1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #include <linux/init.h> 14 #include <linux/types.h> 15 #include <linux/input.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/random.h> 19 #include <linux/major.h> 20 #include <linux/proc_fs.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/device.h> 25 #include <linux/mutex.h> 26 #include <linux/rcupdate.h> 27 #include <linux/smp_lock.h> 28 #include "input-compat.h" 29 30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 31 MODULE_DESCRIPTION("Input core"); 32 MODULE_LICENSE("GPL"); 33 34 #define INPUT_DEVICES 256 35 36 static LIST_HEAD(input_dev_list); 37 static LIST_HEAD(input_handler_list); 38 39 /* 40 * input_mutex protects access to both input_dev_list and input_handler_list. 41 * This also causes input_[un]register_device and input_[un]register_handler 42 * be mutually exclusive which simplifies locking in drivers implementing 43 * input handlers. 44 */ 45 static DEFINE_MUTEX(input_mutex); 46 47 static struct input_handler *input_table[8]; 48 49 static inline int is_event_supported(unsigned int code, 50 unsigned long *bm, unsigned int max) 51 { 52 return code <= max && test_bit(code, bm); 53 } 54 55 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 56 { 57 if (fuzz) { 58 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 59 return old_val; 60 61 if (value > old_val - fuzz && value < old_val + fuzz) 62 return (old_val * 3 + value) / 4; 63 64 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 65 return (old_val + value) / 2; 66 } 67 68 return value; 69 } 70 71 /* 72 * Pass event first through all filters and then, if event has not been 73 * filtered out, through all open handles. This function is called with 74 * dev->event_lock held and interrupts disabled. 75 */ 76 static void input_pass_event(struct input_dev *dev, 77 unsigned int type, unsigned int code, int value) 78 { 79 struct input_handler *handler; 80 struct input_handle *handle; 81 82 rcu_read_lock(); 83 84 handle = rcu_dereference(dev->grab); 85 if (handle) 86 handle->handler->event(handle, type, code, value); 87 else { 88 bool filtered = false; 89 90 list_for_each_entry_rcu(handle, &dev->h_list, d_node) { 91 if (!handle->open) 92 continue; 93 94 handler = handle->handler; 95 if (!handler->filter) { 96 if (filtered) 97 break; 98 99 handler->event(handle, type, code, value); 100 101 } else if (handler->filter(handle, type, code, value)) 102 filtered = true; 103 } 104 } 105 106 rcu_read_unlock(); 107 } 108 109 /* 110 * Generate software autorepeat event. Note that we take 111 * dev->event_lock here to avoid racing with input_event 112 * which may cause keys get "stuck". 113 */ 114 static void input_repeat_key(unsigned long data) 115 { 116 struct input_dev *dev = (void *) data; 117 unsigned long flags; 118 119 spin_lock_irqsave(&dev->event_lock, flags); 120 121 if (test_bit(dev->repeat_key, dev->key) && 122 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 123 124 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 125 126 if (dev->sync) { 127 /* 128 * Only send SYN_REPORT if we are not in a middle 129 * of driver parsing a new hardware packet. 130 * Otherwise assume that the driver will send 131 * SYN_REPORT once it's done. 132 */ 133 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 134 } 135 136 if (dev->rep[REP_PERIOD]) 137 mod_timer(&dev->timer, jiffies + 138 msecs_to_jiffies(dev->rep[REP_PERIOD])); 139 } 140 141 spin_unlock_irqrestore(&dev->event_lock, flags); 142 } 143 144 static void input_start_autorepeat(struct input_dev *dev, int code) 145 { 146 if (test_bit(EV_REP, dev->evbit) && 147 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 148 dev->timer.data) { 149 dev->repeat_key = code; 150 mod_timer(&dev->timer, 151 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 152 } 153 } 154 155 static void input_stop_autorepeat(struct input_dev *dev) 156 { 157 del_timer(&dev->timer); 158 } 159 160 #define INPUT_IGNORE_EVENT 0 161 #define INPUT_PASS_TO_HANDLERS 1 162 #define INPUT_PASS_TO_DEVICE 2 163 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 164 165 static int input_handle_abs_event(struct input_dev *dev, 166 unsigned int code, int *pval) 167 { 168 bool is_mt_event; 169 int *pold; 170 171 if (code == ABS_MT_SLOT) { 172 /* 173 * "Stage" the event; we'll flush it later, when we 174 * get actual touch data. 175 */ 176 if (*pval >= 0 && *pval < dev->mtsize) 177 dev->slot = *pval; 178 179 return INPUT_IGNORE_EVENT; 180 } 181 182 is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST; 183 184 if (!is_mt_event) { 185 pold = &dev->absinfo[code].value; 186 } else if (dev->mt) { 187 struct input_mt_slot *mtslot = &dev->mt[dev->slot]; 188 pold = &mtslot->abs[code - ABS_MT_FIRST]; 189 } else { 190 /* 191 * Bypass filtering for multi-touch events when 192 * not employing slots. 193 */ 194 pold = NULL; 195 } 196 197 if (pold) { 198 *pval = input_defuzz_abs_event(*pval, *pold, 199 dev->absinfo[code].fuzz); 200 if (*pold == *pval) 201 return INPUT_IGNORE_EVENT; 202 203 *pold = *pval; 204 } 205 206 /* Flush pending "slot" event */ 207 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 208 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot); 209 input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot); 210 } 211 212 return INPUT_PASS_TO_HANDLERS; 213 } 214 215 static void input_handle_event(struct input_dev *dev, 216 unsigned int type, unsigned int code, int value) 217 { 218 int disposition = INPUT_IGNORE_EVENT; 219 220 switch (type) { 221 222 case EV_SYN: 223 switch (code) { 224 case SYN_CONFIG: 225 disposition = INPUT_PASS_TO_ALL; 226 break; 227 228 case SYN_REPORT: 229 if (!dev->sync) { 230 dev->sync = true; 231 disposition = INPUT_PASS_TO_HANDLERS; 232 } 233 break; 234 case SYN_MT_REPORT: 235 dev->sync = false; 236 disposition = INPUT_PASS_TO_HANDLERS; 237 break; 238 } 239 break; 240 241 case EV_KEY: 242 if (is_event_supported(code, dev->keybit, KEY_MAX) && 