1 /* 2 * drivers/i2c/chips/lm8323.c 3 * 4 * Copyright (C) 2007-2009 Nokia Corporation 5 * 6 * Written by Daniel Stone <daniel.stone@nokia.com> 7 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com> 8 * 9 * Updated by Felipe Balbi <felipe.balbi@nokia.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation (version 2 of the License only). 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 #include <linux/module.h> 26 #include <linux/i2c.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/mutex.h> 30 #include <linux/delay.h> 31 #include <linux/input.h> 32 #include <linux/leds.h> 33 #include <linux/pm.h> 34 #include <linux/i2c/lm8323.h> 35 #include <linux/slab.h> 36 37 /* Commands to send to the chip. */ 38 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */ 39 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */ 40 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */ 41 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */ 42 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */ 43 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */ 44 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */ 45 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */ 46 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */ 47 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */ 48 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */ 49 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */ 50 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */ 51 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */ 52 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */ 53 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */ 54 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */ 55 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */ 56 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */ 57 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */ 58 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */ 59 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */ 60 61 /* Interrupt status. */ 62 #define INT_KEYPAD 0x01 /* Key event. */ 63 #define INT_ROTATOR 0x02 /* Rotator event. */ 64 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */ 65 #define INT_NOINIT 0x10 /* Lost configuration. */ 66 #define INT_PWM1 0x20 /* PWM1 stopped. */ 67 #define INT_PWM2 0x40 /* PWM2 stopped. */ 68 #define INT_PWM3 0x80 /* PWM3 stopped. */ 69 70 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */ 71 #define ERR_BADPAR 0x01 /* Bad parameter. */ 72 #define ERR_CMDUNK 0x02 /* Unknown command. */ 73 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */ 74 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */ 75 76 /* Configuration keys (CMD_{WRITE,READ}_CFG). */ 77 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */ 78 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */ 79 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */ 80 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */ 81 #define CFG_PSIZE 0x20 /* Package size (must be 0). */ 82 #define CFG_ROTEN 0x40 /* Enable rotator. */ 83 84 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */ 85 #define CLK_RCPWM_INTERNAL 0x00 86 #define CLK_RCPWM_EXTERNAL 0x03 87 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */ 88 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */ 89 90 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */ 91 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */ 92 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */ 93 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */ 94 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */ 95 96 /* Key event fifo length */ 97 #define LM8323_FIFO_LEN 15 98 99 /* Commands for PWM engine; feed in with PWM_WRITE. */ 100 /* Load ramp counter from duty cycle field (range 0 - 0xff). */ 101 #define PWM_SET(v) (0x4000 | ((v) & 0xff)) 102 /* Go to start of script. */ 103 #define PWM_GOTOSTART 0x0000 104 /* 105 * Stop engine (generates interrupt). If reset is 1, clear the program 106 * counter, else leave it. 107 */ 108 #define PWM_END(reset) (0xc000 | (!!