1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #include <linux/init.h> 14 #include <linux/types.h> 15 #include <linux/input.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/random.h> 19 #include <linux/major.h> 20 #include <linux/proc_fs.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/device.h> 25 #include <linux/mutex.h> 26 #include <linux/rcupdate.h> 27 #include <linux/smp_lock.h> 28 #include "input-compat.h" 29 30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 31 MODULE_DESCRIPTION("Input core"); 32 MODULE_LICENSE("GPL"); 33 34 #define INPUT_DEVICES 256 35 36 static LIST_HEAD(input_dev_list); 37 static LIST_HEAD(input_handler_list); 38 39 /* 40 * input_mutex protects access to both input_dev_list and input_handler_list. 41 * This also causes input_[un]register_device and input_[un]register_handler 42 * be mutually exclusive which simplifies locking in drivers implementing 43 * input handlers. 44 */ 45 static DEFINE_MUTEX(input_mutex); 46 47 static struct input_handler *input_table[8]; 48 49 static inline int is_event_supported(unsigned int code, 50 unsigned long *bm, unsigned int max) 51 { 52 return code <= max && test_bit(code, bm); 53 } 54 55 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 56 { 57 if (fuzz) { 58 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 59 return old_val; 60 61 if (value > old_val - fuzz && value < old_val + fuzz) 62 return (old_val * 3 + value) / 4; 63 64 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 65 return (old_val + value) / 2; 66 } 67 68 return value; 69 } 70 71 /* 72 * Pass event first through all filters and then, if event has not been 73 * filtered out, through all open handles. This function is called with 74 * dev->event_lock held and interrupts disabled. 75 */ 76 static void input_pass_event(struct input_dev *dev, 77 unsigned int type, unsigned int code, int value) 78 { 79 struct input_handler *handler; 80 struct input_handle *handle; 81 82 rcu_read_lock(); 83 84 handle = rcu_dereference(dev->grab); 85 if (handle) 86 handle->handler->event(handle, type, code, value); 87 else { 88 bool filtered = false; 89 90 list_for_each_entry_rcu(handle, &dev->h_list, d_node) { 91 if (!handle->open) 92 continue; 93 94 handler = handle->handler; 95 if (!handler->filter) { 96 if (filtered) 97 break; 98 99 handler->event(handle, type, code, value); 100 101 } else if (handler->filter(handle, type, code, value)) 102 filtered = true; 103 } 104 } 105 106 rcu_read_unlock(); 107 } 108 109 /* 110 * Generate software autorepeat event. Note that we take 111 * dev->event_lock here to avoid racing with input_event 112 * which may cause keys get "stuck". 113 */ 114 static void input_repeat_key(unsigned long data) 115 { 116 struct input_dev *dev = (void *) data; 117 unsigned long flags; 118 119 spin_lock_irqsave(&dev->event_lock, flags); 120 121 if (test_bit(dev->repeat_key, dev->key) && 122 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 123 124 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 125 126 if (dev->sync) { 127 /* 128 * Only send SYN_REPORT if we are not in a middle 129 * of driver parsing a new hardware packet. 130 * Otherwise assume that the driver will send 131 * SYN_REPORT once it's done. 132 */ 133 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 134 } 135 136 if (dev->rep[REP_PERIOD]) 137 mod_timer(&dev->timer, jiffies + 138 msecs_to_jiffies(dev->rep[REP_PERIOD])); 139 } 140 141 spin_unlock_irqrestore(&dev->event_lock, flags); 142 } 143 144 static void input_start_autorepeat(struct input_dev *dev, int code) 145 { 146 if (test_bit(EV_REP, dev->evbit) && 147 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 148 dev->timer.data) { 149 dev->repeat_key = code; 150 mod_timer(&dev->timer, 151 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 152 } 153 } 154 155 static void input_stop_autorepeat(struct input_dev *dev) 156 { 157 del_timer(&dev->timer); 158 } 159 160 #define INPUT_IGNORE_EVENT 0 161 #define INPUT_PASS_TO_HANDLERS 1 162 #define INPUT_PASS_TO_DEVICE 2 163 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 164 165 static int input_handle_abs_event(struct input_dev *dev, 166 unsigned int code, int *pval) 167 { 168 bool is_mt_event; 169 int *pold; 170 171 if (code == ABS_MT_SLOT) { 172 /* 173 * "Stage" the event; we'll flush it later, when we 174 * get actiual touch data. 175 */ 176 if (*pval >= 0 && *pval < dev->mtsize) 177 dev->slot = *pval; 178 179 return INPUT_IGNORE_EVENT; 180 } 181 182 is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST; 183 184 if (!is_mt_event) { 185 pold = &dev->absinfo[code].value; 186 } else if (dev->mt) { 187 struct input_mt_slot *mtslot = &dev->mt[dev->slot]; 188 pold = &mtslot->abs[code - ABS_MT_FIRST]; 189 } else { 190 /* 191 * Bypass filtering for multitouch events when 192 * not employing slots. 193 */ 194 pold = NULL; 195 } 196 197 if (pold) { 198 *pval = input_defuzz_abs_event(*pval, *pold, 199 dev->absinfo[code].fuzz); 200 if (*pold == *pval) 201 return INPUT_IGNORE_EVENT; 202 203 *pold = *pval; 204 } 205 206 /* Flush pending "slot" event */ 207 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 208 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot); 209 input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot); 210 } 211 212 return INPUT_PASS_TO_HANDLERS; 213 } 214 215 static void input_handle_event(struct input_dev *dev, 216 unsigned int type, unsigned int code, int value) 217 { 218 int disposition = INPUT_IGNORE_EVENT; 219 220 switch (type) { 221 222 case EV_SYN: 223 switch (code) { 224 case SYN_CONFIG: 225 disposition = INPUT_PASS_TO_ALL; 226 break; 227 228 case SYN_REPORT: 229 if (!dev->sync) { 230 dev->sync = true; 231 disposition = INPUT_PASS_TO_HANDLERS; 232 } 233 break; 234 case SYN_MT_REPORT: 235 dev->sync = false; 236 disposition = INPUT_PASS_TO_HANDLERS; 237 break; 238 } 239 break; 240 241 case EV_KEY: 242 if (is_event_supported(code, dev->keybit, KEY_MAX) && 243 !!test_bit(code, dev->key) != value) { 244 245 if (value != 2) { 246 __change_bit(code, dev->key); 247 if (value) 248 input_start_autorepeat(dev, code); 249 else 250 input_stop_autorepeat(dev); 251 } 252 253 disposition = INPUT_PASS_TO_HANDLERS; 254 } 255 break; 256 257 case EV_SW: 258 if (is_event_supported(code, dev->swbit, SW_MAX) && 259 !!test_bit(code, dev->sw) != value) { 260 261 __change_bit(code, dev->sw); 262 disposition = INPUT_PASS_TO_HANDLERS; 263 } 264 break; 265 266 case EV_ABS: 267 if (is_event_supported(code, dev->absbit, ABS_MAX)) 268 disposition = input_handle_abs_event(dev, code, &value); 269 270 break; 271 272 case EV_REL: 273 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 274 disposition = INPUT_PASS_TO_HANDLERS; 275 276 break; 277 278 case EV_MSC: 279 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 280 disposition = INPUT_PASS_TO_ALL; 281 282 break; 283 284 case EV_LED: 285 if (is_event_supported(code, dev->ledbit, LED_MAX) && 286 !!test_bit(code, dev->led) != value) { 287 288 __change_bit(code, dev->led); 289 disposition = INPUT_PASS_TO_ALL; 290 } 291 break; 292 293 case EV_SND: 294 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 