xref: /linux/drivers/input/input.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static inline int is_event_supported(unsigned int code,
54 				     unsigned long *bm, unsigned int max)
55 {
56 	return code <= max && test_bit(code, bm);
57 }
58 
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 	if (fuzz) {
62 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 			return old_val;
64 
65 		if (value > old_val - fuzz && value < old_val + fuzz)
66 			return (old_val * 3 + value) / 4;
67 
68 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 			return (old_val + value) / 2;
70 	}
71 
72 	return value;
73 }
74 
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 	if (test_bit(EV_REP, dev->evbit) &&
78 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 	    dev->timer.data) {
80 		dev->repeat_key = code;
81 		mod_timer(&dev->timer,
82 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 	}
84 }
85 
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 	del_timer(&dev->timer);
89 }
90 
91 /*
92  * Pass event first through all filters and then, if event has not been
93  * filtered out, through all open handles. This function is called with
94  * dev->event_lock held and interrupts disabled.
95  */
96 static unsigned int input_to_handler(struct input_handle *handle,
97 			struct input_value *vals, unsigned int count)
98 {
99 	struct input_handler *handler = handle->handler;
100 	struct input_value *end = vals;
101 	struct input_value *v;
102 
103 	if (handler->filter) {
104 		for (v = vals; v != vals + count; v++) {
105 			if (handler->filter(handle, v->type, v->code, v->value))
106 				continue;
107 			if (end != v)
108 				*end = *v;
109 			end++;
110 		}
111 		count = end - vals;
112 	}
113 
114 	if (!count)
115 		return 0;
116 
117 	if (handler->events)
118 		handler->events(handle, vals, count);
119 	else if (handler->event)
120 		for (v = vals; v != vals + count; v++)
121 			handler->event(handle, v->type, v->code, v->value);
122 
123 	return count;
124 }
125 
126 /*
127  * Pass values first through all filters and then, if event has not been
128  * filtered out, through all open handles. This function is called with
129  * dev->event_lock held and interrupts disabled.
130  */
131 static void input_pass_values(struct input_dev *dev,
132 			      struct input_value *vals, unsigned int count)
133 {
134 	struct input_handle *handle;
135 	struct input_value *v;
136 
137 	if (!count)
138 		return;
139 
140 	rcu_read_lock();
141 
142 	handle = rcu_dereference(dev->grab);
143 	if (handle) {
144 		count = input_to_handler(handle, vals, count);
145 	} else {
146 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 			if (handle->open) {
148 				count = input_to_handler(handle, vals, count);
149 				if (!count)
150 					break;
151 			}
152 	}
153 
154 	rcu_read_unlock();
155 
156 	add_input_randomness(vals->type, vals->code, vals->value);
157 
158 	/* trigger auto repeat for key events */
159 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
160 		for (v = vals; v != vals + count; v++) {
161 			if (v->type == EV_KEY && v->value != 2) {
162 				if (v->value)
163 					input_start_autorepeat(dev, v->code);
164 				else
165 					input_stop_autorepeat(dev);
166 			}
167 		}
168 	}
169 }
170 
171 static void input_pass_event(struct input_dev *dev,
172 			     unsigned int type, unsigned int code, int value)
173 {
174 	struct input_value vals[] = { { type, code, value } };
175 
176 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
177 }
178 
179 /*
180  * Generate software autorepeat event. Note that we take
181  * dev->event_lock here to avoid racing with input_event
182  * which may cause keys get "stuck".
183  */
184 static void input_repeat_key(unsigned long data)
185 {
186 	struct input_dev *dev = (void *) data;
187 	unsigned long flags;
188 
189 	spin_lock_irqsave(&dev->event_lock, flags);
190 
191 	if (test_bit(dev->repeat_key, dev->key) &&
192 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
193 		struct input_value vals[] =  {
194 			{ EV_KEY, dev->repeat_key, 2 },
195 			input_value_sync
196 		};
197 
198 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
199 
200 		if (dev->rep[REP_PERIOD])
201 			mod_timer(&dev->timer, jiffies +
202 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
203 	}
204 
205 	spin_unlock_irqrestore(&dev->event_lock, flags);
206 }
207 
208 #define INPUT_IGNORE_EVENT	0
209 #define INPUT_PASS_TO_HANDLERS	1
210 #define INPUT_PASS_TO_DEVICE	2
211 #define INPUT_SLOT		4
212 #define INPUT_FLUSH		8
213 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
214 
215 static int input_handle_abs_event(struct input_dev *dev,
216 				  unsigned int code, int *pval)
217 {
218 	struct input_mt *mt = dev->mt;
219 	bool is_mt_event;
220 	int *pold;
221 
222 	if (code == ABS_MT_SLOT) {
223 		/*
224 		 * "Stage" the event; we'll flush it later, when we
225 		 * get actual touch data.
226 		 */
227 		if (mt && *pval >= 0 && *pval < mt->num_slots)
228 			mt->slot = *pval;
229 
230 		return INPUT_IGNORE_EVENT;
231 	}
232 
233 	is_mt_event = input_is_mt_value(code);
234 
235 	if (!is_mt_event) {
236 		pold = &dev->absinfo[code].value;
237 	} else if (mt) {
238 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
239 	} else {
240 		/*
241 		 * Bypass filtering for multi-touch events when
242 		 * not employing slots.
243 		 */
244 		pold = NULL;
245 	}
246 
247 	if (pold) {
248 		*pval = input_defuzz_abs_event(*pval, *pold,
249 						dev->absinfo[code].fuzz);
250 		if (*pold == *pval)
251 			return INPUT_IGNORE_EVENT;
252 
253 		*pold = *pval;
254 	}
255 
256 	/* Flush pending "slot" event */
257 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
258 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
259 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
260 	}
261 
262 	return INPUT_PASS_TO_HANDLERS;
263 }
264 
265 static int input_get_disposition(struct input_dev *dev,
266 			  unsigned int type, unsigned int code, int *pval)
267 {
268 	int disposition = INPUT_IGNORE_EVENT;
269 	int value = *pval;
270 
271 	switch (type) {
272 
273 	case EV_SYN:
274 		switch (code) {
275 		case SYN_CONFIG:
276 			disposition = INPUT_PASS_TO_ALL;
277 			break;
278 
279 		case SYN_REPORT:
280 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
281 			break;
282 		case SYN_MT_REPORT:
283 			disposition = INPUT_PASS_TO_HANDLERS;
284 			break;
285 		}
286 		break;
287 
288 	case EV_KEY:
289 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
290 
291 			/* auto-repeat bypasses state updates */
292 			if (value == 2) {
293 				disposition = INPUT_PASS_TO_HANDLERS;
294 				break;
295 			}
296 
297 			if (!!test_bit(code, dev->key) != !!value) {
298 
299 				__change_bit(code, dev->key);
300 				disposition = INPUT_PASS_TO_HANDLERS;
301 			}
302 		}
303 		break;
304 
305 	case EV_SW:
306 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
307 		    !!test_bit(code, dev->sw) != !!value) {
308 
309 			__change_bit(code, dev->sw);
310 			disposition = INPUT_PASS_TO_HANDLERS;
311 		}
312 		break;
313 
314 	case EV_ABS:
315 		if (is_event_supported(code, dev->absbit, ABS_MAX))
316 			disposition = input_handle_abs_event(dev, code, &value);
317 
318 		break;
319 
320 	case EV_REL:
321 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
322 			disposition = INPUT_PASS_TO_HANDLERS;
323 
324 		break;
325 
326 	case EV_MSC:
327 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
328 			disposition = INPUT_PASS_TO_ALL;
329 
330 		break;
331 
332 	case EV_LED:
333 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
334 		    !!test_bit(code, dev->led) != !!value) {
335 
336 			__change_bit(code, dev->led);
337 			disposition = INPUT_PASS_TO_ALL;
338 		}
339 		break;
340 
341 	case EV_SND:
342 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
343 
344 			if (!!test_bit(code, dev->snd) != !!value)
345 				__change_bit(code, dev->snd);
346 			disposition = INPUT_PASS_TO_ALL;
347 		}
348 		break;
349 
350 	case EV_REP:
351 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
352 			dev->rep[code] = value;
353 			disposition = INPUT_PASS_TO_ALL;
354 		}
355 		break;
356 
357 	case EV_FF:
358 		if (value >= 0)
359 			disposition = INPUT_PASS_TO_ALL;
360 		break;
361 
362 	case EV_PWR:
363 		disposition = INPUT_PASS_TO_ALL;
364 		break;
365 	}
366 
367 	*pval = value;
368 	return disposition;
369 }
370 
371 static void input_handle_event(struct input_dev *dev,
372 			       unsigned int type, unsigned int code, int value)
373 {
374 	int disposition;
375 
376 	disposition = input_get_disposition(dev, type, code, &value);
377 
378 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
379 		dev->event(dev, type, code, value);
380 
381 	if (!dev->vals)
382 		return;
383 
384 	if (disposition & INPUT_PASS_TO_HANDLERS) {
385 		struct input_value *v;
386 
387 		if (disposition & INPUT_SLOT) {
388 			v = &dev->vals[dev->num_vals++];
389 			v->type = EV_ABS;
390 			v->code = ABS_MT_SLOT;
391 			v->value = dev->mt->slot;
392 		}
393 
394 		v = &dev->vals[dev->num_vals++];
395 		v->type = type;
396 		v->code = code;
397 		v->value = value;
398 	}
399 
400 	if (disposition & INPUT_FLUSH) {
401 		if (dev->num_vals >= 2)
402 			input_pass_values(dev, dev->vals, dev->num_vals);
403 		dev->num_vals = 0;
404 	} else if (dev->num_vals >= dev->max_vals - 2) {
405 		dev->vals[dev->num_vals++] = input_value_sync;
406 		input_pass_values(dev, dev->vals, dev->num_vals);
407 		dev->num_vals = 0;
408 	}
409 
410 }
411 
412 /**
413  * input_event() - report new input event
414  * @dev: device that generated the event
415  * @type: type of the event
416  * @code: event code
417  * @value: value of the event
418  *
419  * This function should be used by drivers implementing various input
420  * devices to report input events. See also input_inject_event().
