xref: /linux/drivers/input/input.c (revision f19900b2e608b604777a74d6d711bbf744657756)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 #include <linux/smp_lock.h>
25 
26 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
27 MODULE_DESCRIPTION("Input core");
28 MODULE_LICENSE("GPL");
29 
30 #define INPUT_DEVICES	256
31 
32 static LIST_HEAD(input_dev_list);
33 static LIST_HEAD(input_handler_list);
34 
35 /*
36  * input_mutex protects access to both input_dev_list and input_handler_list.
37  * This also causes input_[un]register_device and input_[un]register_handler
38  * be mutually exclusive which simplifies locking in drivers implementing
39  * input handlers.
40  */
41 static DEFINE_MUTEX(input_mutex);
42 
43 static struct input_handler *input_table[8];
44 
45 static inline int is_event_supported(unsigned int code,
46 				     unsigned long *bm, unsigned int max)
47 {
48 	return code <= max && test_bit(code, bm);
49 }
50 
51 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
52 {
53 	if (fuzz) {
54 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
55 			return old_val;
56 
57 		if (value > old_val - fuzz && value < old_val + fuzz)
58 			return (old_val * 3 + value) / 4;
59 
60 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
61 			return (old_val + value) / 2;
62 	}
63 
64 	return value;
65 }
66 
67 /*
68  * Pass event through all open handles. This function is called with
69  * dev->event_lock held and interrupts disabled.
70  */
71 static void input_pass_event(struct input_dev *dev,
72 			     unsigned int type, unsigned int code, int value)
73 {
74 	struct input_handle *handle;
75 
76 	rcu_read_lock();
77 
78 	handle = rcu_dereference(dev->grab);
79 	if (handle)
80 		handle->handler->event(handle, type, code, value);
81 	else
82 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
83 			if (handle->open)
84 				handle->handler->event(handle,
85 							type, code, value);
86 	rcu_read_unlock();
87 }
88 
89 /*
90  * Generate software autorepeat event. Note that we take
91  * dev->event_lock here to avoid racing with input_event
92  * which may cause keys get "stuck".
93  */
94 static void input_repeat_key(unsigned long data)
95 {
96 	struct input_dev *dev = (void *) data;
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(&dev->event_lock, flags);
100 
101 	if (test_bit(dev->repeat_key, dev->key) &&
102 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
103 
104 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
105 
106 		if (dev->sync) {
107 			/*
108 			 * Only send SYN_REPORT if we are not in a middle
109 			 * of driver parsing a new hardware packet.
110 			 * Otherwise assume that the driver will send
111 			 * SYN_REPORT once it's done.
112 			 */
113 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
114 		}
115 
116 		if (dev->rep[REP_PERIOD])
117 			mod_timer(&dev->timer, jiffies +
118 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
119 	}
120 
121 	spin_unlock_irqrestore(&dev->event_lock, flags);
122 }
123 
124 static void input_start_autorepeat(struct input_dev *dev, int code)
125 {
126 	if (test_bit(EV_REP, dev->evbit) &&
127 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
128 	    dev->timer.data) {
129 		dev->repeat_key = code;
130 		mod_timer(&dev->timer,
131 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
132 	}
133 }
134 
135 static void input_stop_autorepeat(struct input_dev *dev)
136 {
137 	del_timer(&dev->timer);
138 }
139 
140 #define INPUT_IGNORE_EVENT	0
141 #define INPUT_PASS_TO_HANDLERS	1
142 #define INPUT_PASS_TO_DEVICE	2
143 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
144 
145 static void input_handle_event(struct input_dev *dev,
146 			       unsigned int type, unsigned int code, int value)
147 {
148 	int disposition = INPUT_IGNORE_EVENT;
149 
150 	switch (type) {
151 
152 	case EV_SYN:
153 		switch (code) {
154 		case SYN_CONFIG:
155 			disposition = INPUT_PASS_TO_ALL;
156 			break;
157 
158 		case SYN_REPORT:
159 			if (!dev->sync) {
160 				dev->sync = 1;
161 				disposition = INPUT_PASS_TO_HANDLERS;
162 			}
163 			break;
164 		}
165 		break;
166 
167 	case EV_KEY:
168 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
169 		    !!test_bit(code, dev->key) != value) {
170 
171 			if (value != 2) {
172 				__change_bit(code, dev->key);
173 				if (value)
174 					input_start_autorepeat(dev, code);
175 				else
176 					input_stop_autorepeat(dev);
177 			}
178 
179 			disposition = INPUT_PASS_TO_HANDLERS;
180 		}
181 		break;
182 
183 	case EV_SW:
184 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
185 		    !!test_bit(code, dev->sw) != value) {
186 
187 			__change_bit(code, dev->sw);
188 			disposition = INPUT_PASS_TO_HANDLERS;
189 		}
190 		break;
191 
192 	case EV_ABS:
193 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
194 
195 			value = input_defuzz_abs_event(value,
196 					dev->abs[code], dev->absfuzz[code]);
197 
198 			if (dev->abs[code] != value) {
199 				dev->abs[code] = value;
200 				disposition = INPUT_PASS_TO_HANDLERS;
201 			}
202 		}
203 		break;
204 
205 	case EV_REL:
206 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
207 			disposition = INPUT_PASS_TO_HANDLERS;
208 
209 		break;
210 
211 	case EV_MSC:
212 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
213 			disposition = INPUT_PASS_TO_ALL;
214 
215 		break;
216 
217 	case EV_LED:
218 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
219 		    !!test_bit(code, dev->led) != value) {
220 
221 			__change_bit(code, dev->led);
222 			disposition = INPUT_PASS_TO_ALL;
223 		}
224 		break;
225 
226 	case EV_SND:
227 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
228 
229 			if (!!test_bit(code, dev->snd) != !!value)
230 				__change_bit(code, dev->snd);
231 			disposition = INPUT_PASS_TO_ALL;
232 		}
233 		break;
234 
235 	case EV_REP:
236 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
237 			dev->rep[code] = value;
238 			disposition = INPUT_PASS_TO_ALL;
239 		}
240 		break;
241 
242 	case EV_FF:
243 		if (value >= 0)
244 			disposition = INPUT_PASS_TO_ALL;
245 		break;
246 
247 	case EV_PWR:
248 		disposition = INPUT_PASS_TO_ALL;
249 		break;
250 	}
251 
252 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
253 		dev->sync = 0;
254 
255 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
256 		dev->event(dev, type, code, value);
257 
258 	if (disposition & INPUT_PASS_TO_HANDLERS)
259 		input_pass_event(dev, type, code, value);
260 }
261 
262 /**
263  * input_event() - report new input event
264  * @dev: device that generated the event
265  * @type: type of the event
266  * @code: event code
267  * @value: value of the event
268  *
269  * This function should be used by drivers implementing various input
270  * devices. See also input_inject_event().