(reset) << 11)) 109 /* 110 * Ramp. If s is 1, divide clock by 512, else divide clock by 16. 111 * Take t clock scales (up to 63) per step, for n steps (up to 126). 112 * If u is set, ramp up, else ramp down. 113 */ 114 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \ 115 ((n) & 0x7f) | ((u) ? 0 : 0x80)) 116 /* 117 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63). 118 * If cnt is zero, execute until PWM_END is encountered. 119 */ 120 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \ 121 ((pos) & 0x3f)) 122 /* 123 * Wait for trigger. Argument is a mask of channels, shifted by the channel 124 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered 125 * from 1, not 0. 126 */ 127 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6)) 128 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */ 129 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7)) 130 131 struct lm8323_pwm { 132 int id; 133 int fade_time; 134 int brightness; 135 int desired_brightness; 136 bool enabled; 137 bool running; 138 /* pwm lock */ 139 struct mutex lock; 140 struct work_struct work; 141 struct led_classdev cdev; 142 struct lm8323_chip *chip; 143 }; 144 145 struct lm8323_chip { 146 /* device lock */ 147 struct mutex lock; 148 struct i2c_client *client; 149 struct work_struct work; 150 struct input_dev *idev; 151 bool kp_enabled; 152 bool pm_suspend; 153 unsigned keys_down; 154 char phys[32]; 155 unsigned short keymap[LM8323_KEYMAP_SIZE]; 156 int size_x; 157 int size_y; 158 int debounce_time; 159 int active_time; 160 struct lm8323_pwm pwm[LM8323_NUM_PWMS]; 161 }; 162 163 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client) 164 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev) 165 #define work_to_lm8323(w) container_of(w, struct lm8323_chip, work) 166 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev) 167 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work) 168 169 #define LM8323_MAX_DATA 8 170 171 /* 172 * To write, we just access the chip's address in write mode, and dump the 173 * command and data out on the bus. The command byte and data are taken as 174 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA. 175 */ 176 static int lm8323_write(struct lm8323_chip *lm, int len, ...) 177 { 178 int ret, i; 179 va_list ap; 180 u8 data[LM8323_MAX_DATA]; 181 182 va_start(ap, len); 183 184 if (unlikely(len > LM8323_MAX_DATA)) { 185 dev_err(&lm->client->dev, "tried to send %d bytes\n", len); 186 va_end(ap); 187 return 0; 188 } 189 190 for (i = 0; i < len; i++) 191 data[i] = va_arg(ap, int); 192 193 va_end(ap); 194 195 /* 196 * If the host is asleep while we send the data, we can get a NACK 197 * back while it wakes up, so try again, once. 198 */ 199 ret = i2c_master_send(lm->client, data, len); 200 if (unlikely(ret == -EREMOTEIO)) 201 ret = i2c_master_send(lm->client, data, len); 202 if (unlikely(ret != len)) 203 dev_err(&lm->client->dev, "sent %d bytes of %d total\n", 204 len, ret); 205 206 return ret; 207 } 208 209 /* 210 * To read, we first send the command byte to the chip and end the transaction, 211 * then access the chip in read mode, at which point it will send the data. 212 */ 213 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len) 214 { 215 int ret; 216 217 /* 218 * If the host is asleep while we send the byte, we can get a NACK 219 * back while it wakes up, so try again, once. 220 */ 221 ret = i2c_master_send(lm->client, &cmd, 1); 222 if (unlikely(ret == -EREMOTEIO)) 223 ret = i2c_master_send(lm->client, &cmd, 1); 224 if (unlikely(ret != 1)) { 225 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n", 226 cmd); 227 return 0; 228 } 229 230 ret = i2c_master_recv(lm->client, buf, len); 231 if (unlikely(ret != len)) 232 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n", 233 len, ret); 234 235 return ret; 236 } 237 238 /* 239 * Set the chip active time (idle time before it enters halt). 240 */ 241 static void lm8323_set_active_time(struct lm8323_chip *lm, int time) 242 { 243 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2); 244 } 245 246 /* 247 * The signals are AT-style: the low 7 bits are the keycode, and the top 248 * bit indicates the state (1 for down, 0 for up). 