1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/idr.h> 18 #include <linux/input/mt.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/random.h> 22 #include <linux/major.h> 23 #include <linux/proc_fs.h> 24 #include <linux/sched.h> 25 #include <linux/seq_file.h> 26 #include <linux/poll.h> 27 #include <linux/device.h> 28 #include <linux/mutex.h> 29 #include <linux/rcupdate.h> 30 #include "input-compat.h" 31 32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 33 MODULE_DESCRIPTION("Input core"); 34 MODULE_LICENSE("GPL"); 35 36 #define INPUT_MAX_CHAR_DEVICES 1024 37 #define INPUT_FIRST_DYNAMIC_DEV 256 38 static DEFINE_IDA(input_ida); 39 40 static LIST_HEAD(input_dev_list); 41 static LIST_HEAD(input_handler_list); 42 43 /* 44 * input_mutex protects access to both input_dev_list and input_handler_list. 45 * This also causes input_[un]register_device and input_[un]register_handler 46 * be mutually exclusive which simplifies locking in drivers implementing 47 * input handlers. 48 */ 49 static DEFINE_MUTEX(input_mutex); 50 51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 52 53 static inline int is_event_supported(unsigned int code, 54 unsigned long *bm, unsigned int max) 55 { 56 return code <= max && test_bit(code, bm); 57 } 58 59 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 60 { 61 if (fuzz) { 62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 63 return old_val; 64 65 if (value > old_val - fuzz && value < old_val + fuzz) 66 return (old_val * 3 + value) / 4; 67 68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 69 return (old_val + value) / 2; 70 } 71 72 return value; 73 } 74 75 static void input_start_autorepeat(struct input_dev *dev, int code) 76 { 77 if (test_bit(EV_REP, dev->evbit) && 78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 79 dev->timer.data) { 80 dev->repeat_key = code; 81 mod_timer(&dev->timer, 82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 83 } 84 } 85 86 static void input_stop_autorepeat(struct input_dev *dev) 87 { 88 del_timer(&dev->timer); 89 } 90 91 /* 92 * Pass event first through all filters and then, if event has not been 93 * filtered out, through all open handles. This function is called with 94 * dev->event_lock held and interrupts disabled. 95 */ 96 static unsigned int input_to_handler(struct input_handle *handle, 97 struct input_value *vals, unsigned int count) 98 { 99 struct input_handler *handler = handle->handler; 100 struct input_value *end = vals; 101 struct input_value *v; 102 103 for (v = vals; v != vals + count; v++) { 104 if (handler->filter && 105 handler->filter(handle, v->type, v->code, v->value)) 106 continue; 107 if (end != v) 108 *end = *v; 109 end++; 110 } 111 112 count = end - vals; 113 if (!count) 114 return 0; 115 116 if (handler->events) 117 handler->events(handle, vals, count); 118 else if (handler->event) 119 for (v = vals; v != end; v++) 120 handler->event(handle, v->type, v->code, v->value); 121 122 return count; 123 } 124 125 /* 126 * Pass values first through all filters and then, if event has not been 127 * filtered out, through all open handles. This function is called with 128 * dev->event_lock held and interrupts disabled. 129 */ 130 static void input_pass_values(struct input_dev *dev, 131 struct input_value *vals, unsigned int count) 132 { 133 struct input_handle *handle; 134 struct input_value *v; 135 136 if (!count) 137 return; 138 139 rcu_read_lock(); 140 141 handle = rcu_dereference(dev->grab); 142 if (handle) { 143 count = input_to_handler(handle, vals, count); 144 } else { 145 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 146 if (handle->open) 147 count = input_to_handler(handle, vals, count); 148 } 149 150 rcu_read_unlock(); 151 152 add_input_randomness(vals->type, vals->code, vals->value); 153 154 /* trigger auto repeat for key events */ 155 for (v = vals; v != vals + count; v++) { 156 if (v->type == EV_KEY && v->value != 2) { 157 if (v->value) 158 input_start_autorepeat(dev, v->code); 159 else 160 input_stop_autorepeat(dev); 161 } 162 } 163 } 164 165 static void input_pass_event(struct input_dev *dev, 166 unsigned int type, unsigned int code, int value) 167 { 168 struct input_value vals[] = { { type, code, value } }; 169 170 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 171 } 172 173 /* 174 * Generate software autorepeat event. Note that we take 175 * dev->event_lock here to avoid racing with input_event 176 * which may cause keys get "stuck". 177 */ 178 static void input_repeat_key(unsigned long data) 179 { 180 struct input_dev *dev = (void *) data; 181 unsigned long flags; 182 183 spin_lock_irqsave(&dev->event_lock, flags); 184 185 if (test_bit(dev->repeat_key, dev->key) && 186 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 187 struct input_value vals[] = { 188 { EV_KEY, dev->repeat_key, 2 }, 189 input_value_sync 190 }; 191 192 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 193 194 if (dev->rep[REP_PERIOD]) 195 mod_timer(&dev->timer, jiffies + 196 msecs_to_jiffies(dev->rep[REP_PERIOD])); 197 } 198 199 spin_unlock_irqrestore(&dev->event_lock, flags); 200 } 201 202 #define INPUT_IGNORE_EVENT 0 203 #define INPUT_PASS_TO_HANDLERS 1 204 #define INPUT_PASS_TO_DEVICE 2 205 #define INPUT_SLOT 4 206 #define INPUT_FLUSH 8 207 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 208 209 static int input_handle_abs_event(struct input_dev *dev, 210 unsigned int code, int *pval) 211 { 212 struct input_mt *mt = dev->mt; 213 bool is_mt_event; 214 int *pold; 215 216 if (code == ABS_MT_SLOT) { 217 /* 218 * "Stage" the event; we'll flush it later, when we 219 * get actual touch data. 220 */ 221 if (mt && *pval >= 0 && *pval < mt->num_slots) 222 mt->slot = *pval; 223 224 return INPUT_IGNORE_EVENT; 225 } 226 227 is_mt_event = input_is_mt_value(code); 228 229 if (!is_mt_event) { 230 pold = &dev->absinfo[code].value; 231 } else if (mt) { 232 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 233 } else { 234 /* 235 * Bypass filtering for multi-touch events when 236 * not employing slots. 237 */ 238 pold = NULL; 239 } 240 241 if (pold) { 242 *pval = input_defuzz_abs_event(*pval, *pold, 243 dev->absinfo[code].fuzz); 244 if (*pold == *pval) 245 return INPUT_IGNORE_EVENT; 246 247 *pold = *pval; 248 } 249 250 /* Flush pending "slot" event */ 251 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 252 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 253 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 254 } 255 256 return INPUT_PASS_TO_HANDLERS; 257 } 258 259 static int input_get_disposition(struct input_dev *dev, 260 unsigned int type, unsigned int code, int value) 261 { 262 int disposition = INPUT_IGNORE_EVENT; 263 264 switch (type) { 265 266 case EV_SYN: 267 switch (code) { 268 case SYN_CONFIG: 269 disposition = INPUT_PASS_TO_ALL; 270 break; 271 272 case SYN_REPORT: 273 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 274 break; 275 case SYN_MT_REPORT: 276 disposition = INPUT_PASS_TO_HANDLERS; 277 break; 278 } 279 break; 280 281 case EV_KEY: 282 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 283 284 /* auto-repeat bypasses state updates */ 285 if (value == 2) { 286 disposition = INPUT_PASS_TO_HANDLERS; 287 break; 288 } 289 290 if (!!test_bit(code, dev->key) != !!value) { 291 292 __change_bit(code, dev->key); 293 disposition = INPUT_PASS_TO_HANDLERS; 294 } 295 } 296 break; 297 298 case EV_SW: 299 if (is_event_supported(code, dev->swbit, SW_MAX) && 300 !!test_bit(code, dev->sw) != !!value) { 301 302 __change_bit(code, dev->sw); 303 disposition = INPUT_PASS_TO_HANDLERS; 304 } 305 break; 306 307 case EV_ABS: 308 if (is_event_supported(code, dev->absbit, ABS_MAX)) 309 disposition = input_handle_abs_event(dev, code, &value); 310 311 break; 312 313 case EV_REL: 314 