xref: /linux/drivers/input/input.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static const unsigned int input_max_code[EV_CNT] = {
54 	[EV_KEY] = KEY_MAX,
55 	[EV_REL] = REL_MAX,
56 	[EV_ABS] = ABS_MAX,
57 	[EV_MSC] = MSC_MAX,
58 	[EV_SW] = SW_MAX,
59 	[EV_LED] = LED_MAX,
60 	[EV_SND] = SND_MAX,
61 	[EV_FF] = FF_MAX,
62 };
63 
64 static inline int is_event_supported(unsigned int code,
65 				     unsigned long *bm, unsigned int max)
66 {
67 	return code <= max && test_bit(code, bm);
68 }
69 
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 	if (fuzz) {
73 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 			return old_val;
75 
76 		if (value > old_val - fuzz && value < old_val + fuzz)
77 			return (old_val * 3 + value) / 4;
78 
79 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 			return (old_val + value) / 2;
81 	}
82 
83 	return value;
84 }
85 
86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 	if (test_bit(EV_REP, dev->evbit) &&
89 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 	    dev->timer.function) {
91 		dev->repeat_key = code;
92 		mod_timer(&dev->timer,
93 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 	}
95 }
96 
97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 	del_timer(&dev->timer);
100 }
101 
102 /*
103  * Pass values first through all filters and then, if event has not been
104  * filtered out, through all open handles. This order is achieved by placing
105  * filters at the head of the list of handles attached to the device, and
106  * placing regular handles at the tail of the list.
107  *
108  * This function is called with dev->event_lock held and interrupts disabled.
109  */
110 static void input_pass_values(struct input_dev *dev,
111 			      struct input_value *vals, unsigned int count)
112 {
113 	struct input_handle *handle;
114 	struct input_value *v;
115 
116 	lockdep_assert_held(&dev->event_lock);
117 
118 	scoped_guard(rcu) {
119 		handle = rcu_dereference(dev->grab);
120 		if (handle) {
121 			count = handle->handle_events(handle, vals, count);
122 			break;
123 		}
124 
125 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
126 			if (handle->open) {
127 				count = handle->handle_events(handle, vals,
128 							      count);
129 				if (!count)
130 					break;
131 			}
132 		}
133 	}
134 
135 	/* trigger auto repeat for key events */
136 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 		for (v = vals; v != vals + count; v++) {
138 			if (v->type == EV_KEY && v->value != 2) {
139 				if (v->value)
140 					input_start_autorepeat(dev, v->code);
141 				else
142 					input_stop_autorepeat(dev);
143 			}
144 		}
145 	}
146 }
147 
148 #define INPUT_IGNORE_EVENT	0
149 #define INPUT_PASS_TO_HANDLERS	1
150 #define INPUT_PASS_TO_DEVICE	2
151 #define INPUT_SLOT		4
152 #define INPUT_FLUSH		8
153 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
154 
155 static int input_handle_abs_event(struct input_dev *dev,
156 				  unsigned int code, int *pval)
157 {
158 	struct input_mt *mt = dev->mt;
159 	bool is_new_slot = false;
160 	bool is_mt_event;
161 	int *pold;
162 
163 	if (code == ABS_MT_SLOT) {
164 		/*
165 		 * "Stage" the event; we'll flush it later, when we
166 		 * get actual touch data.
167 		 */
168 		if (mt && *pval >= 0 && *pval < mt->num_slots)
169 			mt->slot = *pval;
170 
171 		return INPUT_IGNORE_EVENT;
172 	}
173 
174 	is_mt_event = input_is_mt_value(code);
175 
176 	if (!is_mt_event) {
177 		pold = &dev->absinfo[code].value;
178 	} else if (mt) {
179 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
181 	} else {
182 		/*
183 		 * Bypass filtering for multi-touch events when
184 		 * not employing slots.
185 		 */
186 		pold = NULL;
187 	}
188 
189 	if (pold) {
190 		*pval = input_defuzz_abs_event(*pval, *pold,
191 						dev->absinfo[code].fuzz);
192 		if (*pold == *pval)
193 			return INPUT_IGNORE_EVENT;
194 
195 		*pold = *pval;
196 	}
197 
198 	/* Flush pending "slot" event */
199 	if (is_new_slot) {
200 		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
202 	}
203 
204 	return INPUT_PASS_TO_HANDLERS;
205 }
206 
207 static int input_get_disposition(struct input_dev *dev,
208 			  unsigned int type, unsigned int code, int *pval)
209 {
210 	int disposition = INPUT_IGNORE_EVENT;
211 	int value = *pval;
212 
213 	/* filter-out events from inhibited devices */
214 	if (dev->inhibited)
215 		return INPUT_IGNORE_EVENT;
216 
217 	switch (type) {
218 
219 	case EV_SYN:
220 		switch (code) {
221 		case SYN_CONFIG:
222 			disposition = INPUT_PASS_TO_ALL;
223 			break;
224 
225 		case SYN_REPORT:
226 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
227 			break;
228 		case SYN_MT_REPORT:
229 			disposition = INPUT_PASS_TO_HANDLERS;
230 			break;
231 		}
232 		break;
233 
234 	case EV_KEY:
235 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
236 
237 			/* auto-repeat bypasses state updates */
238 			if (value == 2) {
239 				disposition = INPUT_PASS_TO_HANDLERS;
240 				break;
241 			}
242 
243 			if (!!test_bit(code, dev->key) != !!value) {
244 
245 				__change_bit(code, dev->key);
246 				disposition = INPUT_PASS_TO_HANDLERS;
247 			}
248 		}
249 		break;
250 
251 	case EV_SW:
252 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 		    !!test_bit(code, dev->sw) != !!value) {
254 
255 			__change_bit(code, dev->sw);
256 			disposition = INPUT_PASS_TO_HANDLERS;
257 		}
258 		break;
259 
260 	case EV_ABS:
261 		if (is_event_supported(code, dev->absbit, ABS_MAX))
262 			disposition = input_handle_abs_event(dev, code, &value);
263 
264 		break;
265 
266 	case EV_REL:
267 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 			disposition = INPUT_PASS_TO_HANDLERS;
269 
270 		break;
271 
272 	case EV_MSC:
273 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 			disposition = INPUT_PASS_TO_ALL;
275 
276 		break;
277 
278 	case EV_LED:
279 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 		    !!test_bit(code, dev->led) != !!value) {
281 
282 			__change_bit(code, dev->led);
283 			disposition = INPUT_PASS_TO_ALL;
284 		}
285 		break;
286 
287 	case EV_SND:
288 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
289 
290 			if (!!test_bit(code, dev->snd) != !!value)
291 				__change_bit(code, dev->snd);
292 			disposition = INPUT_PASS_TO_ALL;
293 		}
294 		break;
295 
296 	case EV_REP:
297 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 			dev->rep[code] = value;
299 			disposition = INPUT_PASS_TO_ALL;
300 		}
301 		break;
302 
303 	case EV_FF:
304 		if (value >= 0)
305 			disposition = INPUT_PASS_TO_ALL;
306 		break;
307 
308 	case EV_PWR:
309 		disposition = INPUT_PASS_TO_ALL;
310 		break;
311 	}
312 
313 	*pval = value;
314 	return disposition;
315 }
316 
317 static void input_event_dispose(struct input_dev *dev, int disposition,
318 				unsigned int type, unsigned int code, int value)
319 {
320 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 		dev->event(dev, type, code, value);
322 
323 	if (disposition & INPUT_PASS_TO_HANDLERS) {
324 		struct input_value *v;
325 
326 		if (disposition & INPUT_SLOT) {
327 			v = &dev->vals[dev->num_vals++];
328 			v->type = EV_ABS;
329 			v->code = ABS_MT_SLOT;
330 			v->value = dev->mt->slot;
331 		}
332 
333 		v = &dev->vals[dev->num_vals++];
334 		v->type = type;
335 		v->code = code;
336 		v->value = value;
337 	}
338 
339 	if (disposition & INPUT_FLUSH) {
340 		if (dev->num_vals >= 2)
341 			input_pass_values(dev, dev->vals, dev->num_vals);
342 		dev->num_vals = 0;
343 		/*
344 		 * Reset the timestamp on flush so we won't end up
345 		 * with a stale one. Note we only need to reset the
346 		 * monolithic one as we use its presence when deciding
347 		 * whether to generate a synthetic timestamp.
348 		 */
349 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 	} else if (dev->num_vals >= dev->max_vals - 2) {
351 		dev->vals[dev->num_vals++] = input_value_sync;
352 		input_pass_values(dev, dev->vals, dev->num_vals);
353 		dev->num_vals = 0;
354 	}
355 }
356 
357 void input_handle_event(struct input_dev *dev,
358 			unsigned int type, unsigned int code, int value)
359 {
360 	int disposition;
361 
362 	lockdep_assert_held(&dev->event_lock);
363 
364 	disposition = input_get_disposition(dev, type, code, &value);
365 	if (disposition != INPUT_IGNORE_EVENT) {
366 		if (type != EV_SYN)
367 			add_input_randomness(type, code, value);
368 
369 		input_event_dispose(dev, disposition, type, code, value);
370 	}
371 }
372 
373 /**
374  * input_event() - report new input event
375  * @dev: device that generated the event
376  * @type: type of the event
377  * @code: event code
378  * @value: value of the event
379  *
380  * This function should be used by drivers implementing various input
381  * devices to report input events. See also input_inject_event().
382  *
383  * NOTE: input_event() may be safely used right after input device was
384  * allocated with input_allocate_device(), even before it is registered
385  * with input_register_device(), but the event will not reach any of the
386  * input handlers. Such early invocation of input_event() may be used
387  * to 'seed' initial state of a switch or initial position of absolute
388  * axis, etc.
389  */
390 void input_event(struct input_dev *dev,
391 		 unsigned int type, unsigned int code, int value)
392 {
393 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
394 		guard(spinlock_irqsave)(&dev->event_lock);
395 		input_handle_event(dev, type, code, value);
396 	}
397 }
398 EXPORT_SYMBOL(input_event);
399 
400 /**
401  * input_inject_event() - send input event from input handler
402  * @handle: input handle to send event through
403  * @type: type of the event
404  * @code: event code
405  * @value: value of the event
406  *
407  * Similar to input_event() but will ignore event if device is
408  * "grabbed" and handle injecting event is not the one that owns
409  * the device.