295 296 if (!!test_bit(code, dev->snd) != !!value) 297 __change_bit(code, dev->snd); 298 disposition = INPUT_PASS_TO_ALL; 299 } 300 break; 301 302 case EV_REP: 303 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 304 dev->rep[code] = value; 305 disposition = INPUT_PASS_TO_ALL; 306 } 307 break; 308 309 case EV_FF: 310 if (value >= 0) 311 disposition = INPUT_PASS_TO_ALL; 312 break; 313 314 case EV_PWR: 315 disposition = INPUT_PASS_TO_ALL; 316 break; 317 } 318 319 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 320 dev->sync = false; 321 322 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 323 dev->event(dev, type, code, value); 324 325 if (disposition & INPUT_PASS_TO_HANDLERS) 326 input_pass_event(dev, type, code, value); 327 } 328 329 /** 330 * input_event() - report new input event 331 * @dev: device that generated the event 332 * @type: type of the event 333 * @code: event code 334 * @value: value of the event 335 * 336 * This function should be used by drivers implementing various input 337 * devices to report input events. See also input_inject_event(). 338 * 339 * NOTE: input_event() may be safely used right after input device was 340 * allocated with input_allocate_device(), even before it is registered 341 * with input_register_device(), but the event will not reach any of the 342 * input handlers. Such early invocation of input_event() may be used 343 * to 'seed' initial state of a switch or initial position of absolute 344 * axis, etc. 345 */ 346 void input_event(struct input_dev *dev, 347 unsigned int type, unsigned int code, int value) 348 { 349 unsigned long flags; 350 351 if (is_event_supported(type, dev->evbit, EV_MAX)) { 352 353 spin_lock_irqsave(&dev->event_lock, flags); 354 add_input_randomness(type, code, value); 355 input_handle_event(dev, type, code, value); 356 spin_unlock_irqrestore(&dev->event_lock, flags); 357 } 358 } 359 EXPORT_SYMBOL(input_event); 360 361 /** 362 * input_inject_event() - send input event from input handler 363 * @handle: input handle to send event through 364 * @type: type of the event 365 * @code: event code 366 * @value: value of the event 367 * 368 * Similar to input_event() but will ignore event if device is 369 * "grabbed" and handle injecting event is not the one that owns 370 * the device. 371 */ 372 void input_inject_event(struct input_handle *handle, 373 unsigned int type, unsigned int code, int value) 374 { 375 struct input_dev *dev = handle->dev; 376 struct input_handle *grab; 377 unsigned long flags; 378 379 if (is_event_supported(type, dev->evbit, EV_MAX)) { 380 spin_lock_irqsave(&dev->event_lock, flags); 381 382 rcu_read_lock(); 383 grab = rcu_dereference(dev->grab); 384 if (!grab || grab == handle) 385 input_handle_event(dev, type, code, value); 386 rcu_read_unlock(); 387 388 spin_unlock_irqrestore(&dev->event_lock, flags); 389 } 390 } 391 EXPORT_SYMBOL(input_inject_event); 392 393 /** 394 * input_alloc_absinfo - allocates array of input_absinfo structs 395 * @dev: the input device emitting absolute events 396 * 397 * If the absinfo struct the caller asked for is already allocated, this 398 * functions will not do anything. 399 */ 400 void input_alloc_absinfo(struct input_dev *dev) 401 { 402 if (!dev->absinfo) 403 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 404 GFP_KERNEL); 405 406 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 407 } 408 EXPORT_SYMBOL(input_alloc_absinfo); 409 410 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 411 int min, int max, int fuzz, int flat) 412 { 413 struct input_absinfo *absinfo; 414 415 input_alloc_absinfo(dev); 416 if (!dev->absinfo) 417 return; 418 419 absinfo = &dev->absinfo[axis]; 420 absinfo->minimum = min; 421 absinfo->maximum = max; 422 absinfo->fuzz = fuzz; 423 absinfo->flat = flat; 424 425 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis); 426 } 427 EXPORT_SYMBOL(input_set_abs_params); 428 429 430 /** 431 * input_grab_device - grabs device for exclusive use 432 * @handle: input handle that wants to own the device 433 * 434 * When a device is grabbed by an input handle all events generated by 435 * the device are delivered only to this handle. Also events injected 436 * by other input handles are ignored while device is grabbed. 437 */ 438 int input_grab_device(struct input_handle *handle) 439 { 440 struct input_dev *dev = handle->dev; 441 int retval; 442 443 retval = mutex_lock_interruptible(&dev->mutex); 444 if (retval) 445 return retval; 446 447 if (dev->grab) { 448 retval = -EBUSY; 449 goto out; 450 } 451 452 rcu_assign_pointer(dev->grab, handle); 453 synchronize_rcu(); 454 455 out: 456 mutex_unlock(&dev->mutex); 457 return retval; 458 } 459 EXPORT_SYMBOL(input_grab_device); 460 461 static void __input_release_device(struct input_handle *handle) 462 { 463 struct input_dev *dev = handle->dev; 464 465 if (dev->grab == handle) { 466 rcu_assign_pointer(dev->grab, NULL); 467 /* Make sure input_pass_event() notices that grab is gone */ 468 synchronize_rcu(); 469 470 list_for_each_entry(handle, &dev->h_list, d_node) 471 if (handle->open && handle->handler->start) 472 handle->handler->start(handle); 473 } 474 } 475 476 /** 477 * input_release_device - release previously grabbed device 478 * @handle: input handle that owns the device 479 * 480 * Releases previously grabbed device so that other input handles can 481 * start receiving input events. Upon release all handlers attached 482 * to the device have their start() method called so they have a change 483 * to synchronize device state with the rest of the system. 484 */ 485 void input_release_device(struct input_handle *handle) 486 { 487 struct input_dev *dev = handle->dev; 488 489 mutex_lock(&dev->mutex); 490 __input_release_device(handle); 491 mutex_unlock(&dev->mutex); 492 } 493 EXPORT_SYMBOL(input_release_device); 494 495 /** 496 * input_open_device - open input device 497 * @handle: handle through which device is being accessed 498 * 499 * This function should be called by input handlers when they 500 * want to start receive events from given input device. 501 */ 502 int input_open_device(struct input_handle *handle) 503 { 504 struct input_dev *dev = handle->dev; 505 int retval; 506 507 retval = mutex_lock_interruptible(&dev->mutex); 508 if (retval) 509 return retval; 510 511 if (dev->going_away) { 512 retval = -ENODEV; 513 goto out; 514 } 515 516 handle->open++; 517 518 if (!dev->users++ && dev->open) 519 retval = dev->open(dev); 520 521 if (retval) { 522 dev->users--; 523 if (!--handle->open) { 524 /* 525 * Make sure we are not delivering any more events 526 * through this handle 527 */ 528 synchronize_rcu(); 529 } 530 } 531 532 out: 533 mutex_unlock(&dev->mutex); 534 return retval; 535 } 536 EXPORT_SYMBOL(input_open_device); 537 538 int input_flush_device(struct input_handle *handle, struct file *file) 539 { 540 struct input_dev *dev = handle->dev; 541 int retval; 542 543 retval = mutex_lock_interruptible(&dev->mutex); 544 if (retval) 545 return retval; 546 547 if (dev->flush) 548 retval = dev->flush(dev, file); 549 550 mutex_unlock(&dev->mutex); 551 return retval; 552 } 553 EXPORT_SYMBOL(input_flush_device); 554 555 /** 556 * input_close_device - close input device 557 * @handle: handle through which device is being accessed 558 * 559 * This function should be called by input handlers when they 560 * want to stop receive events from given input device. 