249 */ 250 static inline u8 lm8323_whichkey(u8 event) 251 { 252 return event & 0x7f; 253 } 254 255 static inline int lm8323_ispress(u8 event) 256 { 257 return (event & 0x80) ? 1 : 0; 258 } 259 260 static void process_keys(struct lm8323_chip *lm) 261 { 262 u8 event; 263 u8 key_fifo[LM8323_FIFO_LEN + 1]; 264 int old_keys_down = lm->keys_down; 265 int ret; 266 int i = 0; 267 268 /* 269 * Read all key events from the FIFO at once. Next READ_FIFO clears the 270 * FIFO even if we didn't read all events previously. 271 */ 272 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN); 273 274 if (ret < 0) { 275 dev_err(&lm->client->dev, "Failed reading fifo \n"); 276 return; 277 } 278 key_fifo[ret] = 0; 279 280 while ((event = key_fifo[i++])) { 281 u8 key = lm8323_whichkey(event); 282 int isdown = lm8323_ispress(event); 283 unsigned short keycode = lm->keymap[key]; 284 285 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n", 286 key, isdown ? "down" : "up"); 287 288 if (lm->kp_enabled) { 289 input_event(lm->idev, EV_MSC, MSC_SCAN, key); 290 input_report_key(lm->idev, keycode, isdown); 291 input_sync(lm->idev); 292 } 293 294 if (isdown) 295 lm->keys_down++; 296 else 297 lm->keys_down--; 298 } 299 300 /* 301 * Errata: We need to ensure that the chip never enters halt mode 302 * during a keypress, so set active time to 0. When it's released, 303 * we can enter halt again, so set the active time back to normal. 304 */ 305 if (!old_keys_down && lm->keys_down) 306 lm8323_set_active_time(lm, 0); 307 if (old_keys_down && !lm->keys_down) 308 lm8323_set_active_time(lm, lm->active_time); 309 } 310 311 static void lm8323_process_error(struct lm8323_chip *lm) 312 { 313 u8 error; 314 315 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) { 316 if (error & ERR_FIFOOVER) 317 dev_vdbg(&lm->client->dev, "fifo overflow!\n"); 318 if (error & ERR_KEYOVR) 319 dev_vdbg(&lm->client->dev, 320 "more than two keys pressed\n"); 321 if (error & ERR_CMDUNK) 322 dev_vdbg(&lm->client->dev, 323 "unknown command submitted\n"); 324 if (error & ERR_BADPAR) 325 dev_vdbg(&lm->client->dev, "bad command parameter\n"); 326 } 327 } 328 329 static void lm8323_reset(struct lm8323_chip *lm) 330 { 331 /* The docs say we must pass 0xAA as the data byte. */ 332 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA); 333 } 334 335 static int lm8323_configure(struct lm8323_chip *lm) 336 { 337 int keysize = (lm->size_x << 4) | lm->size_y; 338 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL); 339 int debounce = lm->debounce_time >> 2; 340 int active = lm->active_time >> 2; 341 342 /* 343 * Active time must be greater than the debounce time: if it's 344 * a close-run thing, give ourselves a 12ms buffer. 345 */ 346 if (debounce >= active) 347 active = debounce + 3; 348 349 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0); 350 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock); 351 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize); 352 lm8323_set_active_time(lm, lm->active_time); 353 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce); 354 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff); 355 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0); 356 357 /* 358 * Not much we can do about errors at this point, so just hope 359 * for the best. 360 */ 361 362 return 0; 363 } 364 365 static void pwm_done(struct lm8323_pwm *pwm) 366 { 367 mutex_lock(&pwm->lock); 368 pwm->running = false; 369 if (pwm->desired_brightness != pwm->brightness) 370 schedule_work(&pwm->work); 371 mutex_unlock(&pwm->lock); 372 } 373 374 /* 375 * Bottom half: handle the interrupt by posting key events, or dealing with 376 * errors appropriately. 377 */ 378 static void lm8323_work(struct work_struct *work) 379 { 380 struct lm8323_chip *lm = work_to_lm8323(work); 381 u8 ints; 382 int i; 383 384 mutex_lock(&lm->lock); 385 386 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) { 387 if (likely(ints & INT_KEYPAD)) 388 process_keys(lm); 389 if (ints & INT_ROTATOR) { 390 /* We don't currently support the rotator. */ 391 dev_vdbg(&lm->client->dev, "rotator fired\n"); 392 } 393 if (ints & INT_ERROR) { 394 dev_vdbg(&lm->client->dev, "error!