410  */
411 void input_inject_event(struct input_handle *handle,
412 			unsigned int type, unsigned int code, int value)
413 {
414 	struct input_dev *dev = handle->dev;
415 	struct input_handle *grab;
416 
417 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
418 		guard(spinlock_irqsave)(&dev->event_lock);
419 		guard(rcu)();
420 
421 		grab = rcu_dereference(dev->grab);
422 		if (!grab || grab == handle)
423 			input_handle_event(dev, type, code, value);
424 
425 	}
426 }
427 EXPORT_SYMBOL(input_inject_event);
428 
429 /**
430  * input_alloc_absinfo - allocates array of input_absinfo structs
431  * @dev: the input device emitting absolute events
432  *
433  * If the absinfo struct the caller asked for is already allocated, this
434  * functions will not do anything.
435  */
436 void input_alloc_absinfo(struct input_dev *dev)
437 {
438 	if (dev->absinfo)
439 		return;
440 
441 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
442 	if (!dev->absinfo) {
443 		dev_err(dev->dev.parent ?: &dev->dev,
444 			"%s: unable to allocate memory\n", __func__);
445 		/*
446 		 * We will handle this allocation failure in
447 		 * input_register_device() when we refuse to register input
448 		 * device with ABS bits but without absinfo.
449 		 */
450 	}
451 }
452 EXPORT_SYMBOL(input_alloc_absinfo);
453 
454 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
455 			  int min, int max, int fuzz, int flat)
456 {
457 	struct input_absinfo *absinfo;
458 
459 	__set_bit(EV_ABS, dev->evbit);
460 	__set_bit(axis, dev->absbit);
461 
462 	input_alloc_absinfo(dev);
463 	if (!dev->absinfo)
464 		return;
465 
466 	absinfo = &dev->absinfo[axis];
467 	absinfo->minimum = min;
468 	absinfo->maximum = max;
469 	absinfo->fuzz = fuzz;
470 	absinfo->flat = flat;
471 }
472 EXPORT_SYMBOL(input_set_abs_params);
473 
474 /**
475  * input_copy_abs - Copy absinfo from one input_dev to another
476  * @dst: Destination input device to copy the abs settings to
477  * @dst_axis: ABS_* value selecting the destination axis
478  * @src: Source input device to copy the abs settings from
479  * @src_axis: ABS_* value selecting the source axis
480  *
481  * Set absinfo for the selected destination axis by copying it from
482  * the specified source input device's source axis.
483  * This is useful to e.g. setup a pen/stylus input-device for combined
484  * touchscreen/pen hardware where the pen uses the same coordinates as
485  * the touchscreen.
486  */
487 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
488 		    const struct input_dev *src, unsigned int src_axis)
489 {
490 	/* src must have EV_ABS and src_axis set */
491 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
492 		      test_bit(src_axis, src->absbit))))
493 		return;
494 
495 	/*
496 	 * input_alloc_absinfo() may have failed for the source. Our caller is
497 	 * expected to catch this when registering the input devices, which may
498 	 * happen after the input_copy_abs() call.
499 	 */
500 	if (!src->absinfo)
501 		return;
502 
503 	input_set_capability(dst, EV_ABS, dst_axis);
504 	if (!dst->absinfo)
505 		return;
506 
507 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
508 }
509 EXPORT_SYMBOL(input_copy_abs);
510 
511 /**
512  * input_grab_device - grabs device for exclusive use
513  * @handle: input handle that wants to own the device
514  *
515  * When a device is grabbed by an input handle all events generated by
516  * the device are delivered only to this handle. Also events injected
517  * by other input handles are ignored while device is grabbed.
518  */
519 int input_grab_device(struct input_handle *handle)
520 {
521 	struct input_dev *dev = handle->dev;
522 
523 	scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
524 		if (dev->grab)
525 			return -EBUSY;
526 
527 		rcu_assign_pointer(dev->grab, handle);
528 	}
529 
530 	return 0;
531 }
532 EXPORT_SYMBOL(input_grab_device);
533 
534 static void __input_release_device(struct input_handle *handle)
535 {
536 	struct input_dev *dev = handle->dev;
537 	struct input_handle *grabber;
538 
539 	grabber = rcu_dereference_protected(dev->grab,
540 					    lockdep_is_held(&dev->mutex));
541 	if (grabber == handle) {
542 		rcu_assign_pointer(dev->grab, NULL);
543 		/* Make sure input_pass_values() notices that grab is gone */
544 		synchronize_rcu();
545 
546 		list_for_each_entry(handle, &dev->h_list, d_node)
547 			if (handle->open && handle->handler->start)
548 				handle->handler->start(handle);
549 	}
550 }
551 
552 /**
553  * input_release_device - release previously grabbed device
554  * @handle: input handle that owns the device
555  *
556  * Releases previously grabbed device so that other input handles can
557  * start receiving input events. Upon release all handlers attached
558  * to the device have their start() method called so they have a change
559  * to synchronize device state with the rest of the system.
560  */
561 void input_release_device(struct input_handle *handle)
562 {
563 	struct input_dev *dev = handle->dev;
564 
565 	guard(mutex)(&dev->mutex);
566 	__input_release_device(handle);
567 }
568 EXPORT_SYMBOL(input_release_device);
569 
570 /**
571  * input_open_device - open input device
572  * @handle: handle through which device is being accessed
573  *
574  * This function should be called by input handlers when they
575  * want to start receive events from given input device.
576  */
577 int input_open_device(struct input_handle *handle)
578 {
579 	struct input_dev *dev = handle->dev;
580 	int error;
581 
582 	scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
583 		if (dev->going_away)
584 			return -ENODEV;
585 
586 		handle->open++;
587 
588 		if (handle->handler->passive_observer)
589 			return 0;
590 
591 		if (dev->users++ || dev->inhibited) {
592 			/*
593 			 * Device is already opened and/or inhibited,
594 			 * so we can exit immediately and report success.
595 			 */
596 			return 0;
597 		}
598 
599 		if (dev->open) {
600 			error = dev->open(dev);
601 			if (error) {
602 				dev->users--;
603 				handle->open--;
604 				/*
605 				 * Make sure we are not delivering any more
606 				 * events through this handle.
607 				 */
608 				synchronize_rcu();
609 				return error;
610 			}
611 		}
612 
613 		if (dev->poller)
614 			input_dev_poller_start(dev->poller);
615 	}
616 
617 	return 0;
618 }
619 EXPORT_SYMBOL(input_open_device);
620 
621 int input_flush_device(struct input_handle *handle, struct file *file)
622 {
623 	struct input_dev *dev = handle->dev;
624 
625 	scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
626 		if (dev->flush)
627 			return dev->flush(dev, file);
628 	}
629 
630 	return 0;
631 }
632 EXPORT_SYMBOL(input_flush_device);
633 
634 /**
635  * input_close_device - close input device
636  * @handle: handle through which device is being accessed
637  *
638  * This function should be called by input handlers when they
639  * want to stop receive events from given input device.
640  */
641 void input_close_device(struct input_handle *handle)
642 {
643 	struct input_dev *dev = handle->dev;
644 
645 	guard(mutex)(&dev->mutex);
646 
647 	__input_release_device(handle);
648 
649 	if (!handle->handler->passive_observer) {
650 		if (!--dev->users && !dev->inhibited) {
651 			if (dev->poller)
652 				input_dev_poller_stop(dev->poller);
653 			if (dev->close)
654 				dev->close(dev);
655 		}
656 	}
657 
658 	if (!--handle->open) {
659 		/*
660 		 * synchronize_rcu() makes sure that input_pass_values()
661 		 * completed and that no more input events are delivered
662 		 * through this handle
663 		 */
664 		synchronize_rcu();
665 	}
666 }
667 EXPORT_SYMBOL(input_close_device);
668 
669 /*
670  * Simulate keyup events for all keys that are marked as pressed.
671  * The function must be called with dev->event_lock held.
672  */
673 static bool input_dev_release_keys(struct input_dev *dev)
674 {
675 	bool need_sync = false;
676 	int code;
677 
678 	lockdep_assert_held(&dev->event_lock);
679 
680 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
681 		for_each_set_bit(code, dev->key, KEY_CNT) {
682 			input_handle_event(dev, EV_KEY, code, 0);
683 			need_sync = true;
684 		}
685 	}
686 
687 	return need_sync;
688 }
689 
690 /*
691  * Prepare device for unregistering
692  */
693 static void input_disconnect_device(struct input_dev *dev)
694 {
695 	struct input_handle *handle;
696 
697 	/*
698 	 * Mark device as going away. Note that we take dev->mutex here
699 	 * not to protect access to dev->going_away but rather to ensure
700 	 * that there are no threads in the middle of input_open_device()
701 	 */
702 	scoped_guard(mutex, &dev->mutex)
703 		dev->going_away = true;
704 
705 	guard(spinlock_irq)(&dev->event_lock);
706 
707 	/*
708 	 * Simulate keyup events for all pressed keys so that handlers
709 	 * are not left with "stuck" keys. The driver may continue
710 	 * generate events even after we done here but they will not
711 	 * reach any handlers.
712 	 */
713 	if (input_dev_release_keys(dev))
714 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
715 
716 	list_for_each_entry(handle, &dev->h_list, d_node)
717 		handle->open = 0;
718 }
719 
720 /**
721  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
722  * @ke: keymap entry containing scancode to be converted.
723  * @scancode: pointer to the location where converted scancode should
724  *	be stored.
725  *
726  * This function is used to convert scancode stored in &struct keymap_entry
727  * into scalar form understood by legacy keymap handling methods. These
728  * methods expect scancodes to be represented as 'unsigned int'.
729  */
730 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
731 			     unsigned int *scancode)
732 {
733 	switch (ke->len) {
734 	case 1:
735 		*scancode = *((u8 *)ke->scancode);
736 		break;
737 
738 	case 2:
739 		*scancode = *((u16 *)ke->scancode);
740 		break;
741 
742 	case 4:
743 		*scancode = *((u32 *)ke->scancode);
744 		break;
745 
746 	default:
747 		return -EINVAL;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL(input_scancode_to_scalar);
753 
754 /*
755  * Those routines handle the default case where no [gs]etkeycode() is
756  * defined. In this case, an array indexed by the scancode is used.