561 */ 562 void input_close_device(struct input_handle *handle) 563 { 564 struct input_dev *dev = handle->dev; 565 566 mutex_lock(&dev->mutex); 567 568 __input_release_device(handle); 569 570 if (!--dev->users && dev->close) 571 dev->close(dev); 572 573 if (!--handle->open) { 574 /* 575 * synchronize_rcu() makes sure that input_pass_event() 576 * completed and that no more input events are delivered 577 * through this handle 578 */ 579 synchronize_rcu(); 580 } 581 582 mutex_unlock(&dev->mutex); 583 } 584 EXPORT_SYMBOL(input_close_device); 585 586 /* 587 * Simulate keyup events for all keys that are marked as pressed. 588 * The function must be called with dev->event_lock held. 589 */ 590 static void input_dev_release_keys(struct input_dev *dev) 591 { 592 int code; 593 594 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 595 for (code = 0; code <= KEY_MAX; code++) { 596 if (is_event_supported(code, dev->keybit, KEY_MAX) && 597 __test_and_clear_bit(code, dev->key)) { 598 input_pass_event(dev, EV_KEY, code, 0); 599 } 600 } 601 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 602 } 603 } 604 605 /* 606 * Prepare device for unregistering 607 */ 608 static void input_disconnect_device(struct input_dev *dev) 609 { 610 struct input_handle *handle; 611 612 /* 613 * Mark device as going away. Note that we take dev->mutex here 614 * not to protect access to dev->going_away but rather to ensure 615 * that there are no threads in the middle of input_open_device() 616 */ 617 mutex_lock(&dev->mutex); 618 dev->going_away = true; 619 mutex_unlock(&dev->mutex); 620 621 spin_lock_irq(&dev->event_lock); 622 623 /* 624 * Simulate keyup events for all pressed keys so that handlers 625 * are not left with "stuck" keys. The driver may continue 626 * generate events even after we done here but they will not 627 * reach any handlers. 628 */ 629 input_dev_release_keys(dev); 630 631 list_for_each_entry(handle, &dev->h_list, d_node) 632 handle->open = 0; 633 634 spin_unlock_irq(&dev->event_lock); 635 } 636 637 static int input_fetch_keycode(struct input_dev *dev, int scancode) 638 { 639 switch (dev->keycodesize) { 640 case 1: 641 return ((u8 *)dev->keycode)[scancode]; 642 643 case 2: 644 return ((u16 *)dev->keycode)[scancode]; 645 646 default: 647 return ((u32 *)dev->keycode)[scancode]; 648 } 649 } 650 651 static int input_default_getkeycode(struct input_dev *dev, 652 unsigned int scancode, 653 unsigned int *keycode) 654 { 655 if (!dev->keycodesize) 656 return -EINVAL; 657 658 if (scancode >= dev->keycodemax) 659 return -EINVAL; 660 661 *keycode = input_fetch_keycode(dev, scancode); 662 663 return 0; 664 } 665 666 static int input_default_setkeycode(struct input_dev *dev, 667 unsigned int scancode, 668 unsigned int keycode) 669 { 670 int old_keycode; 671 int i; 672 673 if (scancode >= dev->keycodemax) 674 return -EINVAL; 675 676 if (!dev->keycodesize) 677 return -EINVAL; 678 679 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 680 return -EINVAL; 681 682 switch (dev->keycodesize) { 683 case 1: { 684 u8 *k = (u8 *)dev->keycode; 685 old_keycode = k[scancode]; 686 k[scancode] = keycode; 687 break; 688 } 689 case 2: { 690 u16 *k = (u16 *)dev->keycode; 691 old_keycode = k[scancode]; 692 k[scancode] = keycode; 693 break; 694 } 695 default: { 696 u32 *k = (u32 *)dev->keycode; 697 old_keycode = k[scancode]; 698 k[scancode] = keycode; 699 break; 700 } 701 } 702 703 __clear_bit(old_keycode, dev->keybit); 704 __set_bit(keycode, dev->keybit); 705 706 for (i = 0; i < dev->keycodemax; i++) { 707 if (input_fetch_keycode(dev, i) == old_keycode) { 708 __set_bit(old_keycode, dev->keybit); 709 break; /* Setting the bit twice is useless, so break */ 710 } 711 } 712 713 return 0; 714 } 715 716 /** 717 * input_get_keycode - retrieve keycode currently mapped to a given scancode 718 * @dev: input device which keymap is being queried 719 * @scancode: scancode (or its equivalent for device in question) for which 720 * keycode is needed 721 * @keycode: result 722 * 723 * This function should be called by anyone interested in retrieving current 724 * keymap. Presently keyboard and evdev handlers use it. 725 */ 726 int input_get_keycode(struct input_dev *dev, 727 unsigned int scancode, unsigned int *keycode) 728 { 729 unsigned long flags; 730 int retval; 731 732 spin_lock_irqsave(&dev->event_lock, flags); 733 retval = dev->getkeycode(dev, scancode, keycode); 734 spin_unlock_irqrestore(&dev->event_lock, flags); 735 736 return retval; 737 } 738 EXPORT_SYMBOL(input_get_keycode); 739 740 /** 741 * input_get_keycode - assign new keycode to a given scancode 742 * @dev: input device which keymap is being updated 743 * @scancode: scancode (or its equivalent for device in question) 744 * @keycode: new keycode to be assigned to the scancode 745 * 746 * This function should be called by anyone needing to update current 747 * keymap. Presently keyboard and evdev handlers use it. 748 */ 749 int input_set_keycode(struct input_dev *dev, 750 unsigned int scancode, unsigned int keycode) 751 { 752 unsigned long flags; 753 unsigned int old_keycode; 754 int retval; 755 756 if (keycode > KEY_MAX) 757 return -EINVAL; 758 759 spin_lock_irqsave(&dev->event_lock, flags); 760 761 retval = dev->getkeycode(dev, scancode, &old_keycode); 762 if (retval) 763 goto out; 764 765 retval = dev->setkeycode(dev, scancode, keycode); 766 if (retval) 767 goto out; 768 769 /* Make sure KEY_RESERVED did not get enabled. */ 770 __clear_bit(KEY_RESERVED, dev->keybit); 771 772 /* 773 * Simulate keyup event if keycode is not present 774 * in the keymap anymore 775 */ 776 if (test_bit(EV_KEY, dev->evbit) && 777 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 778 __test_and_clear_bit(old_keycode, dev->key)) { 779 780 input_pass_event(dev, EV_KEY, old_keycode, 0); 781 if (dev->sync) 782 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 783 } 784 785 out: 786 spin_unlock_irqrestore(&dev->event_lock, flags); 787 788 return retval; 789 } 790 EXPORT_SYMBOL(input_set_keycode); 791 792 #define MATCH_BIT(bit, max) \ 793 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 794 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 795 break; \ 796 if (i != BITS_TO_LONGS(max)) \ 797 continue; 798 799 static const struct input_device_id *input_match_device(struct input_handler *handler, 800 struct input_dev *dev) 801 { 802 const struct input_device_id *id; 803 int i; 804 805 for (id = handler->id_table; id->flags || id->driver_info; id++) { 806 807 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 808 if (id->bustype != dev->id.bustype) 809 continue; 810 811 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 812 if (id->vendor != dev->id.vendor) 813 continue; 814 815 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 816 if (id->product != dev->id.product) 817 continue; 818 819 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 