421  *
422  * NOTE: input_event() may be safely used right after input device was
423  * allocated with input_allocate_device(), even before it is registered
424  * with input_register_device(), but the event will not reach any of the
425  * input handlers. Such early invocation of input_event() may be used
426  * to 'seed' initial state of a switch or initial position of absolute
427  * axis, etc.
428  */
429 void input_event(struct input_dev *dev,
430 		 unsigned int type, unsigned int code, int value)
431 {
432 	unsigned long flags;
433 
434 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
435 
436 		spin_lock_irqsave(&dev->event_lock, flags);
437 		input_handle_event(dev, type, code, value);
438 		spin_unlock_irqrestore(&dev->event_lock, flags);
439 	}
440 }
441 EXPORT_SYMBOL(input_event);
442 
443 /**
444  * input_inject_event() - send input event from input handler
445  * @handle: input handle to send event through
446  * @type: type of the event
447  * @code: event code
448  * @value: value of the event
449  *
450  * Similar to input_event() but will ignore event if device is
451  * "grabbed" and handle injecting event is not the one that owns
452  * the device.
453  */
454 void input_inject_event(struct input_handle *handle,
455 			unsigned int type, unsigned int code, int value)
456 {
457 	struct input_dev *dev = handle->dev;
458 	struct input_handle *grab;
459 	unsigned long flags;
460 
461 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
462 		spin_lock_irqsave(&dev->event_lock, flags);
463 
464 		rcu_read_lock();
465 		grab = rcu_dereference(dev->grab);
466 		if (!grab || grab == handle)
467 			input_handle_event(dev, type, code, value);
468 		rcu_read_unlock();
469 
470 		spin_unlock_irqrestore(&dev->event_lock, flags);
471 	}
472 }
473 EXPORT_SYMBOL(input_inject_event);
474 
475 /**
476  * input_alloc_absinfo - allocates array of input_absinfo structs
477  * @dev: the input device emitting absolute events
478  *
479  * If the absinfo struct the caller asked for is already allocated, this
480  * functions will not do anything.
481  */
482 void input_alloc_absinfo(struct input_dev *dev)
483 {
484 	if (!dev->absinfo)
485 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
486 					GFP_KERNEL);
487 
488 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
489 }
490 EXPORT_SYMBOL(input_alloc_absinfo);
491 
492 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
493 			  int min, int max, int fuzz, int flat)
494 {
495 	struct input_absinfo *absinfo;
496 
497 	input_alloc_absinfo(dev);
498 	if (!dev->absinfo)
499 		return;
500 
501 	absinfo = &dev->absinfo[axis];
502 	absinfo->minimum = min;
503 	absinfo->maximum = max;
504 	absinfo->fuzz = fuzz;
505 	absinfo->flat = flat;
506 
507 	__set_bit(EV_ABS, dev->evbit);
508 	__set_bit(axis, dev->absbit);
509 }
510 EXPORT_SYMBOL(input_set_abs_params);
511 
512 
513 /**
514  * input_grab_device - grabs device for exclusive use
515  * @handle: input handle that wants to own the device
516  *
517  * When a device is grabbed by an input handle all events generated by
518  * the device are delivered only to this handle. Also events injected
519  * by other input handles are ignored while device is grabbed.
520  */
521 int input_grab_device(struct input_handle *handle)
522 {
523 	struct input_dev *dev = handle->dev;
524 	int retval;
525 
526 	retval = mutex_lock_interruptible(&dev->mutex);
527 	if (retval)
528 		return retval;
529 
530 	if (dev->grab) {
531 		retval = -EBUSY;
532 		goto out;
533 	}
534 
535 	rcu_assign_pointer(dev->grab, handle);
536 
537  out:
538 	mutex_unlock(&dev->mutex);
539 	return retval;
540 }
541 EXPORT_SYMBOL(input_grab_device);
542 
543 static void __input_release_device(struct input_handle *handle)
544 {
545 	struct input_dev *dev = handle->dev;
546 	struct input_handle *grabber;
547 
548 	grabber = rcu_dereference_protected(dev->grab,
549 					    lockdep_is_held(&dev->mutex));
550 	if (grabber == handle) {
551 		rcu_assign_pointer(dev->grab, NULL);
552 		/* Make sure input_pass_event() notices that grab is gone */
553 		synchronize_rcu();
554 
555 		list_for_each_entry(handle, &dev->h_list, d_node)
556 			if (handle->open && handle->handler->start)
557 				handle->handler->start(handle);
558 	}
559 }
560 
561 /**
562  * input_release_device - release previously grabbed device
563  * @handle: input handle that owns the device
564  *
565  * Releases previously grabbed device so that other input handles can
566  * start receiving input events. Upon release all handlers attached
567  * to the device have their start() method called so they have a change
568  * to synchronize device state with the rest of the system.
569  */
570 void input_release_device(struct input_handle *handle)
571 {
572 	struct input_dev *dev = handle->dev;
573 
574 	mutex_lock(&dev->mutex);
575 	__input_release_device(handle);
576 	mutex_unlock(&dev->mutex);
577 }
578 EXPORT_SYMBOL(input_release_device);
579 
580 /**
581  * input_open_device - open input device
582  * @handle: handle through which device is being accessed
583  *
584  * This function should be called by input handlers when they
585  * want to start receive events from given input device.
586  */
587 int input_open_device(struct input_handle *handle)
588 {
589 	struct input_dev *dev = handle->dev;
590 	int retval;
591 
592 	retval = mutex_lock_interruptible(&dev->mutex);
593 	if (retval)
594 		return retval;
595 
596 	if (dev->going_away) {
597 		retval = -ENODEV;
598 		goto out;
599 	}
600 
601 	handle->open++;
602 
603 	if (!dev->users++ && dev->open)
604 		retval = dev->open(dev);
605 
606 	if (retval) {
607 		dev->users--;
608 		if (!--handle->open) {
609 			/*
610 			 * Make sure we are not delivering any more events
611 			 * through this handle
612 			 */
613 			synchronize_rcu();
614 		}
615 	}
616 
617  out:
618 	mutex_unlock(&dev->mutex);
619 	return retval;
620 }
621 EXPORT_SYMBOL(input_open_device);
622 
623 int input_flush_device(struct input_handle *handle, struct file *file)
624 {
625 	struct input_dev *dev = handle->dev;
626 	int retval;
627 
628 	retval = mutex_lock_interruptible(&dev->mutex);
629 	if (retval)
630 		return retval;
631 
632 	if (dev->flush)
633 		retval = dev->flush(dev, file);
634 
635 	mutex_unlock(&dev->mutex);
636 	return retval;
637 }
638 EXPORT_SYMBOL(input_flush_device);
639 
640 /**
641  * input_close_device - close input device
642  * @handle: handle through which device is being accessed
643  *
644  * This function should be called by input handlers when they
645  * want to stop receive events from given input device.
646  */
647 void input_close_device(struct input_handle *handle)
648 {
649 	struct input_dev *dev = handle->dev;
650 
651 	mutex_lock(&dev->mutex);
652 
653 	__input_release_device(handle);
654 
655 	if (!--dev->users && dev->close)
656 		dev->close(dev);
657 
658 	if (!--handle->open) {
659 		/*
660 		 * synchronize_rcu() makes sure that input_pass_event()
661 		 * completed and that no more input events are delivered
662 		 * through this handle
663 		 */
664 		synchronize_rcu();
665 	}
666 
667 	mutex_unlock(&dev->mutex);
668 }
669 EXPORT_SYMBOL(input_close_device);
670 
671 /*
672  * Simulate keyup events for all keys that are marked as pressed.
673  * The function must be called with dev->event_lock held.