757  */
758 
759 static unsigned int input_fetch_keycode(struct input_dev *dev,
760 					unsigned int index)
761 {
762 	switch (dev->keycodesize) {
763 	case 1:
764 		return ((u8 *)dev->keycode)[index];
765 
766 	case 2:
767 		return ((u16 *)dev->keycode)[index];
768 
769 	default:
770 		return ((u32 *)dev->keycode)[index];
771 	}
772 }
773 
774 static int input_default_getkeycode(struct input_dev *dev,
775 				    struct input_keymap_entry *ke)
776 {
777 	unsigned int index;
778 	int error;
779 
780 	if (!dev->keycodesize)
781 		return -EINVAL;
782 
783 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
784 		index = ke->index;
785 	else {
786 		error = input_scancode_to_scalar(ke, &index);
787 		if (error)
788 			return error;
789 	}
790 
791 	if (index >= dev->keycodemax)
792 		return -EINVAL;
793 
794 	ke->keycode = input_fetch_keycode(dev, index);
795 	ke->index = index;
796 	ke->len = sizeof(index);
797 	memcpy(ke->scancode, &index, sizeof(index));
798 
799 	return 0;
800 }
801 
802 static int input_default_setkeycode(struct input_dev *dev,
803 				    const struct input_keymap_entry *ke,
804 				    unsigned int *old_keycode)
805 {
806 	unsigned int index;
807 	int error;
808 	int i;
809 
810 	if (!dev->keycodesize)
811 		return -EINVAL;
812 
813 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
814 		index = ke->index;
815 	} else {
816 		error = input_scancode_to_scalar(ke, &index);
817 		if (error)
818 			return error;
819 	}
820 
821 	if (index >= dev->keycodemax)
822 		return -EINVAL;
823 
824 	if (dev->keycodesize < sizeof(ke->keycode) &&
825 			(ke->keycode >> (dev->keycodesize * 8)))
826 		return -EINVAL;
827 
828 	switch (dev->keycodesize) {
829 		case 1: {
830 			u8 *k = (u8 *)dev->keycode;
831 			*old_keycode = k[index];
832 			k[index] = ke->keycode;
833 			break;
834 		}
835 		case 2: {
836 			u16 *k = (u16 *)dev->keycode;
837 			*old_keycode = k[index];
838 			k[index] = ke->keycode;
839 			break;
840 		}
841 		default: {
842 			u32 *k = (u32 *)dev->keycode;
843 			*old_keycode = k[index];
844 			k[index] = ke->keycode;
845 			break;
846 		}
847 	}
848 
849 	if (*old_keycode <= KEY_MAX) {
850 		__clear_bit(*old_keycode, dev->keybit);
851 		for (i = 0; i < dev->keycodemax; i++) {
852 			if (input_fetch_keycode(dev, i) == *old_keycode) {
853 				__set_bit(*old_keycode, dev->keybit);
854 				/* Setting the bit twice is useless, so break */
855 				break;
856 			}
857 		}
858 	}
859 
860 	__set_bit(ke->keycode, dev->keybit);
861 	return 0;
862 }
863 
864 /**
865  * input_get_keycode - retrieve keycode currently mapped to a given scancode
866  * @dev: input device which keymap is being queried
867  * @ke: keymap entry
868  *
869  * This function should be called by anyone interested in retrieving current
870  * keymap. Presently evdev handlers use it.
871  */
872 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
873 {
874 	guard(spinlock_irqsave)(&dev->event_lock);
875 
876 	return dev->getkeycode(dev, ke);
877 }
878 EXPORT_SYMBOL(input_get_keycode);
879 
880 /**
881  * input_set_keycode - attribute a keycode to a given scancode
882  * @dev: input device which keymap is being updated
883  * @ke: new keymap entry
884  *
885  * This function should be called by anyone needing to update current
886  * keymap. Presently keyboard and evdev handlers use it.
887  */
888 int input_set_keycode(struct input_dev *dev,
889 		      const struct input_keymap_entry *ke)
890 {
891 	unsigned int old_keycode;
892 	int error;
893 
894 	if (ke->keycode > KEY_MAX)
895 		return -EINVAL;
896 
897 	guard(spinlock_irqsave)(&dev->event_lock);
898 
899 	error = dev->setkeycode(dev, ke, &old_keycode);
900 	if (error)
901 		return error;
902 
903 	/* Make sure KEY_RESERVED did not get enabled. */
904 	__clear_bit(KEY_RESERVED, dev->keybit);
905 
906 	/*
907 	 * Simulate keyup event if keycode is not present
908 	 * in the keymap anymore
909 	 */
910 	if (old_keycode > KEY_MAX) {
911 		dev_warn(dev->dev.parent ?: &dev->dev,
912 			 "%s: got too big old keycode %#x\n",
913 			 __func__, old_keycode);
914 	} else if (test_bit(EV_KEY, dev->evbit) &&
915 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
916 		   __test_and_clear_bit(old_keycode, dev->key)) {
917 		/*
918 		 * We have to use input_event_dispose() here directly instead
919 		 * of input_handle_event() because the key we want to release
920 		 * here is considered no longer supported by the device and
921 		 * input_handle_event() will ignore it.
922 		 */
923 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
924 				    EV_KEY, old_keycode, 0);
925 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
926 				    EV_SYN, SYN_REPORT, 1);
927 	}
928 
929 	return 0;
930 }
931 EXPORT_SYMBOL(input_set_keycode);
932 
933 bool input_match_device_id(const struct input_dev *dev,
934 			   const struct input_device_id *id)
935 {
936 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
937 		if (id->bustype != dev->id.bustype)
938 			return false;
939 
940 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
941 		if (id->vendor != dev->id.vendor)
942 			return false;
943 
944 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
945 		if (id->product != dev->id.product)
946 			return false;
947 
948 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
949 		if (id->version != dev->id.version)
950 			return false;
951 
952 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
953 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
954 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
955 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
956 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
957 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
958 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
959 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
960 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
961 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
962 		return false;
963 	}
964 
965 	return true;
966 }
967 EXPORT_SYMBOL(input_match_device_id);
968 
969 static const struct input_device_id *input_match_device(struct input_handler *handler,
970 							struct input_dev *dev)
971 {
972 	const struct input_device_id *id;
973 
974 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
975 		if (input_match_device_id(dev, id) &&
976 		    (!handler->match || handler->match(handler, dev))) {
977 			return id;
978 		}
979 	}
980 
981 	return NULL;
982 }
983 
984 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
985 {
986 	const struct input_device_id *id;
987 	int error;
988 
989 	id = input_match_device(handler, dev);
990 	if (!id)
991 		return -ENODEV;
992 
993 	error = handler->connect(handler, dev, id);
994 	if (error && error != -ENODEV)
995 		pr_err("failed to attach handler %s to device %s, error: %d\n",
996 		       handler->name, kobject_name(&dev->dev.kobj), error);
997 
998 	return error;
999 }
1000 
1001 #ifdef CONFIG_COMPAT
1002 
1003 static int input_bits_to_string(char *buf, int buf_size,
1004 				unsigned long bits, bool skip_empty)
1005 {
1006 	int len = 0;
1007 
1008 	if (in_compat_syscall()) {
1009 		u32 dword = bits >> 32;
1010 		if (dword || !skip_empty)
1011 			len += snprintf(buf, buf_size, "%x ", dword);
1012 
1013 		dword = bits & 0xffffffffUL;
1014 		if (dword || !skip_empty || len)
1015 			len += snprintf(buf + len, max(buf_size - len, 0),
1016 					"%x", dword);
1017 	} else {
1018 		if (bits || !skip_empty)
1019 			len += snprintf(buf, buf_size, "%lx", bits);
1020 	}
1021 
1022 	return len;
1023 }
1024 
1025 #else /* !CONFIG_COMPAT */
1026 
1027 static int input_bits_to_string(char *buf, int buf_size,
1028 				unsigned long bits, bool skip_empty)
1029 {
1030 	return bits || !skip_empty ?
1031 		snprintf(buf, buf_size, "%lx", bits) : 0;
1032 }
1033 
1034 #endif
1035 
1036 #ifdef CONFIG_PROC_FS
1037 
1038 static struct proc_dir_entry *proc_bus_input_dir;
1039 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1040 static int input_devices_state;
1041 
1042 static inline void input_wakeup_procfs_readers(void)
1043 {
1044 	input_devices_state++;
1045 	wake_up(&input_devices_poll_wait);
1046 }
1047 
1048 struct input_seq_state {
1049 	unsigned short pos;
1050 	bool mutex_acquired;
1051 	int input_devices_state;
1052 };
1053 
1054 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1055 {
1056 	struct seq_file *seq = file->private_data;
1057 	struct input_seq_state *state = seq->private;
1058 
1059 	poll_wait(file, &input_devices_poll_wait, wait);
1060 	if (state->input_devices_state != input_devices_state) {
1061 		state->input_devices_state = input_devices_state;
1062 		return EPOLLIN | EPOLLRDNORM;
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1069 {
1070 	struct input_seq_state *state = seq->private;
1071 	int error;
1072 
1073 	error = mutex_lock_interruptible(&input_mutex);
1074 	if (error) {
1075 		state->mutex_acquired = false;
1076 		return ERR_PTR(error);
1077 	}
1078 
1079 	state->mutex_acquired = true;
1080 
1081 	return seq_list_start(&input_dev_list, *pos);
1082 }
1083 
1084 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1085 {
1086 	return seq_list_next(v, &input_dev_list, pos);
1087 }
1088 
1089 static void input_seq_stop(struct seq_file *seq, void *v)
1090 {
1091 	struct input_seq_state *state = seq->private;
1092 
1093 	if (state->mutex_acquired)
1094 		mutex_unlock(&input_mutex);
1095 }
1096 
1097 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1098 				   unsigned long *bitmap, int max)
1099 {
1100 	int i;
1101 	bool skip_empty = true;
1102 	char buf[18];
1103 
1104 	seq_printf(seq, "B: %s=", name);
1105 
1106 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1107 		if (input_bits_to_string(buf, sizeof(buf),
1108 					 bitmap[i], skip_empty)) {
1109 			skip_empty = false;
1110 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1111 		}
1112 	}
1113 
1114 	/*
1115 	 * If no output was produced print a single 0.