820 if (id->version != dev->id.version) 821 continue; 822 823 MATCH_BIT(evbit, EV_MAX); 824 MATCH_BIT(keybit, KEY_MAX); 825 MATCH_BIT(relbit, REL_MAX); 826 MATCH_BIT(absbit, ABS_MAX); 827 MATCH_BIT(mscbit, MSC_MAX); 828 MATCH_BIT(ledbit, LED_MAX); 829 MATCH_BIT(sndbit, SND_MAX); 830 MATCH_BIT(ffbit, FF_MAX); 831 MATCH_BIT(swbit, SW_MAX); 832 833 if (!handler->match || handler->match(handler, dev)) 834 return id; 835 } 836 837 return NULL; 838 } 839 840 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 841 { 842 const struct input_device_id *id; 843 int error; 844 845 id = input_match_device(handler, dev); 846 if (!id) 847 return -ENODEV; 848 849 error = handler->connect(handler, dev, id); 850 if (error && error != -ENODEV) 851 printk(KERN_ERR 852 "input: failed to attach handler %s to device %s, " 853 "error: %d\n", 854 handler->name, kobject_name(&dev->dev.kobj), error); 855 856 return error; 857 } 858 859 #ifdef CONFIG_COMPAT 860 861 static int input_bits_to_string(char *buf, int buf_size, 862 unsigned long bits, bool skip_empty) 863 { 864 int len = 0; 865 866 if (INPUT_COMPAT_TEST) { 867 u32 dword = bits >> 32; 868 if (dword || !skip_empty) 869 len += snprintf(buf, buf_size, "%x ", dword); 870 871 dword = bits & 0xffffffffUL; 872 if (dword || !skip_empty || len) 873 len += snprintf(buf + len, max(buf_size - len, 0), 874 "%x", dword); 875 } else { 876 if (bits || !skip_empty) 877 len += snprintf(buf, buf_size, "%lx", bits); 878 } 879 880 return len; 881 } 882 883 #else /* !CONFIG_COMPAT */ 884 885 static int input_bits_to_string(char *buf, int buf_size, 886 unsigned long bits, bool skip_empty) 887 { 888 return bits || !skip_empty ? 889 snprintf(buf, buf_size, "%lx", bits) : 0; 890 } 891 892 #endif 893 894 #ifdef CONFIG_PROC_FS 895 896 static struct proc_dir_entry *proc_bus_input_dir; 897 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 898 static int input_devices_state; 899 900 static inline void input_wakeup_procfs_readers(void) 901 { 902 input_devices_state++; 903 wake_up(&input_devices_poll_wait); 904 } 905 906 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 907 { 908 poll_wait(file, &input_devices_poll_wait, wait); 909 if (file->f_version != input_devices_state) { 910 file->f_version = input_devices_state; 911 return POLLIN | POLLRDNORM; 912 } 913 914 return 0; 915 } 916 917 union input_seq_state { 918 struct { 919 unsigned short pos; 920 bool mutex_acquired; 921 }; 922 void *p; 923 }; 924 925 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 926 { 927 union input_seq_state *state = (union input_seq_state *)&seq->private; 928 int error; 929 930 /* We need to fit into seq->private pointer */ 931 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 932 933 error = mutex_lock_interruptible(&input_mutex); 934 if (error) { 935 state->mutex_acquired = false; 936 return ERR_PTR(error); 937 } 938 939 state->mutex_acquired = true; 940 941 return seq_list_start(&input_dev_list, *pos); 942 } 943 944 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 945 { 946 return seq_list_next(v, &input_dev_list, pos); 947 } 948 949 static void input_seq_stop(struct seq_file *seq, void *v) 950 { 951 union input_seq_state *state = (union input_seq_state *)&seq->private; 952 953 if (state->mutex_acquired) 954 mutex_unlock(&input_mutex); 955 } 956 957 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 958 unsigned long *bitmap, int max) 959 { 960 int i; 961 bool skip_empty = true; 962 char buf[18]; 963 964 seq_printf(seq, "B: %s=", name); 965 966 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 967 if (input_bits_to_string(buf, sizeof(buf), 968 bitmap[i], skip_empty)) { 969 skip_empty = false; 970 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 971 } 972 } 973 974 /* 975 * If no output was produced print a single 0. 976 */ 977 if (skip_empty) 978 seq_puts(seq, "0"); 979 980 seq_putc(seq, '\n'); 981 } 982 983 static int input_devices_seq_show(struct seq_file *seq, void *v) 984 { 985 struct input_dev *dev = container_of(v, struct input_dev, node); 986 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 987 struct input_handle *handle; 988 989 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 990 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 991 992 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 993 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 994 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 995 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 996 seq_printf(seq, "H: Handlers="); 997 998 list_for_each_entry(handle, &dev->h_list, d_node) 999 seq_printf(seq, "%s ", handle->name); 1000 seq_putc(seq, '\n'); 1001 1002 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1003 if (test_bit(EV_KEY, dev->evbit)) 1004 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1005 if (test_bit(EV_REL, dev->evbit)) 1006 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1007 if (test_bit(EV_ABS, dev->evbit)) 1008 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1009 if (test_bit(EV_MSC, dev->evbit)) 1010 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1011 if (test_bit(EV_LED, dev->evbit)) 1012 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1013 if (test_bit(EV_SND, dev->evbit)) 1014 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1015 if (test_bit(EV_FF, dev->evbit)) 1016 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1017 if (test_bit(EV_SW, dev->evbit)) 1018 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1019 1020 seq_putc(seq, '\n'); 1021 1022 kfree(path); 1023 return 0; 1024 } 1025 1026 static const struct seq_operations input_devices_seq_ops = { 1027 .start = input_devices_seq_start, 1028 .next = input_devices_seq_next, 1029 .stop = input_seq_stop, 1030 .show = input_devices_seq_show, 1031 }; 1032 1033 static int input_proc_devices_open(struct inode *inode, struct file *file) 1034 { 1035 return seq_open(file, &input_devices_seq_ops); 1036 } 1037 1038 static const struct file_operations input_devices_fileops = { 1039 .owner = THIS_MODULE, 1040 .open = input_proc_devices_open, 1041 .poll = input_proc_devices_poll, 1042 .read = seq_read, 1043 .llseek = seq_lseek, 1044 .release = seq_release, 1045 }; 1046 1047 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1048 { 1049 union input_seq_state *state = (union input_seq_state *)&seq->private; 1050 int error; 1051 1052 /* We need to fit into seq->private pointer */ 1053 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1054 1055 error = mutex_lock_interruptible(&input_mutex); 1056 if (error) { 1057 state->mutex_acquired = false; 1058 return ERR_PTR(error); 1059 } 1060 1061 state->mutex_acquired = true; 1062 state->pos = *pos; 1063 1064 return seq_list_start(&input_handler_list, *pos); 1065 } 1066 1067 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1068 { 1069 union input_seq_state *state = (union input_seq_state *)&seq->private; 1070 1071 state->pos = *pos + 1; 1072 return seq_list_next(v, &input_handler_list, pos); 1073 } 1074 1075 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1076 { 1077 struct input_handler *handler = container_of(v, struct