243 !!test_bit(code, dev->key) != value) { 244 245 if (value != 2) { 246 __change_bit(code, dev->key); 247 if (value) 248 input_start_autorepeat(dev, code); 249 else 250 input_stop_autorepeat(dev); 251 } 252 253 disposition = INPUT_PASS_TO_HANDLERS; 254 } 255 break; 256 257 case EV_SW: 258 if (is_event_supported(code, dev->swbit, SW_MAX) && 259 !!test_bit(code, dev->sw) != value) { 260 261 __change_bit(code, dev->sw); 262 disposition = INPUT_PASS_TO_HANDLERS; 263 } 264 break; 265 266 case EV_ABS: 267 if (is_event_supported(code, dev->absbit, ABS_MAX)) 268 disposition = input_handle_abs_event(dev, code, &value); 269 270 break; 271 272 case EV_REL: 273 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 274 disposition = INPUT_PASS_TO_HANDLERS; 275 276 break; 277 278 case EV_MSC: 279 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 280 disposition = INPUT_PASS_TO_ALL; 281 282 break; 283 284 case EV_LED: 285 if (is_event_supported(code, dev->ledbit, LED_MAX) && 286 !!test_bit(code, dev->led) != value) { 287 288 __change_bit(code, dev->led); 289 disposition = INPUT_PASS_TO_ALL; 290 } 291 break; 292 293 case EV_SND: 294 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 295 296 if (!!test_bit(code, dev->snd) != !!value) 297 __change_bit(code, dev->snd); 298 disposition = INPUT_PASS_TO_ALL; 299 } 300 break; 301 302 case EV_REP: 303 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 304 dev->rep[code] = value; 305 disposition = INPUT_PASS_TO_ALL; 306 } 307 break; 308 309 case EV_FF: 310 if (value >= 0) 311 disposition = INPUT_PASS_TO_ALL; 312 break; 313 314 case EV_PWR: 315 disposition = INPUT_PASS_TO_ALL; 316 break; 317 } 318 319 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 320 dev->sync = false; 321 322 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 323 dev->event(dev, type, code, value); 324 325 if (disposition & INPUT_PASS_TO_HANDLERS) 326 input_pass_event(dev, type, code, value); 327 } 328 329 /** 330 * input_event() - report new input event 331 * @dev: device that generated the event 332 * @type: type of the event 333 * @code: event code 334 * @value: value of the event 335 * 336 * This function should be used by drivers implementing various input 337 * devices to report input events. See also input_inject_event(). 338 * 339 * NOTE: input_event() may be safely used right after input device was 340 * allocated with input_allocate_device(), even before it is registered 341 * with input_register_device(), but the event will not reach any of the 342 * input handlers. Such early invocation of input_event() may be used 343 * to 'seed' initial state of a switch or initial position of absolute 344 * axis, etc. 345 */ 346 void input_event(struct input_dev *dev, 347 unsigned int type, unsigned int code, int value) 348 { 349 unsigned long flags; 350 351 if (is_event_supported(type, dev->evbit, EV_MAX)) { 352 353 spin_lock_irqsave(&dev->event_lock, flags); 354 add_input_randomness(type, code, value); 355 input_handle_event(dev, type, code, value); 356 spin_unlock_irqrestore(&dev->event_lock, flags); 357 } 358 } 359 EXPORT_SYMBOL(input_event); 360 361 /** 362 * input_inject_event() - send input event from input handler 363 * @handle: input handle to send event through 364 * @type: type of the event 365 * @code: event code 366 * @value: value of the event 367 * 368 * Similar to input_event() but will ignore event if device is 369 * "grabbed" and handle injecting event is not the one that owns 370 * the device. 371 */ 372 void input_inject_event(struct input_handle *handle, 373 unsigned int type, unsigned int code, int value) 374 { 375 struct input_dev *dev = handle->dev; 376 struct input_handle *grab; 377 unsigned long flags; 378 379 if (is_event_supported(type, dev->evbit, EV_MAX)) { 380 spin_lock_irqsave(&dev->event_lock, flags); 381 382 rcu_read_lock(); 383 grab = rcu_dereference(dev->grab); 384 if (!grab || grab == handle) 385 input_handle_event(dev, type, code, value); 386 rcu_read_unlock(); 387 388 spin_unlock_irqrestore(&dev->event_lock, flags); 389 } 390 } 391 EXPORT_SYMBOL(input_inject_event); 392 393 /** 394 * input_alloc_absinfo - allocates array of input_absinfo structs 395 * @dev: the input device emitting absolute events 396 * 397 * If the absinfo struct the caller asked for is already allocated, this 398 * functions will not do anything. 399 */ 400 void input_alloc_absinfo(struct input_dev *dev) 401 { 402 if (!dev->absinfo) 403 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 404 GFP_KERNEL); 405 406 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 407 } 408 EXPORT_SYMBOL(input_alloc_absinfo); 409 410 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 411 int min, int max, int fuzz, int flat) 412 { 413 struct input_absinfo *absinfo; 414 415 input_alloc_absinfo(dev); 416 if (!dev->absinfo) 417 return; 418 419 absinfo = &dev->absinfo[axis]; 420 absinfo->minimum = min; 421 absinfo->maximum = max; 422 absinfo->fuzz = fuzz; 423 absinfo->flat = flat; 424 425 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis); 426 } 427 EXPORT_SYMBOL(input_set_abs_params); 428 429 430 /** 431 * input_grab_device - grabs device for exclusive use 432 * @handle: input handle that wants to own the device 433 * 434 * When a device is grabbed by an input handle all events generated by 435 * the device are delivered only to this handle. Also events injected 436 * by other input handles are ignored while device is grabbed. 