271  */
272 
273 void input_event(struct input_dev *dev,
274 		 unsigned int type, unsigned int code, int value)
275 {
276 	unsigned long flags;
277 
278 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
279 
280 		spin_lock_irqsave(&dev->event_lock, flags);
281 		add_input_randomness(type, code, value);
282 		input_handle_event(dev, type, code, value);
283 		spin_unlock_irqrestore(&dev->event_lock, flags);
284 	}
285 }
286 EXPORT_SYMBOL(input_event);
287 
288 /**
289  * input_inject_event() - send input event from input handler
290  * @handle: input handle to send event through
291  * @type: type of the event
292  * @code: event code
293  * @value: value of the event
294  *
295  * Similar to input_event() but will ignore event if device is
296  * "grabbed" and handle injecting event is not the one that owns
297  * the device.
298  */
299 void input_inject_event(struct input_handle *handle,
300 			unsigned int type, unsigned int code, int value)
301 {
302 	struct input_dev *dev = handle->dev;
303 	struct input_handle *grab;
304 	unsigned long flags;
305 
306 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
307 		spin_lock_irqsave(&dev->event_lock, flags);
308 
309 		rcu_read_lock();
310 		grab = rcu_dereference(dev->grab);
311 		if (!grab || grab == handle)
312 			input_handle_event(dev, type, code, value);
313 		rcu_read_unlock();
314 
315 		spin_unlock_irqrestore(&dev->event_lock, flags);
316 	}
317 }
318 EXPORT_SYMBOL(input_inject_event);
319 
320 /**
321  * input_grab_device - grabs device for exclusive use
322  * @handle: input handle that wants to own the device
323  *
324  * When a device is grabbed by an input handle all events generated by
325  * the device are delivered only to this handle. Also events injected
326  * by other input handles are ignored while device is grabbed.
327  */
328 int input_grab_device(struct input_handle *handle)
329 {
330 	struct input_dev *dev = handle->dev;
331 	int retval;
332 
333 	retval = mutex_lock_interruptible(&dev->mutex);
334 	if (retval)
335 		return retval;
336 
337 	if (dev->grab) {
338 		retval = -EBUSY;
339 		goto out;
340 	}
341 
342 	rcu_assign_pointer(dev->grab, handle);
343 	synchronize_rcu();
344 
345  out:
346 	mutex_unlock(&dev->mutex);
347 	return retval;
348 }
349 EXPORT_SYMBOL(input_grab_device);
350 
351 static void __input_release_device(struct input_handle *handle)
352 {
353 	struct input_dev *dev = handle->dev;
354 
355 	if (dev->grab == handle) {
356 		rcu_assign_pointer(dev->grab, NULL);
357 		/* Make sure input_pass_event() notices that grab is gone */
358 		synchronize_rcu();
359 
360 		list_for_each_entry(handle, &dev->h_list, d_node)
361 			if (handle->open && handle->handler->start)
362 				handle->handler->start(handle);
363 	}
364 }
365 
366 /**
367  * input_release_device - release previously grabbed device
368  * @handle: input handle that owns the device
369  *
370  * Releases previously grabbed device so that other input handles can
371  * start receiving input events. Upon release all handlers attached
372  * to the device have their start() method called so they have a change
373  * to synchronize device state with the rest of the system.
374  */
375 void input_release_device(struct input_handle *handle)
376 {
377 	struct input_dev *dev = handle->dev;
378 
379 	mutex_lock(&dev->mutex);
380 	__input_release_device(handle);
381 	mutex_unlock(&dev->mutex);
382 }
383 EXPORT_SYMBOL(input_release_device);
384 
385 /**
386  * input_open_device - open input device
387  * @handle: handle through which device is being accessed
388  *
389  * This function should be called by input handlers when they
390  * want to start receive events from given input device.
391  */
392 int input_open_device(struct input_handle *handle)
393 {
394 	struct input_dev *dev = handle->dev;
395 	int retval;
396 
397 	retval = mutex_lock_interruptible(&dev->mutex);
398 	if (retval)
399 		return retval;
400 
401 	if (dev->going_away) {
402 		retval = -ENODEV;
403 		goto out;
404 	}
405 
406 	handle->open++;
407 
408 	if (!dev->users++ && dev->open)
409 		retval = dev->open(dev);
410 
411 	if (retval) {
412 		dev->users--;
413 		if (!--handle->open) {
414 			/*
415 			 * Make sure we are not delivering any more events
416 			 * through this handle
417 			 */
418 			synchronize_rcu();
419 		}
420 	}
421 
422  out:
423 	mutex_unlock(&dev->mutex);
424 	return retval;
425 }
426 EXPORT_SYMBOL(input_open_device);
427 
428 int input_flush_device(struct input_handle *handle, struct file *file)
429 {
430 	struct input_dev *dev = handle->dev;
431 	int retval;
432 
433 	retval = mutex_lock_interruptible(&dev->mutex);
434 	if (retval)
435 		return retval;
436 
437 	if (dev->flush)
438 		retval = dev->flush(dev, file);
439 
440 	mutex_unlock(&dev->mutex);
441 	return retval;
442 }
443 EXPORT_SYMBOL(input_flush_device);
444 
445 /**
446  * input_close_device - close input device
447  * @handle: handle through which device is being accessed
448  *
449  * This function should be called by input handlers when they
450  * want to stop receive events from given input device.