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 315 disposition = INPUT_PASS_TO_HANDLERS; 316 317 break; 318 319 case EV_MSC: 320 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 321 disposition = INPUT_PASS_TO_ALL; 322 323 break; 324 325 case EV_LED: 326 if (is_event_supported(code, dev->ledbit, LED_MAX) && 327 !!test_bit(code, dev->led) != !!value) { 328 329 __change_bit(code, dev->led); 330 disposition = INPUT_PASS_TO_ALL; 331 } 332 break; 333 334 case EV_SND: 335 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 336 337 if (!!test_bit(code, dev->snd) != !!value) 338 __change_bit(code, dev->snd); 339 disposition = INPUT_PASS_TO_ALL; 340 } 341 break; 342 343 case EV_REP: 344 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 345 dev->rep[code] = value; 346 disposition = INPUT_PASS_TO_ALL; 347 } 348 break; 349 350 case EV_FF: 351 if (value >= 0) 352 disposition = INPUT_PASS_TO_ALL; 353 break; 354 355 case EV_PWR: 356 disposition = INPUT_PASS_TO_ALL; 357 break; 358 } 359 360 return disposition; 361 } 362 363 static void input_handle_event(struct input_dev *dev, 364 unsigned int type, unsigned int code, int value) 365 { 366 int disposition; 367 368 disposition = input_get_disposition(dev, type, code, value); 369 370 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 371 dev->event(dev, type, code, value); 372 373 if (!dev->vals) 374 return; 375 376 if (disposition & INPUT_PASS_TO_HANDLERS) { 377 struct input_value *v; 378 379 if (disposition & INPUT_SLOT) { 380 v = &dev->vals[dev->num_vals++]; 381 v->type = EV_ABS; 382 v->code = ABS_MT_SLOT; 383 v->value = dev->mt->slot; 384 } 385 386 v = &dev->vals[dev->num_vals++]; 387 v->type = type; 388 v->code = code; 389 v->value = value; 390 } 391 392 if (disposition & INPUT_FLUSH) { 393 if (dev->num_vals >= 2) 394 input_pass_values(dev, dev->vals, dev->num_vals); 395 dev->num_vals = 0; 396 } else if (dev->num_vals >= dev->max_vals - 2) { 397 dev->vals[dev->num_vals++] = input_value_sync; 398 input_pass_values(dev, dev->vals, dev->num_vals); 399 dev->num_vals = 0; 400 } 401 402 } 403 404 /** 405 * input_event() - report new input event 406 * @dev: device that generated the event 407 * @type: type of the event 408 * @code: event code 409 * @value: value of the event 410 * 411 * This function should be used by drivers implementing various input 412 * devices to report input events. See also input_inject_event(). 413 * 414 * NOTE: input_event() may be safely used right after input device was 415 * allocated with input_allocate_device(), even before it is registered 416 * with input_register_device(), but the event will not reach any of the 417 * input handlers. Such early invocation of input_event() may be used 418 * to 'seed' initial state of a switch or initial position of absolute 419 * axis, etc. 420 */ 421 void input_event(struct input_dev *dev, 422 unsigned int type, unsigned int code, int value) 423 { 424 unsigned long flags; 425 426 if (is_event_supported(type, dev->evbit, EV_MAX)) { 427 428 spin_lock_irqsave(&dev->event_lock, flags); 429 input_handle_event(dev, type, code, value); 430 spin_unlock_irqrestore(&dev->event_lock, flags); 431 } 432 } 433 EXPORT_SYMBOL(input_event); 434 435 /** 436 * input_inject_event() - send input event from input handler 437 * @handle: input handle to send event through 438 * @type: type of the event 439 * @code: event code 440 * @value: value of the event 441 * 442 * Similar to input_event() but will ignore event if device is 443 * "grabbed" and handle injecting event is not the one that owns 444 * the device. 445 */ 446 void input_inject_event(struct input_handle *handle, 447 unsigned int type, unsigned int code, int value) 448 { 449 struct input_dev *dev = handle->dev; 450 struct input_handle *grab; 451 unsigned long flags; 452 453 if (is_event_supported(type, dev->evbit, EV_MAX)) { 454 spin_lock_irqsave(&dev->event_lock, flags); 455 456 rcu_read_lock(); 457 grab = rcu_dereference(dev->grab); 458 if (!grab || grab == handle) 459 input_handle_event(dev, type, code, value); 460 rcu_read_unlock(); 461 462 spin_unlock_irqrestore(&dev->event_lock, flags); 463 } 464 } 465 EXPORT_SYMBOL(input_inject_event); 466 467 /** 468 * input_alloc_absinfo - allocates array of input_absinfo structs 469 * @dev: the input device emitting absolute events 470 * 471 * If the absinfo struct the caller asked for is already allocated, this 472 * functions will not do anything. 473 */ 474 void input_alloc_absinfo(struct input_dev *dev) 475 { 476 if (!dev->absinfo) 477 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 478 GFP_KERNEL); 479 480 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 481 } 482 EXPORT_SYMBOL(input_alloc_absinfo); 483 484 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 485 int min, int max, int fuzz, int flat) 486 { 487 struct input_absinfo *absinfo; 488 489 input_alloc_absinfo(dev); 490 if (!dev->absinfo) 491 return; 492 493 absinfo = &dev->absinfo[axis]; 494 absinfo->minimum = min; 495 absinfo->maximum = max; 496 absinfo->fuzz = fuzz; 497 absinfo->flat = flat; 498 499 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis); 500 } 501 EXPORT_SYMBOL(input_set_abs_params); 502 503 504 /** 505 * input_grab_device - grabs device for exclusive use 506 * @handle: input handle that wants to own the device 507 * 508 * When a device is grabbed by an input handle all events generated by 509 * the device are delivered only to this handle. Also events injected 510 * by other input handles are ignored while device is grabbed. 511 */ 512 int input_grab_device(struct input_handle *handle) 513 { 514 struct input_dev *dev = handle->dev; 515 int retval; 516 517 retval = mutex_lock_interruptible(&dev->mutex); 518 if (retval) 519 return retval; 520 521 if (dev->grab) { 522 retval = -EBUSY; 523 goto out; 524 } 525 526 rcu_assign_pointer(dev->grab, handle); 527 528 out: 529 mutex_unlock(&dev->mutex); 530 return retval; 531 } 532 EXPORT_SYMBOL(input_grab_device); 533 534 static void __input_release_device(struct input_handle *handle) 535 { 536 struct input_dev *dev = handle->dev; 537 538 if (dev->grab == handle) { 539 rcu_assign_pointer(dev->grab, NULL); 540 /* Make sure input_pass_event() notices that grab is gone */ 541 synchronize_rcu(); 542 543 list_for_each_entry(handle, &dev->h_list, d_node) 544 if (handle->open && handle->handler->start) 545 handle->handler->start(handle); 546 } 547 } 548 549 /** 550 * input_release_device - release previously grabbed device 551 * @handle: input handle that owns the device 552 * 553 * Releases previously grabbed device so that other input handles can 554 * start receiving input events. Upon release all handlers attached 555 * to the device have their start() method called so they have a change 556 * to synchronize device state with the rest of the system. 557 */ 558 void input_release_device(struct input_handle *handle) 559 { 560 struct input_dev *dev = handle->dev; 561 562 mutex_lock(&dev->mutex); 563 __input_release_device(handle); 564 mutex_unlock(&dev->mutex); 565 } 566 EXPORT_SYMBOL(input_release_device); 567 568 /** 569 * input_open_device - open input device 570 * @handle: handle through which device is being accessed 571 * 572 * This function should be called by input handlers when they 573 * want to start receive events from given input device. 574 */ 575 int input_open_device(struct input_handle *handle) 576 { 577 struct input_dev *dev = handle->dev; 578 int retval; 579 580 retval = mutex_lock_interruptible(&dev->mutex); 581 if (retval) 582 return retval; 583 584 if (dev->going_away) { 585 retval = -ENODEV; 586 goto out; 587 } 588 589 handle->open++; 590 591 if (!dev->users++ && dev->open) 592 retval = dev->open(dev); 593 594 if (retval) { 595 dev->users--; 596 if (!