437 */ 438 int input_grab_device(struct input_handle *handle) 439 { 440 struct input_dev *dev = handle->dev; 441 int retval; 442 443 retval = mutex_lock_interruptible(&dev->mutex); 444 if (retval) 445 return retval; 446 447 if (dev->grab) { 448 retval = -EBUSY; 449 goto out; 450 } 451 452 rcu_assign_pointer(dev->grab, handle); 453 synchronize_rcu(); 454 455 out: 456 mutex_unlock(&dev->mutex); 457 return retval; 458 } 459 EXPORT_SYMBOL(input_grab_device); 460 461 static void __input_release_device(struct input_handle *handle) 462 { 463 struct input_dev *dev = handle->dev; 464 465 if (dev->grab == handle) { 466 rcu_assign_pointer(dev->grab, NULL); 467 /* Make sure input_pass_event() notices that grab is gone */ 468 synchronize_rcu(); 469 470 list_for_each_entry(handle, &dev->h_list, d_node) 471 if (handle->open && handle->handler->start) 472 handle->handler->start(handle); 473 } 474 } 475 476 /** 477 * input_release_device - release previously grabbed device 478 * @handle: input handle that owns the device 479 * 480 * Releases previously grabbed device so that other input handles can 481 * start receiving input events. Upon release all handlers attached 482 * to the device have their start() method called so they have a change 483 * to synchronize device state with the rest of the system. 484 */ 485 void input_release_device(struct input_handle *handle) 486 { 487 struct input_dev *dev = handle->dev; 488 489 mutex_lock(&dev->mutex); 490 __input_release_device(handle); 491 mutex_unlock(&dev->mutex); 492 } 493 EXPORT_SYMBOL(input_release_device); 494 495 /** 496 * input_open_device - open input device 497 * @handle: handle through which device is being accessed 498 * 499 * This function should be called by input handlers when they 500 * want to start receive events from given input device. 501 */ 502 int input_open_device(struct input_handle *handle) 503 { 504 struct input_dev *dev = handle->dev; 505 int retval; 506 507 retval = mutex_lock_interruptible(&dev->mutex); 508 if (retval) 509 return retval; 510 511 if (dev->going_away) { 512 retval = -ENODEV; 513 goto out; 514 } 515 516 handle->open++; 517 518 if (!dev->users++ && dev->open) 519 retval = dev->open(dev); 520 521 if (retval) { 522 dev->users--; 523 if (!--handle->open) { 524 /* 525 * Make sure we are not delivering any more events 526 * through this handle 527 */ 528 synchronize_rcu(); 529 } 530 } 531 532 out: 533 mutex_unlock(&dev->mutex); 534 return retval; 535 } 536 EXPORT_SYMBOL(input_open_device); 537 538 int input_flush_device(struct input_handle *handle, struct file *file) 539 { 540 struct input_dev *dev = handle->dev; 541 int retval; 542 543 retval = mutex_lock_interruptible(&dev->mutex); 544 if (retval) 545 return retval; 546 547 if (dev->flush) 548 retval = dev->flush(dev, file); 549 550 mutex_unlock(&dev->mutex); 551 return retval; 552 } 553 EXPORT_SYMBOL(input_flush_device); 554 555 /** 556 * input_close_device - close input device 557 * @handle: handle through which device is being accessed 558 * 559 * This function should be called by input handlers when they 560 * want to stop receive events from given input device. 561 */ 562 void input_close_device(struct input_handle *handle) 563 { 564 struct input_dev *dev = handle->dev; 565 566 mutex_lock(&dev->mutex); 567 568 __input_release_device(handle); 569 570 if (!--dev->users && dev->close) 571 dev->close(dev); 572 573 if (!--handle->open) { 574 /* 575 * synchronize_rcu() makes sure that input_pass_event() 576 * completed and that no more input events are delivered 577 * through this handle 578 */ 579 synchronize_rcu(); 580 } 581 582 mutex_unlock(&dev->mutex); 583 } 584 EXPORT_SYMBOL(input_close_device); 585 586 /* 587 * Simulate keyup events for all keys that are marked as pressed. 588 * The function must be called with dev->event_lock held. 589 */ 590 static void input_dev_release_keys(struct input_dev *dev) 591 { 592 int code; 593 594 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 595 for (code = 0; code <= KEY_MAX; code++) { 596 if (is_event_supported(code, dev->keybit, KEY_MAX) && 597 __test_and_clear_bit(code, dev->key)) { 598 input_pass_event(dev, EV_KEY, code, 0); 599 } 600 } 601 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 602 } 603 } 604 605 /* 606 * Prepare device for unregistering 607 */ 608 static void input_disconnect_device(struct input_dev *dev) 609 { 610 struct input_handle *handle; 611 612 /* 613 * Mark device as going away. Note that we take dev->mutex here 614 * not to protect access to dev->going_away but rather to ensure 615 * that there are no threads in the middle of input_open_device() 616 */ 617 mutex_lock(&dev->mutex); 618 dev->going_away = true; 619 mutex_unlock(&dev->mutex); 620 621 spin_lock_irq(&dev->event_lock); 622 623 /* 624 * Simulate keyup events for all pressed keys so that handlers 625 * are not left with "stuck" keys. The driver may continue 626 * generate events even after we done here but they will not 627 * reach any handlers. 628 */ 629 input_dev_release_keys(dev); 630 631 list_for_each_entry(handle, &dev->h_list, d_node) 632 handle->open = 0; 633 634 spin_unlock_irq(&dev->event_lock); 635 } 636 637 /** 638 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 639 * @ke: keymap entry containing scancode to be converted. 640 * @scancode: pointer to the location where converted scancode should 641 * be stored. 642 * 643 * This function is used to convert scancode stored in &struct keymap_entry 644 * into scalar form understood by legacy keymap handling methods. These 645 * methods expect scancodes to be represented as 'unsigned int'. 