input_handler, node); 1078 union input_seq_state *state = (union input_seq_state *)&seq->private; 1079 1080 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1081 if (handler->filter) 1082 seq_puts(seq, " (filter)"); 1083 if (handler->fops) 1084 seq_printf(seq, " Minor=%d", handler->minor); 1085 seq_putc(seq, '\n'); 1086 1087 return 0; 1088 } 1089 1090 static const struct seq_operations input_handlers_seq_ops = { 1091 .start = input_handlers_seq_start, 1092 .next = input_handlers_seq_next, 1093 .stop = input_seq_stop, 1094 .show = input_handlers_seq_show, 1095 }; 1096 1097 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1098 { 1099 return seq_open(file, &input_handlers_seq_ops); 1100 } 1101 1102 static const struct file_operations input_handlers_fileops = { 1103 .owner = THIS_MODULE, 1104 .open = input_proc_handlers_open, 1105 .read = seq_read, 1106 .llseek = seq_lseek, 1107 .release = seq_release, 1108 }; 1109 1110 static int __init input_proc_init(void) 1111 { 1112 struct proc_dir_entry *entry; 1113 1114 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1115 if (!proc_bus_input_dir) 1116 return -ENOMEM; 1117 1118 entry = proc_create("devices", 0, proc_bus_input_dir, 1119 &input_devices_fileops); 1120 if (!entry) 1121 goto fail1; 1122 1123 entry = proc_create("handlers", 0, proc_bus_input_dir, 1124 &input_handlers_fileops); 1125 if (!entry) 1126 goto fail2; 1127 1128 return 0; 1129 1130 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1131 fail1: remove_proc_entry("bus/input", NULL); 1132 return -ENOMEM; 1133 } 1134 1135 static void input_proc_exit(void) 1136 { 1137 remove_proc_entry("devices", proc_bus_input_dir); 1138 remove_proc_entry("handlers", proc_bus_input_dir); 1139 remove_proc_entry("bus/input", NULL); 1140 } 1141 1142 #else /* !CONFIG_PROC_FS */ 1143 static inline void input_wakeup_procfs_readers(void) { } 1144 static inline int input_proc_init(void) { return 0; } 1145 static inline void input_proc_exit(void) { } 1146 #endif 1147 1148 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1149 static ssize_t input_dev_show_##name(struct device *dev, \ 1150 struct device_attribute *attr, \ 1151 char *buf) \ 1152 { \ 1153 struct input_dev *input_dev = to_input_dev(dev); \ 1154 \ 1155 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1156 input_dev->name ? input_dev->name : ""); \ 1157 } \ 1158 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1159 1160 INPUT_DEV_STRING_ATTR_SHOW(name); 1161 INPUT_DEV_STRING_ATTR_SHOW(phys); 1162 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1163 1164 static int input_print_modalias_bits(char *buf, int size, 1165 char name, unsigned long *bm, 1166 unsigned int min_bit, unsigned int max_bit) 1167 { 1168 int len = 0, i; 1169 1170 len += snprintf(buf, max(size, 0), "%c", name); 1171 for (i = min_bit; i < max_bit; i++) 1172 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1173 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1174 return len; 1175 } 1176 1177 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1178 int add_cr) 1179 { 1180 int len; 1181 1182 len = snprintf(buf, max(size, 0), 1183 "input:b%04Xv%04Xp%04Xe%04X-", 1184 id->id.bustype, id->id.vendor, 1185 id->id.product, id->id.version); 1186 1187 len += input_print_modalias_bits(buf + len, size - len, 1188 'e', id->evbit, 0, EV_MAX); 1189 len += input_print_modalias_bits(buf + len, size - len, 1190 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1191 len += input_print_modalias_bits(buf + len, size - len, 1192 'r', id->relbit, 0, REL_MAX); 1193 len += input_print_modalias_bits(buf + len, size - len, 1194 'a', id->absbit, 0, ABS_MAX); 1195 len += input_print_modalias_bits(buf + len, size - len, 1196 'm', id->mscbit, 0, MSC_MAX); 1197 len += input_print_modalias_bits(buf + len, size - len, 1198 'l', id->ledbit, 0, LED_MAX); 1199 len += input_print_modalias_bits(buf + len, size - len, 1200 's', id->sndbit, 0, SND_MAX); 1201 len += input_print_modalias_bits(buf + len, size - len, 1202 'f', id->ffbit, 0, FF_MAX); 1203 len += input_print_modalias_bits(buf + len, size - len, 1204 'w', id->swbit, 0, SW_MAX); 1205 1206 if (add_cr) 1207 len += snprintf(buf + len, max(size - len, 0), "\n"); 1208 1209 return len; 1210 } 1211 1212 static ssize_t input_dev_show_modalias(struct device *dev, 1213 struct device_attribute *attr, 1214 char *buf) 1215 { 1216 struct input_dev *id = to_input_dev(dev); 1217 ssize_t len; 1218 1219 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1220 1221 return min_t(int, len, PAGE_SIZE); 1222 } 1223 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1224 1225 static struct attribute *input_dev_attrs[] = { 1226 &dev_attr_name.attr, 1227 &dev_attr_phys.attr, 1228 &dev_attr_uniq.attr, 1229 &dev_attr_modalias.attr, 1230 NULL 1231 }; 1232 1233 static struct attribute_group input_dev_attr_group = { 1234 .attrs = input_dev_attrs, 1235 }; 1236 1237 #define INPUT_DEV_ID_ATTR(name) \ 1238 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1239 struct device_attribute *attr, \ 1240 char *buf) \ 1241 { \ 1242 struct input_dev *input_dev = to_input_dev(dev); \ 1243 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1244 } \ 1245 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1246 1247 INPUT_DEV_ID_ATTR(bustype); 1248 INPUT_DEV_ID_ATTR(vendor); 1249 INPUT_DEV_ID_ATTR(product); 1250 INPUT_DEV_ID_ATTR(version); 1251 1252 static struct attribute *input_dev_id_attrs[] = { 1253 &dev_attr_bustype.attr, 1254 &dev_attr_vendor.attr, 1255 &dev_attr_product.attr, 1256 &dev_attr_version.attr, 1257 NULL 1258 }; 1259 1260 static struct attribute_group input_dev_id_attr_group = { 1261 .name = "id", 1262 .attrs = input_dev_id_attrs, 1263 }; 1264 1265 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1266 int max, int add_cr) 1267 { 1268 int i; 1269 int len = 0; 1270 bool skip_empty = true; 1271 1272 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1273 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1274 bitmap[i], skip_empty); 1275 if (len) { 1276 skip_empty = false; 1277 if (i > 0) 1278 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1279 } 1280 } 1281 1282 /* 1283 * If no output was produced print a single 0. 