--handle->open) { 597 /* 598 * Make sure we are not delivering any more events 599 * through this handle 600 */ 601 synchronize_rcu(); 602 } 603 } 604 605 out: 606 mutex_unlock(&dev->mutex); 607 return retval; 608 } 609 EXPORT_SYMBOL(input_open_device); 610 611 int input_flush_device(struct input_handle *handle, struct file *file) 612 { 613 struct input_dev *dev = handle->dev; 614 int retval; 615 616 retval = mutex_lock_interruptible(&dev->mutex); 617 if (retval) 618 return retval; 619 620 if (dev->flush) 621 retval = dev->flush(dev, file); 622 623 mutex_unlock(&dev->mutex); 624 return retval; 625 } 626 EXPORT_SYMBOL(input_flush_device); 627 628 /** 629 * input_close_device - close input device 630 * @handle: handle through which device is being accessed 631 * 632 * This function should be called by input handlers when they 633 * want to stop receive events from given input device. 634 */ 635 void input_close_device(struct input_handle *handle) 636 { 637 struct input_dev *dev = handle->dev; 638 639 mutex_lock(&dev->mutex); 640 641 __input_release_device(handle); 642 643 if (!--dev->users && dev->close) 644 dev->close(dev); 645 646 if (!--handle->open) { 647 /* 648 * synchronize_rcu() makes sure that input_pass_event() 649 * completed and that no more input events are delivered 650 * through this handle 651 */ 652 synchronize_rcu(); 653 } 654 655 mutex_unlock(&dev->mutex); 656 } 657 EXPORT_SYMBOL(input_close_device); 658 659 /* 660 * Simulate keyup events for all keys that are marked as pressed. 661 * The function must be called with dev->event_lock held. 662 */ 663 static void input_dev_release_keys(struct input_dev *dev) 664 { 665 int code; 666 667 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 668 for (code = 0; code <= KEY_MAX; code++) { 669 if (is_event_supported(code, dev->keybit, KEY_MAX) && 670 __test_and_clear_bit(code, dev->key)) { 671 input_pass_event(dev, EV_KEY, code, 0); 672 } 673 } 674 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 675 } 676 } 677 678 /* 679 * Prepare device for unregistering 680 */ 681 static void input_disconnect_device(struct input_dev *dev) 682 { 683 struct input_handle *handle; 684 685 /* 686 * Mark device as going away. Note that we take dev->mutex here 687 * not to protect access to dev->going_away but rather to ensure 688 * that there are no threads in the middle of input_open_device() 689 */ 690 mutex_lock(&dev->mutex); 691 dev->going_away = true; 692 mutex_unlock(&dev->mutex); 693 694 spin_lock_irq(&dev->event_lock); 695 696 /* 697 * Simulate keyup events for all pressed keys so that handlers 698 * are not left with "stuck" keys. The driver may continue 699 * generate events even after we done here but they will not 700 * reach any handlers. 701 */ 702 input_dev_release_keys(dev); 703 704 list_for_each_entry(handle, &dev->h_list, d_node) 705 handle->open = 0; 706 707 spin_unlock_irq(&dev->event_lock); 708 } 709 710 /** 711 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 712 * @ke: keymap entry containing scancode to be converted. 713 * @scancode: pointer to the location where converted scancode should 714 * be stored. 715 * 716 * This function is used to convert scancode stored in &struct keymap_entry 717 * into scalar form understood by legacy keymap handling methods. These 718 * methods expect scancodes to be represented as 'unsigned int'. 719 */ 720 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 721 unsigned int *scancode) 722 { 723 switch (ke->len) { 724 case 1: 725 *scancode = *((u8 *)ke->scancode); 726 break; 727 728 case 2: 729 *scancode = *((u16 *)ke->scancode); 730 break; 731 732 case 4: 733 *scancode = *((u32 *)ke->scancode); 734 break; 735 736 default: 737 return -EINVAL; 738 } 739 740 return 0; 741 } 742 EXPORT_SYMBOL(input_scancode_to_scalar); 743 744 /* 745 * Those routines handle the default case where no [gs]etkeycode() is 746 * defined. In this case, an array indexed by the scancode is used. 747 */ 748 749 static unsigned int input_fetch_keycode(struct input_dev *dev, 750 unsigned int index) 751 { 752 switch (dev->keycodesize) { 753 case 1: 754 return ((u8 *)dev->keycode)[index]; 755 756 case 2: 757 return ((u16 *)dev->keycode)[index]; 758 759 default: 760 return ((u32 *)dev->keycode)[index]; 761 } 762 } 763 764 static int input_default_getkeycode(struct input_dev *dev, 765 struct input_keymap_entry *ke) 766 { 767 unsigned int index; 768 int error; 769 770 if (!dev->keycodesize) 771 return -EINVAL; 772 773 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 774 index = ke->index; 775 else { 776 error = input_scancode_to_scalar(ke, &index); 777 if (error) 778 return error; 779 } 780 781 if (index >= dev->keycodemax) 782 return -EINVAL; 783 784 ke->keycode = input_fetch_keycode(dev, index); 785 ke->index = index; 786 ke->len = sizeof(index); 787 memcpy(ke->scancode, &index, sizeof(index)); 788 789 return 0; 790 } 791 792 static int input_default_setkeycode(struct input_dev *dev, 793 const struct input_keymap_entry *ke, 794 unsigned int *old_keycode) 795 { 796 unsigned int index; 797 int error; 798 int i; 799 800 if (!dev->keycodesize) 801 return -EINVAL; 802 803 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 804 index = ke->index; 805 } else { 806 error = input_scancode_to_scalar(ke, &index); 807 if (error) 808 return error; 809 } 810 811 if (index >= dev->keycodemax) 812 return -EINVAL; 813 814 if (dev->keycodesize < sizeof(ke->keycode) && 815 (ke->keycode >> (dev->keycodesize * 8))) 816 return -EINVAL; 817 818 switch (dev->keycodesize) { 819 case 1: { 820 u8 *k = (u8 *)dev->keycode; 821 *old_keycode = k[index]; 822 k[index] = ke->keycode; 823 break; 824 } 825 case 2: { 826 u16 *k = (u16 *)dev->keycode; 827 *old_keycode = k[index]; 828 k[index] = ke->keycode; 829 break; 830 } 831 default: { 832 u32 *k = (u32 *)dev->keycode; 833 *old_keycode = k[index]; 834 k[index] = ke->keycode; 835 break; 836 } 837 } 838 839 __clear_bit(*old_keycode, dev->keybit); 840 __set_bit(ke->keycode, dev->keybit); 841 842 for (i = 0; i < dev->keycodemax; i++) { 843 if (input_fetch_keycode(dev, i) == *old_keycode) { 844 __set_bit(*old_keycode, dev->keybit); 845 break; /* Setting the bit twice is useless, so break */ 846 } 847 } 848 849 return 0; 850 } 851 852 /** 853 * input_get_keycode - retrieve keycode currently mapped to a given scancode 854 * @dev: input device which keymap is being queried 855 * @ke: keymap entry 856 * 857 * This function should be called by anyone interested in retrieving current 858 * keymap. Presently evdev handlers use it. 859 */ 860 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 861 { 862 unsigned long flags; 863 int retval; 864 865 spin_lock_irqsave(&dev->event_lock, flags); 866 retval = dev->getkeycode(dev, ke); 867 spin_unlock_irqrestore(&dev->event_lock, flags); 868 869 return retval; 870 } 871 EXPORT_SYMBOL(input_get_keycode); 872 873 /** 874 * input_set_keycode - attribute a keycode to a given scancode 875 * @dev: input device which keymap is being updated 876 * @ke: new keymap entry 877 * 878 * This function should be called by anyone needing to update current 879 * keymap. Presently keyboard and evdev handlers use it. 880 */ 881 int input_set_keycode(struct input_dev *dev, 882 const struct input_keymap_entry *ke) 883 { 884 unsigned long flags; 885 unsigned int old_keycode; 886 int retval; 887 888 if (ke->keycode > KEY_MAX) 889 return -EINVAL; 890 891 spin_lock_irqsave(&dev->event_lock, flags); 892 893 retval = dev->setkeycode(dev, ke, &old_keycode); 894 if (retval) 895 goto out; 896 897 /* Make sure KEY_RESERVED did not get enabled. */ 898 __clear_bit(KEY_RESERVED, dev->keybit); 899 900 /* 901 * Simulate keyup event if keycode is not present 902 * in the keymap anymore 903 */ 904 if (test_bit(EV_KEY, dev->evbit) && 