\n"); 395 lm8323_process_error(lm); 396 } 397 if (ints & INT_NOINIT) { 398 dev_err(&lm->client->dev, "chip lost config; " 399 "reinitialising\n"); 400 lm8323_configure(lm); 401 } 402 for (i = 0; i < LM8323_NUM_PWMS; i++) { 403 if (ints & (1 << (INT_PWM1 + i))) { 404 dev_vdbg(&lm->client->dev, 405 "pwm%d engine completed\n", i); 406 pwm_done(&lm->pwm[i]); 407 } 408 } 409 } 410 411 mutex_unlock(&lm->lock); 412 } 413 414 /* 415 * We cannot use I2C in interrupt context, so we just schedule work. 416 */ 417 static irqreturn_t lm8323_irq(int irq, void *data) 418 { 419 struct lm8323_chip *lm = data; 420 421 schedule_work(&lm->work); 422 423 return IRQ_HANDLED; 424 } 425 426 /* 427 * Read the chip ID. 428 */ 429 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf) 430 { 431 int bytes; 432 433 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2); 434 if (unlikely(bytes != 2)) 435 return -EIO; 436 437 return 0; 438 } 439 440 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd) 441 { 442 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id, 443 (cmd & 0xff00) >> 8, cmd & 0x00ff); 444 } 445 446 /* 447 * Write a script into a given PWM engine, concluding with PWM_END. 448 * If 'kill' is nonzero, the engine will be shut down at the end 449 * of the script, producing a zero output. Otherwise the engine 450 * will be kept running at the final PWM level indefinitely. 451 */ 452 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill, 453 int len, const u16 *cmds) 454 { 455 int i; 456 457 for (i = 0; i < len; i++) 458 lm8323_write_pwm_one(pwm, i, cmds[i]); 459 460 lm8323_write_pwm_one(pwm, i++, PWM_END(kill)); 461 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id); 462 pwm->running = true; 463 } 464 465 static void lm8323_pwm_work(struct work_struct *work) 466 { 467 struct lm8323_pwm *pwm = work_to_pwm(work); 468 int div512, perstep, steps, hz, up, kill; 469 u16 pwm_cmds[3]; 470 int num_cmds = 0; 471 472 mutex_lock(&pwm->lock); 473 474 /* 475 * Do nothing if we're already at the requested level, 476 * or previous setting is not yet complete. In the latter 477 * case we will be called again when the previous PWM script 478 * finishes. 479 */ 480 if (pwm->running || pwm->desired_brightness == pwm->brightness) 481 goto out; 482 483 kill = (pwm->desired_brightness == 0); 484 up = (pwm->desired_brightness > pwm->brightness); 485 steps = abs(pwm->desired_brightness - pwm->brightness); 486 487 /* 488 * Convert time (in ms) into a divisor (512 or 16 on a refclk of 489 * 32768Hz), and number of ticks per step. 490 */ 491 if ((pwm->fade_time / steps) > (32768 / 512)) { 492 div512 = 1; 493 hz = 32768 / 512; 494 } else { 495 div512 = 0; 496 hz = 32768 / 16; 497 } 498 499 perstep = (hz * pwm->fade_time) / (steps * 1000); 500 501 if (perstep == 0) 502 perstep = 1; 503 else if (perstep > 63) 504 perstep = 63; 505 506 while (steps) { 507 int s; 508 509 s = min(126, steps); 510 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up); 511 steps -= s; 512 } 513 514 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds); 515 pwm->brightness = pwm->desired_brightness; 516 517 out: 518 mutex_unlock(&pwm->lock); 519 } 520 521 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev, 522 enum led_brightness brightness) 523 { 524 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 525 struct lm8323_chip *lm = pwm->chip; 526 527 mutex_lock(&pwm->lock); 528 pwm->desired_brightness = brightness; 529 mutex_unlock(&pwm->lock); 530 531 if (in_interrupt()) { 532 schedule_work(&pwm->work); 533 } else { 534 /* 535 * Schedule PWM work as usual unless we are going into suspend 536 */ 537 mutex_lock(&lm->lock); 538 if (likely(!lm->pm_suspend)) 539 schedule_work(&pwm->work); 540 else 541 lm8323_pwm_work(&pwm->work); 542 mutex_unlock(&lm->lock); 543 } 544 } 545 546 static ssize_t lm8323_pwm_show_time(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 struct led_classdev *led_cdev = dev_get_drvdata(dev); 550 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 551 552 return sprintf(buf, "%d\n", pwm->fade_time); 