451  */
452 void input_close_device(struct input_handle *handle)
453 {
454 	struct input_dev *dev = handle->dev;
455 
456 	mutex_lock(&dev->mutex);
457 
458 	__input_release_device(handle);
459 
460 	if (!--dev->users && dev->close)
461 		dev->close(dev);
462 
463 	if (!--handle->open) {
464 		/*
465 		 * synchronize_rcu() makes sure that input_pass_event()
466 		 * completed and that no more input events are delivered
467 		 * through this handle
468 		 */
469 		synchronize_rcu();
470 	}
471 
472 	mutex_unlock(&dev->mutex);
473 }
474 EXPORT_SYMBOL(input_close_device);
475 
476 /*
477  * Prepare device for unregistering
478  */
479 static void input_disconnect_device(struct input_dev *dev)
480 {
481 	struct input_handle *handle;
482 	int code;
483 
484 	/*
485 	 * Mark device as going away. Note that we take dev->mutex here
486 	 * not to protect access to dev->going_away but rather to ensure
487 	 * that there are no threads in the middle of input_open_device()
488 	 */
489 	mutex_lock(&dev->mutex);
490 	dev->going_away = 1;
491 	mutex_unlock(&dev->mutex);
492 
493 	spin_lock_irq(&dev->event_lock);
494 
495 	/*
496 	 * Simulate keyup events for all pressed keys so that handlers
497 	 * are not left with "stuck" keys. The driver may continue
498 	 * generate events even after we done here but they will not
499 	 * reach any handlers.
500 	 */
501 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
502 		for (code = 0; code <= KEY_MAX; code++) {
503 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
504 			    __test_and_clear_bit(code, dev->key)) {
505 				input_pass_event(dev, EV_KEY, code, 0);
506 			}
507 		}
508 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
509 	}
510 
511 	list_for_each_entry(handle, &dev->h_list, d_node)
512 		handle->open = 0;
513 
514 	spin_unlock_irq(&dev->event_lock);
515 }
516 
517 static int input_fetch_keycode(struct input_dev *dev, int scancode)
518 {
519 	switch (dev->keycodesize) {
520 		case 1:
521 			return ((u8 *)dev->keycode)[scancode];
522 
523 		case 2:
524 			return ((u16 *)dev->keycode)[scancode];
525 
526 		default:
527 			return ((u32 *)dev->keycode)[scancode];
528 	}
529 }
530 
531 static int input_default_getkeycode(struct input_dev *dev,
532 				    int scancode, int *keycode)
533 {
534 	if (!dev->keycodesize)
535 		return -EINVAL;
536 
537 	if (scancode >= dev->keycodemax)
538 		return -EINVAL;
539 
540 	*keycode = input_fetch_keycode(dev, scancode);
541 
542 	return 0;
543 }
544 
545 static int input_default_setkeycode(struct input_dev *dev,
546 				    int scancode, int keycode)
547 {
548 	int old_keycode;
549 	int i;
550 
551 	if (scancode >= dev->keycodemax)
552 		return -EINVAL;
553 
554 	if (!dev->keycodesize)
555 		return -EINVAL;
556 
557 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
558 		return -EINVAL;
559 
560 	switch (dev->keycodesize) {
561 		case 1: {
562 			u8 *k = (u8 *)dev->keycode;
563 			old_keycode = k[scancode];
564 			k[scancode] = keycode;
565 			break;
566 		}
567 		case 2: {
568 			u16 *k = (u16 *)dev->keycode;
569 			old_keycode = k[scancode];
570 			k[scancode] = keycode;
571 			break;
572 		}
573 		default: {
574 			u32 *k = (u32 *)dev->keycode;
575 			old_keycode = k[scancode];
576 			k[scancode] = keycode;
577 			break;
578 		}
579 	}
580 
581 	clear_bit(old_keycode, dev->keybit);
582 	set_bit(keycode, dev->keybit);
583 
584 	for (i = 0; i < dev->keycodemax; i++) {
585 		if (input_fetch_keycode(dev, i) == old_keycode) {
586 			set_bit(old_keycode, dev->keybit);
587 			break; /* Setting the bit twice is useless, so break */
588 		}
589 	}
590 
591 	return 0;
592 }
593 
594 /**
595  * input_get_keycode - retrieve keycode currently mapped to a given scancode
596  * @dev: input device which keymap is being queried
597  * @scancode: scancode (or its equivalent for device in question) for which
598  *	keycode is needed
599  * @keycode: result
600  *
601  * This function should be called by anyone interested in retrieving current
602  * keymap. Presently keyboard and evdev handlers use it.
603  */
604 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
605 {
606 	if (scancode < 0)
607 		return -EINVAL;
608 
609 	return dev->getkeycode(dev, scancode, keycode);
610 }
611 EXPORT_SYMBOL(input_get_keycode);
612 
613 /**
614  * input_get_keycode - assign new keycode to a given scancode
615  * @dev: input device which keymap is being updated
616  * @scancode: scancode (or its equivalent for device in question)
617  * @keycode: new keycode to be assigned to the scancode
618  *
619  * This function should be called by anyone needing to update current
620  * keymap. Presently keyboard and evdev handlers use it.