1116 	 */
1117 	if (skip_empty)
1118 		seq_putc(seq, '0');
1119 
1120 	seq_putc(seq, '\n');
1121 }
1122 
1123 static int input_devices_seq_show(struct seq_file *seq, void *v)
1124 {
1125 	struct input_dev *dev = container_of(v, struct input_dev, node);
1126 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1127 	struct input_handle *handle;
1128 
1129 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1130 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1131 
1132 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1133 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1134 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1135 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1136 	seq_puts(seq, "H: Handlers=");
1137 
1138 	list_for_each_entry(handle, &dev->h_list, d_node)
1139 		seq_printf(seq, "%s ", handle->name);
1140 	seq_putc(seq, '\n');
1141 
1142 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1143 
1144 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1145 	if (test_bit(EV_KEY, dev->evbit))
1146 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1147 	if (test_bit(EV_REL, dev->evbit))
1148 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1149 	if (test_bit(EV_ABS, dev->evbit))
1150 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1151 	if (test_bit(EV_MSC, dev->evbit))
1152 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1153 	if (test_bit(EV_LED, dev->evbit))
1154 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1155 	if (test_bit(EV_SND, dev->evbit))
1156 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1157 	if (test_bit(EV_FF, dev->evbit))
1158 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1159 	if (test_bit(EV_SW, dev->evbit))
1160 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1161 
1162 	seq_putc(seq, '\n');
1163 
1164 	kfree(path);
1165 	return 0;
1166 }
1167 
1168 static const struct seq_operations input_devices_seq_ops = {
1169 	.start	= input_devices_seq_start,
1170 	.next	= input_devices_seq_next,
1171 	.stop	= input_seq_stop,
1172 	.show	= input_devices_seq_show,
1173 };
1174 
1175 static int input_proc_devices_open(struct inode *inode, struct file *file)
1176 {
1177 	return seq_open_private(file, &input_devices_seq_ops,
1178 				sizeof(struct input_seq_state));
1179 }
1180 
1181 static const struct proc_ops input_devices_proc_ops = {
1182 	.proc_open	= input_proc_devices_open,
1183 	.proc_poll	= input_proc_devices_poll,
1184 	.proc_read	= seq_read,
1185 	.proc_lseek	= seq_lseek,
1186 	.proc_release	= seq_release_private,
1187 };
1188 
1189 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1190 {
1191 	struct input_seq_state *state = seq->private;
1192 	int error;
1193 
1194 	error = mutex_lock_interruptible(&input_mutex);
1195 	if (error) {
1196 		state->mutex_acquired = false;
1197 		return ERR_PTR(error);
1198 	}
1199 
1200 	state->mutex_acquired = true;
1201 	state->pos = *pos;
1202 
1203 	return seq_list_start(&input_handler_list, *pos);
1204 }
1205 
1206 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1207 {
1208 	struct input_seq_state *state = seq->private;
1209 
1210 	state->pos = *pos + 1;
1211 	return seq_list_next(v, &input_handler_list, pos);
1212 }
1213 
1214 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1215 {
1216 	struct input_handler *handler = container_of(v, struct input_handler, node);
1217 	struct input_seq_state *state = seq->private;
1218 
1219 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1220 	if (handler->filter)
1221 		seq_puts(seq, " (filter)");
1222 	if (handler->legacy_minors)
1223 		seq_printf(seq, " Minor=%d", handler->minor);
1224 	seq_putc(seq, '\n');
1225 
1226 	return 0;
1227 }
1228 
1229 static const struct seq_operations input_handlers_seq_ops = {
1230 	.start	= input_handlers_seq_start,
1231 	.next	= input_handlers_seq_next,
1232 	.stop	= input_seq_stop,
1233 	.show	= input_handlers_seq_show,
1234 };
1235 
1236 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1237 {
1238 	return seq_open_private(file, &input_handlers_seq_ops,
1239 				sizeof(struct input_seq_state));
1240 }
1241 
1242 static const struct proc_ops input_handlers_proc_ops = {
1243 	.proc_open	= input_proc_handlers_open,
1244 	.proc_read	= seq_read,
1245 	.proc_lseek	= seq_lseek,
1246 	.proc_release	= seq_release_private,
1247 };
1248 
1249 static int __init input_proc_init(void)
1250 {
1251 	struct proc_dir_entry *entry;
1252 
1253 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1254 	if (!proc_bus_input_dir)
1255 		return -ENOMEM;
1256 
1257 	entry = proc_create("devices", 0, proc_bus_input_dir,
1258 			    &input_devices_proc_ops);
1259 	if (!entry)
1260 		goto fail1;
1261 
1262 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1263 			    &input_handlers_proc_ops);
1264 	if (!entry)
1265 		goto fail2;
1266 
1267 	return 0;
1268 
1269  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1270  fail1: remove_proc_entry("bus/input", NULL);
1271 	return -ENOMEM;
1272 }
1273 
1274 static void input_proc_exit(void)
1275 {
1276 	remove_proc_entry("devices", proc_bus_input_dir);
1277 	remove_proc_entry("handlers", proc_bus_input_dir);
1278 	remove_proc_entry("bus/input", NULL);
1279 }
1280 
1281 #else /* !CONFIG_PROC_FS */
1282 static inline void input_wakeup_procfs_readers(void) { }
1283 static inline int input_proc_init(void) { return 0; }
1284 static inline void input_proc_exit(void) { }
1285 #endif
1286 
1287 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1288 static ssize_t input_dev_show_##name(struct device *dev,		\
1289 				     struct device_attribute *attr,	\
1290 				     char *buf)				\
1291 {									\
1292 	struct input_dev *input_dev = to_input_dev(dev);		\
1293 									\
1294 	return sysfs_emit(buf, "%s\n",					\
1295 			  input_dev->name ? input_dev->name : "");	\
1296 }									\
1297 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1298 
1299 INPUT_DEV_STRING_ATTR_SHOW(name);
1300 INPUT_DEV_STRING_ATTR_SHOW(phys);
1301 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1302 
1303 static int input_print_modalias_bits(char *buf, int size,
1304 				     char name, const unsigned long *bm,
1305 				     unsigned int min_bit, unsigned int max_bit)
1306 {
1307 	int bit = min_bit;
1308 	int len = 0;
1309 
1310 	len += snprintf(buf, max(size, 0), "%c", name);
1311 	for_each_set_bit_from(bit, bm, max_bit)
1312 		len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1313 	return len;
1314 }
1315 
1316 static int input_print_modalias_parts(char *buf, int size, int full_len,
1317 				      const struct input_dev *id)
1318 {
1319 	int len, klen, remainder, space;
1320 
1321 	len = snprintf(buf, max(size, 0),
1322 		       "input:b%04Xv%04Xp%04Xe%04X-",
1323 		       id->id.bustype, id->id.vendor,
1324 		       id->id.product, id->id.version);
1325 
1326 	len += input_print_modalias_bits(buf + len, size - len,
1327 				'e', id->evbit, 0, EV_MAX);
1328 
1329 	/*
1330 	 * Calculate the remaining space in the buffer making sure we
1331 	 * have place for the terminating 0.
1332 	 */
1333 	space = max(size - (len + 1), 0);
1334 
1335 	klen = input_print_modalias_bits(buf + len, size - len,
1336 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1337 	len += klen;
1338 
1339 	/*
1340 	 * If we have more data than we can fit in the buffer, check
1341 	 * if we can trim key data to fit in the rest. We will indicate
1342 	 * that key data is incomplete by adding "+" sign at the end, like
1343 	 * this: * "k1,2,3,45,+,".
1344 	 *
1345 	 * Note that we shortest key info (if present) is "k+," so we
1346 	 * can only try to trim if key data is longer than that.
1347 	 */
1348 	if (full_len && size < full_len + 1 && klen > 3) {
1349 		remainder = full_len - len;
1350 		/*
1351 		 * We can only trim if we have space for the remainder
1352 		 * and also for at least "k+," which is 3 more characters.
1353 		 */
1354 		if (remainder <= space - 3) {
1355 			/*
1356 			 * We are guaranteed to have 'k' in the buffer, so
1357 			 * we need at least 3 additional bytes for storing
1358 			 * "+," in addition to the remainder.
1359 			 */
1360 			for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1361 				if (buf[i] == 'k' || buf[i] == ',') {
1362 					strcpy(buf + i + 1, "+,");
1363 					len = i + 3; /* Not counting '\0' */
1364 					break;
1365 				}
1366 			}
1367 		}
1368 	}
1369 
1370 	len += input_print_modalias_bits(buf + len, size - len,
1371 				'r', id->relbit, 0, REL_MAX);
1372 	len += input_print_modalias_bits(buf + len, size - len,
1373 				'a', id->absbit, 0, ABS_MAX);
1374 	len += input_print_modalias_bits(buf + len, size - len,
1375 				'm', id->mscbit, 0, MSC_MAX);
1376 	len += input_print_modalias_bits(buf + len, size - len,
1377 				'l', id->ledbit, 0, LED_MAX);
1378 	len += input_print_modalias_bits(buf + len, size - len,
1379 				's', id->sndbit, 0, SND_MAX);
1380 	len += input_print_modalias_bits(buf + len, size - len,
1381 				'f', id->ffbit, 0, FF_MAX);
1382 	len += input_print_modalias_bits(buf + len, size - len,
1383 				'w', id->swbit, 0, SW_MAX);
1384 
1385 	return len;
1386 }
1387 
1388 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1389 {
1390 	int full_len;
1391 
1392 	/*
1393 	 * Printing is done in 2 passes: first one figures out total length
1394 	 * needed for the modalias string, second one will try to trim key
1395 	 * data in case when buffer is too small for the entire modalias.
1396 	 * If the buffer is too small regardless, it will fill as much as it
1397 	 * can (without trimming key data) into the buffer and leave it to
1398 	 * the caller to figure out what to do with the result.