905 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 906 __test_and_clear_bit(old_keycode, dev->key)) { 907 struct input_value vals[] = { 908 { EV_KEY, old_keycode, 0 }, 909 input_value_sync 910 }; 911 912 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 913 } 914 915 out: 916 spin_unlock_irqrestore(&dev->event_lock, flags); 917 918 return retval; 919 } 920 EXPORT_SYMBOL(input_set_keycode); 921 922 static const struct input_device_id *input_match_device(struct input_handler *handler, 923 struct input_dev *dev) 924 { 925 const struct input_device_id *id; 926 927 for (id = handler->id_table; id->flags || id->driver_info; id++) { 928 929 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 930 if (id->bustype != dev->id.bustype) 931 continue; 932 933 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 934 if (id->vendor != dev->id.vendor) 935 continue; 936 937 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 938 if (id->product != dev->id.product) 939 continue; 940 941 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 942 if (id->version != dev->id.version) 943 continue; 944 945 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX)) 946 continue; 947 948 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX)) 949 continue; 950 951 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX)) 952 continue; 953 954 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX)) 955 continue; 956 957 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX)) 958 continue; 959 960 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX)) 961 continue; 962 963 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX)) 964 continue; 965 966 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX)) 967 continue; 968 969 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX)) 970 continue; 971 972 if (!handler->match || handler->match(handler, dev)) 973 return id; 974 } 975 976 return NULL; 977 } 978 979 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 980 { 981 const struct input_device_id *id; 982 int error; 983 984 id = input_match_device(handler, dev); 985 if (!id) 986 return -ENODEV; 987 988 error = handler->connect(handler, dev, id); 989 if (error && error != -ENODEV) 990 pr_err("failed to attach handler %s to device %s, error: %d\n", 991 handler->name, kobject_name(&dev->dev.kobj), error); 992 993 return error; 994 } 995 996 #ifdef CONFIG_COMPAT 997 998 static int input_bits_to_string(char *buf, int buf_size, 999 unsigned long bits, bool skip_empty) 1000 { 1001 int len = 0; 1002 1003 if (INPUT_COMPAT_TEST) { 1004 u32 dword = bits >> 32; 1005 if (dword || !skip_empty) 1006 len += snprintf(buf, buf_size, "%x ", dword); 1007 1008 dword = bits & 0xffffffffUL; 1009 if (dword || !skip_empty || len) 1010 len += snprintf(buf + len, max(buf_size - len, 0), 1011 "%x", dword); 1012 } else { 1013 if (bits || !skip_empty) 1014 len += snprintf(buf, buf_size, "%lx", bits); 1015 } 1016 1017 return len; 1018 } 1019 1020 #else /* !CONFIG_COMPAT */ 1021 1022 static int input_bits_to_string(char *buf, int buf_size, 1023 unsigned long bits, bool skip_empty) 1024 { 1025 return bits || !skip_empty ? 1026 snprintf(buf, buf_size, "%lx", bits) : 0; 1027 } 1028 1029 #endif 1030 1031 #ifdef CONFIG_PROC_FS 1032 1033 static struct proc_dir_entry *proc_bus_input_dir; 1034 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1035 static int input_devices_state; 1036 1037 static inline void input_wakeup_procfs_readers(void) 1038 { 1039 input_devices_state++; 1040 wake_up(&input_devices_poll_wait); 1041 } 1042 1043 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1044 { 1045 poll_wait(file, &input_devices_poll_wait, wait); 1046 if (file->f_version != input_devices_state) { 1047 file->f_version = input_devices_state; 1048 return POLLIN | POLLRDNORM; 1049 } 1050 1051 return 0; 1052 } 1053 1054 union input_seq_state { 1055 struct { 1056 unsigned short pos; 1057 bool mutex_acquired; 1058 }; 1059 void *p; 1060 }; 1061 1062 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1063 { 1064 union input_seq_state *state = (union input_seq_state *)&seq->private; 1065 int error; 1066 1067 /* We need to fit into seq->private pointer */ 1068 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1069 1070 error = mutex_lock_interruptible(&input_mutex); 1071 if (error) { 1072 state->mutex_acquired = false; 1073 return ERR_PTR(error); 1074 } 1075 1076 state->mutex_acquired = true; 1077 1078 return seq_list_start(&input_dev_list, *pos); 1079 } 1080 1081 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1082 { 1083 return seq_list_next(v, &input_dev_list, pos); 1084 } 1085 1086 static void input_seq_stop(struct seq_file *seq, void *v) 1087 { 1088 union input_seq_state *state = (union input_seq_state *)&seq->private; 1089 1090 if (state->mutex_acquired) 1091 mutex_unlock(&input_mutex); 1092 } 1093 1094 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1095 unsigned long *bitmap, int max) 1096 { 1097 int i; 1098 bool skip_empty = true; 1099 char buf[18]; 1100 1101 seq_printf(seq, "B: %s=", name); 1102 1103 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1104 if (input_bits_to_string(buf, sizeof(buf), 1105 bitmap[i], skip_empty)) { 1106 skip_empty = false; 1107 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1108 } 1109 } 1110 1111 /* 1112 * If no output was produced print a single 0. 1113 */ 1114 if (skip_empty) 1115 seq_puts(seq, "0"); 1116 1117 seq_putc(seq, '\n'); 1118 } 1119 1120 static int input_devices_seq_show(struct seq_file *seq, void *v) 1121 { 1122 struct input_dev *dev = container_of(v, struct input_dev, node); 1123 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1124 struct input_handle *handle; 1125 1126 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1127 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1128 1129 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1130 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1131 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1132 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1133 seq_printf(seq, "H: Handlers="); 1134 1135 list_for_each_entry(handle, &dev->h_list, d_node) 1136 seq_printf(seq, "%s ", handle->name); 1137 seq_putc(seq, '\n'); 1138 1139 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1140 1141 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1142 if (test_bit(EV_KEY, dev->evbit)) 1143 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1144 if (test_bit(EV_REL, dev->evbit)) 1145 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1146 if (test_bit(EV_ABS, dev->evbit)) 1147 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1148 if (test_bit(EV_MSC, dev->evbit)) 1149 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1150 if (test_bit(EV_LED, dev->evbit)) 1151 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1152 if (test_bit(EV_SND, dev->evbit)) 1153 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1154 if (test_bit(EV_FF, dev->evbit)) 1155 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1156 if (test_bit(EV_SW, dev->evbit)) 1157 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1158 1159 seq_putc(seq, '\n'); 1160 1161 kfree(path); 1162 return 0; 1163 } 1164 1165 static const struct seq_operations input_devices_seq_ops = { 1166 .start = input_devices_seq_start, 1167 .next = input_devices_seq_next, 1168 .stop = input_seq_stop, 1169 .show = input_devices_seq_show, 1170 }; 1171 1172 static int input_proc_devices_open(struct inode *inode, struct file *file) 1173 { 1174 return seq_open(file, &input_devices_seq_ops); 1175 } 1176 1177 static const struct file_operations input_devices_fileops = { 1178 .owner = THIS_MODULE, 1179 .open = input_proc_devices_open, 1180 .poll = input_proc_devices_poll, 1181 .read = seq_read, 1182 .llseek = seq_lseek, 1183 .release = seq_release, 1184 }; 1185 1186 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1187 { 1188 union input_seq_state *state = (union input_seq_state *)&seq->private; 1189 int error; 1190 1191 /* We need to fit into seq->private pointer */ 1192 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1193 1194 error = mutex_lock_interruptible(&input_mutex); 1195 if (error) { 1196 state->mutex_acquired = false; 1197 return ERR_PTR(error); 1198 } 1199 1200 state->mutex_acquired = true; 1201 state->pos = *pos; 1202 1203 return seq_list_start(&input_handler_list, *pos); 1204 } 1205 1206 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1207 { 1208 union input_seq_state *state = (union input_seq_state *)&seq->private; 1209 1210 state->pos = *pos + 1; 1211 return seq_list_next(v, &input_handler_list, pos); 1212 } 1213 1214 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1215 { 1216 struct input_handler *handler = container_of(v, struct input_handler, node); 1217 union input_seq_state *state = (union input_seq_state *)&seq->private; 1218 1219 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1220 if (handler->filter) 1221 seq_puts(seq, " (filter)"); 1222 if (handler->legacy_minors) 1223 seq_printf(seq, " Minor=%d", handler->minor); 1224 seq_putc(seq, '\n'); 1225 1226 return 0; 1227 } 1228 1229 static const struct seq_operations input_handlers_seq_ops = { 1230 .start = input_handlers_seq_start, 1231 .next = input_handlers_seq_next, 1232 .stop = input_seq_stop, 1233 .show = input_handlers_seq_show, 1234 }; 1235 1236 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1237 { 1238 return seq_open(file, &input_handlers_seq_ops); 1239 } 1240 1241 static const struct file_operations input_handlers_fileops = { 1242 .owner = THIS_MODULE, 1243 .open = input_proc_handlers_open, 1244 .read = seq_read, 1245 .llseek = seq_lseek, 1246 .release = seq_release, 1247 }; 1248 1249 static int __init input_proc_init(void) 1250 { 1251 struct proc_dir_entry *entry; 1252 1253 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1254 if (!proc_bus_input_dir) 1255 return -ENOMEM; 1256 1257 entry = proc_create("devices", 0, proc_bus_input_dir, 1258 &input_devices_fileops); 1259 if (!entry) 1260 goto fail1; 1261 1262 entry = proc_create("handlers", 0, proc_bus_input_dir, 1263 &input_handlers_fileops); 1264 if (!entry) 1265 goto fail2; 1266 1267 return 0; 1268 1269 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1270 fail1: remove_proc_entry("bus/input", NULL); 1271 return -ENOMEM; 1272 } 1273 1274 static void input_proc_exit(void) 1275 { 1276 remove_proc_entry("devices", proc_bus_input_dir); 1277 remove_proc_entry("handlers", proc_bus_input_dir); 1278 remove_proc_entry("bus/input", NULL); 1279 } 1280 1281 #else /* !CONFIG_PROC_FS */ 1282 static inline void input_wakeup_procfs_readers(void) { } 1283 static inline int input_proc_init(void) { return 0; } 1284 static inline void input_proc_exit(void) { } 1285 #endif 1286 1287 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1288 static ssize_t input_dev_show_##name(struct device *dev, \ 1289 struct device_attribute *attr, \ 1290 char *buf) \ 1291 { \ 1292 struct input_dev *input_dev = to_input_dev(dev); \ 1293 \ 1294 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1295 input_dev->name ? input_dev->name : ""); \ 1296 } \ 1297 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1298 1299 INPUT_DEV_STRING_ATTR_SHOW(name); 1300 INPUT_DEV_STRING_ATTR_SHOW(phys); 1301 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1302 1303 static int input_print_modalias_bits(char *buf, int size, 1304 char name, unsigned long *bm, 1305 unsigned int min_bit, unsigned int max_bit) 1306 { 1307 int len = 0, i; 1308 1309 len += snprintf(buf, max(size, 0), "%c", name); 1310 for (i = min_bit; i < max_bit; i++) 1311 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1312 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1313 return len; 1314 } 1315 1316 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1317 int add_cr) 1318 { 1319 int len; 1320 1321 len = snprintf(buf, max(size, 0), 1322 "input:b%04Xv%04Xp%04Xe%04X-", 1323 id->id.bustype, id->id.vendor, 1324 id->id.product, id->id.version); 1325 1326 len += input_print_modalias_bits(buf + len, size - len, 1327 'e', id->evbit, 0, EV_MAX); 1328 len += input_print_modalias_bits(buf + len, size - len, 1329 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1330 len += input_print_modalias_bits(buf + len, size - len, 1331 'r', id->relbit, 0, REL_MAX); 1332 len += input_print_modalias_bits(buf + len, size - len, 1333 'a', id->absbit, 0, ABS_MAX); 1334 len += input_print_modalias_bits(buf + len, size - len, 1335 'm', id->mscbit, 0, MSC_MAX); 1336 len += input_print_modalias_bits(buf + len, size - len, 1337 'l', id->ledbit, 0, LED_MAX); 1338 len += input_print_modalias_bits(buf + len, size - len, 1339 's', id->sndbit, 0, SND_MAX); 1340 len += input_print_modalias_bits(buf + len, size - len, 1341 'f', id->ffbit, 0, FF_MAX); 1342 len += input_print_modalias_bits(buf + len, size - len, 1343 'w', id->swbit, 0, SW_MAX); 1344 1345 if (add_cr) 1346 len += snprintf(buf + len, max(size - len, 0), "\n"); 1347 1348 return len; 1349 } 1350 1351 static ssize_t input_dev_show_modalias(struct device *dev, 1352 struct device_attribute *attr, 1353 char *buf) 1354 { 1355 struct input_dev *id = to_input_dev(dev); 1356 ssize_t len; 1357 1358 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1359 1360 return min_t(int, len, PAGE_SIZE); 1361 } 1362 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1363 1364 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1365 int max, int add_cr); 1366 1367 static ssize_t input_dev_show_properties(struct device *dev, 1368 struct device_attribute *attr, 1369 char *buf) 1370 { 1371 struct input_dev *input_dev = to_input_dev(dev); 1372 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1373 INPUT_PROP_MAX, true); 1374 return min_t(int, len, PAGE_SIZE); 1375 } 1376 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1377 1378 static struct attribute *input_dev_attrs[] = { 1379 &dev_attr_name.attr, 1380 &dev_attr_phys.attr, 1381 &dev_attr_uniq.attr, 1382 &dev_attr_modalias.attr, 1383 &dev_attr_properties.attr, 1384 NULL 1385 }; 1386 1387 static struct attribute_group input_dev_attr_group = { 1388 .attrs = input_dev_attrs, 1389 }; 1390 1391 #define INPUT_DEV_ID_ATTR(name) \ 1392 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1393 struct device_attribute *attr, \ 1394 char *buf) \ 1395 { \ 1396 struct input_dev *input_dev = to_input_dev(dev); \ 1397 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1398 } \ 1399 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1400 1401 INPUT_DEV_ID_ATTR(bustype); 1402 INPUT_DEV_ID_ATTR(vendor); 1403 INPUT_DEV_ID_ATTR(product); 1404 INPUT_DEV_ID_ATTR(version); 1405 1406 static struct attribute *input_dev_id_attrs[] = { 1407 &dev_attr_bustype.attr, 1408 &dev_attr_vendor.attr, 1409 &dev_attr_product.attr, 1410 &dev_attr_version.attr, 1411 NULL 1412 }; 1413 1414 static struct attribute_group input_dev_id_attr_group = { 1415 .name = "id", 1416 .attrs = input_dev_id_attrs, 1417 }; 1418 1419 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1420 int max, int add_cr) 1421 { 1422 int i; 1423 int len = 0; 1424 bool skip_empty = true; 1425 1426 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1427 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1428 bitmap[i], skip_empty); 1429 if (len) { 1430 skip_empty = false; 1431 if (i > 0) 1432 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1433 } 1434 } 1435 1436 /* 1437 * If no output was produced print a single 0. 