621  */
622 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
623 {
624 	unsigned long flags;
625 	int old_keycode;
626 	int retval;
627 
628 	if (scancode < 0)
629 		return -EINVAL;
630 
631 	if (keycode < 0 || keycode > KEY_MAX)
632 		return -EINVAL;
633 
634 	spin_lock_irqsave(&dev->event_lock, flags);
635 
636 	retval = dev->getkeycode(dev, scancode, &old_keycode);
637 	if (retval)
638 		goto out;
639 
640 	retval = dev->setkeycode(dev, scancode, keycode);
641 	if (retval)
642 		goto out;
643 
644 	/*
645 	 * Simulate keyup event if keycode is not present
646 	 * in the keymap anymore
647 	 */
648 	if (test_bit(EV_KEY, dev->evbit) &&
649 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
650 	    __test_and_clear_bit(old_keycode, dev->key)) {
651 
652 		input_pass_event(dev, EV_KEY, old_keycode, 0);
653 		if (dev->sync)
654 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
655 	}
656 
657  out:
658 	spin_unlock_irqrestore(&dev->event_lock, flags);
659 
660 	return retval;
661 }
662 EXPORT_SYMBOL(input_set_keycode);
663 
664 #define MATCH_BIT(bit, max) \
665 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
666 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
667 				break; \
668 		if (i != BITS_TO_LONGS(max)) \
669 			continue;
670 
671 static const struct input_device_id *input_match_device(const struct input_device_id *id,
672 							struct input_dev *dev)
673 {
674 	int i;
675 
676 	for (; id->flags || id->driver_info; id++) {
677 
678 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
679 			if (id->bustype != dev->id.bustype)
680 				continue;
681 
682 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
683 			if (id->vendor != dev->id.vendor)
684 				continue;
685 
686 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
687 			if (id->product != dev->id.product)
688 				continue;
689 
690 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
691 			if (id->version != dev->id.version)
692 				continue;
693 
694 		MATCH_BIT(evbit,  EV_MAX);
695 		MATCH_BIT(keybit, KEY_MAX);
696 		MATCH_BIT(relbit, REL_MAX);
697 		MATCH_BIT(absbit, ABS_MAX);
698 		MATCH_BIT(mscbit, MSC_MAX);
699 		MATCH_BIT(ledbit, LED_MAX);
700 		MATCH_BIT(sndbit, SND_MAX);
701 		MATCH_BIT(ffbit,  FF_MAX);
702 		MATCH_BIT(swbit,  SW_MAX);
703 
704 		return id;
705 	}
706 
707 	return NULL;
708 }
709 
710 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
711 {
712 	const struct input_device_id *id;
713 	int error;
714 
715 	if (handler->blacklist && input_match_device(handler->blacklist, dev))
716 		return -ENODEV;
717 
718 	id = input_match_device(handler->id_table, dev);
719 	if (!id)
720 		return -ENODEV;
721 
722 	error = handler->connect(handler, dev, id);
723 	if (error && error != -ENODEV)
724 		printk(KERN_ERR
725 			"input: failed to attach handler %s to device %s, "
726 			"error: %d\n",
727 			handler->name, kobject_name(&dev->dev.kobj), error);
728 
729 	return error;
730 }
731 
732 
733 #ifdef CONFIG_PROC_FS
734 
735 static struct proc_dir_entry *proc_bus_input_dir;
736 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
737 static int input_devices_state;
738 
739 static inline void input_wakeup_procfs_readers(void)
740 {
741 	input_devices_state++;
742 	wake_up(&input_devices_poll_wait);
743 }
744 
745 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
746 {
747 	poll_wait(file, &input_devices_poll_wait, wait);
748 	if (file->f_version != input_devices_state) {
749 		file->f_version = input_devices_state;
750 		return POLLIN | POLLRDNORM;
751 	}
752 
753 	return 0;
754 }
755 
756 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
757 {
758 	if (mutex_lock_interruptible(&input_mutex))
759 		return NULL;
760 
761 	return seq_list_start(&input_dev_list, *pos);
762 }
763 
764 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
765 {
766 	return seq_list_next(v, &input_dev_list, pos);
767 }
768 
769 static void input_devices_seq_stop(struct seq_file *seq, void *v)
770 {
771 	mutex_unlock(&input_mutex);
772 }
773 
774 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
775 				   unsigned long *bitmap, int max)
776 {
777 	int i;
778 
779 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
780 		if (bitmap[i])
781 			break;
782 
783 	seq_printf(seq, "B: %s=", name);
784 	for (; i >= 0; i--)
785 		seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
786 	seq_putc(seq, '\n');
787 }
788 
789 static int input_devices_seq_show(struct seq_file *seq, void *v)
790 {
791 	struct input_dev *dev = container_of(v, struct input_dev, node);
792 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
793 	struct input_handle *handle;
794 
795 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
796 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
797 
798 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
799 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
800 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
801 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
802 	seq_printf(seq, "H: Handlers=");
803 
804 	list_for_each_entry(handle, &dev->h_list, d_node)
805 		seq_printf(seq, "%s ", handle->name);
806 	seq_putc(seq, '\n');
807 
808 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
809 	if (test_bit(EV_KEY, dev->evbit))
810 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
811 	if (test_bit(EV_REL, dev->evbit))
812 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
813 	if (test_bit(EV_ABS, dev->evbit))
814 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
815 	if (test_bit(EV_MSC, dev->evbit))
816 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
817 	if (test_bit(EV_LED, dev->evbit))
818 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
819 	if (test_bit(EV_SND, dev->evbit))
820 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
821 	if (test_bit(EV_FF, dev->evbit))
822 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
823 	if (test_bit(EV_SW, dev->evbit))
824 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
825 
826 	seq_putc(seq, '\n');
827 
828 	kfree(path);
829 	return 0;
830 }
831 
832 static const struct seq_operations input_devices_seq_ops = {
833 	.start	= input_devices_seq_start,
834 	.next	= input_devices_seq_next,
835 	.stop	= input_devices_seq_stop,
836 	.show	= input_devices_seq_show,
837 };
838 
839 static int input_proc_devices_open(struct inode *inode, struct file *file)
840 {
841 	return seq_open(file, &input_devices_seq_ops);
842 }
843 
844 static const struct file_operations input_devices_fileops = {
845 	.owner		= THIS_MODULE,
846 	.open		= input_proc_devices_open,
847 	.poll		= input_proc_devices_poll,
848 	.read		= seq_read,
849 	.llseek		= seq_lseek,