1399 	 */
1400 	full_len = input_print_modalias_parts(NULL, 0, 0, id);
1401 	return input_print_modalias_parts(buf, size, full_len, id);
1402 }
1403 
1404 static ssize_t input_dev_show_modalias(struct device *dev,
1405 				       struct device_attribute *attr,
1406 				       char *buf)
1407 {
1408 	struct input_dev *id = to_input_dev(dev);
1409 	ssize_t len;
1410 
1411 	len = input_print_modalias(buf, PAGE_SIZE, id);
1412 	if (len < PAGE_SIZE - 2)
1413 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1414 
1415 	return min_t(int, len, PAGE_SIZE);
1416 }
1417 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1418 
1419 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1420 			      int max, int add_cr);
1421 
1422 static ssize_t input_dev_show_properties(struct device *dev,
1423 					 struct device_attribute *attr,
1424 					 char *buf)
1425 {
1426 	struct input_dev *input_dev = to_input_dev(dev);
1427 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1428 				     INPUT_PROP_MAX, true);
1429 	return min_t(int, len, PAGE_SIZE);
1430 }
1431 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1432 
1433 static int input_inhibit_device(struct input_dev *dev);
1434 static int input_uninhibit_device(struct input_dev *dev);
1435 
1436 static ssize_t inhibited_show(struct device *dev,
1437 			      struct device_attribute *attr,
1438 			      char *buf)
1439 {
1440 	struct input_dev *input_dev = to_input_dev(dev);
1441 
1442 	return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1443 }
1444 
1445 static ssize_t inhibited_store(struct device *dev,
1446 			       struct device_attribute *attr, const char *buf,
1447 			       size_t len)
1448 {
1449 	struct input_dev *input_dev = to_input_dev(dev);
1450 	ssize_t rv;
1451 	bool inhibited;
1452 
1453 	if (kstrtobool(buf, &inhibited))
1454 		return -EINVAL;
1455 
1456 	if (inhibited)
1457 		rv = input_inhibit_device(input_dev);
1458 	else
1459 		rv = input_uninhibit_device(input_dev);
1460 
1461 	if (rv != 0)
1462 		return rv;
1463 
1464 	return len;
1465 }
1466 
1467 static DEVICE_ATTR_RW(inhibited);
1468 
1469 static struct attribute *input_dev_attrs[] = {
1470 	&dev_attr_name.attr,
1471 	&dev_attr_phys.attr,
1472 	&dev_attr_uniq.attr,
1473 	&dev_attr_modalias.attr,
1474 	&dev_attr_properties.attr,
1475 	&dev_attr_inhibited.attr,
1476 	NULL
1477 };
1478 
1479 static const struct attribute_group input_dev_attr_group = {
1480 	.attrs	= input_dev_attrs,
1481 };
1482 
1483 #define INPUT_DEV_ID_ATTR(name)						\
1484 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1485 					struct device_attribute *attr,	\
1486 					char *buf)			\
1487 {									\
1488 	struct input_dev *input_dev = to_input_dev(dev);		\
1489 	return sysfs_emit(buf, "%04x\n", input_dev->id.name);		\
1490 }									\
1491 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1492 
1493 INPUT_DEV_ID_ATTR(bustype);
1494 INPUT_DEV_ID_ATTR(vendor);
1495 INPUT_DEV_ID_ATTR(product);
1496 INPUT_DEV_ID_ATTR(version);
1497 
1498 static struct attribute *input_dev_id_attrs[] = {
1499 	&dev_attr_bustype.attr,
1500 	&dev_attr_vendor.attr,
1501 	&dev_attr_product.attr,
1502 	&dev_attr_version.attr,
1503 	NULL
1504 };
1505 
1506 static const struct attribute_group input_dev_id_attr_group = {
1507 	.name	= "id",
1508 	.attrs	= input_dev_id_attrs,
1509 };
1510 
1511 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1512 			      int max, int add_cr)
1513 {
1514 	int i;
1515 	int len = 0;
1516 	bool skip_empty = true;
1517 
1518 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1519 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1520 					    bitmap[i], skip_empty);
1521 		if (len) {
1522 			skip_empty = false;
1523 			if (i > 0)
1524 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1525 		}
1526 	}
1527 
1528 	/*
1529 	 * If no output was produced print a single 0.
1530 	 */
1531 	if (len == 0)
1532 		len = snprintf(buf, buf_size, "%d", 0);
1533 
1534 	if (add_cr)
1535 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1536 
1537 	return len;
1538 }
1539 
1540 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1541 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1542 				       struct device_attribute *attr,	\
1543 				       char *buf)			\
1544 {									\
1545 	struct input_dev *input_dev = to_input_dev(dev);		\
1546 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1547 				     input_dev->bm##bit, ev##_MAX,	\
1548 				     true);				\
1549 	return min_t(int, len, PAGE_SIZE);				\
1550 }									\
1551 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1552 
1553 INPUT_DEV_CAP_ATTR(EV, ev);
1554 INPUT_DEV_CAP_ATTR(KEY, key);
1555 INPUT_DEV_CAP_ATTR(REL, rel);
1556 INPUT_DEV_CAP_ATTR(ABS, abs);
1557 INPUT_DEV_CAP_ATTR(MSC, msc);
1558 INPUT_DEV_CAP_ATTR(LED, led);
1559 INPUT_DEV_CAP_ATTR(SND, snd);
1560 INPUT_DEV_CAP_ATTR(FF, ff);
1561 INPUT_DEV_CAP_ATTR(SW, sw);
1562 
1563 static struct attribute *input_dev_caps_attrs[] = {
1564 	&dev_attr_ev.attr,
1565 	&dev_attr_key.attr,
1566 	&dev_attr_rel.attr,
1567 	&dev_attr_abs.attr,
1568 	&dev_attr_msc.attr,
1569 	&dev_attr_led.attr,
1570 	&dev_attr_snd.attr,
1571 	&dev_attr_ff.attr,
1572 	&dev_attr_sw.attr,
1573 	NULL
1574 };
1575 
1576 static const struct attribute_group input_dev_caps_attr_group = {
1577 	.name	= "capabilities",
1578 	.attrs	= input_dev_caps_attrs,
1579 };
1580 
1581 static const struct attribute_group *input_dev_attr_groups[] = {
1582 	&input_dev_attr_group,
1583 	&input_dev_id_attr_group,
1584 	&input_dev_caps_attr_group,
1585 	&input_poller_attribute_group,
1586 	NULL
1587 };
1588 
1589 static void input_dev_release(struct device *device)
1590 {
1591 	struct input_dev *dev = to_input_dev(device);
1592 
1593 	input_ff_destroy(dev);
1594 	input_mt_destroy_slots(dev);
1595 	kfree(dev->poller);
1596 	kfree(dev->absinfo);
1597 	kfree(dev->vals);
1598 	kfree(dev);
1599 
1600 	module_put(THIS_MODULE);
1601 }
1602 
1603 /*
1604  * Input uevent interface - loading event handlers based on
1605  * device bitfields.
1606  */
1607 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1608 				   const char *name, const unsigned long *bitmap, int max)
1609 {
1610 	int len;
1611 
1612 	if (add_uevent_var(env, "%s", name))
1613 		return -ENOMEM;
1614 
1615 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1616 				 sizeof(env->buf) - env->buflen,
1617 				 bitmap, max, false);
1618 	if (len >= (sizeof(env->buf) - env->buflen))
1619 		return -ENOMEM;
1620 
1621 	env->buflen += len;
1622 	return 0;
1623 }
1624 
1625 /*
1626  * This is a pretty gross hack. When building uevent data the driver core
1627  * may try adding more environment variables to kobj_uevent_env without
1628  * telling us, so we have no idea how much of the buffer we can use to
1629  * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1630  * reduce amount of memory we will use for the modalias environment variable.
1631  *
1632  * The potential additions are:
1633  *
1634  * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1635  * HOME=/ (6 bytes)
1636  * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1637  *
1638  * 68 bytes total. Allow extra buffer - 96 bytes
1639  */
1640 #define UEVENT_ENV_EXTRA_LEN	96
1641 
1642 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1643 					 const struct input_dev *dev)
1644 {
1645 	int len;
1646 
1647 	if (add_uevent_var(env, "MODALIAS="))
1648 		return -ENOMEM;
1649 
1650 	len = input_print_modalias(&env->buf[env->buflen - 1],
1651 				   (int)sizeof(env->buf) - env->buflen -
1652 					UEVENT_ENV_EXTRA_LEN,
1653 				   dev);
1654 	if (len >= ((int)sizeof(env->buf) - env->buflen -
1655 					UEVENT_ENV_EXTRA_LEN))
1656 		return -ENOMEM;
1657 
1658 	env->buflen += len;
1659 	return 0;
1660 }
1661 
1662 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1663 	do {								\
1664 		int err = add_uevent_var(env, fmt, val);		\
1665 		if (err)						\
1666 			return err;					\
1667 	} while (0)
1668 
1669 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1670 	do {								\
1671 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1672 		if (err)						\
1673 			return err;					\
1674 	} while (0)
1675 
1676 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1677 	do {								\
1678 		int err = input_add_uevent_modalias_var(env, dev);	\
1679 		if (err)						\
1680 			return err;					\
1681 	} while (0)
1682 
1683 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1684 {
1685 	const struct input_dev *dev = to_input_dev(device);
1686 
1687 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1688 				dev->id.bustype, dev->id.vendor,
1689 				dev->id.product, dev->id.version);
1690 	if (dev->name)
1691 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1692 	if (dev->phys)
1693 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1694 	if (dev->uniq)
1695 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1696 
1697 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1698 
1699 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1700 	if (test_bit(EV_KEY, dev->evbit))
1701 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1702 	if (test_bit(EV_REL, dev->evbit))
1703 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1704 	if (test_bit(EV_ABS, dev->evbit))
1705 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1706 	if (test_bit(EV_MSC, dev->evbit))
1707 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1708 	if (test_bit(EV_LED, dev->evbit))
1709 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1710 	if (test_bit(EV_SND, dev->evbit))
1711 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1712 	if (test_bit(EV_FF, dev->evbit))
1713 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1714 	if (test_bit(EV_SW, dev->evbit))
1715 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1716 
1717 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1718 
1719 	return 0;
1720 }
1721 
1722 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1723 	do {								\
1724 		int i;							\
1725 		bool active;						\
1726 									\
1727 		if (!test_bit(EV_##type, dev->evbit))			\
1728 			break;						\
1729 									\
1730 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1731 			active = test_bit(i, dev->bits);		\
1732 			if (!active && !on)				\
1733 				continue;				\
1734 									\
1735 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1736 		}							\
1737 	} while (0)
1738 
1739 static void input_dev_toggle(struct input_dev *dev, bool activate)
1740 {
1741 	if (!dev->event)
1742 		return;
1743 
1744 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1745 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1746 
1747 	if (activate && test_bit(EV_REP, dev->evbit)) {
1748 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1749 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1750 	}
1751 }
1752 
1753 /**
1754  * input_reset_device() - reset/restore the state of input device
1755  * @dev: input device whose state needs to be reset
1756  *
1757  * This function tries to reset the state of an opened input device and
1758  * bring internal state and state if the hardware in sync with each other.
1759  * We mark all keys as released, restore LED state, repeat rate, etc.