1284 */ 1285 if (len == 0) 1286 len = snprintf(buf, buf_size, "%d", 0); 1287 1288 if (add_cr) 1289 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1290 1291 return len; 1292 } 1293 1294 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1295 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1296 struct device_attribute *attr, \ 1297 char *buf) \ 1298 { \ 1299 struct input_dev *input_dev = to_input_dev(dev); \ 1300 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1301 input_dev->bm##bit, ev##_MAX, \ 1302 true); \ 1303 return min_t(int, len, PAGE_SIZE); \ 1304 } \ 1305 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1306 1307 INPUT_DEV_CAP_ATTR(EV, ev); 1308 INPUT_DEV_CAP_ATTR(KEY, key); 1309 INPUT_DEV_CAP_ATTR(REL, rel); 1310 INPUT_DEV_CAP_ATTR(ABS, abs); 1311 INPUT_DEV_CAP_ATTR(MSC, msc); 1312 INPUT_DEV_CAP_ATTR(LED, led); 1313 INPUT_DEV_CAP_ATTR(SND, snd); 1314 INPUT_DEV_CAP_ATTR(FF, ff); 1315 INPUT_DEV_CAP_ATTR(SW, sw); 1316 1317 static struct attribute *input_dev_caps_attrs[] = { 1318 &dev_attr_ev.attr, 1319 &dev_attr_key.attr, 1320 &dev_attr_rel.attr, 1321 &dev_attr_abs.attr, 1322 &dev_attr_msc.attr, 1323 &dev_attr_led.attr, 1324 &dev_attr_snd.attr, 1325 &dev_attr_ff.attr, 1326 &dev_attr_sw.attr, 1327 NULL 1328 }; 1329 1330 static struct attribute_group input_dev_caps_attr_group = { 1331 .name = "capabilities", 1332 .attrs = input_dev_caps_attrs, 1333 }; 1334 1335 static const struct attribute_group *input_dev_attr_groups[] = { 1336 &input_dev_attr_group, 1337 &input_dev_id_attr_group, 1338 &input_dev_caps_attr_group, 1339 NULL 1340 }; 1341 1342 static void input_dev_release(struct device *device) 1343 { 1344 struct input_dev *dev = to_input_dev(device); 1345 1346 input_ff_destroy(dev); 1347 input_mt_destroy_slots(dev); 1348 kfree(dev->absinfo); 1349 kfree(dev); 1350 1351 module_put(THIS_MODULE); 1352 } 1353 1354 /* 1355 * Input uevent interface - loading event handlers based on 1356 * device bitfields. 1357 */ 1358 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1359 const char *name, unsigned long *bitmap, int max) 1360 { 1361 int len; 1362 1363 if (add_uevent_var(env, "%s=", name)) 1364 return -ENOMEM; 1365 1366 len = input_print_bitmap(&env->buf[env->buflen - 1], 1367 sizeof(env->buf) - env->buflen, 1368 bitmap, max, false); 1369 if (len >= (sizeof(env->buf) - env->buflen)) 1370 return -ENOMEM; 1371 1372 env->buflen += len; 1373 return 0; 1374 } 1375 1376 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1377 struct input_dev *dev) 1378 { 1379 int len; 1380 1381 if (add_uevent_var(env, "MODALIAS=")) 1382 return -ENOMEM; 1383 1384 len = input_print_modalias(&env->buf[env->buflen - 1], 1385 sizeof(env->buf) - env->buflen, 1386 dev, 0); 1387 if (len >= (sizeof(env->buf) - env->buflen)) 1388 return -ENOMEM; 1389 1390 env->buflen += len; 1391 return 0; 1392 } 1393 1394 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1395 do { \ 1396 int err = add_uevent_var(env, fmt, val); \ 1397 if (err) \ 1398 return err; \ 1399 } while (0) 1400 1401 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1402 do { \ 1403 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1404 if (err) \ 1405 return err; \ 1406 } while (0) 1407 1408 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1409 do { \ 1410 int err = input_add_uevent_modalias_var(env, dev); \ 1411 if (err) \ 1412 return err; \ 1413 } while (0) 1414 1415 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1416 { 1417 struct input_dev *dev = to_input_dev(device); 1418 1419 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1420 dev->id.bustype, dev->id.vendor, 1421 dev->id.product, dev->id.version); 1422 if (dev->name) 1423 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1424 if (dev->phys) 1425 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1426 if (dev->uniq) 1427 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1428 1429 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1430 if (test_bit(EV_KEY, dev->evbit)) 1431 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1432 if (test_bit(EV_REL, dev->evbit)) 1433 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1434 if (test_bit(EV_ABS, dev->evbit)) 1435 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1436 if (test_bit(EV_MSC, dev->evbit)) 1437 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1438 if (test_bit(EV_LED, dev->evbit)) 1439 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1440 if (test_bit(EV_SND, dev->evbit)) 1441 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1442 if (test_bit(EV_FF, dev->evbit)) 1443 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1444 if (test_bit(EV_SW, dev->evbit)) 1445 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1446 1447 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1448 1449 return 0; 1450 } 1451 1452 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1453 do { \ 1454 int i; \ 1455 bool active; \ 1456 \ 1457 if (!test_bit(EV_##type, dev->evbit)) \ 1458 break; \ 1459 \ 1460 for (i = 0; i < type##_MAX; i++) { \ 1461 if (!test_bit(i, dev->bits##bit)) \ 1462 continue; \ 1463 \ 1464 active = test_bit(i, dev->bits); \ 1465 if (!active && !on) \ 1466 continue; \ 1467 \ 1468 dev->event(dev, EV_##type, i, on ? active : 0); \ 1469 } \ 1470 } while (0) 1471 1472 #ifdef CONFIG_PM 1473 static void input_dev_reset(struct input_dev *dev, bool activate) 1474 { 1475 if (!dev->event) 1476 return; 1477 1478 INPUT_DO_TOGGLE(dev, LED, led, activate); 1479 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1480 1481 if (activate && test_bit(EV_REP, dev->evbit)) { 1482 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1483 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1484 } 1485 } 1486 1487 static int input_dev_suspend(struct device *dev) 1488 { 1489 struct input_dev *input_dev = to_input_dev(dev); 1490 1491 mutex_lock(&input_dev->mutex); 1492 input_dev_reset(input_dev, false); 1493 mutex_unlock(&input_dev->mutex); 1494 1495 return 0; 1496 } 1497 1498 static int input_dev_resume(struct device *dev) 1499 { 1500 struct input_dev *input_dev = to_input_dev(dev); 1501 1502 mutex_lock(&input_dev->mutex); 1503 input_dev_reset(input_dev, true); 1504 1505 /* 1506 * Keys that have been pressed at suspend time are unlikely 1507 * to be still pressed when we resume. 1508 */ 1509 spin_lock_irq(&input_dev->event_lock); 1510 input_dev_release_keys(input_dev); 1511 spin_unlock_irq(&input_dev->event_lock); 1512 1513 mutex_unlock(&input_dev->mutex); 1514 1515 return 0; 1516 } 1517 1518 static const struct dev_pm_ops input_dev_pm_ops = { 1519 .suspend = input_dev_suspend, 1520 .resume = input_dev_resume, 1521 .poweroff = input_dev_suspend, 1522 .restore = input_dev_resume, 1523 }; 1524 #endif /* CONFIG_PM */ 1525 1526 static struct device_type input_dev_type = { 1527 .groups = input_dev_attr_groups, 1528 .release = input_dev_release, 1529 .uevent = input_dev_uevent, 1530 #ifdef CONFIG_PM 1531 .pm = &input_dev_pm_ops, 1532 #endif 1533 }; 1534 1535 static char *input_devnode(struct device *dev, mode_t *mode) 1536 { 1537 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1538 } 1539 1540 struct class input_class = { 1541 .name = "input", 1542 .devnode = input_devnode, 1543 }; 1544 EXPORT_SYMBOL_GPL(input_class); 1545 1546 /** 1547 * input_allocate_device - allocate memory for new input device 1548 * 1549 * Returns prepared struct input_dev or NULL. 1550 * 1551 * NOTE: Use input_free_device() to free devices that have not been 1552 * registered; input_unregister_device() should be used for already 1553 * registered devices. 1554 */ 1555 struct input_dev *input_allocate_device(void) 1556 { 1557 struct input_dev *dev; 1558 1559 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1560 if (dev) { 1561 dev->dev.type = &input_dev_type; 1562 dev->dev.class = &input_class; 1563 device_initialize(&dev->dev); 1564 mutex_init(&dev->mutex); 1565 spin_lock_init(&dev->event_lock); 1566 INIT_LIST_HEAD(&dev->h_list); 1567 INIT_LIST_HEAD(&dev->node); 1568 1569 __module_get(THIS_MODULE); 1570 } 1571 1572 return dev; 1573 } 1574 EXPORT_SYMBOL(input_allocate_device); 1575 1576 /** 1577 * input_free_device - free memory occupied by input_dev structure 1578 * @dev: input device to free 1579 * 1580 * This function should only be used if input_register_device() 1581 * was not called yet or if it failed. Once device was registered 1582 * use input_unregister_device() and memory will be freed once last 1583 * reference to the device is dropped. 