850 	.release	= seq_release,
851 };
852 
853 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
854 {
855 	if (mutex_lock_interruptible(&input_mutex))
856 		return NULL;
857 
858 	seq->private = (void *)(unsigned long)*pos;
859 	return seq_list_start(&input_handler_list, *pos);
860 }
861 
862 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
863 {
864 	seq->private = (void *)(unsigned long)(*pos + 1);
865 	return seq_list_next(v, &input_handler_list, pos);
866 }
867 
868 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
869 {
870 	mutex_unlock(&input_mutex);
871 }
872 
873 static int input_handlers_seq_show(struct seq_file *seq, void *v)
874 {
875 	struct input_handler *handler = container_of(v, struct input_handler, node);
876 
877 	seq_printf(seq, "N: Number=%ld Name=%s",
878 		   (unsigned long)seq->private, handler->name);
879 	if (handler->fops)
880 		seq_printf(seq, " Minor=%d", handler->minor);
881 	seq_putc(seq, '\n');
882 
883 	return 0;
884 }
885 static const struct seq_operations input_handlers_seq_ops = {
886 	.start	= input_handlers_seq_start,
887 	.next	= input_handlers_seq_next,
888 	.stop	= input_handlers_seq_stop,
889 	.show	= input_handlers_seq_show,
890 };
891 
892 static int input_proc_handlers_open(struct inode *inode, struct file *file)
893 {
894 	return seq_open(file, &input_handlers_seq_ops);
895 }
896 
897 static const struct file_operations input_handlers_fileops = {
898 	.owner		= THIS_MODULE,
899 	.open		= input_proc_handlers_open,
900 	.read		= seq_read,
901 	.llseek		= seq_lseek,
902 	.release	= seq_release,
903 };
904 
905 static int __init input_proc_init(void)
906 {
907 	struct proc_dir_entry *entry;
908 
909 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
910 	if (!proc_bus_input_dir)
911 		return -ENOMEM;
912 
913 	entry = proc_create("devices", 0, proc_bus_input_dir,
914 			    &input_devices_fileops);
915 	if (!entry)
916 		goto fail1;
917 
918 	entry = proc_create("handlers", 0, proc_bus_input_dir,
919 			    &input_handlers_fileops);
920 	if (!entry)
921 		goto fail2;
922 
923 	return 0;
924 
925  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
926  fail1: remove_proc_entry("bus/input", NULL);
927 	return -ENOMEM;
928 }
929 
930 static void input_proc_exit(void)
931 {
932 	remove_proc_entry("devices", proc_bus_input_dir);
933 	remove_proc_entry("handlers", proc_bus_input_dir);
934 	remove_proc_entry("bus/input", NULL);
935 }
936 
937 #else /* !CONFIG_PROC_FS */
938 static inline void input_wakeup_procfs_readers(void) { }
939 static inline int input_proc_init(void) { return 0; }
940 static inline void input_proc_exit(void) { }
941 #endif
942 
943 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
944 static ssize_t input_dev_show_##name(struct device *dev,		\
945 				     struct device_attribute *attr,	\
946 				     char *buf)				\
947 {									\
948 	struct input_dev *input_dev = to_input_dev(dev);		\
949 									\
950 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
951 			 input_dev->name ? input_dev->name : "");	\
952 }									\
953 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
954 
955 INPUT_DEV_STRING_ATTR_SHOW(name);
956 INPUT_DEV_STRING_ATTR_SHOW(phys);
957 INPUT_DEV_STRING_ATTR_SHOW(uniq);
958 
959 static int input_print_modalias_bits(char *buf, int size,
960 				     char name, unsigned long *bm,
961 				     unsigned int min_bit, unsigned int max_bit)
962 {
963 	int len = 0, i;
964 
965 	len += snprintf(buf, max(size, 0), "%c", name);
966 	for (i = min_bit; i < max_bit; i++)
967 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
968 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
969 	return len;
970 }
971 
972 static int input_print_modalias(char *buf, int size, struct input_dev *id,
973 				int add_cr)
974 {
975 	int len;
976 
977 	len = snprintf(buf, max(size, 0),
978 		       "input:b%04Xv%04Xp%04Xe%04X-",
979 		       id->id.bustype, id->id.vendor,
980 		       id->id.product, id->id.version);
981 
982 	len += input_print_modalias_bits(buf + len, size - len,
983 				'e', id->evbit, 0, EV_MAX);
984 	len += input_print_modalias_bits(buf + len, size - len,
985 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
986 	len += input_print_modalias_bits(buf + len, size - len,
987 				'r', id->relbit, 0, REL_MAX);
988 	len += input_print_modalias_bits(buf + len, size - len,
989 				'a', id->absbit, 0, ABS_MAX);
990 	len += input_print_modalias_bits(buf + len, size - len,
991 				'm', id->mscbit, 0, MSC_MAX);
992 	len += input_print_modalias_bits(buf + len, size - len,
993 				'l', id->ledbit, 0, LED_MAX);
994 	len += input_print_modalias_bits(buf + len, size - len,
995 				's', id->sndbit, 0, SND_MAX);
996 	len += input_print_modalias_bits(buf + len, size - len,
997 				'f', id->ffbit, 0, FF_MAX);
998 	len += input_print_modalias_bits(buf + len, size - len,
999 				'w', id->swbit, 0, SW_MAX);
1000 
1001 	if (add_cr)
1002 		len += snprintf(buf + len, max(size - len, 0), "\n");
1003 
1004 	return len;
1005 }
1006 
1007 static ssize_t input_dev_show_modalias(struct device *dev,
1008 				       struct device_attribute *attr,
1009 				       char *buf)
1010 {
1011 	struct input_dev *id = to_input_dev(dev);
1012 	ssize_t len;
1013 
1014 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1015 
1016 	return min_t(int, len, PAGE_SIZE);
1017 }
1018 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1019 
1020 static struct attribute *input_dev_attrs[] = {
1021 	&dev_attr_name.attr,
1022 	&dev_attr_phys.attr,
1023 	&dev_attr_uniq.attr,
1024 	&dev_attr_modalias.attr,
1025 	NULL
1026 };
1027 
1028 static struct attribute_group input_dev_attr_group = {
1029 	.attrs	= input_dev_attrs,
1030 };
1031 
1032 #define INPUT_DEV_ID_ATTR(name)						\
1033 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1034 					struct device_attribute *attr,	\
1035 					char *buf)			\
1036 {									\
1037 	struct input_dev *input_dev = to_input_dev(dev);		\
1038 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1039 }									\
1040 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1041 
1042 INPUT_DEV_ID_ATTR(bustype);
1043 INPUT_DEV_ID_ATTR(vendor);
1044 INPUT_DEV_ID_ATTR(product);
1045 INPUT_DEV_ID_ATTR(version);
1046 
1047 static struct attribute *input_dev_id_attrs[] = {
1048 	&dev_attr_bustype.attr,
1049 	&dev_attr_vendor.attr,
1050 	&dev_attr_product.attr,
1051 	&dev_attr_version.attr,
1052 	NULL
1053 };
1054 
1055 static struct attribute_group input_dev_id_attr_group = {
1056 	.name	= "id",
1057 	.attrs	= input_dev_id_attrs,
1058 };
1059 
1060 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1061 			      int max, int add_cr)
1062 {
1063 	int i;
1064 	int len = 0;
1065 