1438 */ 1439 if (len == 0) 1440 len = snprintf(buf, buf_size, "%d", 0); 1441 1442 if (add_cr) 1443 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1444 1445 return len; 1446 } 1447 1448 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1449 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1450 struct device_attribute *attr, \ 1451 char *buf) \ 1452 { \ 1453 struct input_dev *input_dev = to_input_dev(dev); \ 1454 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1455 input_dev->bm##bit, ev##_MAX, \ 1456 true); \ 1457 return min_t(int, len, PAGE_SIZE); \ 1458 } \ 1459 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1460 1461 INPUT_DEV_CAP_ATTR(EV, ev); 1462 INPUT_DEV_CAP_ATTR(KEY, key); 1463 INPUT_DEV_CAP_ATTR(REL, rel); 1464 INPUT_DEV_CAP_ATTR(ABS, abs); 1465 INPUT_DEV_CAP_ATTR(MSC, msc); 1466 INPUT_DEV_CAP_ATTR(LED, led); 1467 INPUT_DEV_CAP_ATTR(SND, snd); 1468 INPUT_DEV_CAP_ATTR(FF, ff); 1469 INPUT_DEV_CAP_ATTR(SW, sw); 1470 1471 static struct attribute *input_dev_caps_attrs[] = { 1472 &dev_attr_ev.attr, 1473 &dev_attr_key.attr, 1474 &dev_attr_rel.attr, 1475 &dev_attr_abs.attr, 1476 &dev_attr_msc.attr, 1477 &dev_attr_led.attr, 1478 &dev_attr_snd.attr, 1479 &dev_attr_ff.attr, 1480 &dev_attr_sw.attr, 1481 NULL 1482 }; 1483 1484 static struct attribute_group input_dev_caps_attr_group = { 1485 .name = "capabilities", 1486 .attrs = input_dev_caps_attrs, 1487 }; 1488 1489 static const struct attribute_group *input_dev_attr_groups[] = { 1490 &input_dev_attr_group, 1491 &input_dev_id_attr_group, 1492 &input_dev_caps_attr_group, 1493 NULL 1494 }; 1495 1496 static void input_dev_release(struct device *device) 1497 { 1498 struct input_dev *dev = to_input_dev(device); 1499 1500 input_ff_destroy(dev); 1501 input_mt_destroy_slots(dev); 1502 kfree(dev->absinfo); 1503 kfree(dev->vals); 1504 kfree(dev); 1505 1506 module_put(THIS_MODULE); 1507 } 1508 1509 /* 1510 * Input uevent interface - loading event handlers based on 1511 * device bitfields. 1512 */ 1513 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1514 const char *name, unsigned long *bitmap, int max) 1515 { 1516 int len; 1517 1518 if (add_uevent_var(env, "%s", name)) 1519 return -ENOMEM; 1520 1521 len = input_print_bitmap(&env->buf[env->buflen - 1], 1522 sizeof(env->buf) - env->buflen, 1523 bitmap, max, false); 1524 if (len >= (sizeof(env->buf) - env->buflen)) 1525 return -ENOMEM; 1526 1527 env->buflen += len; 1528 return 0; 1529 } 1530 1531 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1532 struct input_dev *dev) 1533 { 1534 int len; 1535 1536 if (add_uevent_var(env, "MODALIAS=")) 1537 return -ENOMEM; 1538 1539 len = input_print_modalias(&env->buf[env->buflen - 1], 1540 sizeof(env->buf) - env->buflen, 1541 dev, 0); 1542 if (len >= (sizeof(env->buf) - env->buflen)) 1543 return -ENOMEM; 1544 1545 env->buflen += len; 1546 return 0; 1547 } 1548 1549 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1550 do { \ 1551 int err = add_uevent_var(env, fmt, val); \ 1552 if (err) \ 1553 return err; \ 1554 } while (0) 1555 1556 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1557 do { \ 1558 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1559 if (err) \ 1560 return err; \ 1561 } while (0) 1562 1563 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1564 do { \ 1565 int err = input_add_uevent_modalias_var(env, dev); \ 1566 if (err) \ 1567 return err; \ 1568 } while (0) 1569 1570 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1571 { 1572 struct input_dev *dev = to_input_dev(device); 1573 1574 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1575 dev->id.bustype, dev->id.vendor, 1576 dev->id.product, dev->id.version); 1577 if (dev->name) 1578 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1579 if (dev->phys) 1580 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1581 if (dev->uniq) 1582 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1583 1584 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1585 1586 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1587 if (test_bit(EV_KEY, dev->evbit)) 1588 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1589 if (test_bit(EV_REL, dev->evbit)) 1590 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1591 if (test_bit(EV_ABS, dev->evbit)) 1592 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1593 if (test_bit(EV_MSC, dev->evbit)) 1594 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1595 if (test_bit(EV_LED, dev->evbit)) 1596 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1597 if (test_bit(EV_SND, dev->evbit)) 1598 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1599 if (test_bit(EV_FF, dev->evbit)) 1600 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1601 if (test_bit(EV_SW, dev->evbit)) 1602 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1603 1604 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1605 1606 return 0; 1607 } 1608 1609 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1610 do { \ 1611 int i; \ 1612 bool active; \ 1613 \ 1614 if (!test_bit(EV_##type, dev->evbit)) \ 1615 break; \ 1616 \ 1617 for (i = 0; i < type##_MAX; i++) { \ 1618 if (!test_bit(i, dev->bits##bit)) \ 1619 continue; \ 1620 \ 1621 active = test_bit(i, dev->bits); \ 1622 if (!active && !on) \ 1623 continue; \ 1624 \ 1625 dev->event(dev, EV_##type, i, on ? active : 0); \ 1626 } \ 1627 } while (0) 1628 1629 static void input_dev_toggle(struct input_dev *dev, bool activate) 1630 { 1631 if (!dev->event) 1632 return; 1633 1634 INPUT_DO_TOGGLE(dev, LED, led, activate); 1635 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1636 1637 if (activate && test_bit(EV_REP, dev->evbit)) { 1638 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1639 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1640 } 1641 } 1642 1643 /** 1644 * input_reset_device() - reset/restore the state of input device 1645 * @dev: input device whose state needs to be reset 1646 * 1647 * This function tries to reset the state of an opened input device and 1648 * bring internal state and state if the hardware in sync with each other. 1649 * We mark all keys as released, restore LED state, repeat rate, etc. 1650 */ 1651 void input_reset_device(struct input_dev *dev) 1652 { 1653 mutex_lock(&dev->mutex); 1654 1655 if (dev->users) { 1656 input_dev_toggle(dev, true); 1657 1658 /* 1659 * Keys that have been pressed at suspend time are unlikely 1660 * to be still pressed when we resume. 1661 */ 1662 spin_lock_irq(&dev->event_lock); 1663 input_dev_release_keys(dev); 1664 spin_unlock_irq(&dev->event_lock); 1665 } 1666 1667 mutex_unlock(&dev->mutex); 1668 } 1669 EXPORT_SYMBOL(input_reset_device); 1670 1671 #ifdef CONFIG_PM 1672 static int input_dev_suspend(struct device *dev) 1673 { 1674 struct input_dev *input_dev = to_input_dev(dev); 1675 1676 mutex_lock(&input_dev->mutex); 1677 1678 if (input_dev->users) 1679 input_dev_toggle(input_dev, false); 1680 1681 mutex_unlock(&input_dev->mutex); 1682 1683 return 0; 1684 } 1685 1686 static int input_dev_resume(struct device *dev) 1687 { 1688 struct input_dev *input_dev = to_input_dev(dev); 1689 1690 input_reset_device(input_dev); 1691 1692 return 0; 1693 } 1694 1695 static const struct dev_pm_ops input_dev_pm_ops = { 1696 .suspend = input_dev_suspend, 1697 .resume = input_dev_resume, 1698 .poweroff = input_dev_suspend, 1699 .restore = input_dev_resume, 1700 }; 1701 #endif /* CONFIG_PM */ 1702 1703 static struct device_type input_dev_type = { 1704 .groups = input_dev_attr_groups, 1705 .release = input_dev_release, 1706 .uevent = input_dev_uevent, 1707 #ifdef CONFIG_PM 1708 .pm = &input_dev_pm_ops, 1709 #endif 1710 }; 1711 1712 static char *input_devnode(struct device *dev, umode_t *mode) 1713 { 1714 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1715 } 1716 1717 struct class input_class = { 1718 .name = "input", 1719 .devnode = input_devnode, 1720 }; 1721 EXPORT_SYMBOL_GPL(input_class); 1722 1723 /** 1724 * input_allocate_device - allocate memory for new input device 1725 * 1726 * Returns prepared struct input_dev or NULL. 1727 * 1728 * NOTE: Use input_free_device() to free devices that have not been 1729 * registered; input_unregister_device() should be used for already 1730 * registered devices. 