1584 * 1585 * Device should be allocated by input_allocate_device(). 1586 * 1587 * NOTE: If there are references to the input device then memory 1588 * will not be freed until last reference is dropped. 1589 */ 1590 void input_free_device(struct input_dev *dev) 1591 { 1592 if (dev) 1593 input_put_device(dev); 1594 } 1595 EXPORT_SYMBOL(input_free_device); 1596 1597 /** 1598 * input_mt_create_slots() - create MT input slots 1599 * @dev: input device supporting MT events and finger tracking 1600 * @num_slots: number of slots used by the device 1601 * 1602 * This function allocates all necessary memory for MT slot handling 1603 * in the input device, and adds ABS_MT_SLOT to the device capabilities. 1604 */ 1605 int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots) 1606 { 1607 if (!num_slots) 1608 return 0; 1609 1610 dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL); 1611 if (!dev->mt) 1612 return -ENOMEM; 1613 1614 dev->mtsize = num_slots; 1615 input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0); 1616 1617 return 0; 1618 } 1619 EXPORT_SYMBOL(input_mt_create_slots); 1620 1621 /** 1622 * input_mt_destroy_slots() - frees the MT slots of the input device 1623 * @dev: input device with allocated MT slots 1624 * 1625 * This function is only needed in error path as the input core will 1626 * automatically free the MT slots when the device is destroyed. 1627 */ 1628 void input_mt_destroy_slots(struct input_dev *dev) 1629 { 1630 kfree(dev->mt); 1631 dev->mt = NULL; 1632 dev->mtsize = 0; 1633 } 1634 EXPORT_SYMBOL(input_mt_destroy_slots); 1635 1636 /** 1637 * input_set_capability - mark device as capable of a certain event 1638 * @dev: device that is capable of emitting or accepting event 1639 * @type: type of the event (EV_KEY, EV_REL, etc...) 1640 * @code: event code 1641 * 1642 * In addition to setting up corresponding bit in appropriate capability 1643 * bitmap the function also adjusts dev->evbit. 1644 */ 1645 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1646 { 1647 switch (type) { 1648 case EV_KEY: 1649 __set_bit(code, dev->keybit); 1650 break; 1651 1652 case EV_REL: 1653 __set_bit(code, dev->relbit); 1654 break; 1655 1656 case EV_ABS: 1657 __set_bit(code, dev->absbit); 1658 break; 1659 1660 case EV_MSC: 1661 __set_bit(code, dev->mscbit); 1662 break; 1663 1664 case EV_SW: 1665 __set_bit(code, dev->swbit); 1666 break; 1667 1668 case EV_LED: 1669 __set_bit(code, dev->ledbit); 1670 break; 1671 1672 case EV_SND: 1673 __set_bit(code, dev->sndbit); 1674 break; 1675 1676 case EV_FF: 1677 __set_bit(code, dev->ffbit); 1678 break; 1679 1680 case EV_PWR: 1681 /* do nothing */ 1682 break; 1683 1684 default: 1685 printk(KERN_ERR 1686 "input_set_capability: unknown type %u (code %u)\n", 1687 type, code); 1688 dump_stack(); 1689 return; 1690 } 1691 1692 __set_bit(type, dev->evbit); 1693 } 1694 EXPORT_SYMBOL(input_set_capability); 1695 1696 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1697 do { \ 1698 if (!test_bit(EV_##type, dev->evbit)) \ 1699 memset(dev->bits##bit, 0, \ 1700 sizeof(dev->bits##bit)); \ 1701 } while (0) 1702 1703 static void input_cleanse_bitmasks(struct input_dev *dev) 1704 { 1705 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1706 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1707 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1708 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1709 INPUT_CLEANSE_BITMASK(dev, LED, led); 1710 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1711 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1712 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1713 } 1714 1715 /** 1716 * input_register_device - register device with input core 1717 * @dev: device to be registered 1718 * 1719 * This function registers device with input core. The device must be 1720 * allocated with input_allocate_device() and all it's capabilities 1721 * set up before registering. 1722 * If function fails the device must be freed with input_free_device(). 1723 * Once device has been successfully registered it can be unregistered 1724 * with input_unregister_device(); input_free_device() should not be 1725 * called in this case. 1726 */ 1727 int input_register_device(struct input_dev *dev) 1728 { 1729 static atomic_t input_no = ATOMIC_INIT(0); 1730 struct input_handler *handler; 1731 const char *path; 1732 int error; 1733 1734 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1735 __set_bit(EV_SYN, dev->evbit); 1736 1737 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1738 __clear_bit(KEY_RESERVED, dev->keybit); 1739 1740 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1741 input_cleanse_bitmasks(dev); 1742 1743 /* 1744 * If delay and period are pre-set by the driver, then autorepeating 1745 * is handled by the driver itself and we don't do it in input.c. 1746 */ 1747 init_timer(&dev->timer); 1748 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1749 dev->timer.data = (long) dev; 1750 dev->timer.function = input_repeat_key; 1751 dev->rep[REP_DELAY] = 250; 1752 dev->rep[REP_PERIOD] = 33; 1753 } 1754 1755 if (!dev->getkeycode) 1756 dev->getkeycode = input_default_getkeycode; 1757 1758 if (!dev->setkeycode) 1759 dev->setkeycode = input_default_setkeycode; 1760 1761 dev_set_name(&dev->dev, "input%ld", 1762 (unsigned long) atomic_inc_return(&input_no) - 1); 1763 1764 error = device_add(&dev->dev); 1765 if (error) 1766 return error; 1767 1768 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1769 printk(KERN_INFO "input: %s as %s\n", 1770 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1771 kfree(path); 1772 1773 error = mutex_lock_interruptible(&input_mutex); 1774 if (error) { 1775 device_del(&dev->dev); 1776 return error; 1777 } 1778 1779 list_add_tail(&dev->node, &input_dev_list); 1780 1781 list_for_each_entry(handler, &input_handler_list, node) 1782 input_attach_handler(dev, handler); 1783 1784 input_wakeup_procfs_readers(); 1785 1786 mutex_unlock(&input_mutex); 1787 1788 return 0; 1789 } 1790 EXPORT_SYMBOL(input_register_device); 1791 1792 /** 1793 * input_unregister_device - unregister previously registered device 1794 * @dev: device to be unregistered 1795 * 1796 * This function unregisters an input device. Once device is unregistered 1797 * the caller should not try to access it as it may get freed at any moment. 