566 pwm->brightness = 0; 567 pwm->desired_brightness = 0; 568 pwm->running = false; 569 pwm->enabled = false; 570 INIT_WORK(&pwm->work, lm8323_pwm_work); 571 mutex_init(&pwm->lock); 572 pwm->chip = lm; 573 574 if (name) { 575 pwm->cdev.name = name; 576 pwm->cdev.brightness_set = lm8323_pwm_set_brightness; 577 pwm->cdev.groups = lm8323_pwm_groups; 578 if (led_classdev_register(dev, &pwm->cdev) < 0) { 579 dev_err(dev, "couldn't register PWM %d\n", id); 580 return -1; 581 } 582 pwm->enabled = true; 583 } 584 585 return 0; 586 } 587 588 static struct i2c_driver lm8323_i2c_driver; 589 590 static ssize_t lm8323_show_disable(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct lm8323_chip *lm = dev_get_drvdata(dev); 594 595 return sprintf(buf, "%u\n", !lm->kp_enabled); 596 } 597 598 static ssize_t lm8323_set_disable(struct device *dev, 599 struct device_attribute *attr, 600 const char *buf, size_t count) 601 { 602 struct lm8323_chip *lm = dev_get_drvdata(dev); 603 int ret; 604 unsigned int i; 605 606 ret = kstrtouint(buf, 10, &i); 607 if (ret) 608 return ret; 609 610 mutex_lock(&lm->lock); 611 lm->kp_enabled = !i; 612 mutex_unlock(&lm->lock); 613 614 return count; 615 } 616 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable); 617 618 static int lm8323_probe(struct i2c_client *client, 619 const struct i2c_device_id *id) 620 { 621 struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev); 622 struct input_dev *idev; 623 struct lm8323_chip *lm; 624 int pwm; 625 int i, err; 626 unsigned long tmo; 627 u8 data[2]; 628 629 if (!pdata || !pdata->size_x || !pdata->size_y) { 630 dev_err(&client->dev, "missing platform_data\n"); 631 return -EINVAL; 632 } 633 634 if (pdata->size_x > 8) { 635 dev_err(&client->dev, "invalid x size %d specified\n", 636 pdata->size_x); 637 return -EINVAL; 638 } 639 640 if (pdata->size_y > 12) { 641 dev_err(&client->dev, "invalid y size %d specified\n", 642 pdata->size_y); 643 return -EINVAL; 644 } 645 646 lm = kzalloc(sizeof *lm, GFP_KERNEL); 647 idev = input_allocate_device(); 648 if (!lm || !idev) { 649 err = -ENOMEM; 650 goto fail1; 651 } 652 653 lm->client = client; 654 lm->idev = idev; 655 mutex_init(&lm->lock); 656 657 lm->size_x = pdata->size_x; 658 lm->size_y = pdata->size_y; 659 dev_vdbg(&client->dev, "Keypad size: %d x %d\n", 660 lm->size_x, lm->size_y); 661 662 lm->debounce_time = pdata->debounce_time; 663 lm->active_time = pdata->active_time; 664 665 lm8323_reset(lm); 666 667 /* Nothing's set up to service the IRQ yet, so just spin for max. 668 * 100ms until we can configure. */ 669 tmo = jiffies + msecs_to_jiffies(100); 670 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) { 671 if (data[0] & INT_NOINIT) 672 break; 673 674 if (time_after(jiffies, tmo)) { 675 dev_err(&client->dev, 676 "timeout waiting for initialisation\n"); 677 break; 678 } 679 680 msleep(1); 681 } 682 683 lm8323_configure(lm); 684 685 /* If a true probe check the device */ 686 if (lm8323_read_id(lm, data) != 0) { 687 dev_err(&client->dev, "device not found\n"); 688 err = -ENODEV; 689 goto fail1; 690 } 691 692 for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) { 693 err = init_pwm(lm, pwm + 1, &client->dev, 694 pdata->pwm_names[pwm]); 695 if (err < 0) 696 goto fail2; 697 } 698 699 lm->kp_enabled = true; 700 err = device_create_file(&client->dev, &dev_attr_disable_kp); 701 if (err < 0) 702 goto fail2; 703 704 idev->name = pdata->name ? : "LM8323 keypad"; 705 snprintf(lm->phys, sizeof(lm->phys), 706 "%s/input-kp", dev_name(&client->dev)); 