1731 */ 1732 struct input_dev *input_allocate_device(void) 1733 { 1734 struct input_dev *dev; 1735 1736 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1737 if (dev) { 1738 dev->dev.type = &input_dev_type; 1739 dev->dev.class = &input_class; 1740 device_initialize(&dev->dev); 1741 mutex_init(&dev->mutex); 1742 spin_lock_init(&dev->event_lock); 1743 INIT_LIST_HEAD(&dev->h_list); 1744 INIT_LIST_HEAD(&dev->node); 1745 1746 __module_get(THIS_MODULE); 1747 } 1748 1749 return dev; 1750 } 1751 EXPORT_SYMBOL(input_allocate_device); 1752 1753 /** 1754 * input_free_device - free memory occupied by input_dev structure 1755 * @dev: input device to free 1756 * 1757 * This function should only be used if input_register_device() 1758 * was not called yet or if it failed. Once device was registered 1759 * use input_unregister_device() and memory will be freed once last 1760 * reference to the device is dropped. 1761 * 1762 * Device should be allocated by input_allocate_device(). 1763 * 1764 * NOTE: If there are references to the input device then memory 1765 * will not be freed until last reference is dropped. 1766 */ 1767 void input_free_device(struct input_dev *dev) 1768 { 1769 if (dev) 1770 input_put_device(dev); 1771 } 1772 EXPORT_SYMBOL(input_free_device); 1773 1774 /** 1775 * input_set_capability - mark device as capable of a certain event 1776 * @dev: device that is capable of emitting or accepting event 1777 * @type: type of the event (EV_KEY, EV_REL, etc...) 1778 * @code: event code 1779 * 1780 * In addition to setting up corresponding bit in appropriate capability 1781 * bitmap the function also adjusts dev->evbit. 1782 */ 1783 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1784 { 1785 switch (type) { 1786 case EV_KEY: 1787 __set_bit(code, dev->keybit); 1788 break; 1789 1790 case EV_REL: 1791 __set_bit(code, dev->relbit); 1792 break; 1793 1794 case EV_ABS: 1795 __set_bit(code, dev->absbit); 1796 break; 1797 1798 case EV_MSC: 1799 __set_bit(code, dev->mscbit); 1800 break; 1801 1802 case EV_SW: 1803 __set_bit(code, dev->swbit); 1804 break; 1805 1806 case EV_LED: 1807 __set_bit(code, dev->ledbit); 1808 break; 1809 1810 case EV_SND: 1811 __set_bit(code, dev->sndbit); 1812 break; 1813 1814 case EV_FF: 1815 __set_bit(code, dev->ffbit); 1816 break; 1817 1818 case EV_PWR: 1819 /* do nothing */ 1820 break; 1821 1822 default: 1823 pr_err("input_set_capability: unknown type %u (code %u)\n", 1824 type, code); 1825 dump_stack(); 1826 return; 1827 } 1828 1829 __set_bit(type, dev->evbit); 1830 } 1831 EXPORT_SYMBOL(input_set_capability); 1832 1833 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 1834 { 1835 int mt_slots; 1836 int i; 1837 unsigned int events; 1838 1839 if (dev->mt) { 1840 mt_slots = dev->mt->num_slots; 1841 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 1842 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 1843 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 1844 mt_slots = clamp(mt_slots, 2, 32); 1845 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 1846 mt_slots = 2; 1847 } else { 1848 mt_slots = 0; 1849 } 1850 1851 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 1852 1853 for (i = 0; i < ABS_CNT; i++) { 1854 if (test_bit(i, dev->absbit)) { 1855 if (input_is_mt_axis(i)) 1856 events += mt_slots; 1857 else 1858 events++; 1859 } 1860 } 1861 1862 for (i = 0; i < REL_CNT; i++) 1863 if (test_bit(i, dev->relbit)) 1864 events++; 1865 1866 /* Make room for KEY and MSC events */ 1867 events += 7; 1868 1869 return events; 1870 } 1871 1872 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1873 do { \ 1874 if (!test_bit(EV_##type, dev->evbit)) \ 1875 memset(dev->bits##bit, 0, \ 1876 sizeof(dev->bits##bit)); \ 1877 } while (0) 1878 1879 static void input_cleanse_bitmasks(struct input_dev *dev) 1880 { 1881 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1882 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1883 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1884 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1885 INPUT_CLEANSE_BITMASK(dev, LED, led); 1886 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1887 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1888 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1889 } 1890 1891 /** 1892 * input_register_device - register device with input core 1893 * @dev: device to be registered 1894 * 1895 * This function registers device with input core. The device must be 1896 * allocated with input_allocate_device() and all it's capabilities 1897 * set up before registering. 1898 * If function fails the device must be freed with input_free_device(). 1899 * Once device has been successfully registered it can be unregistered 1900 * with input_unregister_device(); input_free_device() should not be 1901 * called in this case. 1902 */ 1903 int input_register_device(struct input_dev *dev) 1904 { 1905 static atomic_t input_no = ATOMIC_INIT(0); 1906 struct input_handler *handler; 1907 unsigned int packet_size; 1908 const char *path; 1909 int error; 1910 1911 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1912 __set_bit(EV_SYN, dev->evbit); 1913 1914 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1915 __clear_bit(KEY_RESERVED, dev->keybit); 1916 1917 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1918 input_cleanse_bitmasks(dev); 1919 1920 packet_size = input_estimate_events_per_packet(dev); 1921 if (dev->hint_events_per_packet < packet_size) 1922 dev->hint_events_per_packet = packet_size; 1923 1924 dev->max_vals = max(dev->hint_events_per_packet, packet_size) + 2; 1925 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 1926 if (!dev->vals) 1927 return -ENOMEM; 1928 1929 /* 1930 * If delay and period are pre-set by the driver, then autorepeating 1931 * is handled by the driver itself and we don't do it in input.c. 1932 */ 1933 init_timer(&dev->timer); 1934 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1935 dev->timer.data = (long) dev; 1936 dev->timer.function = input_repeat_key; 1937 dev->rep[REP_DELAY] = 250; 1938 dev->rep[REP_PERIOD] = 33; 1939 } 1940 1941 if (!dev->getkeycode) 1942 dev->getkeycode = input_default_getkeycode; 1943 1944 if (!dev->setkeycode) 1945 dev->setkeycode = input_default_setkeycode; 1946 1947 dev_set_name(&dev->dev, "input%ld", 1948 (unsigned long) atomic_inc_return(&input_no) - 1); 1949 1950 error = device_add(&dev->dev); 1951 if (error) 1952 return error; 1953 1954 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1955 pr_info("%s as %s\n", 1956 dev->name ? dev->name : "Unspecified device", 1957 path ? path : "N/A"); 1958 kfree(path); 1959 1960 error = mutex_lock_interruptible(&input_mutex); 1961 if (error) { 1962 device_del(&dev->dev); 1963 return error; 1964 } 1965 1966 list_add_tail(&dev->node, &input_dev_list); 1967 1968 list_for_each_entry(handler, &input_handler_list, node) 1969 input_attach_handler(dev, handler); 1970 1971 input_wakeup_procfs_readers(); 1972 1973 mutex_unlock(&input_mutex); 1974 1975 return 0; 1976 } 1977 EXPORT_SYMBOL(input_register_device); 1978 1979 /** 1980 * input_unregister_device - unregister previously registered device 1981 * @dev: device to be unregistered 1982 * 1983 * This function unregisters an input device. Once device is unregistered 1984 * the caller should not try to access it as it may get freed at any moment. 