1760  */
1761 void input_reset_device(struct input_dev *dev)
1762 {
1763 	guard(mutex)(&dev->mutex);
1764 	guard(spinlock_irqsave)(&dev->event_lock);
1765 
1766 	input_dev_toggle(dev, true);
1767 	if (input_dev_release_keys(dev))
1768 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1769 }
1770 EXPORT_SYMBOL(input_reset_device);
1771 
1772 static int input_inhibit_device(struct input_dev *dev)
1773 {
1774 	guard(mutex)(&dev->mutex);
1775 
1776 	if (dev->inhibited)
1777 		return 0;
1778 
1779 	if (dev->users) {
1780 		if (dev->close)
1781 			dev->close(dev);
1782 		if (dev->poller)
1783 			input_dev_poller_stop(dev->poller);
1784 	}
1785 
1786 	scoped_guard(spinlock_irq, &dev->event_lock) {
1787 		input_mt_release_slots(dev);
1788 		input_dev_release_keys(dev);
1789 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1790 		input_dev_toggle(dev, false);
1791 	}
1792 
1793 	dev->inhibited = true;
1794 
1795 	return 0;
1796 }
1797 
1798 static int input_uninhibit_device(struct input_dev *dev)
1799 {
1800 	int error;
1801 
1802 	guard(mutex)(&dev->mutex);
1803 
1804 	if (!dev->inhibited)
1805 		return 0;
1806 
1807 	if (dev->users) {
1808 		if (dev->open) {
1809 			error = dev->open(dev);
1810 			if (error)
1811 				return error;
1812 		}
1813 		if (dev->poller)
1814 			input_dev_poller_start(dev->poller);
1815 	}
1816 
1817 	dev->inhibited = false;
1818 
1819 	scoped_guard(spinlock_irq, &dev->event_lock)
1820 		input_dev_toggle(dev, true);
1821 
1822 	return 0;
1823 }
1824 
1825 static int input_dev_suspend(struct device *dev)
1826 {
1827 	struct input_dev *input_dev = to_input_dev(dev);
1828 
1829 	guard(spinlock_irq)(&input_dev->event_lock);
1830 
1831 	/*
1832 	 * Keys that are pressed now are unlikely to be
1833 	 * still pressed when we resume.
1834 	 */
1835 	if (input_dev_release_keys(input_dev))
1836 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1837 
1838 	/* Turn off LEDs and sounds, if any are active. */
1839 	input_dev_toggle(input_dev, false);
1840 
1841 	return 0;
1842 }
1843 
1844 static int input_dev_resume(struct device *dev)
1845 {
1846 	struct input_dev *input_dev = to_input_dev(dev);
1847 
1848 	guard(spinlock_irq)(&input_dev->event_lock);
1849 
1850 	/* Restore state of LEDs and sounds, if any were active. */
1851 	input_dev_toggle(input_dev, true);
1852 
1853 	return 0;
1854 }
1855 
1856 static int input_dev_freeze(struct device *dev)
1857 {
1858 	struct input_dev *input_dev = to_input_dev(dev);
1859 
1860 	guard(spinlock_irq)(&input_dev->event_lock);
1861 
1862 	/*
1863 	 * Keys that are pressed now are unlikely to be
1864 	 * still pressed when we resume.
1865 	 */
1866 	if (input_dev_release_keys(input_dev))
1867 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1868 
1869 	return 0;
1870 }
1871 
1872 static int input_dev_poweroff(struct device *dev)
1873 {
1874 	struct input_dev *input_dev = to_input_dev(dev);
1875 
1876 	guard(spinlock_irq)(&input_dev->event_lock);
1877 
1878 	/* Turn off LEDs and sounds, if any are active. */
1879 	input_dev_toggle(input_dev, false);
1880 
1881 	return 0;
1882 }
1883 
1884 static const struct dev_pm_ops input_dev_pm_ops = {
1885 	.suspend	= input_dev_suspend,
1886 	.resume		= input_dev_resume,
1887 	.freeze		= input_dev_freeze,
1888 	.poweroff	= input_dev_poweroff,
1889 	.restore	= input_dev_resume,
1890 };
1891 
1892 static const struct device_type input_dev_type = {
1893 	.groups		= input_dev_attr_groups,
1894 	.release	= input_dev_release,
1895 	.uevent		= input_dev_uevent,
1896 	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1897 };
1898 
1899 static char *input_devnode(const struct device *dev, umode_t *mode)
1900 {
1901 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1902 }
1903 
1904 const struct class input_class = {
1905 	.name		= "input",
1906 	.devnode	= input_devnode,
1907 };
1908 EXPORT_SYMBOL_GPL(input_class);
1909 
1910 /**
1911  * input_allocate_device - allocate memory for new input device
1912  *
1913  * Returns prepared struct input_dev or %NULL.
1914  *
1915  * NOTE: Use input_free_device() to free devices that have not been
1916  * registered; input_unregister_device() should be used for already
1917  * registered devices.
1918  */
1919 struct input_dev *input_allocate_device(void)
1920 {
1921 	static atomic_t input_no = ATOMIC_INIT(-1);
1922 	struct input_dev *dev;
1923 
1924 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1925 	if (!dev)
1926 		return NULL;
1927 
1928 	/*
1929 	 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1930 	 * see input_estimate_events_per_packet(). We will tune the number
1931 	 * when we register the device.
1932 	 */
1933 	dev->max_vals = 10;
1934 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1935 	if (!dev->vals) {
1936 		kfree(dev);
1937 		return NULL;
1938 	}
1939 
1940 	mutex_init(&dev->mutex);
1941 	spin_lock_init(&dev->event_lock);
1942 	timer_setup(&dev->timer, NULL, 0);
1943 	INIT_LIST_HEAD(&dev->h_list);
1944 	INIT_LIST_HEAD(&dev->node);
1945 
1946 	dev->dev.type = &input_dev_type;
1947 	dev->dev.class = &input_class;
1948 	device_initialize(&dev->dev);
1949 	/*
1950 	 * From this point on we can no longer simply "kfree(dev)", we need
1951 	 * to use input_free_device() so that device core properly frees its
1952 	 * resources associated with the input device.
1953 	 */
1954 
1955 	dev_set_name(&dev->dev, "input%lu",
1956 		     (unsigned long)atomic_inc_return(&input_no));
1957 
1958 	__module_get(THIS_MODULE);
1959 
1960 	return dev;
1961 }
1962 EXPORT_SYMBOL(input_allocate_device);
1963 
1964 struct input_devres {
1965 	struct input_dev *input;
1966 };
1967 
1968 static int devm_input_device_match(struct device *dev, void *res, void *data)
1969 {
1970 	struct input_devres *devres = res;
1971 
1972 	return devres->input == data;
1973 }
1974 
1975 static void devm_input_device_release(struct device *dev, void *res)
1976 {
1977 	struct input_devres *devres = res;
1978 	struct input_dev *input = devres->input;
1979 
1980 	dev_dbg(dev, "%s: dropping reference to %s\n",
1981 		__func__, dev_name(&input->dev));
1982 	input_put_device(input);
1983 }
1984 
1985 /**
1986  * devm_input_allocate_device - allocate managed input device
1987  * @dev: device owning the input device being created
1988  *
1989  * Returns prepared struct input_dev or %NULL.
1990  *
1991  * Managed input devices do not need to be explicitly unregistered or
1992  * freed as it will be done automatically when owner device unbinds from
1993  * its driver (or binding fails). Once managed input device is allocated,
1994  * it is ready to be set up and registered in the same fashion as regular
1995  * input device. There are no special devm_input_device_[un]register()
1996  * variants, regular ones work with both managed and unmanaged devices,
1997  * should you need them. In most cases however, managed input device need
1998  * not be explicitly unregistered or freed.
1999  *
2000  * NOTE: the owner device is set up as parent of input device and users
2001  * should not override it.
2002  */
2003 struct input_dev *devm_input_allocate_device(struct device *dev)
2004 {
2005 	struct input_dev *input;
2006 	struct input_devres *devres;
2007 
2008 	devres = devres_alloc(devm_input_device_release,
2009 			      sizeof(*devres), GFP_KERNEL);
2010 	if (!devres)
2011 		return NULL;
2012 
2013 	input = input_allocate_device();
2014 	if (!input) {
2015 		devres_free(devres);
2016 		return NULL;
2017 	}
2018 
2019 	input->dev.parent = dev;
2020 	input->devres_managed = true;
2021 
2022 	devres->input = input;
2023 	devres_add(dev, devres);
2024 
2025 	return input;
2026 }
2027 EXPORT_SYMBOL(devm_input_allocate_device);
2028 
2029 /**
2030  * input_free_device - free memory occupied by input_dev structure
2031  * @dev: input device to free
2032  *
2033  * This function should only be used if input_register_device()
2034  * was not called yet or if it failed. Once device was registered
2035  * use input_unregister_device() and memory will be freed once last
2036  * reference to the device is dropped.
2037  *
2038  * Device should be allocated by input_allocate_device().
2039  *
2040  * NOTE: If there are references to the input device then memory
2041  * will not be freed until last reference is dropped.
2042  */
2043 void input_free_device(struct input_dev *dev)
2044 {
2045 	if (dev) {
2046 		if (dev->devres_managed)
2047 			WARN_ON(devres_destroy(dev->dev.parent,
2048 						devm_input_device_release,
2049 						devm_input_device_match,
2050 						dev));
2051 		input_put_device(dev);
2052 	}
2053 }
2054 EXPORT_SYMBOL(input_free_device);
2055 
2056 /**
2057  * input_set_timestamp - set timestamp for input events
2058  * @dev: input device to set timestamp for
2059  * @timestamp: the time at which the event has occurred
2060  *   in CLOCK_MONOTONIC
2061  *
2062  * This function is intended to provide to the input system a more
2063  * accurate time of when an event actually occurred. The driver should
2064  * call this function as soon as a timestamp is acquired ensuring
2065  * clock conversions in input_set_timestamp are done correctly.
2066  *
2067  * The system entering suspend state between timestamp acquisition and
2068  * calling input_set_timestamp can result in inaccurate conversions.
2069  */
2070 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2071 {
2072 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2073 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2074 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2075 							   TK_OFFS_BOOT);
2076 }
2077 EXPORT_SYMBOL(input_set_timestamp);
2078 
2079 /**
2080  * input_get_timestamp - get timestamp for input events
2081  * @dev: input device to get timestamp from
2082  *
2083  * A valid timestamp is a timestamp of non-zero value.
2084  */
2085 ktime_t *input_get_timestamp(struct input_dev *dev)
2086 {
2087 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2088 
2089 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2090 		input_set_timestamp(dev, ktime_get());
2091 
2092 	return dev->timestamp;
2093 }
2094 EXPORT_SYMBOL(input_get_timestamp);
2095 
2096 /**
2097  * input_set_capability - mark device as capable of a certain event
2098  * @dev: device that is capable of emitting or accepting event
2099  * @type: type of the event (EV_KEY, EV_REL, etc...)
2100  * @code: event code
2101  *
2102  * In addition to setting up corresponding bit in appropriate capability
2103  * bitmap the function also adjusts dev->evbit.