646 */ 647 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 648 unsigned int *scancode) 649 { 650 switch (ke->len) { 651 case 1: 652 *scancode = *((u8 *)ke->scancode); 653 break; 654 655 case 2: 656 *scancode = *((u16 *)ke->scancode); 657 break; 658 659 case 4: 660 *scancode = *((u32 *)ke->scancode); 661 break; 662 663 default: 664 return -EINVAL; 665 } 666 667 return 0; 668 } 669 EXPORT_SYMBOL(input_scancode_to_scalar); 670 671 /* 672 * Those routines handle the default case where no [gs]etkeycode() is 673 * defined. In this case, an array indexed by the scancode is used. 674 */ 675 676 static unsigned int input_fetch_keycode(struct input_dev *dev, 677 unsigned int index) 678 { 679 switch (dev->keycodesize) { 680 case 1: 681 return ((u8 *)dev->keycode)[index]; 682 683 case 2: 684 return ((u16 *)dev->keycode)[index]; 685 686 default: 687 return ((u32 *)dev->keycode)[index]; 688 } 689 } 690 691 static int input_default_getkeycode(struct input_dev *dev, 692 struct input_keymap_entry *ke) 693 { 694 unsigned int index; 695 int error; 696 697 if (!dev->keycodesize) 698 return -EINVAL; 699 700 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 701 index = ke->index; 702 else { 703 error = input_scancode_to_scalar(ke, &index); 704 if (error) 705 return error; 706 } 707 708 if (index >= dev->keycodemax) 709 return -EINVAL; 710 711 ke->keycode = input_fetch_keycode(dev, index); 712 ke->index = index; 713 ke->len = sizeof(index); 714 memcpy(ke->scancode, &index, sizeof(index)); 715 716 return 0; 717 } 718 719 static int input_default_setkeycode(struct input_dev *dev, 720 const struct input_keymap_entry *ke, 721 unsigned int *old_keycode) 722 { 723 unsigned int index; 724 int error; 725 int i; 726 727 if (!dev->keycodesize) 728 return -EINVAL; 729 730 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 731 index = ke->index; 732 } else { 733 error = input_scancode_to_scalar(ke, &index); 734 if (error) 735 return error; 736 } 737 738 if (index >= dev->keycodemax) 739 return -EINVAL; 740 741 if (dev->keycodesize < sizeof(dev->keycode) && 742 (ke->keycode >> (dev->keycodesize * 8))) 743 return -EINVAL; 744 745 switch (dev->keycodesize) { 746 case 1: { 747 u8 *k = (u8 *)dev->keycode; 748 *old_keycode = k[index]; 749 k[index] = ke->keycode; 750 break; 751 } 752 case 2: { 753 u16 *k = (u16 *)dev->keycode; 754 *old_keycode = k[index]; 755 k[index] = ke->keycode; 756 break; 757 } 758 default: { 759 u32 *k = (u32 *)dev->keycode; 760 *old_keycode = k[index]; 761 k[index] = ke->keycode; 762 break; 763 } 764 } 765 766 __clear_bit(*old_keycode, dev->keybit); 767 __set_bit(ke->keycode, dev->keybit); 768 769 for (i = 0; i < dev->keycodemax; i++) { 770 if (input_fetch_keycode(dev, i) == *old_keycode) { 771 __set_bit(*old_keycode, dev->keybit); 772 break; /* Setting the bit twice is useless, so break */ 773 } 774 } 775 776 return 0; 777 } 778 779 /** 780 * input_get_keycode - retrieve keycode currently mapped to a given scancode 781 * @dev: input device which keymap is being queried 782 * @ke: keymap entry 783 * 784 * This function should be called by anyone interested in retrieving current 785 * keymap. Presently evdev handlers use it. 786 */ 787 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 788 { 789 unsigned long flags; 790 int retval; 791 792 spin_lock_irqsave(&dev->event_lock, flags); 793 794 if (dev->getkeycode) { 795 /* 796 * Support for legacy drivers, that don't implement the new 797 * ioctls 798 */ 799 u32 scancode = ke->index; 800 801 memcpy(ke->scancode, &scancode, sizeof(scancode)); 802 ke->len = sizeof(scancode); 803 retval = dev->getkeycode(dev, scancode, &ke->keycode); 804 } else { 805 retval = dev->getkeycode_new(dev, ke); 806 } 807 808 spin_unlock_irqrestore(&dev->event_lock, flags); 809 return retval; 810 } 811 EXPORT_SYMBOL(input_get_keycode); 812 813 /** 814 * input_set_keycode - attribute a keycode to a given scancode 815 * @dev: input device which keymap is being updated 816 * @ke: new keymap entry 817 * 818 * This function should be called by anyone needing to update current 819 * keymap. Presently keyboard and evdev handlers use it. 820 */ 821 int input_set_keycode(struct input_dev *dev, 822 const struct input_keymap_entry *ke) 823 { 824 unsigned long flags; 825 unsigned int old_keycode; 826 int retval; 827 828 if (ke->keycode > KEY_MAX) 829 return -EINVAL; 830 831 spin_lock_irqsave(&dev->event_lock, flags); 832 833 if (dev->setkeycode) { 834 /* 835 * Support for legacy drivers, that don't implement the new 836 * ioctls 837 */ 838 unsigned int scancode; 839 840 retval = input_scancode_to_scalar(ke, &scancode); 841 if (retval) 842 goto out; 843 844 /* 845 * We need to know the old scancode, in order to generate a 846 * keyup effect, if the set operation happens successfully 847 */ 848 if (!dev->getkeycode) { 849 retval = -EINVAL; 850 goto out; 851 } 852 853 retval = dev->getkeycode(dev, scancode, &old_keycode); 854 if (retval) 855 goto out; 856 857 retval = dev->setkeycode(dev, scancode, ke->keycode); 858 } else { 859 retval = dev->setkeycode_new(dev, ke, &old_keycode); 860 } 861 862 if (retval) 863 goto out; 864 865 /* Make sure KEY_RESERVED did not get enabled. */ 866 __clear_bit(KEY_RESERVED, dev->keybit); 867 868 /* 869 * Simulate keyup event if keycode is not present 870 * in the keymap anymore 871 */ 872 if (test_bit(EV_KEY, dev->evbit) && 873 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 874 __test_and_clear_bit(old_keycode, dev->key)) { 875 876 input_pass_event(dev, EV_KEY, old_keycode, 0); 877 if (dev->sync) 878 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 879 } 880 881 out: 882 spin_unlock_irqrestore(&dev->event_lock, flags); 883 884 return retval; 885 } 886 EXPORT_SYMBOL(input_set_keycode); 887 888 #define MATCH_BIT(bit, max) \ 889 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 890 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 891 break; \ 892 if (i != BITS_TO_LONGS(max)) \ 893 continue; 894 895 static const struct input_device_id *input_match_device(struct input_handler *handler, 896 struct input_dev *dev) 897 { 898 const struct input_device_id *id; 899 int i; 900 901 for (id = handler->id_table; id->flags || id->driver_info; id++) { 902 903 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 904 if (id->bustype != dev->id.bustype) 905 continue; 906 907 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 908 if (id->vendor != dev->id.vendor) 909 continue; 910 911 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 912 if (id->product != dev->id.product) 913 continue; 914 915 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 916 if (id->version != dev->id.version) 917 continue; 