674  */
675 static void input_dev_release_keys(struct input_dev *dev)
676 {
677 	int code;
678 
679 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
680 		for (code = 0; code <= KEY_MAX; code++) {
681 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
682 			    __test_and_clear_bit(code, dev->key)) {
683 				input_pass_event(dev, EV_KEY, code, 0);
684 			}
685 		}
686 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
687 	}
688 }
689 
690 /*
691  * Prepare device for unregistering
692  */
693 static void input_disconnect_device(struct input_dev *dev)
694 {
695 	struct input_handle *handle;
696 
697 	/*
698 	 * Mark device as going away. Note that we take dev->mutex here
699 	 * not to protect access to dev->going_away but rather to ensure
700 	 * that there are no threads in the middle of input_open_device()
701 	 */
702 	mutex_lock(&dev->mutex);
703 	dev->going_away = true;
704 	mutex_unlock(&dev->mutex);
705 
706 	spin_lock_irq(&dev->event_lock);
707 
708 	/*
709 	 * Simulate keyup events for all pressed keys so that handlers
710 	 * are not left with "stuck" keys. The driver may continue
711 	 * generate events even after we done here but they will not
712 	 * reach any handlers.
713 	 */
714 	input_dev_release_keys(dev);
715 
716 	list_for_each_entry(handle, &dev->h_list, d_node)
717 		handle->open = 0;
718 
719 	spin_unlock_irq(&dev->event_lock);
720 }
721 
722 /**
723  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
724  * @ke: keymap entry containing scancode to be converted.
725  * @scancode: pointer to the location where converted scancode should
726  *	be stored.
727  *
728  * This function is used to convert scancode stored in &struct keymap_entry
729  * into scalar form understood by legacy keymap handling methods. These
730  * methods expect scancodes to be represented as 'unsigned int'.
731  */
732 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
733 			     unsigned int *scancode)
734 {
735 	switch (ke->len) {
736 	case 1:
737 		*scancode = *((u8 *)ke->scancode);
738 		break;
739 
740 	case 2:
741 		*scancode = *((u16 *)ke->scancode);
742 		break;
743 
744 	case 4:
745 		*scancode = *((u32 *)ke->scancode);
746 		break;
747 
748 	default:
749 		return -EINVAL;
750 	}
751 
752 	return 0;
753 }
754 EXPORT_SYMBOL(input_scancode_to_scalar);
755 
756 /*
757  * Those routines handle the default case where no [gs]etkeycode() is
758  * defined. In this case, an array indexed by the scancode is used.
759  */
760 
761 static unsigned int input_fetch_keycode(struct input_dev *dev,
762 					unsigned int index)
763 {
764 	switch (dev->keycodesize) {
765 	case 1:
766 		return ((u8 *)dev->keycode)[index];
767 
768 	case 2:
769 		return ((u16 *)dev->keycode)[index];
770 
771 	default:
772 		return ((u32 *)dev->keycode)[index];
773 	}
774 }
775 
776 static int input_default_getkeycode(struct input_dev *dev,
777 				    struct input_keymap_entry *ke)
778 {
779 	unsigned int index;
780 	int error;
781 
782 	if (!dev->keycodesize)
783 		return -EINVAL;
784 
785 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
786 		index = ke->index;
787 	else {
788 		error = input_scancode_to_scalar(ke, &index);
789 		if (error)
790 			return error;
791 	}
792 
793 	if (index >= dev->keycodemax)
794 		return -EINVAL;
795 
796 	ke->keycode = input_fetch_keycode(dev, index);
797 	ke->index = index;
798 	ke->len = sizeof(index);
799 	memcpy(ke->scancode, &index, sizeof(index));
800 
801 	return 0;
802 }
803 
804 static int input_default_setkeycode(struct input_dev *dev,
805 				    const struct input_keymap_entry *ke,
806 				    unsigned int *old_keycode)
807 {
808 	unsigned int index;
809 	int error;
810 	int i;
811 
812 	if (!dev->keycodesize)
813 		return -EINVAL;
814 
815 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
816 		index = ke->index;
817 	} else {
818 		error = input_scancode_to_scalar(ke, &index);
819 		if (error)
820 			return error;
821 	}
822 
823 	if (index >= dev->keycodemax)
824 		return -EINVAL;
825 
826 	if (dev->keycodesize < sizeof(ke->keycode) &&
827 			(ke->keycode >> (dev->keycodesize * 8)))
828 		return -EINVAL;
829 
830 	switch (dev->keycodesize) {
831 		case 1: {
832 			u8 *k = (u8 *)dev->keycode;
833 			*old_keycode = k[index];
834 			k[index] = ke->keycode;
835 			break;
836 		}
837 		case 2: {
838 			u16 *k = (u16 *)dev->keycode;
839 			*old_keycode = k[index];
840 			k[index] = ke->keycode;
841 			break;
842 		}
843 		default: {
844 			u32 *k = (u32 *)dev->keycode;
845 			*old_keycode = k[index];
846 			k[index] = ke->keycode;
847 			break;
848 		}
849 	}
850 
851 	__clear_bit(*old_keycode, dev->keybit);
852 	__set_bit(ke->keycode, dev->keybit);
853 
854 	for (i = 0; i < dev->keycodemax; i++) {
855 		if (input_fetch_keycode(dev, i) == *old_keycode) {
856 			__set_bit(*old_keycode, dev->keybit);
857 			break; /* Setting the bit twice is useless, so break */
858 		}
859 	}
860 
861 	return 0;
862 }
863 
864 /**
865  * input_get_keycode - retrieve keycode currently mapped to a given scancode
866  * @dev: input device which keymap is being queried
867  * @ke: keymap entry
868  *
869  * This function should be called by anyone interested in retrieving current
870  * keymap. Presently evdev handlers use it.
871  */
872 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
873 {
874 	unsigned long flags;
875 	int retval;
876 
877 	spin_lock_irqsave(&dev->event_lock, flags);
878 	retval = dev->getkeycode(dev, ke);
879 	spin_unlock_irqrestore(&dev->event_lock, flags);
880 
881 	return retval;
882 }
883 EXPORT_SYMBOL(input_get_keycode);
884 
885 /**
886  * input_set_keycode - attribute a keycode to a given scancode
887  * @dev: input device which keymap is being updated
888  * @ke: new keymap entry
889  *
890  * This function should be called by anyone needing to update current
891  * keymap. Presently keyboard and evdev handlers use it.
892  */
893 int input_set_keycode(struct input_dev *dev,
894 		      const struct input_keymap_entry *ke)
895 {
896 	unsigned long flags;
897 	unsigned int old_keycode;
898 	int retval;
899 
900 	if (ke->keycode > KEY_MAX)
901 		return -EINVAL;
902 
903 	spin_lock_irqsave(&dev->event_lock, flags);
904 
905 	retval = dev->setkeycode(dev, ke, &old_keycode);
906 	if (retval)
907 		goto out;
908 
909 	/* Make sure KEY_RESERVED did not get enabled. */
910 	__clear_bit(KEY_RESERVED, dev->keybit);
911 
912 	/*
913 	 * Simulate keyup event if keycode is not present
914 	 * in the keymap anymore
915 	 */
916 	if (test_bit(EV_KEY, dev->evbit) &&
917 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
918 	    __test_and_clear_bit(old_keycode, dev->key)) {
919 		struct input_value vals[] =  {
920 			{ EV_KEY, old_keycode, 0 },
921 			input_value_sync
922 		};
923 
924 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
925 	}
926 
927  out:
928 	spin_unlock_irqrestore(&dev->event_lock, flags);
929 
930 	return retval;
931 }
932 EXPORT_SYMBOL(input_set_keycode);
933 
934 static const struct input_device_id *input_match_device(struct input_handler *handler,
935 							struct input_dev *dev)
936 {
937 	const struct input_device_id *id;
938 
939 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
940 
941 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
942 			if (id->bustype != dev->id.bustype)
943 				continue;
944 
945 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
946 			if (id->vendor != dev->id.vendor)
947 				continue;
948 
949 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
950 			if (id->product != dev->id.product)
951 				continue;
952 
953 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
954 			if (id->version != dev->id.version)
955 				continue;
956 
957 		if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
958 			continue;
959 
960 		if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
961 			continue;
962 
963 		if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
964 			continue;
965 
966 		if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
967 			continue;
968 
969 		if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
970 			continue;
971 
972 		if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
973 			continue;
974 
975 		if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
976 			continue;
977 
978 		if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
979 			continue;
980 
981 		if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
982 			continue;
983 
984 		if (!handler->match || handler->match(handler, dev))
985 			return id;
986 	}
987 
988 	return NULL;
989 }
990 
991 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
992 {
993 	const struct input_device_id *id;
994 	int error;
995 
996 	id = input_match_device(handler, dev);
997 	if (!id)
998 		return -ENODEV;
999 
1000 	error = handler->connect(handler, dev, id);
1001 	if (error && error != -ENODEV)
1002 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1003 		       handler->name, kobject_name(&dev->dev.kobj), error);
1004 
1005 	return error;
1006 }
1007 
1008 #ifdef CONFIG_COMPAT
1009 
1010 static int input_bits_to_string(char *buf, int buf_size,
1011 				unsigned long bits, bool skip_empty)
1012 {
1013 	int len = 0;
1014 
1015 	if (INPUT_COMPAT_TEST) {
1016 		u32 dword = bits >> 32;
1017 		if (dword || !skip_empty)
1018 			len += snprintf(buf, buf_size, "%x ", dword);
1019 
1020 		dword = bits & 0xffffffffUL;
1021 		if (dword || !skip_empty || len)
1022 			len += snprintf(buf + len, max(buf_size - len, 0),
1023 					"%x", dword);
1024 	} else {
1025 		if (bits || !skip_empty)
1026 			len += snprintf(buf, buf_size, "%lx", bits);
1027 	}
1028 
1029 	return len;
1030 }
1031 
1032 #else /* !CONFIG_COMPAT */
1033 
1034 static int input_bits_to_string(char *buf, int buf_size,
1035 				unsigned long bits, bool skip_empty)
1036 {
1037 	return bits || !skip_empty ?