707 idev->phys = lm->phys; 708 709 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC); 710 __set_bit(MSC_SCAN, idev->mscbit); 711 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) { 712 __set_bit(pdata->keymap[i], idev->keybit); 713 lm->keymap[i] = pdata->keymap[i]; 714 } 715 __clear_bit(KEY_RESERVED, idev->keybit); 716 717 if (pdata->repeat) 718 __set_bit(EV_REP, idev->evbit); 719 720 err = input_register_device(idev); 721 if (err) { 722 dev_dbg(&client->dev, "error registering input device\n"); 723 goto fail3; 724 } 725 726 err = request_threaded_irq(client->irq, NULL, lm8323_irq, 727 IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm); 728 if (err) { 729 dev_err(&client->dev, "could not get IRQ %d\n", client->irq); 730 goto fail4; 731 } 732 733 i2c_set_clientdata(client, lm); 734 735 device_init_wakeup(&client->dev, 1); 736 enable_irq_wake(client->irq); 737 738 return 0; 739 740 fail4: 741 input_unregister_device(idev); 742 idev = NULL; 743 fail3: 744 device_remove_file(&client->dev, &dev_attr_disable_kp); 745 fail2: 746 while (--pwm >= 0) 747 if (lm->pwm[pwm].enabled) 748 led_classdev_unregister(&lm->pwm[pwm].cdev); 749 fail1: 750 input_free_device(idev); 751 kfree(lm); 752 return err; 753 } 754 755 static void lm8323_remove(struct i2c_client *client) 756 { 757 struct lm8323_chip *lm = i2c_get_clientdata(client); 758 int i; 759 760 disable_irq_wake(client->irq); 761 free_irq(client->irq, lm); 762 763 input_unregister_device(lm->idev); 764 765 device_remove_file(&lm->client->dev, &dev_attr_disable_kp); 766 767 for (i = 0; i < 3; i++) 768 if (lm->pwm[i].enabled) 769 led_classdev_unregister(&lm->pwm[i].cdev); 770 771 kfree(lm); 772 } 773 774 #ifdef CONFIG_PM_SLEEP 775 /* 776 * We don't need to explicitly suspend the chip, as it already switches off 777 * when there's no activity. 778 */ 779 static int lm8323_suspend(struct device *dev) 780 { 781 struct i2c_client *client = to_i2c_client(dev); 782 struct lm8323_chip *lm = i2c_get_clientdata(client); 783 int i; 784 785 irq_set_irq_wake(client->irq, 0); 786 disable_irq(client->irq); 787 788 mutex_lock(&lm->lock); 789 lm->pm_suspend = true; 790 mutex_unlock(&lm->lock); 791 792 for (i = 0; i < 3; i++) 793 if (lm->pwm[i].enabled) 794 led_classdev_suspend(&lm->pwm[i].cdev); 795 796 return 0; 797 } 798 799 static int lm8323_resume(struct device *dev) 800 { 801 struct i2c_client *client = to_i2c_client(dev); 802 struct lm8323_chip *lm = i2c_get_clientdata(client); 803 int i; 804 805 mutex_lock(&lm->lock); 806 lm->pm_suspend = false; 807 mutex_unlock(&lm->lock); 808 809 for (i = 0; i < 3; i++) 810 if (lm->pwm[i].enabled) 811 led_classdev_resume(&lm->pwm[i].cdev); 812 813 enable_irq(client->irq); 814 irq_set_irq_wake(client->irq, 1); 815 816 return 0; 817 } 818 #endif 819 820 static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume); 821 822 static const struct i2c_device_id lm8323_id[] = { 823 { "lm8323", 0 }, 824 { } 825 }; 826 827 static struct i2c_driver lm8323_i2c_driver = { 828 .driver = { 829 .name = "lm8323", 830 .pm = &lm8323_pm_ops, 831 }, 832 .probe = lm8323_probe, 833 .remove = lm8323_remove, 834 .id_table = lm8323_id, 835 }; 836 MODULE_DEVICE_TABLE(i2c, lm8323_id); 837 838 module_i2c_driver(lm8323_i2c_driver); 839 840 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>"); 841 MODULE_AUTHOR("Daniel Stone"); 842 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>"); 843 MODULE_DESCRIPTION("LM8323 keypad driver"); 844 MODULE_LICENSE("GPL"); 845 846