918 919 MATCH_BIT(evbit, EV_MAX); 920 MATCH_BIT(keybit, KEY_MAX); 921 MATCH_BIT(relbit, REL_MAX); 922 MATCH_BIT(absbit, ABS_MAX); 923 MATCH_BIT(mscbit, MSC_MAX); 924 MATCH_BIT(ledbit, LED_MAX); 925 MATCH_BIT(sndbit, SND_MAX); 926 MATCH_BIT(ffbit, FF_MAX); 927 MATCH_BIT(swbit, SW_MAX); 928 929 if (!handler->match || handler->match(handler, dev)) 930 return id; 931 } 932 933 return NULL; 934 } 935 936 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 937 { 938 const struct input_device_id *id; 939 int error; 940 941 id = input_match_device(handler, dev); 942 if (!id) 943 return -ENODEV; 944 945 error = handler->connect(handler, dev, id); 946 if (error && error != -ENODEV) 947 printk(KERN_ERR 948 "input: failed to attach handler %s to device %s, " 949 "error: %d\n", 950 handler->name, kobject_name(&dev->dev.kobj), error); 951 952 return error; 953 } 954 955 #ifdef CONFIG_COMPAT 956 957 static int input_bits_to_string(char *buf, int buf_size, 958 unsigned long bits, bool skip_empty) 959 { 960 int len = 0; 961 962 if (INPUT_COMPAT_TEST) { 963 u32 dword = bits >> 32; 964 if (dword || !skip_empty) 965 len += snprintf(buf, buf_size, "%x ", dword); 966 967 dword = bits & 0xffffffffUL; 968 if (dword || !skip_empty || len) 969 len += snprintf(buf + len, max(buf_size - len, 0), 970 "%x", dword); 971 } else { 972 if (bits || !skip_empty) 973 len += snprintf(buf, buf_size, "%lx", bits); 974 } 975 976 return len; 977 } 978 979 #else /* !CONFIG_COMPAT */ 980 981 static int input_bits_to_string(char *buf, int buf_size, 982 unsigned long bits, bool skip_empty) 983 { 984 return bits || !skip_empty ? 985 snprintf(buf, buf_size, "%lx", bits) : 0; 986 } 987 988 #endif 989 990 #ifdef CONFIG_PROC_FS 991 992 static struct proc_dir_entry *proc_bus_input_dir; 993 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 994 static int input_devices_state; 995 996 static inline void input_wakeup_procfs_readers(void) 997 { 998 input_devices_state++; 999 wake_up(&input_devices_poll_wait); 1000 } 1001 1002 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1003 { 1004 poll_wait(file, &input_devices_poll_wait, wait); 1005 if (file->f_version != input_devices_state) { 1006 file->f_version = input_devices_state; 1007 return POLLIN | POLLRDNORM; 1008 } 1009 1010 return 0; 1011 } 1012 1013 union input_seq_state { 1014 struct { 1015 unsigned short pos; 1016 bool mutex_acquired; 1017 }; 1018 void *p; 1019 }; 1020 1021 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1022 { 1023 union input_seq_state *state = (union input_seq_state *)&seq->private; 1024 int error; 1025 1026 /* We need to fit into seq->private pointer */ 1027 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1028 1029 error = mutex_lock_interruptible(&input_mutex); 1030 if (error) { 1031 state->mutex_acquired = false; 1032 return ERR_PTR(error); 1033 } 1034 1035 state->mutex_acquired = true; 1036 1037 return seq_list_start(&input_dev_list, *pos); 1038 } 1039 1040 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1041 { 1042 return seq_list_next(v, &input_dev_list, pos); 1043 } 1044 1045 static void input_seq_stop(struct seq_file *seq, void *v) 1046 { 1047 union input_seq_state *state = (union input_seq_state *)&seq->private; 1048 1049 if (state->mutex_acquired) 1050 mutex_unlock(&input_mutex); 1051 } 1052 1053 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1054 unsigned long *bitmap, int max) 1055 { 1056 int i; 1057 bool skip_empty = true; 1058 char buf[18]; 1059 1060 seq_printf(seq, "B: %s=", name); 1061 1062 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1063 if (input_bits_to_string(buf, sizeof(buf), 1064 bitmap[i], skip_empty)) { 1065 skip_empty = false; 1066 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1067 } 1068 } 1069 1070 /* 1071 * If no output was produced print a single 0. 1072 */ 1073 if (skip_empty) 1074 seq_puts(seq, "0"); 1075 1076 seq_putc(seq, '\n'); 1077 } 1078 1079 static int input_devices_seq_show(struct seq_file *seq, void *v) 1080 { 1081 struct input_dev *dev = container_of(v, struct input_dev, node); 1082 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1083 struct input_handle *handle; 1084 1085 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1086 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1087 1088 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1089 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1090 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1091 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1092 seq_printf(seq, "H: Handlers="); 1093 1094 list_for_each_entry(handle, &dev->h_list, d_node) 1095 seq_printf(seq, "%s ", handle->name); 1096 seq_putc(seq, '\n'); 1097 1098 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1099 if (test_bit(EV_KEY, dev->evbit)) 1100 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1101 if (test_bit(EV_REL, dev->evbit)) 1102 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1103 if (test_bit(EV_ABS, dev->evbit)) 1104 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1105 if (test_bit(EV_MSC, dev->evbit)) 1106 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1107 if (test_bit(EV_LED, dev->evbit)) 1108 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1109 if (test_bit(EV_SND, dev->evbit)) 1110 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1111 if (test_bit(EV_FF, dev->evbit)) 1112 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1113 if (test_bit(EV_SW, dev->evbit)) 1114 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1115 1116 seq_putc(seq, '\n'); 1117 1118 kfree(path); 1119 return 0; 1120 } 1121 1122 static const struct seq_operations input_devices_seq_ops = { 1123 .start = input_devices_seq_start, 1124 .next = input_devices_seq_next, 1125 .stop = input_seq_stop, 1126 .show = input_devices_seq_show, 1127 }; 1128 1129 static int input_proc_devices_open(struct inode *inode, struct file *file) 1130 { 1131 return