1038 		snprintf(buf, buf_size, "%lx", bits) : 0;
1039 }
1040 
1041 #endif
1042 
1043 #ifdef CONFIG_PROC_FS
1044 
1045 static struct proc_dir_entry *proc_bus_input_dir;
1046 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1047 static int input_devices_state;
1048 
1049 static inline void input_wakeup_procfs_readers(void)
1050 {
1051 	input_devices_state++;
1052 	wake_up(&input_devices_poll_wait);
1053 }
1054 
1055 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1056 {
1057 	poll_wait(file, &input_devices_poll_wait, wait);
1058 	if (file->f_version != input_devices_state) {
1059 		file->f_version = input_devices_state;
1060 		return POLLIN | POLLRDNORM;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 union input_seq_state {
1067 	struct {
1068 		unsigned short pos;
1069 		bool mutex_acquired;
1070 	};
1071 	void *p;
1072 };
1073 
1074 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1075 {
1076 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1077 	int error;
1078 
1079 	/* We need to fit into seq->private pointer */
1080 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1081 
1082 	error = mutex_lock_interruptible(&input_mutex);
1083 	if (error) {
1084 		state->mutex_acquired = false;
1085 		return ERR_PTR(error);
1086 	}
1087 
1088 	state->mutex_acquired = true;
1089 
1090 	return seq_list_start(&input_dev_list, *pos);
1091 }
1092 
1093 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1094 {
1095 	return seq_list_next(v, &input_dev_list, pos);
1096 }
1097 
1098 static void input_seq_stop(struct seq_file *seq, void *v)
1099 {
1100 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1101 
1102 	if (state->mutex_acquired)
1103 		mutex_unlock(&input_mutex);
1104 }
1105 
1106 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1107 				   unsigned long *bitmap, int max)
1108 {
1109 	int i;
1110 	bool skip_empty = true;
1111 	char buf[18];
1112 
1113 	seq_printf(seq, "B: %s=", name);
1114 
1115 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1116 		if (input_bits_to_string(buf, sizeof(buf),
1117 					 bitmap[i], skip_empty)) {
1118 			skip_empty = false;
1119 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1120 		}
1121 	}
1122 
1123 	/*
1124 	 * If no output was produced print a single 0.
1125 	 */
1126 	if (skip_empty)
1127 		seq_puts(seq, "0");
1128 
1129 	seq_putc(seq, '\n');
1130 }
1131 
1132 static int input_devices_seq_show(struct seq_file *seq, void *v)
1133 {
1134 	struct input_dev *dev = container_of(v, struct input_dev, node);
1135 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1136 	struct input_handle *handle;
1137 
1138 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1139 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1140 
1141 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1142 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1143 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1144 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1145 	seq_printf(seq, "H: Handlers=");
1146 
1147 	list_for_each_entry(handle, &dev->h_list, d_node)
1148 		seq_printf(seq, "%s ", handle->name);
1149 	seq_putc(seq, '\n');
1150 
1151 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1152 
1153 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1154 	if (test_bit(EV_KEY, dev->evbit))
1155 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1156 	if (test_bit(EV_REL, dev->evbit))
1157 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1158 	if (test_bit(EV_ABS, dev->evbit))
1159 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1160 	if (test_bit(EV_MSC, dev->evbit))
1161 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1162 	if (test_bit(EV_LED, dev->evbit))
1163 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1164 	if (test_bit(EV_SND, dev->evbit))
1165 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1166 	if (test_bit(EV_FF, dev->evbit))
1167 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1168 	if (test_bit(EV_SW, dev->evbit))
1169 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1170 
1171 	seq_putc(seq, '\n');
1172 
1173 	kfree(path);
1174 	return 0;
1175 }
1176 
1177 static const struct seq_operations input_devices_seq_ops = {
1178 	.start	= input_devices_seq_start,
1179 	.next	= input_devices_seq_next,
1180 	.stop	= input_seq_stop,
1181 	.show	= input_devices_seq_show,
1182 };
1183 
1184 static int input_proc_devices_open(struct inode *inode, struct file *file)
1185 {
1186 	return seq_open(file, &input_devices_seq_ops);
1187 }
1188 
1189 static const struct file_operations input_devices_fileops = {
1190 	.owner		= THIS_MODULE,
1191 	.open		= input_proc_devices_open,
1192 	.poll		= input_proc_devices_poll,
1193 	.read		= seq_read,
1194 	.llseek		= seq_lseek,
1195 	.release	= seq_release,
1196 };
1197 
1198 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1199 {
1200 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1201 	int error;
1202 
1203 	/* We need to fit into seq->private pointer */
1204 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1205 
1206 	error = mutex_lock_interruptible(&input_mutex);
1207 	if (error) {
1208 		state->mutex_acquired = false;
1209 		return ERR_PTR(error);
1210 	}
1211 
1212 	state->mutex_acquired = true;
1213 	state->pos = *pos;
1214 
1215 	return seq_list_start(&input_handler_list, *pos);
1216 }
1217 
1218 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1219 {
1220 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1221 
1222 	state->pos = *pos + 1;
1223 	return seq_list_next(v, &input_handler_list, pos);
1224 }
1225 
1226 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1227 {
1228 	struct input_handler *handler = container_of(v, struct input_handler, node);
1229 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1230 
1231 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1232 	if (handler->filter)
1233 		seq_puts(seq, " (filter)");
1234 	if (handler->legacy_minors)
1235 		seq_printf(seq, " Minor=%d", handler->minor);
1236 	seq_putc(seq, '\n');
1237 
1238 	return 0;
1239 }
1240 
1241 static const struct seq_operations input_handlers_seq_ops = {
1242 	.start	= input_handlers_seq_start,
1243 	.next	= input_handlers_seq_next,
1244 	.stop	= input_seq_stop,
1245 	.show	= input_handlers_seq_show,
1246 };
1247 
1248 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1249 {
1250 	return seq_open(file, &input_handlers_seq_ops);
1251 }
1252 
1253 static const struct file_operations input_handlers_fileops = {
1254 	.owner		= THIS_MODULE,
1255 	.open		= input_proc_handlers_open,
1256 	.read		= seq_read,
1257 	.llseek		= seq_lseek,
1258 	.release	= seq_release,
1259 };
1260 
1261 static int __init input_proc_init(void)
1262 {
1263 	struct proc_dir_entry *entry;
1264 
1265 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1266 	if (!proc_bus_input_dir)
1267 		return -ENOMEM;
1268 
1269 	entry = proc_create("devices", 0, proc_bus_input_dir,
1270 			    &input_devices_fileops);
1271 	if (!entry)
1272 		goto fail1;
1273 
1274 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1275 			    &input_handlers_fileops);
1276 	if (!entry)
1277 		goto fail2;
1278 
1279 	return 0;
1280 
1281  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1282  fail1: remove_proc_entry("bus/input", NULL);
1283 	return -ENOMEM;
1284 }
1285 
1286 static void input_proc_exit(void)
1287 {
1288 	remove_proc_entry("devices", proc_bus_input_dir);
1289 	remove_proc_entry("handlers", proc_bus_input_dir);
1290 	remove_proc_entry("bus/input", NULL);
1291 }
1292 
1293 #else /* !CONFIG_PROC_FS */
1294 static inline void input_wakeup_procfs_readers(void) { }
1295 static inline int input_proc_init(void) { return 0; }
1296 static inline void input_proc_exit(void) { }
1297 #endif
1298 
1299 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1300 static ssize_t input_dev_show_##name(struct device *dev,		\
1301 				     struct device_attribute *attr,	\
1302 				     char *buf)				\
1303 {									\
1304 	struct input_dev *input_dev = to_input_dev(dev);		\
1305 									\
1306 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1307 			 input_dev->name ? input_dev->name : "");	\
1308 }									\
1309 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1310 
1311 INPUT_DEV_STRING_ATTR_SHOW(name);
1312 INPUT_DEV_STRING_ATTR_SHOW(phys);
1313 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1314 
1315 static int input_print_modalias_bits(char *buf, int size,
1316 				     char name, unsigned long *bm,
1317 				     unsigned int min_bit, unsigned int max_bit)
1318 {
1319 	int len = 0, i;
1320 
1321 	len += snprintf(buf, max(size, 0), "%c", name);
1322 	for (i = min_bit; i < max_bit; i++)
1323 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1324 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1325 	return len;
1326 }
1327 
1328 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1329 				int add_cr)
1330 {
1331 	int len;
1332 
1333 	len = snprintf(buf, max(size, 0),
1334 		       "input:b%04Xv%04Xp%04Xe%04X-",
1335 		       id->id.bustype, id->id.vendor,
1336 		       id->id.product, id->id.version);
1337 
1338 	len += input_print_modalias_bits(buf + len, size - len,
1339 				'e', id->evbit, 0, EV_MAX);
1340 	len += input_print_modalias_bits(buf + len, size - len,
1341 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1342 	len += input_print_modalias_bits(buf + len, size - len,
1343 				'r', id->relbit, 0, REL_MAX);
1344 	len += input_print_modalias_bits(buf + len, size - len,
1345 				'a', id->absbit, 0, ABS_MAX);
1346 	len += input_print_modalias_bits(buf + len, size - len,
1347 				'm', id->mscbit, 0, MSC_MAX);