2104  */
2105 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2106 {
2107 	if (type < EV_CNT && input_max_code[type] &&
2108 	    code > input_max_code[type]) {
2109 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2110 		       type);
2111 		dump_stack();
2112 		return;
2113 	}
2114 
2115 	switch (type) {
2116 	case EV_KEY:
2117 		__set_bit(code, dev->keybit);
2118 		break;
2119 
2120 	case EV_REL:
2121 		__set_bit(code, dev->relbit);
2122 		break;
2123 
2124 	case EV_ABS:
2125 		input_alloc_absinfo(dev);
2126 		__set_bit(code, dev->absbit);
2127 		break;
2128 
2129 	case EV_MSC:
2130 		__set_bit(code, dev->mscbit);
2131 		break;
2132 
2133 	case EV_SW:
2134 		__set_bit(code, dev->swbit);
2135 		break;
2136 
2137 	case EV_LED:
2138 		__set_bit(code, dev->ledbit);
2139 		break;
2140 
2141 	case EV_SND:
2142 		__set_bit(code, dev->sndbit);
2143 		break;
2144 
2145 	case EV_FF:
2146 		__set_bit(code, dev->ffbit);
2147 		break;
2148 
2149 	case EV_PWR:
2150 		/* do nothing */
2151 		break;
2152 
2153 	default:
2154 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2155 		dump_stack();
2156 		return;
2157 	}
2158 
2159 	__set_bit(type, dev->evbit);
2160 }
2161 EXPORT_SYMBOL(input_set_capability);
2162 
2163 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2164 {
2165 	int mt_slots;
2166 	int i;
2167 	unsigned int events;
2168 
2169 	if (dev->mt) {
2170 		mt_slots = dev->mt->num_slots;
2171 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2172 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2173 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2174 		mt_slots = clamp(mt_slots, 2, 32);
2175 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2176 		mt_slots = 2;
2177 	} else {
2178 		mt_slots = 0;
2179 	}
2180 
2181 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2182 
2183 	if (test_bit(EV_ABS, dev->evbit))
2184 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2185 			events += input_is_mt_axis(i) ? mt_slots : 1;
2186 
2187 	if (test_bit(EV_REL, dev->evbit))
2188 		events += bitmap_weight(dev->relbit, REL_CNT);
2189 
2190 	/* Make room for KEY and MSC events */
2191 	events += 7;
2192 
2193 	return events;
2194 }
2195 
2196 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2197 	do {								\
2198 		if (!test_bit(EV_##type, dev->evbit))			\
2199 			memset(dev->bits##bit, 0,			\
2200 				sizeof(dev->bits##bit));		\
2201 	} while (0)
2202 
2203 static void input_cleanse_bitmasks(struct input_dev *dev)
2204 {
2205 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2206 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2207 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2208 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2209 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2210 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2211 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2212 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2213 }
2214 
2215 static void __input_unregister_device(struct input_dev *dev)
2216 {
2217 	struct input_handle *handle, *next;
2218 
2219 	input_disconnect_device(dev);
2220 
2221 	scoped_guard(mutex, &input_mutex) {
2222 		list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2223 			handle->handler->disconnect(handle);
2224 		WARN_ON(!list_empty(&dev->h_list));
2225 
2226 		del_timer_sync(&dev->timer);
2227 		list_del_init(&dev->node);
2228 
2229 		input_wakeup_procfs_readers();
2230 	}
2231 
2232 	device_del(&dev->dev);
2233 }
2234 
2235 static void devm_input_device_unregister(struct device *dev, void *res)
2236 {
2237 	struct input_devres *devres = res;
2238 	struct input_dev *input = devres->input;
2239 
2240 	dev_dbg(dev, "%s: unregistering device %s\n",
2241 		__func__, dev_name(&input->dev));
2242 	__input_unregister_device(input);
2243 }
2244 
2245 /*
2246  * Generate software autorepeat event. Note that we take
2247  * dev->event_lock here to avoid racing with input_event
2248  * which may cause keys get "stuck".
2249  */
2250 static void input_repeat_key(struct timer_list *t)
2251 {
2252 	struct input_dev *dev = from_timer(dev, t, timer);
2253 
2254 	guard(spinlock_irqsave)(&dev->event_lock);
2255 
2256 	if (!dev->inhibited &&
2257 	    test_bit(dev->repeat_key, dev->key) &&
2258 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2259 
2260 		input_set_timestamp(dev, ktime_get());
2261 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2262 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2263 
2264 		if (dev->rep[REP_PERIOD])
2265 			mod_timer(&dev->timer, jiffies +
2266 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2267 	}
2268 }
2269 
2270 /**
2271  * input_enable_softrepeat - enable software autorepeat
2272  * @dev: input device
2273  * @delay: repeat delay
2274  * @period: repeat period
2275  *
2276  * Enable software autorepeat on the input device.
2277  */
2278 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2279 {
2280 	dev->timer.function = input_repeat_key;
2281 	dev->rep[REP_DELAY] = delay;
2282 	dev->rep[REP_PERIOD] = period;
2283 }
2284 EXPORT_SYMBOL(input_enable_softrepeat);
2285 
2286 bool input_device_enabled(struct input_dev *dev)
2287 {
2288 	lockdep_assert_held(&dev->mutex);
2289 
2290 	return !dev->inhibited && dev->users > 0;
2291 }
2292 EXPORT_SYMBOL_GPL(input_device_enabled);
2293 
2294 static int input_device_tune_vals(struct input_dev *dev)
2295 {
2296 	struct input_value *vals;
2297 	unsigned int packet_size;
2298 	unsigned int max_vals;
2299 
2300 	packet_size = input_estimate_events_per_packet(dev);
2301 	if (dev->hint_events_per_packet < packet_size)
2302 		dev->hint_events_per_packet = packet_size;
2303 
2304 	max_vals = dev->hint_events_per_packet + 2;
2305 	if (dev->max_vals >= max_vals)
2306 		return 0;
2307 
2308 	vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2309 	if (!vals)
2310 		return -ENOMEM;
2311 
2312 	scoped_guard(spinlock_irq, &dev->event_lock) {
2313 		dev->max_vals = max_vals;
2314 		swap(dev->vals, vals);
2315 	}
2316 
2317 	/* Because of swap() above, this frees the old vals memory */
2318 	kfree(vals);
2319 
2320 	return 0;
2321 }
2322 
2323 /**
2324  * input_register_device - register device with input core
2325  * @dev: device to be registered
2326  *
2327  * This function registers device with input core. The device must be
2328  * allocated with input_allocate_device() and all it's capabilities
2329  * set up before registering.
2330  * If function fails the device must be freed with input_free_device().
2331  * Once device has been successfully registered it can be unregistered
2332  * with input_unregister_device(); input_free_device() should not be
2333  * called in this case.
2334  *
2335  * Note that this function is also used to register managed input devices
2336  * (ones allocated with devm_input_allocate_device()). Such managed input
2337  * devices need not be explicitly unregistered or freed, their tear down
2338  * is controlled by the devres infrastructure. It is also worth noting
2339  * that tear down of managed input devices is internally a 2-step process:
2340  * registered managed input device is first unregistered, but stays in
2341  * memory and can still handle input_event() calls (although events will
2342  * not be delivered anywhere). The freeing of managed input device will
2343  * happen later, when devres stack is unwound to the point where device
2344  * allocation was made.
2345  */
2346 int input_register_device(struct input_dev *dev)
2347 {
2348 	struct input_devres *devres = NULL;
2349 	struct input_handler *handler;
2350 	const char *path;
2351 	int error;
2352 
2353 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2354 		dev_err(&dev->dev,
2355 			"Absolute device without dev->absinfo, refusing to register\n");
2356 		return -EINVAL;
2357 	}
2358 
2359 	if (dev->devres_managed) {
2360 		devres = devres_alloc(devm_input_device_unregister,
2361 				      sizeof(*devres), GFP_KERNEL);
2362 		if (!devres)
2363 			return -ENOMEM;
2364 
2365 		devres->input = dev;
2366 	}
2367 
2368 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2369 	__set_bit(EV_SYN, dev->evbit);
2370 
2371 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2372 	__clear_bit(KEY_RESERVED, dev->keybit);
2373 
2374 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2375 	input_cleanse_bitmasks(dev);
2376 
2377 	error = input_device_tune_vals(dev);
2378 	if (error)
2379 		goto err_devres_free;
2380 
2381 	/*
2382 	 * If delay and period are pre-set by the driver, then autorepeating
2383 	 * is handled by the driver itself and we don't do it in input.c.
2384 	 */
2385 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2386 		input_enable_softrepeat(dev, 250, 33);
2387 
2388 	if (!dev->getkeycode)
2389 		dev->getkeycode = input_default_getkeycode;
2390 
2391 	if (!dev->setkeycode)
2392 		dev->setkeycode = input_default_setkeycode;
2393 
2394 	if (dev->poller)
2395 		input_dev_poller_finalize(dev->poller);
2396 
2397 	error = device_add(&dev->dev);
2398 	if (error)
2399 		goto err_devres_free;
2400 
2401 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2402 	pr_info("%s as %s\n",
2403 		dev->name ? dev->name : "Unspecified device",
2404 		path ? path : "N/A");
2405 	kfree(path);
2406 
2407 	error = -EINTR;
2408 	scoped_cond_guard(mutex_intr, goto err_device_del, &input_mutex) {
2409 		list_add_tail(&dev->node, &input_dev_list);
2410 
2411 		list_for_each_entry(handler, &input_handler_list, node)
2412 			input_attach_handler(dev, handler);
2413 
2414 		input_wakeup_procfs_readers();
2415 	}
2416 
2417 	if (dev->devres_managed) {
2418 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2419 			__func__, dev_name(&dev->dev));
2420 		devres_add(dev->dev.parent, devres);
2421 	}
2422 	return 0;
2423 
2424 err_device_del:
2425 	device_del(&dev->dev);
2426 err_devres_free:
2427 	devres_free(devres);
2428 	return error;
2429 }
2430 EXPORT_SYMBOL(input_register_device);
2431 
2432 /**
2433  * input_unregister_device - unregister previously registered device
2434  * @dev: device to be unregistered
2435  *
2436  * This function unregisters an input device. Once device is unregistered
2437  * the caller should not try to access it as it may get freed at any moment.
2438  */
2439 void input_unregister_device(struct input_dev *dev)
2440 {
2441 	if (dev->devres_managed) {
2442 		WARN_ON(devres_destroy(dev->dev.parent,
2443 					devm_input_device_unregister,
2444 					devm_input_device_match,
2445 					dev));
2446 		__input_unregister_device(dev);
2447 		/*
2448 		 * We do not do input_put_device() here because it will be done
2449 		 * when 2nd devres fires up.