1985 */ 1986 void input_unregister_device(struct input_dev *dev) 1987 { 1988 struct input_handle *handle, *next; 1989 1990 input_disconnect_device(dev); 1991 1992 mutex_lock(&input_mutex); 1993 1994 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1995 handle->handler->disconnect(handle); 1996 WARN_ON(!list_empty(&dev->h_list)); 1997 1998 del_timer_sync(&dev->timer); 1999 list_del_init(&dev->node); 2000 2001 input_wakeup_procfs_readers(); 2002 2003 mutex_unlock(&input_mutex); 2004 2005 device_unregister(&dev->dev); 2006 } 2007 EXPORT_SYMBOL(input_unregister_device); 2008 2009 /** 2010 * input_register_handler - register a new input handler 2011 * @handler: handler to be registered 2012 * 2013 * This function registers a new input handler (interface) for input 2014 * devices in the system and attaches it to all input devices that 2015 * are compatible with the handler. 2016 */ 2017 int input_register_handler(struct input_handler *handler) 2018 { 2019 struct input_dev *dev; 2020 int error; 2021 2022 error = mutex_lock_interruptible(&input_mutex); 2023 if (error) 2024 return error; 2025 2026 INIT_LIST_HEAD(&handler->h_list); 2027 2028 list_add_tail(&handler->node, &input_handler_list); 2029 2030 list_for_each_entry(dev, &input_dev_list, node) 2031 input_attach_handler(dev, handler); 2032 2033 input_wakeup_procfs_readers(); 2034 2035 mutex_unlock(&input_mutex); 2036 return 0; 2037 } 2038 EXPORT_SYMBOL(input_register_handler); 2039 2040 /** 2041 * input_unregister_handler - unregisters an input handler 2042 * @handler: handler to be unregistered 2043 * 2044 * This function disconnects a handler from its input devices and 2045 * removes it from lists of known handlers. 2046 */ 2047 void input_unregister_handler(struct input_handler *handler) 2048 { 2049 struct input_handle *handle, *next; 2050 2051 mutex_lock(&input_mutex); 2052 2053 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2054 handler->disconnect(handle); 2055 WARN_ON(!list_empty(&handler->h_list)); 2056 2057 list_del_init(&handler->node); 2058 2059 input_wakeup_procfs_readers(); 2060 2061 mutex_unlock(&input_mutex); 2062 } 2063 EXPORT_SYMBOL(input_unregister_handler); 2064 2065 /** 2066 * input_handler_for_each_handle - handle iterator 2067 * @handler: input handler to iterate 2068 * @data: data for the callback 2069 * @fn: function to be called for each handle 2070 * 2071 * Iterate over @bus's list of devices, and call @fn for each, passing 2072 * it @data and stop when @fn returns a non-zero value. The function is 2073 * using RCU to traverse the list and therefore may be usind in atonic 2074 * contexts. The @fn callback is invoked from RCU critical section and 2075 * thus must not sleep. 2076 */ 2077 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2078 int (*fn)(struct input_handle *, void *)) 2079 { 2080 struct input_handle *handle; 2081 int retval = 0; 2082 2083 rcu_read_lock(); 2084 2085 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2086 retval = fn(handle, data); 2087 if (retval) 2088 break; 2089 } 2090 2091 rcu_read_unlock(); 2092 2093 return retval; 2094 } 2095 EXPORT_SYMBOL(input_handler_for_each_handle); 2096 2097 /** 2098 * input_register_handle - register a new input handle 2099 * @handle: handle to register 2100 * 2101 * This function puts a new input handle onto device's 2102 * and handler's lists so that events can flow through 2103 * it once it is opened using input_open_device(). 2104 * 2105 * This function is supposed to be called from handler's 2106 * connect() method. 2107 */ 2108 int input_register_handle(struct input_handle *handle) 2109 { 2110 struct input_handler *handler = handle->handler; 2111 struct input_dev *dev = handle->dev; 2112 int error; 2113 2114 /* 2115 * We take dev->mutex here to prevent race with 2116 * input_release_device(). 2117 */ 2118 error = mutex_lock_interruptible(&dev->mutex); 2119 if (error) 2120 return error; 2121 2122 /* 2123 * Filters go to the head of the list, normal handlers 2124 * to the tail. 2125 */ 2126 if (handler->filter) 2127 list_add_rcu(&handle->d_node, &dev->h_list); 2128 else 2129 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2130 2131 mutex_unlock(&dev->mutex); 2132 2133 /* 2134 * Since we are supposed to be called from ->connect() 2135 * which is mutually exclusive with ->disconnect() 2136 * we can't be racing with input_unregister_handle() 2137 * and so separate lock is not needed here. 2138 */ 2139 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2140 2141 if (handler->start) 2142 handler->start(handle); 2143 2144 return 0; 2145 } 2146 EXPORT_SYMBOL(input_register_handle); 2147 2148 /** 2149 * input_unregister_handle - unregister an input handle 2150 * @handle: handle to unregister 2151 * 2152 * This function removes input handle from device's 2153 * and handler's lists. 2154 * 2155 * This function is supposed to be called from handler's 2156 * disconnect() method. 2157 */ 2158 void input_unregister_handle(struct input_handle *handle) 2159 { 2160 struct input_dev *dev = handle->dev; 2161 2162 list_del_rcu(&handle->h_node); 2163 2164 /* 2165 * Take dev->mutex to prevent race with input_release_device(). 2166 */ 2167 mutex_lock(&dev->mutex); 2168 list_del_rcu(&handle->d_node); 2169 mutex_unlock(&dev->mutex); 2170 2171 synchronize_rcu(); 2172 } 2173 EXPORT_SYMBOL(input_unregister_handle); 2174 2175 /** 2176 * input_get_new_minor - allocates a new input minor number 2177 * @legacy_base: beginning or the legacy range to be searched 2178 * @legacy_num: size of legacy range 2179 * @allow_dynamic: whether we can also take ID from the dynamic range 2180 * 2181 * This function allocates a new device minor for from input major namespace. 2182 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2183 * parameters and whether ID can be allocated from dynamic range if there are 2184 * no free IDs in legacy range. 2185 */ 2186 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2187 bool allow_dynamic) 2188 { 2189 /* 2190 * This function should be called from input handler's ->connect() 2191 * methods, which are serialized with input_mutex, so no additional 2192 * locking is needed here. 2193 */ 2194 if (legacy_base >= 0) { 2195 int minor = ida_simple_get(&input_ida, 2196 legacy_base, 2197 legacy_base + legacy_num, 2198 GFP_KERNEL); 2199 if (minor >= 0 || !allow_dynamic) 2200 return minor; 2201 } 2202 2203 return ida_simple_get(&input_ida, 2204 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, 2205 GFP_KERNEL); 2206 } 2207 EXPORT_SYMBOL(input_get_new_minor); 2208 2209 /** 2210 * input_free_minor - release previously allocated minor 2211 * @minor: minor to be released 2212 * 2213 * This function releases previously allocated input minor so that it can be 2214 * reused later. 2215 */ 2216 void input_free_minor(unsigned int minor) 2217 { 2218 ida_simple_remove(&input_ida, minor); 2219 } 2220 EXPORT_SYMBOL(input_free_minor); 2221 2222 static int __init input_init(void) 2223 { 2224 int err; 2225 2226 err = class_register(&input_class); 2227 if (err) { 2228 pr_err("unable to register input_dev class\n"); 2229 return err; 2230 } 2231 2232 err = input_proc_init(); 2233 if (err) 2234 goto fail1; 2235 2236 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2237 INPUT_MAX_CHAR_DEVICES, "input"); 2238 if (err) { 2239 pr_err("unable to register char major %d", INPUT_MAJOR); 2240 goto fail2; 2241 } 2242 2243 return 0; 2244 2245 fail2: input_proc_exit(); 2246 fail1: class_unregister(&input_class); 2247 return err; 2248 } 2249 2250 static void __exit input_exit(void) 2251 { 2252 input_proc_exit(); 2253 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2254 INPUT_MAX_CHAR_DEVICES); 2255 class_unregister(&input_class); 2256 } 2257 2258 subsys_initcall(input_init); 2259 module_exit(input_exit); 2260