1348 	len += input_print_modalias_bits(buf + len, size - len,
1349 				'l', id->ledbit, 0, LED_MAX);
1350 	len += input_print_modalias_bits(buf + len, size - len,
1351 				's', id->sndbit, 0, SND_MAX);
1352 	len += input_print_modalias_bits(buf + len, size - len,
1353 				'f', id->ffbit, 0, FF_MAX);
1354 	len += input_print_modalias_bits(buf + len, size - len,
1355 				'w', id->swbit, 0, SW_MAX);
1356 
1357 	if (add_cr)
1358 		len += snprintf(buf + len, max(size - len, 0), "\n");
1359 
1360 	return len;
1361 }
1362 
1363 static ssize_t input_dev_show_modalias(struct device *dev,
1364 				       struct device_attribute *attr,
1365 				       char *buf)
1366 {
1367 	struct input_dev *id = to_input_dev(dev);
1368 	ssize_t len;
1369 
1370 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1371 
1372 	return min_t(int, len, PAGE_SIZE);
1373 }
1374 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1375 
1376 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1377 			      int max, int add_cr);
1378 
1379 static ssize_t input_dev_show_properties(struct device *dev,
1380 					 struct device_attribute *attr,
1381 					 char *buf)
1382 {
1383 	struct input_dev *input_dev = to_input_dev(dev);
1384 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1385 				     INPUT_PROP_MAX, true);
1386 	return min_t(int, len, PAGE_SIZE);
1387 }
1388 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1389 
1390 static struct attribute *input_dev_attrs[] = {
1391 	&dev_attr_name.attr,
1392 	&dev_attr_phys.attr,
1393 	&dev_attr_uniq.attr,
1394 	&dev_attr_modalias.attr,
1395 	&dev_attr_properties.attr,
1396 	NULL
1397 };
1398 
1399 static struct attribute_group input_dev_attr_group = {
1400 	.attrs	= input_dev_attrs,
1401 };
1402 
1403 #define INPUT_DEV_ID_ATTR(name)						\
1404 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1405 					struct device_attribute *attr,	\
1406 					char *buf)			\
1407 {									\
1408 	struct input_dev *input_dev = to_input_dev(dev);		\
1409 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1410 }									\
1411 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1412 
1413 INPUT_DEV_ID_ATTR(bustype);
1414 INPUT_DEV_ID_ATTR(vendor);
1415 INPUT_DEV_ID_ATTR(product);
1416 INPUT_DEV_ID_ATTR(version);
1417 
1418 static struct attribute *input_dev_id_attrs[] = {
1419 	&dev_attr_bustype.attr,
1420 	&dev_attr_vendor.attr,
1421 	&dev_attr_product.attr,
1422 	&dev_attr_version.attr,
1423 	NULL
1424 };
1425 
1426 static struct attribute_group input_dev_id_attr_group = {
1427 	.name	= "id",
1428 	.attrs	= input_dev_id_attrs,
1429 };
1430 
1431 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1432 			      int max, int add_cr)
1433 {
1434 	int i;
1435 	int len = 0;
1436 	bool skip_empty = true;
1437 
1438 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1439 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1440 					    bitmap[i], skip_empty);
1441 		if (len) {
1442 			skip_empty = false;
1443 			if (i > 0)
1444 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1445 		}
1446 	}
1447 
1448 	/*
1449 	 * If no output was produced print a single 0.
1450 	 */
1451 	if (len == 0)
1452 		len = snprintf(buf, buf_size, "%d", 0);
1453 
1454 	if (add_cr)
1455 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1456 
1457 	return len;
1458 }
1459 
1460 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1461 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1462 				       struct device_attribute *attr,	\
1463 				       char *buf)			\
1464 {									\
1465 	struct input_dev *input_dev = to_input_dev(dev);		\
1466 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1467 				     input_dev->bm##bit, ev##_MAX,	\
1468 				     true);				\
1469 	return min_t(int, len, PAGE_SIZE);				\
1470 }									\
1471 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1472 
1473 INPUT_DEV_CAP_ATTR(EV, ev);
1474 INPUT_DEV_CAP_ATTR(KEY, key);
1475 INPUT_DEV_CAP_ATTR(REL, rel);
1476 INPUT_DEV_CAP_ATTR(ABS, abs);
1477 INPUT_DEV_CAP_ATTR(MSC, msc);
1478 INPUT_DEV_CAP_ATTR(LED, led);
1479 INPUT_DEV_CAP_ATTR(SND, snd);
1480 INPUT_DEV_CAP_ATTR(FF, ff);
1481 INPUT_DEV_CAP_ATTR(SW, sw);
1482 
1483 static struct attribute *input_dev_caps_attrs[] = {
1484 	&dev_attr_ev.attr,
1485 	&dev_attr_key.attr,
1486 	&dev_attr_rel.attr,
1487 	&dev_attr_abs.attr,
1488 	&dev_attr_msc.attr,
1489 	&dev_attr_led.attr,
1490 	&dev_attr_snd.attr,
1491 	&dev_attr_ff.attr,
1492 	&dev_attr_sw.attr,
1493 	NULL
1494 };
1495 
1496 static struct attribute_group input_dev_caps_attr_group = {
1497 	.name	= "capabilities",
1498 	.attrs	= input_dev_caps_attrs,
1499 };
1500 
1501 static const struct attribute_group *input_dev_attr_groups[] = {
1502 	&input_dev_attr_group,
1503 	&input_dev_id_attr_group,
1504 	&input_dev_caps_attr_group,
1505 	NULL
1506 };
1507 
1508 static void input_dev_release(struct device *device)
1509 {
1510 	struct input_dev *dev = to_input_dev(device);
1511 
1512 	input_ff_destroy(dev);
1513 	input_mt_destroy_slots(dev);
1514 	kfree(dev->absinfo);
1515 	kfree(dev->vals);
1516 	kfree(dev);
1517 
1518 	module_put(THIS_MODULE);
1519 }
1520 
1521 /*
1522  * Input uevent interface - loading event handlers based on
1523  * device bitfields.
1524  */
1525 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1526 				   const char *name, unsigned long *bitmap, int max)
1527 {
1528 	int len;
1529 
1530 	if (add_uevent_var(env, "%s", name))
1531 		return -ENOMEM;
1532 
1533 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1534 				 sizeof(env->buf) - env->buflen,
1535 				 bitmap, max, false);
1536 	if (len >= (sizeof(env->buf) - env->buflen))
1537 		return -ENOMEM;
1538 
1539 	env->buflen += len;
1540 	return 0;
1541 }
1542 
1543 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1544 					 struct input_dev *dev)
1545 {
1546 	int len;
1547 
1548 	if (add_uevent_var(env, "MODALIAS="))
1549 		return -ENOMEM;
1550 
1551 	len = input_print_modalias(&env->buf[env->buflen - 1],
1552 				   sizeof(env->buf) - env->buflen,
1553 				   dev, 0);
1554 	if (len >= (sizeof(env->buf) - env->buflen))
1555 		return -ENOMEM;
1556 
1557 	env->buflen += len;
1558 	return 0;
1559 }
1560 
1561 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1562 	do {								\
1563 		int err = add_uevent_var(env, fmt, val);		\
1564 		if (err)						\
1565 			return err;					\
1566 	} while (0)
1567 
1568 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1569 	do {								\
1570 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1571 		if (err)						\
1572 			return err;					\
1573 	} while (0)
1574 
1575 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1576 	do {								\
1577 		int err = input_add_uevent_modalias_var(env, dev);	\
1578 		if (err)						\
1579 			return err;					\
1580 	} while (0)
1581 
1582 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1583 {
1584 	struct input_dev *dev = to_input_dev(device);
1585 
1586 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1587 				dev->id.bustype, dev->id.vendor,
1588 				dev->id.product, dev->id.version);
1589 	if (dev->name)
1590 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1591 	if (dev->phys)
1592 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1593 	if (dev->uniq)
1594 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1595 
1596 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1597 
1598 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1599 	if (test_bit(EV_KEY, dev->evbit))
1600 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1601 	if (test_bit(EV_REL, dev->evbit))
1602 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1603 	if (test_bit(EV_ABS, dev->evbit))
1604 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1605 	if (test_bit(EV_MSC, dev->evbit))
1606 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1607 	if (test_bit(EV_LED, dev->evbit))
1608 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1609 	if (test_bit(EV_SND, dev->evbit))
1610 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1611 	if (test_bit(EV_FF, dev->evbit))
1612 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1613 	if (test_bit(EV_SW, dev->evbit))
1614 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1615 
1616 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1617 
1618 	return 0;
1619 }
1620 
1621 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1622 	do {								\
1623 		int i;							\
1624 		bool active;						\
1625 									\
1626 		if (!test_bit(EV_##type, dev->evbit))			\
1627 			break;						\
1628 									\
1629 		for (i = 0; i < type##_MAX; i++) {			\
1630 			if (!test_bit(i, dev->bits##bit))		\
1631 				continue;				\
1632 									\
1633 			active = test_bit(i, dev->bits);		\
1634 			if (!active && !on)				\
1635 				continue;				\
1636 									\
1637 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1638 		}							\
1639 	} while (0)
1640 
1641 static void input_dev_toggle(struct input_dev *dev, bool activate)
1642 {
1643 	if (!dev->event)
1644 		return;
1645 
1646 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1647 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1648 
1649 	if (activate && test_bit(EV_REP, dev->evbit)) {
1650 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1651 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1652 	}
1653 }
1654 
1655 /**
1656  * input_reset_device() - reset/restore the state of input device
1657  * @dev: input device whose state needs to be reset
1658  *
1659  * This function tries to reset the state of an opened input device and
1660  * bring internal state and state if the hardware in sync with each other.