2450 		 */
2451 	} else {
2452 		__input_unregister_device(dev);
2453 		input_put_device(dev);
2454 	}
2455 }
2456 EXPORT_SYMBOL(input_unregister_device);
2457 
2458 static int input_handler_check_methods(const struct input_handler *handler)
2459 {
2460 	int count = 0;
2461 
2462 	if (handler->filter)
2463 		count++;
2464 	if (handler->events)
2465 		count++;
2466 	if (handler->event)
2467 		count++;
2468 
2469 	if (count > 1) {
2470 		pr_err("%s: only one event processing method can be defined (%s)\n",
2471 		       __func__, handler->name);
2472 		return -EINVAL;
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 /**
2479  * input_register_handler - register a new input handler
2480  * @handler: handler to be registered
2481  *
2482  * This function registers a new input handler (interface) for input
2483  * devices in the system and attaches it to all input devices that
2484  * are compatible with the handler.
2485  */
2486 int input_register_handler(struct input_handler *handler)
2487 {
2488 	struct input_dev *dev;
2489 	int error;
2490 
2491 	error = input_handler_check_methods(handler);
2492 	if (error)
2493 		return error;
2494 
2495 	scoped_cond_guard(mutex_intr, return -EINTR, &input_mutex) {
2496 		INIT_LIST_HEAD(&handler->h_list);
2497 
2498 		list_add_tail(&handler->node, &input_handler_list);
2499 
2500 		list_for_each_entry(dev, &input_dev_list, node)
2501 			input_attach_handler(dev, handler);
2502 
2503 		input_wakeup_procfs_readers();
2504 	}
2505 
2506 	return 0;
2507 }
2508 EXPORT_SYMBOL(input_register_handler);
2509 
2510 /**
2511  * input_unregister_handler - unregisters an input handler
2512  * @handler: handler to be unregistered
2513  *
2514  * This function disconnects a handler from its input devices and
2515  * removes it from lists of known handlers.
2516  */
2517 void input_unregister_handler(struct input_handler *handler)
2518 {
2519 	struct input_handle *handle, *next;
2520 
2521 	guard(mutex)(&input_mutex);
2522 
2523 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2524 		handler->disconnect(handle);
2525 	WARN_ON(!list_empty(&handler->h_list));
2526 
2527 	list_del_init(&handler->node);
2528 
2529 	input_wakeup_procfs_readers();
2530 }
2531 EXPORT_SYMBOL(input_unregister_handler);
2532 
2533 /**
2534  * input_handler_for_each_handle - handle iterator
2535  * @handler: input handler to iterate
2536  * @data: data for the callback
2537  * @fn: function to be called for each handle
2538  *
2539  * Iterate over @bus's list of devices, and call @fn for each, passing
2540  * it @data and stop when @fn returns a non-zero value. The function is
2541  * using RCU to traverse the list and therefore may be using in atomic
2542  * contexts. The @fn callback is invoked from RCU critical section and
2543  * thus must not sleep.
2544  */
2545 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2546 				  int (*fn)(struct input_handle *, void *))
2547 {
2548 	struct input_handle *handle;
2549 	int retval;
2550 
2551 	guard(rcu)();
2552 
2553 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2554 		retval = fn(handle, data);
2555 		if (retval)
2556 			return retval;
2557 	}
2558 
2559 	return 0;
2560 }
2561 EXPORT_SYMBOL(input_handler_for_each_handle);
2562 
2563 /*
2564  * An implementation of input_handle's handle_events() method that simply
2565  * invokes handler->event() method for each event one by one.
2566  */
2567 static unsigned int input_handle_events_default(struct input_handle *handle,
2568 						struct input_value *vals,
2569 						unsigned int count)
2570 {
2571 	struct input_handler *handler = handle->handler;
2572 	struct input_value *v;
2573 
2574 	for (v = vals; v != vals + count; v++)
2575 		handler->event(handle, v->type, v->code, v->value);
2576 
2577 	return count;
2578 }
2579 
2580 /*
2581  * An implementation of input_handle's handle_events() method that invokes
2582  * handler->filter() method for each event one by one and removes events
2583  * that were filtered out from the "vals" array.
2584  */
2585 static unsigned int input_handle_events_filter(struct input_handle *handle,
2586 					       struct input_value *vals,
2587 					       unsigned int count)
2588 {
2589 	struct input_handler *handler = handle->handler;
2590 	struct input_value *end = vals;
2591 	struct input_value *v;
2592 
2593 	for (v = vals; v != vals + count; v++) {
2594 		if (handler->filter(handle, v->type, v->code, v->value))
2595 			continue;
2596 		if (end != v)
2597 			*end = *v;
2598 		end++;
2599 	}
2600 
2601 	return end - vals;
2602 }
2603 
2604 /*
2605  * An implementation of input_handle's handle_events() method that does nothing.
2606  */
2607 static unsigned int input_handle_events_null(struct input_handle *handle,
2608 					     struct input_value *vals,
2609 					     unsigned int count)
2610 {
2611 	return count;
2612 }
2613 
2614 /*
2615  * Sets up appropriate handle->event_handler based on the input_handler
2616  * associated with the handle.
2617  */
2618 static void input_handle_setup_event_handler(struct input_handle *handle)
2619 {
2620 	struct input_handler *handler = handle->handler;
2621 
2622 	if (handler->filter)
2623 		handle->handle_events = input_handle_events_filter;
2624 	else if (handler->event)
2625 		handle->handle_events = input_handle_events_default;
2626 	else if (handler->events)
2627 		handle->handle_events = handler->events;
2628 	else
2629 		handle->handle_events = input_handle_events_null;
2630 }
2631 
2632 /**
2633  * input_register_handle - register a new input handle
2634  * @handle: handle to register
2635  *
2636  * This function puts a new input handle onto device's
2637  * and handler's lists so that events can flow through
2638  * it once it is opened using input_open_device().
2639  *
2640  * This function is supposed to be called from handler's
2641  * connect() method.
2642  */
2643 int input_register_handle(struct input_handle *handle)
2644 {
2645 	struct input_handler *handler = handle->handler;
2646 	struct input_dev *dev = handle->dev;
2647 
2648 	input_handle_setup_event_handler(handle);
2649 	/*
2650 	 * We take dev->mutex here to prevent race with
2651 	 * input_release_device().
2652 	 */
2653 	scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
2654 		/*
2655 		 * Filters go to the head of the list, normal handlers
2656 		 * to the tail.
2657 		 */
2658 		if (handler->filter)
2659 			list_add_rcu(&handle->d_node, &dev->h_list);
2660 		else
2661 			list_add_tail_rcu(&handle->d_node, &dev->h_list);
2662 	}
2663 
2664 	/*
2665 	 * Since we are supposed to be called from ->connect()
2666 	 * which is mutually exclusive with ->disconnect()
2667 	 * we can't be racing with input_unregister_handle()
2668 	 * and so separate lock is not needed here.
2669 	 */
2670 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2671 
2672 	if (handler->start)
2673 		handler->start(handle);
2674 
2675 	return 0;
2676 }
2677 EXPORT_SYMBOL(input_register_handle);
2678 
2679 /**
2680  * input_unregister_handle - unregister an input handle
2681  * @handle: handle to unregister
2682  *
2683  * This function removes input handle from device's
2684  * and handler's lists.
2685  *
2686  * This function is supposed to be called from handler's
2687  * disconnect() method.
2688  */
2689 void input_unregister_handle(struct input_handle *handle)
2690 {
2691 	struct input_dev *dev = handle->dev;
2692 
2693 	list_del_rcu(&handle->h_node);
2694 
2695 	/*
2696 	 * Take dev->mutex to prevent race with input_release_device().
2697 	 */
2698 	scoped_guard(mutex, &dev->mutex)
2699 		list_del_rcu(&handle->d_node);
2700 
2701 	synchronize_rcu();
2702 }
2703 EXPORT_SYMBOL(input_unregister_handle);
2704 
2705 /**
2706  * input_get_new_minor - allocates a new input minor number
2707  * @legacy_base: beginning or the legacy range to be searched
2708  * @legacy_num: size of legacy range
2709  * @allow_dynamic: whether we can also take ID from the dynamic range
2710  *
2711  * This function allocates a new device minor for from input major namespace.
2712  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2713  * parameters and whether ID can be allocated from dynamic range if there are
2714  * no free IDs in legacy range.
2715  */
2716 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2717 			bool allow_dynamic)
2718 {
2719 	/*
2720 	 * This function should be called from input handler's ->connect()
2721 	 * methods, which are serialized with input_mutex, so no additional
2722 	 * locking is needed here.
2723 	 */
2724 	if (legacy_base >= 0) {
2725 		int minor = ida_alloc_range(&input_ida, legacy_base,
2726 					    legacy_base + legacy_num - 1,
2727 					    GFP_KERNEL);
2728 		if (minor >= 0 || !allow_dynamic)
2729 			return minor;
2730 	}
2731 
2732 	return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2733 			       INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2734 }
2735 EXPORT_SYMBOL(input_get_new_minor);
2736 
2737 /**
2738  * input_free_minor - release previously allocated minor
2739  * @minor: minor to be released
2740  *
2741  * This function releases previously allocated input minor so that it can be
2742  * reused later.
2743  */
2744 void input_free_minor(unsigned int minor)
2745 {
2746 	ida_free(&input_ida, minor);
2747 }
2748 EXPORT_SYMBOL(input_free_minor);
2749 
2750 static int __init input_init(void)
2751 {
2752 	int err;
2753 
2754 	err = class_register(&input_class);
2755 	if (err) {
2756 		pr_err("unable to register input_dev class\n");
2757 		return err;
2758 	}
2759 
2760 	err = input_proc_init();
2761 	if (err)
2762 		goto fail1;
2763 
2764 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2765 				     INPUT_MAX_CHAR_DEVICES, "input");
2766 	if (err) {
2767 		pr_err("unable to register char major %d", INPUT_MAJOR);
2768 		goto fail2;
2769 	}
2770 
2771 	return 0;
2772 
2773  fail2:	input_proc_exit();
2774  fail1:	class_unregister(&input_class);
2775 	return err;
2776 }
2777 
2778 static void __exit input_exit(void)
2779 {
2780 	input_proc_exit();
2781 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2782 				 INPUT_MAX_CHAR_DEVICES);
2783 	class_unregister(&input_class);
2784 }
2785 
2786 subsys_initcall(input_init);
2787 module_exit(input_exit);
2788