seq_open(file, &input_devices_seq_ops); 1132 } 1133 1134 static const struct file_operations input_devices_fileops = { 1135 .owner = THIS_MODULE, 1136 .open = input_proc_devices_open, 1137 .poll = input_proc_devices_poll, 1138 .read = seq_read, 1139 .llseek = seq_lseek, 1140 .release = seq_release, 1141 }; 1142 1143 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1144 { 1145 union input_seq_state *state = (union input_seq_state *)&seq->private; 1146 int error; 1147 1148 /* We need to fit into seq->private pointer */ 1149 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1150 1151 error = mutex_lock_interruptible(&input_mutex); 1152 if (error) { 1153 state->mutex_acquired = false; 1154 return ERR_PTR(error); 1155 } 1156 1157 state->mutex_acquired = true; 1158 state->pos = *pos; 1159 1160 return seq_list_start(&input_handler_list, *pos); 1161 } 1162 1163 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1164 { 1165 union input_seq_state *state = (union input_seq_state *)&seq->private; 1166 1167 state->pos = *pos + 1; 1168 return seq_list_next(v, &input_handler_list, pos); 1169 } 1170 1171 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1172 { 1173 struct input_handler *handler = container_of(v, struct input_handler, node); 1174 union input_seq_state *state = (union input_seq_state *)&seq->private; 1175 1176 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1177 if (handler->filter) 1178 seq_puts(seq, " (filter)"); 1179 if (handler->fops) 1180 seq_printf(seq, " Minor=%d", handler->minor); 1181 seq_putc(seq, '\n'); 1182 1183 return 0; 1184 } 1185 1186 static const struct seq_operations input_handlers_seq_ops = { 1187 .start = input_handlers_seq_start, 1188 .next = input_handlers_seq_next, 1189 .stop = input_seq_stop, 1190 .show = input_handlers_seq_show, 1191 }; 1192 1193 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1194 { 1195 return seq_open(file, &input_handlers_seq_ops); 1196 } 1197 1198 static const struct file_operations input_handlers_fileops = { 1199 .owner = THIS_MODULE, 1200 .open = input_proc_handlers_open, 1201 .read = seq_read, 1202 .llseek = seq_lseek, 1203 .release = seq_release, 1204 }; 1205 1206 static int __init input_proc_init(void) 1207 { 1208 struct proc_dir_entry *entry; 1209 1210 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1211 if (!proc_bus_input_dir) 1212 return -ENOMEM; 1213 1214 entry = proc_create("devices", 0, proc_bus_input_dir, 1215 &input_devices_fileops); 1216 if (!entry) 1217 goto fail1; 1218 1219 entry = proc_create("handlers", 0, proc_bus_input_dir, 1220 &input_handlers_fileops); 1221 if (!entry) 1222 goto fail2; 1223 1224 return 0; 1225 1226 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1227 fail1: remove_proc_entry("bus/input", NULL); 1228 return -ENOMEM; 1229 } 1230 1231 static void input_proc_exit(void) 1232 { 1233 remove_proc_entry("devices", proc_bus_input_dir); 1234 remove_proc_entry("handlers", proc_bus_input_dir); 1235 remove_proc_entry("bus/input", NULL); 1236 } 1237 1238 #else /* !CONFIG_PROC_FS */ 1239 static inline void input_wakeup_procfs_readers(void) { } 1240 static inline int input_proc_init(void) { return 0; } 1241 static inline void input_proc_exit(void) { } 1242 #endif 1243 1244 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1245 static ssize_t input_dev_show_##name(struct device *dev, \ 1246 struct device_attribute *attr, \ 1247 char *buf) \ 1248 { \ 1249 struct input_dev *input_dev = to_input_dev(dev); \ 1250 \ 1251 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1252 input_dev->name ? input_dev->name : ""); \ 1253 } \ 1254 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1255 1256 INPUT_DEV_STRING_ATTR_SHOW(name); 1257 INPUT_DEV_STRING_ATTR_SHOW(phys); 1258 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1259 1260 static int input_print_modalias_bits(char *buf, int size, 1261 char name, unsigned long *bm, 1262 unsigned int min_bit, unsigned int max_bit) 1263 { 1264 int len = 0, i; 1265 1266 len += snprintf(buf, max(size, 0), "%c", name); 1267 for (i = min_bit; i < max_bit; i++) 1268 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1269 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1270 return len; 1271 } 1272 1273 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1274 int add_cr) 1275 { 1276 int len; 1277 1278 len = snprintf(buf, max(size, 0), 1279 "input:b%04Xv%04Xp%04Xe%04X-", 1280 id->id.bustype, id->id.vendor, 1281 id->id.product, id->id.version); 1282 1283 len += input_print_modalias_bits(buf + len, size - len, 1284 'e', id->evbit, 0, EV_MAX); 1285 len += input_print_modalias_bits(buf + len, size - len, 1286 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1287 len += input_print_modalias_bits(buf + len, size - len, 1288 'r', id->relbit, 0, REL_MAX); 1289 len += input_print_modalias_bits(buf + len, size - len, 1290 'a', id->absbit, 0, ABS_MAX); 1291 len += input_print_modalias_bits(buf + len, size - len, 1292 'm', id->mscbit, 0, MSC_MAX); 1293 len += input_print_modalias_bits(buf + len, size - len, 1294 'l', id->ledbit, 0, LED_MAX); 1295 len += input_print_modalias_bits(buf + len, size - len, 1296 's', id->sndbit, 0, SND_MAX); 1297 len += input_print_modalias_bits(buf + len, size - len, 1298 'f', id->ffbit, 0, FF_MAX); 1299 len += input_print_modalias_bits(buf + len, size - len, 1300 'w', id->swbit, 0, SW_MAX); 1301 1302 if (add_cr) 1303 len += snprintf(buf + len, max(size - len, 0), "\n"); 1304 1305 return len; 1306 } 1307 1308 static ssize_t input_dev_show_modalias(struct device *dev, 1309 struct device_attribute *attr, 1310 char *buf) 1311 { 1312 struct input_dev *id = to_input_dev(dev); 1313 ssize_t len; 1314 1315 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1316 1317 return min_t(int, len, PAGE_SIZE); 1318 } 1319 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1320 1321 static struct attribute *input_dev_attrs[] = { 1322 &dev_attr_name.attr, 1323 &dev_attr_phys.attr, 1324 &dev_attr_uniq.attr, 1325 &dev_attr_modalias.attr, 1326 NULL 1327 }; 1328 1329 static struct attribute_group input_dev_attr_group = { 1330 .attrs = input_dev_attrs, 1331 }; 1332 1333 #define INPUT_DEV_ID_ATTR(name) \ 1334 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1335 struct device_attribute *attr, \ 1336 char *buf) \ 1337 { \ 1338 struct input_dev *input_dev = to_input_dev(dev); \ 1339 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1340 } \ 1341 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1342 1343 INPUT_DEV_ID_ATTR(bustype); 1344 INPUT_DEV_ID_ATTR(vendor); 1345 INPUT_DEV_ID_ATTR(product); 1346 INPUT_DEV_ID_ATTR(version); 1347 1348 static struct attribute *input_dev_id_attrs[] = { 1349 &dev_attr_bustype.attr, 1350 &dev_attr_vendor.attr, 1351 &dev_attr_product.attr, 1352 &dev_attr_version.attr, 1353 NULL 1354 }; 1355 1356 static struct attribute_group input_dev_id_attr_group = { 1357 .name = "id", 1358 .attrs = input_dev_id_attrs, 1359 }; 1360 1361 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1362 int max, int add_cr) 1363 { 1364 int i; 1365 int len = 0; 1366 bool skip_empty = true; 1367 1368 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1369 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1370 bitmap[i], skip_empty); 1371 if (len) { 1372 skip_empty = false; 1373 if (i > 0) 1374 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1375 } 1376 } 1377 1378 /* 1379 * If no output was produced print a single 0. 1380 */ 1381 if (len == 0) 1382 len = snprintf(buf, buf_size, "%d", 0); 1383 1384 if (add_cr) 1385 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1386 1387 return len; 1388 } 1389 1390 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1391 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1392 struct device_attribute *attr, \ 1393 char *buf) \ 1394 { \ 1395 struct input_dev *input_dev = to_input_dev(dev); \ 1396 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1397 input_dev->bm##bit, ev##_MAX, \ 1398 true); \ 1399 return min_t(int, len, PAGE_SIZE); \ 1400 } \ 1401 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1402 1403 INPUT_DEV_CAP_ATTR(EV, ev); 1404 INPUT_DEV_CAP_ATTR(KEY, key); 1405 INPUT_DEV_CAP_ATTR(REL, rel); 1406 INPUT_DEV_CAP_ATTR(ABS, abs); 1407 INPUT_DEV_CAP_ATTR(MSC, msc); 1408 INPUT_DEV_CAP_ATTR(LED, led); 1409 INPUT_DEV_CAP_ATTR(SND, snd); 1410 INPUT_DEV_CAP_ATTR(FF, ff); 1411 INPUT_DEV_CAP_ATTR(SW, sw); 1412 1413 static struct attribute *input_dev_caps_attrs[] = { 1414 &dev_attr_ev.attr, 1415 &dev_attr_key.attr, 1416 &dev_attr_rel.attr, 1417 &dev_attr_abs.attr, 1418 &dev_attr_msc.attr, 1419 &dev_attr_led.attr, 1420 &dev_attr_snd.attr, 1421 &dev_attr_ff.attr, 1422 &dev_attr_sw.attr, 1423 NULL 1424 }; 1425 1426 static struct attribute_group input_dev_caps_attr_group = { 1427 .name = "capabilities", 1428 .attrs = input_dev_caps_attrs, 1429 }; 1430 1431 static const struct attribute_group *input_dev_attr_groups[] = { 1432 &input_dev_attr_group, 1433 &input_dev_id_attr_group, 1434 &input_dev_caps_attr_group, 1435 NULL 1436 }; 1437 1438 static void input_dev_release(struct device *device) 1439 { 1440 struct input_dev *dev = to_input_dev(device); 1441 1442 input_ff_destroy(dev); 1443 input_mt_destroy_slots(dev); 1444 kfree(dev->absinfo); 1445 kfree(dev); 1446 1447 module_put(THIS_MODULE); 1448 } 1449 1450 /* 1451 * Input uevent interface - loading event handlers based on 1452 * device bitfields. 1453 */ 1454 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1455 const char *name, unsigned long *bitmap, int max) 1456 { 1457 int len; 1458 1459 if (add_uevent_var(env, "%s=", name)) 1460 return -ENOMEM; 1461 1462 len = input_print_bitmap(&env->buf[env->buflen - 1], 1463 sizeof(env->buf) - env->buflen, 1464 bitmap, max, false); 1465 if (len >= (sizeof(env->buf) - env->buflen)) 1466 return -ENOMEM; 1467 1468 env->buflen += len; 1469 return 0; 1470 } 1471 1472 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1473 struct input_dev *dev) 1474 { 1475 int len; 1476 1477 if (add_uevent_var(env, "MODALIAS=")) 1478 return -ENOMEM; 1479 1480 len = input_print_modalias(&env->buf[env->buflen - 1], 1481 sizeof(env->buf) - env->buflen, 1482 dev, 0); 1483 if (len >= (sizeof(env->buf) - env->buflen)) 1484 return -ENOMEM; 1485 1486 env->buflen += len; 1487 return 0; 1488 } 1489 1490 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1491 do { \ 1492 int err = add_uevent_var(env, fmt, val); \ 1493 if (err) \ 1494 return err; \ 1495 } while (0) 1496 1497 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1498 do { \ 1499 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1500 if (err) \ 1501 return err; \ 1502 } while (0) 1503 1504 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1505 do { \ 1506 int err = input_add_uevent_modalias_var(env, dev); \ 1507 if (err) \ 1508 return err; \ 1509 } while (0) 1510 1511 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1512 { 1513 struct input_dev *dev = to_input_dev(device); 1514 1515 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1516 dev->id.bustype, dev->id.vendor, 1517 dev->id.product, dev->id.version); 1518 if (dev->name) 1519 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1520 if (dev->phys) 1521 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1522 if (dev->uniq) 1523 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1524 1525 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1526 if (test_bit(EV_KEY, dev->evbit)) 1527 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1528 if (test_bit(EV_REL, dev->evbit)) 1529 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1530 if (test_bit(EV_ABS, dev->evbit)) 1531 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1532 if (test_bit(EV_MSC, dev->evbit)) 1533 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1534 if (test_bit(EV_LED, dev->evbit)) 1535 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1536 