1661  * We mark all keys as released, restore LED state, repeat rate, etc.
1662  */
1663 void input_reset_device(struct input_dev *dev)
1664 {
1665 	unsigned long flags;
1666 
1667 	mutex_lock(&dev->mutex);
1668 	spin_lock_irqsave(&dev->event_lock, flags);
1669 
1670 	input_dev_toggle(dev, true);
1671 	input_dev_release_keys(dev);
1672 
1673 	spin_unlock_irqrestore(&dev->event_lock, flags);
1674 	mutex_unlock(&dev->mutex);
1675 }
1676 EXPORT_SYMBOL(input_reset_device);
1677 
1678 #ifdef CONFIG_PM_SLEEP
1679 static int input_dev_suspend(struct device *dev)
1680 {
1681 	struct input_dev *input_dev = to_input_dev(dev);
1682 
1683 	spin_lock_irq(&input_dev->event_lock);
1684 
1685 	/*
1686 	 * Keys that are pressed now are unlikely to be
1687 	 * still pressed when we resume.
1688 	 */
1689 	input_dev_release_keys(input_dev);
1690 
1691 	/* Turn off LEDs and sounds, if any are active. */
1692 	input_dev_toggle(input_dev, false);
1693 
1694 	spin_unlock_irq(&input_dev->event_lock);
1695 
1696 	return 0;
1697 }
1698 
1699 static int input_dev_resume(struct device *dev)
1700 {
1701 	struct input_dev *input_dev = to_input_dev(dev);
1702 
1703 	spin_lock_irq(&input_dev->event_lock);
1704 
1705 	/* Restore state of LEDs and sounds, if any were active. */
1706 	input_dev_toggle(input_dev, true);
1707 
1708 	spin_unlock_irq(&input_dev->event_lock);
1709 
1710 	return 0;
1711 }
1712 
1713 static int input_dev_freeze(struct device *dev)
1714 {
1715 	struct input_dev *input_dev = to_input_dev(dev);
1716 
1717 	spin_lock_irq(&input_dev->event_lock);
1718 
1719 	/*
1720 	 * Keys that are pressed now are unlikely to be
1721 	 * still pressed when we resume.
1722 	 */
1723 	input_dev_release_keys(input_dev);
1724 
1725 	spin_unlock_irq(&input_dev->event_lock);
1726 
1727 	return 0;
1728 }
1729 
1730 static int input_dev_poweroff(struct device *dev)
1731 {
1732 	struct input_dev *input_dev = to_input_dev(dev);
1733 
1734 	spin_lock_irq(&input_dev->event_lock);
1735 
1736 	/* Turn off LEDs and sounds, if any are active. */
1737 	input_dev_toggle(input_dev, false);
1738 
1739 	spin_unlock_irq(&input_dev->event_lock);
1740 
1741 	return 0;
1742 }
1743 
1744 static const struct dev_pm_ops input_dev_pm_ops = {
1745 	.suspend	= input_dev_suspend,
1746 	.resume		= input_dev_resume,
1747 	.freeze		= input_dev_freeze,
1748 	.poweroff	= input_dev_poweroff,
1749 	.restore	= input_dev_resume,
1750 };
1751 #endif /* CONFIG_PM */
1752 
1753 static struct device_type input_dev_type = {
1754 	.groups		= input_dev_attr_groups,
1755 	.release	= input_dev_release,
1756 	.uevent		= input_dev_uevent,
1757 #ifdef CONFIG_PM_SLEEP
1758 	.pm		= &input_dev_pm_ops,
1759 #endif
1760 };
1761 
1762 static char *input_devnode(struct device *dev, umode_t *mode)
1763 {
1764 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1765 }
1766 
1767 struct class input_class = {
1768 	.name		= "input",
1769 	.devnode	= input_devnode,
1770 };
1771 EXPORT_SYMBOL_GPL(input_class);
1772 
1773 /**
1774  * input_allocate_device - allocate memory for new input device
1775  *
1776  * Returns prepared struct input_dev or %NULL.
1777  *
1778  * NOTE: Use input_free_device() to free devices that have not been
1779  * registered; input_unregister_device() should be used for already
1780  * registered devices.
1781  */
1782 struct input_dev *input_allocate_device(void)
1783 {
1784 	static atomic_t input_no = ATOMIC_INIT(-1);
1785 	struct input_dev *dev;
1786 
1787 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1788 	if (dev) {
1789 		dev->dev.type = &input_dev_type;
1790 		dev->dev.class = &input_class;
1791 		device_initialize(&dev->dev);
1792 		mutex_init(&dev->mutex);
1793 		spin_lock_init(&dev->event_lock);
1794 		init_timer(&dev->timer);
1795 		INIT_LIST_HEAD(&dev->h_list);
1796 		INIT_LIST_HEAD(&dev->node);
1797 
1798 		dev_set_name(&dev->dev, "input%lu",
1799 			     (unsigned long)atomic_inc_return(&input_no));
1800 
1801 		__module_get(THIS_MODULE);
1802 	}
1803 
1804 	return dev;
1805 }
1806 EXPORT_SYMBOL(input_allocate_device);
1807 
1808 struct input_devres {
1809 	struct input_dev *input;
1810 };
1811 
1812 static int devm_input_device_match(struct device *dev, void *res, void *data)
1813 {
1814 	struct input_devres *devres = res;
1815 
1816 	return devres->input == data;
1817 }
1818 
1819 static void devm_input_device_release(struct device *dev, void *res)
1820 {
1821 	struct input_devres *devres = res;
1822 	struct input_dev *input = devres->input;
1823 
1824 	dev_dbg(dev, "%s: dropping reference to %s\n",
1825 		__func__, dev_name(&input->dev));
1826 	input_put_device(input);
1827 }
1828 
1829 /**
1830  * devm_input_allocate_device - allocate managed input device
1831  * @dev: device owning the input device being created
1832  *
1833  * Returns prepared struct input_dev or %NULL.
1834  *
1835  * Managed input devices do not need to be explicitly unregistered or
1836  * freed as it will be done automatically when owner device unbinds from
1837  * its driver (or binding fails). Once managed input device is allocated,
1838  * it is ready to be set up and registered in the same fashion as regular
1839  * input device. There are no special devm_input_device_[un]register()
1840  * variants, regular ones work with both managed and unmanaged devices,
1841  * should you need them. In most cases however, managed input device need
1842  * not be explicitly unregistered or freed.
1843  *
1844  * NOTE: the owner device is set up as parent of input device and users
1845  * should not override it.
1846  */
1847 struct input_dev *devm_input_allocate_device(struct device *dev)
1848 {
1849 	struct input_dev *input;
1850 	struct input_devres *devres;
1851 
1852 	devres = devres_alloc(devm_input_device_release,
1853 			      sizeof(struct input_devres), GFP_KERNEL);
1854 	if (!devres)
1855 		return NULL;
1856 
1857 	input = input_allocate_device();
1858 	if (!input) {
1859 		devres_free(devres);
1860 		return NULL;
1861 	}
1862 
1863 	input->dev.parent = dev;
1864 	input->devres_managed = true;
1865 
1866 	devres->input = input;
1867 	devres_add(dev, devres);
1868 
1869 	return input;
1870 }
1871 EXPORT_SYMBOL(devm_input_allocate_device);
1872 
1873 /**
1874  * input_free_device - free memory occupied by input_dev structure
1875  * @dev: input device to free
1876  *
1877  * This function should only be used if input_register_device()
1878  * was not called yet or if it failed. Once device was registered
1879  * use input_unregister_device() and memory will be freed once last
1880  * reference to the device is dropped.