1798 */ 1799 void input_unregister_device(struct input_dev *dev) 1800 { 1801 struct input_handle *handle, *next; 1802 1803 input_disconnect_device(dev); 1804 1805 mutex_lock(&input_mutex); 1806 1807 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1808 handle->handler->disconnect(handle); 1809 WARN_ON(!list_empty(&dev->h_list)); 1810 1811 del_timer_sync(&dev->timer); 1812 list_del_init(&dev->node); 1813 1814 input_wakeup_procfs_readers(); 1815 1816 mutex_unlock(&input_mutex); 1817 1818 device_unregister(&dev->dev); 1819 } 1820 EXPORT_SYMBOL(input_unregister_device); 1821 1822 /** 1823 * input_register_handler - register a new input handler 1824 * @handler: handler to be registered 1825 * 1826 * This function registers a new input handler (interface) for input 1827 * devices in the system and attaches it to all input devices that 1828 * are compatible with the handler. 1829 */ 1830 int input_register_handler(struct input_handler *handler) 1831 { 1832 struct input_dev *dev; 1833 int retval; 1834 1835 retval = mutex_lock_interruptible(&input_mutex); 1836 if (retval) 1837 return retval; 1838 1839 INIT_LIST_HEAD(&handler->h_list); 1840 1841 if (handler->fops != NULL) { 1842 if (input_table[handler->minor >> 5]) { 1843 retval = -EBUSY; 1844 goto out; 1845 } 1846 input_table[handler->minor >> 5] = handler; 1847 } 1848 1849 list_add_tail(&handler->node, &input_handler_list); 1850 1851 list_for_each_entry(dev, &input_dev_list, node) 1852 input_attach_handler(dev, handler); 1853 1854 input_wakeup_procfs_readers(); 1855 1856 out: 1857 mutex_unlock(&input_mutex); 1858 return retval; 1859 } 1860 EXPORT_SYMBOL(input_register_handler); 1861 1862 /** 1863 * input_unregister_handler - unregisters an input handler 1864 * @handler: handler to be unregistered 1865 * 1866 * This function disconnects a handler from its input devices and 1867 * removes it from lists of known handlers. 1868 */ 1869 void input_unregister_handler(struct input_handler *handler) 1870 { 1871 struct input_handle *handle, *next; 1872 1873 mutex_lock(&input_mutex); 1874 1875 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1876 handler->disconnect(handle); 1877 WARN_ON(!list_empty(&handler->h_list)); 1878 1879 list_del_init(&handler->node); 1880 1881 if (handler->fops != NULL) 1882 input_table[handler->minor >> 5] = NULL; 1883 1884 input_wakeup_procfs_readers(); 1885 1886 mutex_unlock(&input_mutex); 1887 } 1888 EXPORT_SYMBOL(input_unregister_handler); 1889 1890 /** 1891 * input_handler_for_each_handle - handle iterator 1892 * @handler: input handler to iterate 1893 * @data: data for the callback 1894 * @fn: function to be called for each handle 1895 * 1896 * Iterate over @bus's list of devices, and call @fn for each, passing 1897 * it @data and stop when @fn returns a non-zero value. The function is 1898 * using RCU to traverse the list and therefore may be usind in atonic 1899 * contexts. The @fn callback is invoked from RCU critical section and 1900 * thus must not sleep. 1901 */ 1902 int input_handler_for_each_handle(struct input_handler *handler, void *data, 1903 int (*fn)(struct input_handle *, void *)) 1904 { 1905 struct input_handle *handle; 1906 int retval = 0; 1907 1908 rcu_read_lock(); 1909 1910 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 1911 retval = fn(handle, data); 1912 if (retval) 1913 break; 1914 } 1915 1916 rcu_read_unlock(); 1917 1918 return retval; 1919 } 1920 EXPORT_SYMBOL(input_handler_for_each_handle); 1921 1922 /** 1923 * input_register_handle - register a new input handle 1924 * @handle: handle to register 1925 * 1926 * This function puts a new input handle onto device's 1927 * and handler's lists so that events can flow through 1928 * it once it is opened using input_open_device(). 1929 * 1930 * This function is supposed to be called from handler's 1931 * connect() method. 1932 */ 1933 int input_register_handle(struct input_handle *handle) 1934 { 1935 struct input_handler *handler = handle->handler; 1936 struct input_dev *dev = handle->dev; 1937 int error; 1938 1939 /* 1940 * We take dev->mutex here to prevent race with 1941 * input_release_device(). 1942 */ 1943 error = mutex_lock_interruptible(&dev->mutex); 1944 if (error) 1945 return error; 1946 1947 /* 1948 * Filters go to the head of the list, normal handlers 1949 * to the tail. 1950 */ 1951 if (handler->filter) 1952 list_add_rcu(&handle->d_node, &dev->h_list); 1953 else 1954 list_add_tail_rcu(&handle->d_node, &dev->h_list); 1955 1956 mutex_unlock(&dev->mutex); 1957 1958 /* 1959 * Since we are supposed to be called from ->connect() 1960 * which is mutually exclusive with ->disconnect() 1961 * we can't be racing with input_unregister_handle() 1962 * and so separate lock is not needed here. 1963 */ 1964 list_add_tail_rcu(&handle->h_node, &handler->h_list); 1965 1966 if (handler->start) 1967 handler->start(handle); 1968 1969 return 0; 1970 } 1971 EXPORT_SYMBOL(input_register_handle); 1972 1973 /** 1974 * input_unregister_handle - unregister an input handle 1975 * @handle: handle to unregister 1976 * 1977 * This function removes input handle from device's 1978 * and handler's lists. 1979 * 1980 * This function is supposed to be called from handler's 1981 * disconnect() method. 1982 */ 1983 void input_unregister_handle(struct input_handle *handle) 1984 { 1985 struct input_dev *dev = handle->dev; 1986 1987 list_del_rcu(&handle->h_node); 1988 1989 /* 1990 * Take dev->mutex to prevent race with input_release_device(). 1991 */ 1992 mutex_lock(&dev->mutex); 1993 list_del_rcu(&handle->d_node); 1994 mutex_unlock(&dev->mutex); 1995 1996 synchronize_rcu(); 1997 } 1998 EXPORT_SYMBOL(input_unregister_handle); 1999 2000 static int input_open_file(struct inode *inode, struct file *file) 2001 { 2002 struct input_handler *handler; 2003 const struct file_operations *old_fops, *new_fops = NULL; 2004 int err; 2005 2006 err = mutex_lock_interruptible(&input_mutex); 2007 if (err) 2008 return err; 2009 2010 /* No load-on-demand here? */ 2011 handler = input_table[iminor(inode) >> 5]; 2012 if (handler) 2013 new_fops = fops_get(handler->fops); 2014 2015 mutex_unlock(&input_mutex); 2016 2017 /* 2018 * That's _really_ odd. Usually NULL ->open means "nothing special", 2019 * not "no device". Oh, well... 2020 */ 2021 if (!new_fops || !new_fops->open) { 2022 fops_put(new_fops); 2023 err = -ENODEV; 2024 goto out; 2025 } 2026 2027 old_fops = file->f_op; 2028 file->f_op = new_fops; 2029 2030 err = new_fops->open(inode, file); 2031 if (err) { 2032 fops_put(file->f_op); 2033 file->f_op = fops_get(old_fops); 2034 } 2035 fops_put(old_fops); 2036 out: 2037 return err; 2038 } 2039 2040 static const struct file_operations input_fops = { 2041 .owner = THIS_MODULE, 2042 .open = input_open_file, 2043 }; 2044 2045 static int __init input_init(void) 2046 { 2047 int err; 2048 2049 err = class_register(&input_class); 2050 if (err) { 2051 printk(KERN_ERR "input: unable to register input_dev class\n"); 2052 return err; 2053 } 2054 2055 err = input_proc_init(); 2056 if (err) 2057 goto fail1; 2058 2059 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 2060 if (err) { 2061 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 2062 goto fail2; 2063 } 2064 2065 return 0; 2066 2067 fail2: input_proc_exit(); 2068 fail1: class_unregister(&input_class); 2069 return err; 2070 } 2071 2072 static void __exit input_exit(void) 2073 { 2074 input_proc_exit(); 2075 unregister_chrdev(INPUT_MAJOR, "input"); 2076 class_unregister(&input_class); 2077 } 2078 2079 subsys_initcall(input_init); 2080 module_exit(input_exit); 2081