1066 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1067 		if (bitmap[i])
1068 			break;
1069 
1070 	for (; i >= 0; i--)
1071 		len += snprintf(buf + len, max(buf_size - len, 0),
1072 				"%lx%s", bitmap[i], i > 0 ? " " : "");
1073 
1074 	if (add_cr)
1075 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1076 
1077 	return len;
1078 }
1079 
1080 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1081 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1082 				       struct device_attribute *attr,	\
1083 				       char *buf)			\
1084 {									\
1085 	struct input_dev *input_dev = to_input_dev(dev);		\
1086 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1087 				     input_dev->bm##bit, ev##_MAX, 1);	\
1088 	return min_t(int, len, PAGE_SIZE);				\
1089 }									\
1090 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1091 
1092 INPUT_DEV_CAP_ATTR(EV, ev);
1093 INPUT_DEV_CAP_ATTR(KEY, key);
1094 INPUT_DEV_CAP_ATTR(REL, rel);
1095 INPUT_DEV_CAP_ATTR(ABS, abs);
1096 INPUT_DEV_CAP_ATTR(MSC, msc);
1097 INPUT_DEV_CAP_ATTR(LED, led);
1098 INPUT_DEV_CAP_ATTR(SND, snd);
1099 INPUT_DEV_CAP_ATTR(FF, ff);
1100 INPUT_DEV_CAP_ATTR(SW, sw);
1101 
1102 static struct attribute *input_dev_caps_attrs[] = {
1103 	&dev_attr_ev.attr,
1104 	&dev_attr_key.attr,
1105 	&dev_attr_rel.attr,
1106 	&dev_attr_abs.attr,
1107 	&dev_attr_msc.attr,
1108 	&dev_attr_led.attr,
1109 	&dev_attr_snd.attr,
1110 	&dev_attr_ff.attr,
1111 	&dev_attr_sw.attr,
1112 	NULL
1113 };
1114 
1115 static struct attribute_group input_dev_caps_attr_group = {
1116 	.name	= "capabilities",
1117 	.attrs	= input_dev_caps_attrs,
1118 };
1119 
1120 static struct attribute_group *input_dev_attr_groups[] = {
1121 	&input_dev_attr_group,
1122 	&input_dev_id_attr_group,
1123 	&input_dev_caps_attr_group,
1124 	NULL
1125 };
1126 
1127 static void input_dev_release(struct device *device)
1128 {
1129 	struct input_dev *dev = to_input_dev(device);
1130 
1131 	input_ff_destroy(dev);
1132 	kfree(dev);
1133 
1134 	module_put(THIS_MODULE);
1135 }
1136 
1137 /*
1138  * Input uevent interface - loading event handlers based on
1139  * device bitfields.
1140  */
1141 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1142 				   const char *name, unsigned long *bitmap, int max)
1143 {
1144 	int len;
1145 
1146 	if (add_uevent_var(env, "%s=", name))
1147 		return -ENOMEM;
1148 
1149 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1150 				 sizeof(env->buf) - env->buflen,
1151 				 bitmap, max, 0);
1152 	if (len >= (sizeof(env->buf) - env->buflen))
1153 		return -ENOMEM;
1154 
1155 	env->buflen += len;
1156 	return 0;
1157 }
1158 
1159 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1160 					 struct input_dev *dev)
1161 {
1162 	int len;
1163 
1164 	if (add_uevent_var(env, "MODALIAS="))
1165 		return -ENOMEM;
1166 
1167 	len = input_print_modalias(&env->buf[env->buflen - 1],
1168 				   sizeof(env->buf) - env->buflen,
1169 				   dev, 0);
1170 	if (len >= (sizeof(env->buf) - env->buflen))
1171 		return -ENOMEM;
1172 
1173 	env->buflen += len;
1174 	return 0;
1175 }
1176 
1177 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1178 	do {								\
1179 		int err = add_uevent_var(env, fmt, val);		\
1180 		if (err)						\
1181 			return err;					\
1182 	} while (0)
1183 
1184 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1185 	do {								\
1186 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1187 		if (err)						\
1188 			return err;					\
1189 	} while (0)
1190 
1191 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1192 	do {								\
1193 		int err = input_add_uevent_modalias_var(env, dev);	\
1194 		if (err)						\
1195 			return err;					\
1196 	} while (0)
1197 
1198 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1199 {
1200 	struct input_dev *dev = to_input_dev(device);
1201 
1202 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1203 				dev->id.bustype, dev->id.vendor,
1204 				dev->id.product, dev->id.version);
1205 	if (dev->name)
1206 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1207 	if (dev->phys)
1208 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1209 	if (dev->uniq)
1210 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1211 
1212 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1213 	if (test_bit(EV_KEY, dev->evbit))
1214 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1215 	if (test_bit(EV_REL, dev->evbit))
1216 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1217 	if (test_bit(EV_ABS, dev->evbit))
1218 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1219 	if (test_bit(EV_MSC, dev->evbit))
1220 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1221 	if (test_bit(EV_LED, dev->evbit))
1222 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1223 	if (test_bit(EV_SND, dev->evbit))
1224 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1225 	if (test_bit(EV_FF, dev->evbit))
1226 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1227 	if (test_bit(EV_SW, dev->evbit))
1228 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1229 
1230 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1231 
1232 	return 0;
1233 }
1234 
1235 static struct device_type input_dev_type = {
1236 	.groups		= input_dev_attr_groups,
1237 	.release	= input_dev_release,
1238 	.uevent		= input_dev_uevent,
1239 };
1240 
1241 struct class input_class = {
1242 	.name		= "input",
1243 };
1244 EXPORT_SYMBOL_GPL(input_class);
1245 
1246 /**
1247  * input_allocate_device - allocate memory for new input device
1248  *
1249  * Returns prepared struct input_dev or NULL.
1250  *
1251  * NOTE: Use input_free_device() to free devices that have not been
1252  * registered; input_unregister_device() should be used for already
1253  * registered devices.
1254  */
1255 struct input_dev *input_allocate_device(void)
1256 {
1257 	struct input_dev *dev;
1258 
1259 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1260 	if (dev) {
1261 		dev->dev.type = &input_dev_type;
1262 		dev->dev.class = &input_class;
1263 		device_initialize(&dev->dev);
1264 		mutex_init(&dev->mutex);
1265 		spin_lock_init(&dev->event_lock);
1266 		INIT_LIST_HEAD(&dev->h_list);
1267 		INIT_LIST_HEAD(&dev->node);
1268 
1269 		__module_get(THIS_MODULE);
1270 	}
1271 
1272 	return dev;
1273 }
1274 EXPORT_SYMBOL(input_allocate_device);
1275 
1276 /**
1277  * input_free_device - free memory occupied by input_dev structure
1278  * @dev: input device to free
1279  *
1280  * This function should only be used if input_register_device()
1281  * was not called yet or if it failed. Once device was registered
1282  * use input_unregister_device() and memory will be freed once last
1283  * reference to the device is dropped.