1881  *
1882  * Device should be allocated by input_allocate_device().
1883  *
1884  * NOTE: If there are references to the input device then memory
1885  * will not be freed until last reference is dropped.
1886  */
1887 void input_free_device(struct input_dev *dev)
1888 {
1889 	if (dev) {
1890 		if (dev->devres_managed)
1891 			WARN_ON(devres_destroy(dev->dev.parent,
1892 						devm_input_device_release,
1893 						devm_input_device_match,
1894 						dev));
1895 		input_put_device(dev);
1896 	}
1897 }
1898 EXPORT_SYMBOL(input_free_device);
1899 
1900 /**
1901  * input_set_capability - mark device as capable of a certain event
1902  * @dev: device that is capable of emitting or accepting event
1903  * @type: type of the event (EV_KEY, EV_REL, etc...)
1904  * @code: event code
1905  *
1906  * In addition to setting up corresponding bit in appropriate capability
1907  * bitmap the function also adjusts dev->evbit.
1908  */
1909 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1910 {
1911 	switch (type) {
1912 	case EV_KEY:
1913 		__set_bit(code, dev->keybit);
1914 		break;
1915 
1916 	case EV_REL:
1917 		__set_bit(code, dev->relbit);
1918 		break;
1919 
1920 	case EV_ABS:
1921 		input_alloc_absinfo(dev);
1922 		if (!dev->absinfo)
1923 			return;
1924 
1925 		__set_bit(code, dev->absbit);
1926 		break;
1927 
1928 	case EV_MSC:
1929 		__set_bit(code, dev->mscbit);
1930 		break;
1931 
1932 	case EV_SW:
1933 		__set_bit(code, dev->swbit);
1934 		break;
1935 
1936 	case EV_LED:
1937 		__set_bit(code, dev->ledbit);
1938 		break;
1939 
1940 	case EV_SND:
1941 		__set_bit(code, dev->sndbit);
1942 		break;
1943 
1944 	case EV_FF:
1945 		__set_bit(code, dev->ffbit);
1946 		break;
1947 
1948 	case EV_PWR:
1949 		/* do nothing */
1950 		break;
1951 
1952 	default:
1953 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1954 		       type, code);
1955 		dump_stack();
1956 		return;
1957 	}
1958 
1959 	__set_bit(type, dev->evbit);
1960 }
1961 EXPORT_SYMBOL(input_set_capability);
1962 
1963 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1964 {
1965 	int mt_slots;
1966 	int i;
1967 	unsigned int events;
1968 
1969 	if (dev->mt) {
1970 		mt_slots = dev->mt->num_slots;
1971 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1972 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1973 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1974 		mt_slots = clamp(mt_slots, 2, 32);
1975 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1976 		mt_slots = 2;
1977 	} else {
1978 		mt_slots = 0;
1979 	}
1980 
1981 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1982 
1983 	if (test_bit(EV_ABS, dev->evbit)) {
1984 		for (i = 0; i < ABS_CNT; i++) {
1985 			if (test_bit(i, dev->absbit)) {
1986 				if (input_is_mt_axis(i))
1987 					events += mt_slots;
1988 				else
1989 					events++;
1990 			}
1991 		}
1992 	}
1993 
1994 	if (test_bit(EV_REL, dev->evbit)) {
1995 		for (i = 0; i < REL_CNT; i++)
1996 			if (test_bit(i, dev->relbit))
1997 				events++;
1998 	}
1999 
2000 	/* Make room for KEY and MSC events */
2001 	events += 7;
2002 
2003 	return events;
2004 }
2005 
2006 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2007 	do {								\
2008 		if (!test_bit(EV_##type, dev->evbit))			\
2009 			memset(dev->bits##bit, 0,			\
2010 				sizeof(dev->bits##bit));		\
2011 	} while (0)
2012 
2013 static void input_cleanse_bitmasks(struct input_dev *dev)
2014 {
2015 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2016 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2017 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2018 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2019 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2020 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2021 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2022 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2023 }
2024 
2025 static void __input_unregister_device(struct input_dev *dev)
2026 {
2027 	struct input_handle *handle, *next;
2028 
2029 	input_disconnect_device(dev);
2030 
2031 	mutex_lock(&input_mutex);
2032 
2033 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2034 		handle->handler->disconnect(handle);
2035 	WARN_ON(!list_empty(&dev->h_list));
2036 
2037 	del_timer_sync(&dev->timer);
2038 	list_del_init(&dev->node);
2039 
2040 	input_wakeup_procfs_readers();
2041 
2042 	mutex_unlock(&input_mutex);
2043 
2044 	device_del(&dev->dev);
2045 }
2046 
2047 static void devm_input_device_unregister(struct device *dev, void *res)
2048 {
2049 	struct input_devres *devres = res;
2050 	struct input_dev *input = devres->input;
2051 
2052 	dev_dbg(dev, "%s: unregistering device %s\n",
2053 		__func__, dev_name(&input->dev));
2054 	__input_unregister_device(input);
2055 }
2056 
2057 /**
2058  * input_register_device - register device with input core
2059  * @dev: device to be registered
2060  *
2061  * This function registers device with input core. The device must be
2062  * allocated with input_allocate_device() and all it's capabilities
2063  * set up before registering.
2064  * If function fails the device must be freed with input_free_device().
2065  * Once device has been successfully registered it can be unregistered
2066  * with input_unregister_device(); input_free_device() should not be
2067  * called in this case.
2068  *
2069  * Note that this function is also used to register managed input devices
2070  * (ones allocated with devm_input_allocate_device()). Such managed input
2071  * devices need not be explicitly unregistered or freed, their tear down
2072  * is controlled by the devres infrastructure. It is also worth noting
2073  * that tear down of managed input devices is internally a 2-step process:
2074  * registered managed input device is first unregistered, but stays in
2075  * memory and can still handle input_event() calls (although events will
2076  * not be delivered anywhere). The freeing of managed input device will
2077  * happen later, when devres stack is unwound to the point where device
2078  * allocation was made.
2079  */
2080 int input_register_device(struct input_dev *dev)
2081 {
2082 	struct input_devres *devres = NULL;
2083 	struct input_handler *handler;
2084 	unsigned int packet_size;
2085 	const char *path;
2086 	int error;
2087 
2088 	if (dev->devres_managed) {
2089 		devres = devres_alloc(devm_input_device_unregister,
2090 				      sizeof(struct input_devres), GFP_KERNEL);
2091 		if (!devres)
2092 			return -ENOMEM;
2093 
2094 		devres->input = dev;
2095 	}
2096 
2097 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2098 	__set_bit(EV_SYN, dev->evbit);
2099 
2100 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2101 	__clear_bit(KEY_RESERVED, dev->keybit);
2102 
2103 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2104 	input_cleanse_bitmasks(dev);
2105 
2106 	packet_size = input_estimate_events_per_packet(dev);
2107 	if (dev->hint_events_per_packet < packet_size)
2108 		dev->hint_events_per_packet = packet_size;
2109 
2110 	dev->max_vals = dev->hint_events_per_packet + 2;
2111 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2112 	if (!dev->vals) {
2113 		error = -ENOMEM;
2114 		goto err_devres_free;
2115 	}
2116 
2117 	/*
2118 	 * If delay and period are pre-set by the driver, then autorepeating
2119 	 * is handled by the driver itself and we don't do it in input.c.
2120 	 */
2121 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2122 		dev->timer.data = (long) dev;
2123 		dev->timer.function = input_repeat_key;
2124 		dev->rep[REP_DELAY] = 250;
2125 		dev->rep[REP_PERIOD] = 33;
2126 	}
2127 
2128 	if (!dev->getkeycode)
2129 		dev->getkeycode = input_default_getkeycode;
2130 
2131 	if (!dev->setkeycode)
2132 		dev->setkeycode = input_default_setkeycode;
2133 
2134 	error = device_add(&dev->dev);
2135 	if (error)
2136 		goto err_free_vals;
2137 
2138 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2139 	pr_info("%s as %s\n",
2140 		dev->name ? dev->name : "Unspecified device",
2141 		path ? path : "N/A");
2142 	kfree(path);
2143 
2144 	error = mutex_lock_interruptible(&input_mutex);
2145 	if (error)
2146 		goto err_device_del;
2147 
2148 	list_add_tail(&dev->node, &input_dev_list);
2149 
2150 	list_for_each_entry(handler, &input_handler_list, node)
2151 		input_attach_handler(dev, handler);
2152 
2153 	input_wakeup_procfs_readers();
2154 
2155 	mutex_unlock(&input_mutex);
2156 
2157 	if (dev->devres_managed) {
2158 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2159 			__func__, dev_name(&dev->dev));
2160 		devres_add(dev->dev.parent, devres);
2161 	}
2162 	return 0;
2163 
2164 err_device_del:
2165 	device_del(&dev->dev);
2166 err_free_vals:
2167 	kfree(dev->vals);
2168 	dev->vals = NULL;
2169 err_devres_free:
2170 	devres_free(devres);
2171 	return error;
2172 }
2173 EXPORT_SYMBOL(input_register_device);
2174 
2175 /**
2176  * input_unregister_device - unregister previously registered device
2177  * @dev: device to be unregistered
2178  *
2179  * This function unregisters an input device. Once device is unregistered
2180  * the caller should not try to access it as it may get freed at any moment.