553 } 554 555 static ssize_t lm8323_pwm_store_time(struct device *dev, 556 struct device_attribute *attr, const char *buf, size_t len) 557 { 558 struct led_classdev *led_cdev = dev_get_drvdata(dev); 559 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 560 int ret; 561 unsigned long time; 562 563 ret = strict_strtoul(buf, 10, &time); 564 /* Numbers only, please. */ 565 if (ret) 566 return -EINVAL; 567 568 pwm->fade_time = time; 569 570 return strlen(buf); 571 } 572 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time); 573 574 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev, 575 const char *name) 576 { 577 struct lm8323_pwm *pwm; 578 579 BUG_ON(id > 3); 580 581 pwm = &lm->pwm[id - 1]; 582 583 pwm->id = id; 584 pwm->fade_time = 0; 585 pwm->brightness = 0; 586 pwm->desired_brightness = 0; 587 pwm->running = false; 588 pwm->enabled = false; 589 INIT_WORK(&pwm->work, lm8323_pwm_work); 590 mutex_init(&pwm->lock); 591 pwm->chip = lm; 592 593 if (name) { 594 pwm->cdev.name = name; 595 pwm->cdev.brightness_set = lm8323_pwm_set_brightness; 596 if (led_classdev_register(dev, &pwm->cdev) < 0) { 597 dev_err(dev, "couldn't register PWM %d\n", id); 598 return -1; 599 } 600 if (device_create_file(pwm->cdev.dev, 601 &dev_attr_time) < 0) { 602 dev_err(dev, "couldn't register time attribute\n"); 603 led_classdev_unregister(&pwm->cdev); 604 return -1; 605 } 606 pwm->enabled = true; 607 } 608 609 return 0; 610 } 611 612 static struct i2c_driver lm8323_i2c_driver; 613 614 static ssize_t lm8323_show_disable(struct device *dev, 615 struct device_attribute *attr, char *buf) 616 { 617 struct lm8323_chip *lm = dev_get_drvdata(dev); 618 619 return sprintf(buf, "%u\n", !lm->kp_enabled); 620 } 621 622 static ssize_t lm8323_set_disable(struct device *dev, 623 struct device_attribute *attr, 624 const char *buf, size_t count) 625 { 626 struct lm8323_chip *lm = dev_get_drvdata(dev); 627 int ret; 628 unsigned long i; 629 630 ret = strict_strtoul(buf, 10, &i); 631 632 mutex_lock(&lm->lock); 633 lm->kp_enabled = !i; 634 mutex_unlock(&lm->lock); 635 636 return count; 637 } 638 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable); 639 640 static int __devinit lm8323_probe(struct i2c_client *client, 641 const struct i2c_device_id *id) 642 { 643 struct lm8323_platform_data *pdata = client->dev.platform_data; 644 struct input_dev *idev; 645 struct lm8323_chip *lm; 646 int pwm; 647 int i, err; 648 unsigned long tmo; 649 u8 data[2]; 650 651 if (!pdata || !pdata->size_x || !pdata->size_y) { 652 dev_err(&client->dev, "missing platform_data\n"); 653 return -EINVAL; 654 } 655 656 if (pdata->size_x > 8) { 657 dev_err(&client->dev, "invalid x size %d specified\n", 658 pdata->size_x); 659 return -EINVAL; 660 } 661 662 if (pdata->size_y > 12) { 663 dev_err(&client->dev, "invalid y size %d specified\n", 664 pdata->size_y); 665 return -EINVAL; 666 } 667 668 lm = kzalloc(sizeof *lm, GFP_KERNEL); 669 idev = input_allocate_device(); 670 if (!lm || !idev) { 671 err = -ENOMEM; 672 goto fail1; 673 } 674 675 lm->client = client; 676 lm->idev = idev; 677 mutex_init(&lm->lock); 678 INIT_WORK(&lm->work, lm8323_work); 679 680 lm->size_x = pdata->size_x; 681 lm->size_y = pdata->size_y; 682 dev_vdbg(&client->dev, "Keypad size: %d x %d\n", 683 lm->size_x, lm->size_y); 684 685 lm->debounce_time = pdata->debounce_time; 686 lm->active_time = pdata->active_time; 687 688 lm8323_reset(lm); 689 690 /* Nothing's set up to service the IRQ yet, so just spin for max. 691 * 100ms until we can configure. */ 692 tmo = jiffies + msecs_to_jiffies(100); 693 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) { 694 if (data[0] & INT_NOINIT) 695 break; 696 697 if (time_after(jiffies, tmo)) { 698 dev_err(&client->dev, 699 "timeout waiting for initialisation\n"); 700 break; 701 } 702 703 msleep(1); 704 } 705 706 lm8323_configure(lm); 707 708 /* If a true probe check the device */ 709 if (lm8323_read_id(lm, data) != 0) { 710 dev_err(&client->dev, "device not found\n"); 711 err = -ENODEV; 712 goto fail1; 713 } 714 715 for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) { 716 err = init_pwm(lm, pwm + 1, &client->dev, 717 pdata->pwm_names[pwm]); 718 if (err < 0) 719 goto fail2; 720 } 721 722 lm->kp_enabled = true; 723 err = device_create_file(&client->dev, &dev_attr_disable_kp); 724 if (err < 0) 725 goto fail2; 726 727 idev->name = pdata->name ? : "LM8323 keypad"; 728 snprintf(lm->phys, sizeof(lm->phys), 729 "%s/input-kp", dev_name(&client->dev)); 730 idev->phys = lm->phys; 731 732 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC); 733 __set_bit(MSC_SCAN, idev->mscbit); 734 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) { 735 __set_bit(pdata->keymap[i], idev->keybit); 736 lm->keymap[i] = pdata->keymap[i]; 737 } 738 __clear_bit(KEY_RESERVED, idev->keybit); 739 740 if (pdata->repeat) 741 __set_bit(EV_REP, idev->evbit); 742 743 err = input_register_device(idev); 744 if (err) { 745 dev_dbg(&client->dev, "error registering input device\n"); 746 goto fail3; 747 } 748 749 err = request_irq(client->irq, lm8323_irq, 750 IRQF_TRIGGER_FALLING | IRQF_DISABLED, 751 "lm8323", lm); 752 if (err) { 753 dev_err(&client->dev, "could not get IRQ %d\n", client->irq); 754 goto fail4; 755 } 756 757 i2c_set_clientdata(client, lm); 758 759 device_init_wakeup(&client->dev, 1); 760 enable_irq_wake(client->irq); 761 762 return 0; 763 764 fail4: 765 input_unregister_device(idev); 766 idev = NULL; 767 fail3: 768 device_remove_file(&client->dev, &dev_attr_disable_kp); 769 fail2: 770 while (--pwm >= 0) 771 if (lm->pwm[pwm].enabled) 772 led_classdev_unregister(&lm->pwm[pwm].cdev); 773 fail1: 774 input_free_device(idev); 775 kfree(lm); 776 return err; 777 } 778 779 static int __devexit lm8323_remove(struct i2c_client *client) 780 { 781 struct lm8323_chip *lm = i2c_get_clientdata(client); 782 int i; 783 784 disable_irq_wake(client->irq); 785 free_irq(client->irq, lm); 786 cancel_work_sync(&lm->work); 787 788 input_unregister_device(lm->idev); 789 790 device_remove_file(&lm->client->dev, &dev_attr_disable_kp); 791 792 for (i = 0; i < 3; i++) 793 if (lm->pwm[i].enabled) 794 led_classdev_unregister(&lm->pwm[i].cdev); 795 796 kfree(lm); 797 798 return 0; 799 } 800 801 #ifdef CONFIG_PM 802 /* 803 * We don't need to explicitly suspend the chip, as it already switches off 804 * when there's no activity. 805 */ 806 static int lm8323_suspend(struct device *dev) 807 { 808 struct i2c_client *client = to_i2c_client(dev); 809 struct lm8323_chip *lm = i2c_get_clientdata(client); 810 int i; 811 812 irq_set_irq_wake(client->irq, 0); 813 disable_irq(client->irq); 814 815 mutex_lock(&lm->lock); 816 lm->pm_suspend = true; 817 mutex_unlock(&lm->lock); 818 819 for (i = 0; i < 3; i++) 820 if (lm->pwm[i].enabled) 821 led_classdev_suspend(&lm->pwm[i].cdev); 822 823 return 0; 824 } 825 826 static int lm8323_resume(struct device *dev) 827 { 828 struct i2c_client *client = to_i2c_client(dev); 829 struct lm8323_chip *lm = i2c_get_clientdata(client); 830 int i; 831 832 mutex_lock(&lm->lock); 833 lm->pm_suspend = false; 834 mutex_unlock(&lm->lock); 835 836 for (i = 0; i < 3; i++) 837 if (lm->pwm[i].enabled) 838 led_classdev_resume(&lm->pwm[i].cdev); 839 840 enable_irq(client->irq); 841 irq_set_irq_wake(client->irq, 1); 842 843 return 0; 844 } 845 #endif 846 847 static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume); 848 849 static const struct i2c_device_id lm8323_id[] = { 850 { "lm8323", 0 }, 851 { } 852 }; 853 854 static struct i2c_driver lm8323_i2c_driver = { 855 .driver = { 856 .name = "lm8323", 857 .pm = &lm8323_pm_ops, 858 }, 859 .probe = lm8323_probe, 860 .remove = __devexit_p(lm8323_remove), 861 .id_table = lm8323_id, 862 }; 863 MODULE_DEVICE_TABLE(i2c, lm8323_id); 864 865 static int __init lm8323_init(void) 866 { 867 return i2c_add_driver(&lm8323_i2c_driver); 868 } 869 module_init(lm8323_init); 870 871 static void __exit lm8323_exit(void) 872 { 873 i2c_del_driver(&lm8323_i2c_driver); 874 } 875 module_exit(lm8323_exit); 876 877 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>"); 878 MODULE_AUTHOR("Daniel Stone"); 879 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>"); 880 MODULE_DESCRIPTION("LM8323 keypad driver"); 881 MODULE_LICENSE("GPL"); 882 883