1284  *
1285  * Device should be allocated by input_allocate_device().
1286  *
1287  * NOTE: If there are references to the input device then memory
1288  * will not be freed until last reference is dropped.
1289  */
1290 void input_free_device(struct input_dev *dev)
1291 {
1292 	if (dev)
1293 		input_put_device(dev);
1294 }
1295 EXPORT_SYMBOL(input_free_device);
1296 
1297 /**
1298  * input_set_capability - mark device as capable of a certain event
1299  * @dev: device that is capable of emitting or accepting event
1300  * @type: type of the event (EV_KEY, EV_REL, etc...)
1301  * @code: event code
1302  *
1303  * In addition to setting up corresponding bit in appropriate capability
1304  * bitmap the function also adjusts dev->evbit.
1305  */
1306 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1307 {
1308 	switch (type) {
1309 	case EV_KEY:
1310 		__set_bit(code, dev->keybit);
1311 		break;
1312 
1313 	case EV_REL:
1314 		__set_bit(code, dev->relbit);
1315 		break;
1316 
1317 	case EV_ABS:
1318 		__set_bit(code, dev->absbit);
1319 		break;
1320 
1321 	case EV_MSC:
1322 		__set_bit(code, dev->mscbit);
1323 		break;
1324 
1325 	case EV_SW:
1326 		__set_bit(code, dev->swbit);
1327 		break;
1328 
1329 	case EV_LED:
1330 		__set_bit(code, dev->ledbit);
1331 		break;
1332 
1333 	case EV_SND:
1334 		__set_bit(code, dev->sndbit);
1335 		break;
1336 
1337 	case EV_FF:
1338 		__set_bit(code, dev->ffbit);
1339 		break;
1340 
1341 	case EV_PWR:
1342 		/* do nothing */
1343 		break;
1344 
1345 	default:
1346 		printk(KERN_ERR
1347 			"input_set_capability: unknown type %u (code %u)\n",
1348 			type, code);
1349 		dump_stack();
1350 		return;
1351 	}
1352 
1353 	__set_bit(type, dev->evbit);
1354 }
1355 EXPORT_SYMBOL(input_set_capability);
1356 
1357 /**
1358  * input_register_device - register device with input core
1359  * @dev: device to be registered
1360  *
1361  * This function registers device with input core. The device must be
1362  * allocated with input_allocate_device() and all it's capabilities
1363  * set up before registering.
1364  * If function fails the device must be freed with input_free_device().
1365  * Once device has been successfully registered it can be unregistered
1366  * with input_unregister_device(); input_free_device() should not be
1367  * called in this case.
1368  */
1369 int input_register_device(struct input_dev *dev)
1370 {
1371 	static atomic_t input_no = ATOMIC_INIT(0);
1372 	struct input_handler *handler;
1373 	const char *path;
1374 	int error;
1375 
1376 	__set_bit(EV_SYN, dev->evbit);
1377 
1378 	/*
1379 	 * If delay and period are pre-set by the driver, then autorepeating
1380 	 * is handled by the driver itself and we don't do it in input.c.
1381 	 */
1382 
1383 	init_timer(&dev->timer);
1384 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1385 		dev->timer.data = (long) dev;
1386 		dev->timer.function = input_repeat_key;
1387 		dev->rep[REP_DELAY] = 250;
1388 		dev->rep[REP_PERIOD] = 33;
1389 	}
1390 
1391 	if (!dev->getkeycode)
1392 		dev->getkeycode = input_default_getkeycode;
1393 
1394 	if (!dev->setkeycode)
1395 		dev->setkeycode = input_default_setkeycode;
1396 
1397 	dev_set_name(&dev->dev, "input%ld",
1398 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1399 
1400 	error = device_add(&dev->dev);
1401 	if (error)
1402 		return error;
1403 
1404 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1405 	printk(KERN_INFO "input: %s as %s\n",
1406 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1407 	kfree(path);
1408 
1409 	error = mutex_lock_interruptible(&input_mutex);
1410 	if (error) {
1411 		device_del(&dev->dev);
1412 		return error;
1413 	}
1414 
1415 	list_add_tail(&dev->node, &input_dev_list);
1416 
1417 	list_for_each_entry(handler, &input_handler_list, node)
1418 		input_attach_handler(dev, handler);
1419 
1420 	input_wakeup_procfs_readers();
1421 
1422 	mutex_unlock(&input_mutex);
1423 
1424 	return 0;
1425 }
1426 EXPORT_SYMBOL(input_register_device);
1427 
1428 /**
1429  * input_unregister_device - unregister previously registered device
1430  * @dev: device to be unregistered
1431  *
1432  * This function unregisters an input device. Once device is unregistered
1433  * the caller should not try to access it as it may get freed at any moment.
1434  */
1435 void input_unregister_device(struct input_dev *dev)
1436 {
1437 	struct input_handle *handle, *next;
1438 
1439 	input_disconnect_device(dev);
1440 
1441 	mutex_lock(&input_mutex);
1442 
1443 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1444 		handle->handler->disconnect(handle);
1445 	WARN_ON(!list_empty(&dev->h_list));
1446 
1447 	del_timer_sync(&dev->timer);
1448 	list_del_init(&dev->node);
1449 
1450 	input_wakeup_procfs_readers();
1451 
1452 	mutex_unlock(&input_mutex);
1453 
1454 	device_unregister(&dev->dev);
1455 }
1456 EXPORT_SYMBOL(input_unregister_device);
1457 
1458 /**
1459  * input_register_handler - register a new input handler
1460  * @handler: handler to be registered
1461  *
1462  * This function registers a new input handler (interface) for input
1463  * devices in the system and attaches it to all input devices that
1464  * are compatible with the handler.