2181  */
2182 void input_unregister_device(struct input_dev *dev)
2183 {
2184 	if (dev->devres_managed) {
2185 		WARN_ON(devres_destroy(dev->dev.parent,
2186 					devm_input_device_unregister,
2187 					devm_input_device_match,
2188 					dev));
2189 		__input_unregister_device(dev);
2190 		/*
2191 		 * We do not do input_put_device() here because it will be done
2192 		 * when 2nd devres fires up.
2193 		 */
2194 	} else {
2195 		__input_unregister_device(dev);
2196 		input_put_device(dev);
2197 	}
2198 }
2199 EXPORT_SYMBOL(input_unregister_device);
2200 
2201 /**
2202  * input_register_handler - register a new input handler
2203  * @handler: handler to be registered
2204  *
2205  * This function registers a new input handler (interface) for input
2206  * devices in the system and attaches it to all input devices that
2207  * are compatible with the handler.
2208  */
2209 int input_register_handler(struct input_handler *handler)
2210 {
2211 	struct input_dev *dev;
2212 	int error;
2213 
2214 	error = mutex_lock_interruptible(&input_mutex);
2215 	if (error)
2216 		return error;
2217 
2218 	INIT_LIST_HEAD(&handler->h_list);
2219 
2220 	list_add_tail(&handler->node, &input_handler_list);
2221 
2222 	list_for_each_entry(dev, &input_dev_list, node)
2223 		input_attach_handler(dev, handler);
2224 
2225 	input_wakeup_procfs_readers();
2226 
2227 	mutex_unlock(&input_mutex);
2228 	return 0;
2229 }
2230 EXPORT_SYMBOL(input_register_handler);
2231 
2232 /**
2233  * input_unregister_handler - unregisters an input handler
2234  * @handler: handler to be unregistered
2235  *
2236  * This function disconnects a handler from its input devices and
2237  * removes it from lists of known handlers.
2238  */
2239 void input_unregister_handler(struct input_handler *handler)
2240 {
2241 	struct input_handle *handle, *next;
2242 
2243 	mutex_lock(&input_mutex);
2244 
2245 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2246 		handler->disconnect(handle);
2247 	WARN_ON(!list_empty(&handler->h_list));
2248 
2249 	list_del_init(&handler->node);
2250 
2251 	input_wakeup_procfs_readers();
2252 
2253 	mutex_unlock(&input_mutex);
2254 }
2255 EXPORT_SYMBOL(input_unregister_handler);
2256 
2257 /**
2258  * input_handler_for_each_handle - handle iterator
2259  * @handler: input handler to iterate
2260  * @data: data for the callback
2261  * @fn: function to be called for each handle
2262  *
2263  * Iterate over @bus's list of devices, and call @fn for each, passing
2264  * it @data and stop when @fn returns a non-zero value. The function is
2265  * using RCU to traverse the list and therefore may be usind in atonic
2266  * contexts. The @fn callback is invoked from RCU critical section and
2267  * thus must not sleep.
2268  */
2269 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2270 				  int (*fn)(struct input_handle *, void *))
2271 {
2272 	struct input_handle *handle;
2273 	int retval = 0;
2274 
2275 	rcu_read_lock();
2276 
2277 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2278 		retval = fn(handle, data);
2279 		if (retval)
2280 			break;
2281 	}
2282 
2283 	rcu_read_unlock();
2284 
2285 	return retval;
2286 }
2287 EXPORT_SYMBOL(input_handler_for_each_handle);
2288 
2289 /**
2290  * input_register_handle - register a new input handle
2291  * @handle: handle to register
2292  *
2293  * This function puts a new input handle onto device's
2294  * and handler's lists so that events can flow through
2295  * it once it is opened using input_open_device().
2296  *
2297  * This function is supposed to be called from handler's
2298  * connect() method.
2299  */
2300 int input_register_handle(struct input_handle *handle)
2301 {
2302 	struct input_handler *handler = handle->handler;
2303 	struct input_dev *dev = handle->dev;
2304 	int error;
2305 
2306 	/*
2307 	 * We take dev->mutex here to prevent race with
2308 	 * input_release_device().
2309 	 */
2310 	error = mutex_lock_interruptible(&dev->mutex);
2311 	if (error)
2312 		return error;
2313 
2314 	/*
2315 	 * Filters go to the head of the list, normal handlers
2316 	 * to the tail.
2317 	 */
2318 	if (handler->filter)
2319 		list_add_rcu(&handle->d_node, &dev->h_list);
2320 	else
2321 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2322 
2323 	mutex_unlock(&dev->mutex);
2324 
2325 	/*
2326 	 * Since we are supposed to be called from ->connect()
2327 	 * which is mutually exclusive with ->disconnect()
2328 	 * we can't be racing with input_unregister_handle()
2329 	 * and so separate lock is not needed here.
2330 	 */
2331 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2332 
2333 	if (handler->start)
2334 		handler->start(handle);
2335 
2336 	return 0;
2337 }
2338 EXPORT_SYMBOL(input_register_handle);
2339 
2340 /**
2341  * input_unregister_handle - unregister an input handle
2342  * @handle: handle to unregister
2343  *
2344  * This function removes input handle from device's
2345  * and handler's lists.
2346  *
2347  * This function is supposed to be called from handler's
2348  * disconnect() method.
2349  */
2350 void input_unregister_handle(struct input_handle *handle)
2351 {
2352 	struct input_dev *dev = handle->dev;
2353 
2354 	list_del_rcu(&handle->h_node);
2355 
2356 	/*
2357 	 * Take dev->mutex to prevent race with input_release_device().
2358 	 */
2359 	mutex_lock(&dev->mutex);
2360 	list_del_rcu(&handle->d_node);
2361 	mutex_unlock(&dev->mutex);
2362 
2363 	synchronize_rcu();
2364 }
2365 EXPORT_SYMBOL(input_unregister_handle);
2366 
2367 /**
2368  * input_get_new_minor - allocates a new input minor number
2369  * @legacy_base: beginning or the legacy range to be searched
2370  * @legacy_num: size of legacy range
2371  * @allow_dynamic: whether we can also take ID from the dynamic range
2372  *
2373  * This function allocates a new device minor for from input major namespace.
2374  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2375  * parameters and whether ID can be allocated from dynamic range if there are
2376  * no free IDs in legacy range.
2377  */
2378 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2379 			bool allow_dynamic)
2380 {
2381 	/*
2382 	 * This function should be called from input handler's ->connect()
2383 	 * methods, which are serialized with input_mutex, so no additional
2384 	 * locking is needed here.
2385 	 */
2386 	if (legacy_base >= 0) {
2387 		int minor = ida_simple_get(&input_ida,
2388 					   legacy_base,
2389 					   legacy_base + legacy_num,
2390 					   GFP_KERNEL);
2391 		if (minor >= 0 || !allow_dynamic)
2392 			return minor;
2393 	}
2394 
2395 	return ida_simple_get(&input_ida,
2396 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2397 			      GFP_KERNEL);
2398 }
2399 EXPORT_SYMBOL(input_get_new_minor);
2400 
2401 /**
2402  * input_free_minor - release previously allocated minor
2403  * @minor: minor to be released
2404  *
2405  * This function releases previously allocated input minor so that it can be
2406  * reused later.
2407  */
2408 void input_free_minor(unsigned int minor)
2409 {
2410 	ida_simple_remove(&input_ida, minor);
2411 }
2412 EXPORT_SYMBOL(input_free_minor);
2413 
2414 static int __init input_init(void)
2415 {
2416 	int err;
2417 
2418 	err = class_register(&input_class);
2419 	if (err) {
2420 		pr_err("unable to register input_dev class\n");
2421 		return err;
2422 	}
2423 
2424 	err = input_proc_init();
2425 	if (err)
2426 		goto fail1;
2427 
2428 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2429 				     INPUT_MAX_CHAR_DEVICES, "input");
2430 	if (err) {
2431 		pr_err("unable to register char major %d", INPUT_MAJOR);
2432 		goto fail2;
2433 	}
2434 
2435 	return 0;
2436 
2437  fail2:	input_proc_exit();
2438  fail1:	class_unregister(&input_class);
2439 	return err;
2440 }
2441 
2442 static void __exit input_exit(void)
2443 {
2444 	input_proc_exit();
2445 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2446 				 INPUT_MAX_CHAR_DEVICES);
2447 	class_unregister(&input_class);
2448 }
2449 
2450 subsys_initcall(input_init);
2451 module_exit(input_exit);
2452