1465  */
1466 int input_register_handler(struct input_handler *handler)
1467 {
1468 	struct input_dev *dev;
1469 	int retval;
1470 
1471 	retval = mutex_lock_interruptible(&input_mutex);
1472 	if (retval)
1473 		return retval;
1474 
1475 	INIT_LIST_HEAD(&handler->h_list);
1476 
1477 	if (handler->fops != NULL) {
1478 		if (input_table[handler->minor >> 5]) {
1479 			retval = -EBUSY;
1480 			goto out;
1481 		}
1482 		input_table[handler->minor >> 5] = handler;
1483 	}
1484 
1485 	list_add_tail(&handler->node, &input_handler_list);
1486 
1487 	list_for_each_entry(dev, &input_dev_list, node)
1488 		input_attach_handler(dev, handler);
1489 
1490 	input_wakeup_procfs_readers();
1491 
1492  out:
1493 	mutex_unlock(&input_mutex);
1494 	return retval;
1495 }
1496 EXPORT_SYMBOL(input_register_handler);
1497 
1498 /**
1499  * input_unregister_handler - unregisters an input handler
1500  * @handler: handler to be unregistered
1501  *
1502  * This function disconnects a handler from its input devices and
1503  * removes it from lists of known handlers.
1504  */
1505 void input_unregister_handler(struct input_handler *handler)
1506 {
1507 	struct input_handle *handle, *next;
1508 
1509 	mutex_lock(&input_mutex);
1510 
1511 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1512 		handler->disconnect(handle);
1513 	WARN_ON(!list_empty(&handler->h_list));
1514 
1515 	list_del_init(&handler->node);
1516 
1517 	if (handler->fops != NULL)
1518 		input_table[handler->minor >> 5] = NULL;
1519 
1520 	input_wakeup_procfs_readers();
1521 
1522 	mutex_unlock(&input_mutex);
1523 }
1524 EXPORT_SYMBOL(input_unregister_handler);
1525 
1526 /**
1527  * input_register_handle - register a new input handle
1528  * @handle: handle to register
1529  *
1530  * This function puts a new input handle onto device's
1531  * and handler's lists so that events can flow through
1532  * it once it is opened using input_open_device().
1533  *
1534  * This function is supposed to be called from handler's
1535  * connect() method.
1536  */
1537 int input_register_handle(struct input_handle *handle)
1538 {
1539 	struct input_handler *handler = handle->handler;
1540 	struct input_dev *dev = handle->dev;
1541 	int error;
1542 
1543 	/*
1544 	 * We take dev->mutex here to prevent race with
1545 	 * input_release_device().
1546 	 */
1547 	error = mutex_lock_interruptible(&dev->mutex);
1548 	if (error)
1549 		return error;
1550 	list_add_tail_rcu(&handle->d_node, &dev->h_list);
1551 	mutex_unlock(&dev->mutex);
1552 
1553 	/*
1554 	 * Since we are supposed to be called from ->connect()
1555 	 * which is mutually exclusive with ->disconnect()
1556 	 * we can't be racing with input_unregister_handle()
1557 	 * and so separate lock is not needed here.
1558 	 */
1559 	list_add_tail(&handle->h_node, &handler->h_list);
1560 
1561 	if (handler->start)
1562 		handler->start(handle);
1563 
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL(input_register_handle);
1567 
1568 /**
1569  * input_unregister_handle - unregister an input handle
1570  * @handle: handle to unregister
1571  *
1572  * This function removes input handle from device's
1573  * and handler's lists.
1574  *
1575  * This function is supposed to be called from handler's
1576  * disconnect() method.
1577  */
1578 void input_unregister_handle(struct input_handle *handle)
1579 {
1580 	struct input_dev *dev = handle->dev;
1581 
1582 	list_del_init(&handle->h_node);
1583 
1584 	/*
1585 	 * Take dev->mutex to prevent race with input_release_device().
1586 	 */
1587 	mutex_lock(&dev->mutex);
1588 	list_del_rcu(&handle->d_node);
1589 	mutex_unlock(&dev->mutex);
1590 	synchronize_rcu();
1591 }
1592 EXPORT_SYMBOL(input_unregister_handle);
1593 
1594 static int input_open_file(struct inode *inode, struct file *file)
1595 {
1596 	struct input_handler *handler;
1597 	const struct file_operations *old_fops, *new_fops = NULL;
1598 	int err;
1599 
1600 	lock_kernel();
1601 	/* No load-on-demand here? */
1602 	handler = input_table[iminor(inode) >> 5];
1603 	if (!handler || !(new_fops = fops_get(handler->fops))) {
1604 		err = -ENODEV;
1605 		goto out;
1606 	}
1607 
1608 	/*
1609 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1610 	 * not "no device". Oh, well...
1611 	 */
1612 	if (!new_fops->open) {
1613 		fops_put(new_fops);
1614 		err = -ENODEV;
1615 		goto out;
1616 	}
1617 	old_fops = file->f_op;
1618 	file->f_op = new_fops;
1619 
1620 	err = new_fops->open(inode, file);
1621 
1622 	if (err) {
1623 		fops_put(file->f_op);
1624 		file->f_op = fops_get(old_fops);
1625 	}
1626 	fops_put(old_fops);
1627 out:
1628 	unlock_kernel();
1629 	return err;
1630 }
1631 
1632 static const struct file_operations input_fops = {
1633 	.owner = THIS_MODULE,
1634 	.open = input_open_file,
1635 };
1636 
1637 static int __init input_init(void)
1638 {
1639 	int err;
1640 
1641 	err = class_register(&input_class);
1642 	if (err) {
1643 		printk(KERN_ERR "input: unable to register input_dev class\n");
1644 		return err;
1645 	}
1646 
1647 	err = input_proc_init();
1648 	if (err)
1649 		goto fail1;
1650 
1651 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1652 	if (err) {
1653 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1654 		goto fail2;
1655 	}
1656 
1657 	return 0;
1658 
1659  fail2:	input_proc_exit();
1660  fail1:	class_unregister(&input_class);
1661 	return err;
1662 }
1663 
1664 static void __exit input_exit(void)
1665 {
1666 	input_proc_exit();
1667 	unregister_chrdev(INPUT_MAJOR, "input");
1668 	class_unregister(&input_class);
1669 }
1670 
1671 subsys_initcall(input_init);
1672 module_exit(input_exit);
1673