if (test_bit(EV_SND, dev->evbit)) 1537 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1538 if (test_bit(EV_FF, dev->evbit)) 1539 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1540 if (test_bit(EV_SW, dev->evbit)) 1541 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1542 1543 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1544 1545 return 0; 1546 } 1547 1548 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1549 do { \ 1550 int i; \ 1551 bool active; \ 1552 \ 1553 if (!test_bit(EV_##type, dev->evbit)) \ 1554 break; \ 1555 \ 1556 for (i = 0; i < type##_MAX; i++) { \ 1557 if (!test_bit(i, dev->bits##bit)) \ 1558 continue; \ 1559 \ 1560 active = test_bit(i, dev->bits); \ 1561 if (!active && !on) \ 1562 continue; \ 1563 \ 1564 dev->event(dev, EV_##type, i, on ? active : 0); \ 1565 } \ 1566 } while (0) 1567 1568 #ifdef CONFIG_PM 1569 static void input_dev_reset(struct input_dev *dev, bool activate) 1570 { 1571 if (!dev->event) 1572 return; 1573 1574 INPUT_DO_TOGGLE(dev, LED, led, activate); 1575 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1576 1577 if (activate && test_bit(EV_REP, dev->evbit)) { 1578 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1579 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1580 } 1581 } 1582 1583 static int input_dev_suspend(struct device *dev) 1584 { 1585 struct input_dev *input_dev = to_input_dev(dev); 1586 1587 mutex_lock(&input_dev->mutex); 1588 input_dev_reset(input_dev, false); 1589 mutex_unlock(&input_dev->mutex); 1590 1591 return 0; 1592 } 1593 1594 static int input_dev_resume(struct device *dev) 1595 { 1596 struct input_dev *input_dev = to_input_dev(dev); 1597 1598 mutex_lock(&input_dev->mutex); 1599 input_dev_reset(input_dev, true); 1600 1601 /* 1602 * Keys that have been pressed at suspend time are unlikely 1603 * to be still pressed when we resume. 1604 */ 1605 spin_lock_irq(&input_dev->event_lock); 1606 input_dev_release_keys(input_dev); 1607 spin_unlock_irq(&input_dev->event_lock); 1608 1609 mutex_unlock(&input_dev->mutex); 1610 1611 return 0; 1612 } 1613 1614 static const struct dev_pm_ops input_dev_pm_ops = { 1615 .suspend = input_dev_suspend, 1616 .resume = input_dev_resume, 1617 .poweroff = input_dev_suspend, 1618 .restore = input_dev_resume, 1619 }; 1620 #endif /* CONFIG_PM */ 1621 1622 static struct device_type input_dev_type = { 1623 .groups = input_dev_attr_groups, 1624 .release = input_dev_release, 1625 .uevent = input_dev_uevent, 1626 #ifdef CONFIG_PM 1627 .pm = &input_dev_pm_ops, 1628 #endif 1629 }; 1630 1631 static char *input_devnode(struct device *dev, mode_t *mode) 1632 { 1633 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1634 } 1635 1636 struct class input_class = { 1637 .name = "input", 1638 .devnode = input_devnode, 1639 }; 1640 EXPORT_SYMBOL_GPL(input_class); 1641 1642 /** 1643 * input_allocate_device - allocate memory for new input device 1644 * 1645 * Returns prepared struct input_dev or NULL. 1646 * 1647 * NOTE: Use input_free_device() to free devices that have not been 1648 * registered; input_unregister_device() should be used for already 1649 * registered devices. 1650 */ 1651 struct input_dev *input_allocate_device(void) 1652 { 1653 struct input_dev *dev; 1654 1655 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1656 if (dev) { 1657 dev->dev.type = &input_dev_type; 1658 dev->dev.class = &input_class; 1659 device_initialize(&dev->dev); 1660 mutex_init(&dev->mutex); 1661 spin_lock_init(&dev->event_lock); 1662 INIT_LIST_HEAD(&dev->h_list); 1663 INIT_LIST_HEAD(&dev->node); 1664 1665 __module_get(THIS_MODULE); 1666 } 1667 1668 return dev; 1669 } 1670 EXPORT_SYMBOL(input_allocate_device); 1671 1672 /** 1673 * input_free_device - free memory occupied by input_dev structure 1674 * @dev: input device to free 1675 * 1676 * This function should only be used if input_register_device() 1677 * was not called yet or if it failed. Once device was registered 1678 * use input_unregister_device() and memory will be freed once last 1679 * reference to the device is dropped. 1680 * 1681 * Device should be allocated by input_allocate_device(). 1682 * 1683 * NOTE: If there are references to the input device then memory 1684 * will not be freed until last reference is dropped. 1685 */ 1686 void input_free_device(struct input_dev *dev) 1687 { 1688 if (dev) 1689 input_put_device(dev); 1690 } 1691 EXPORT_SYMBOL(input_free_device); 1692 1693 /** 1694 * input_mt_create_slots() - create MT input slots 1695 * @dev: input device supporting MT events and finger tracking 1696 * @num_slots: number of slots used by the device 1697 * 1698 * This function allocates all necessary memory for MT slot handling in the 1699 * input device, and adds ABS_MT_SLOT to the device capabilities. All slots 1700 * are initially marked as unused by setting ABS_MT_TRACKING_ID to -1. 1701 */ 1702 int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots) 1703 { 1704 int i; 1705 1706 if (!num_slots) 1707 return 0; 1708 1709 dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL); 1710 if (!dev->mt) 1711 return -ENOMEM; 1712 1713 dev->mtsize = num_slots; 1714 input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0); 1715 1716 /* Mark slots as 'unused' */ 1717 for (i = 0; i < num_slots; i++) 1718 dev->mt[i].abs[ABS_MT_TRACKING_ID - ABS_MT_FIRST] = -1; 1719 1720 return 0; 1721 } 1722 EXPORT_SYMBOL(input_mt_create_slots); 1723 1724 /** 1725 * input_mt_destroy_slots() - frees the MT slots of the input device 1726 * @dev: input device with allocated MT slots 1727 * 1728 * This function is only needed in error path as the input core will 1729 * automatically free the MT slots when the device is destroyed. 1730 */ 1731 void input_mt_destroy_slots(struct input_dev *dev) 1732 { 1733 kfree(dev->mt); 1734 dev->mt = NULL; 1735 dev->mtsize = 0; 1736 } 1737 EXPORT_SYMBOL(input_mt_destroy_slots); 1738 1739 /** 1740 * input_set_capability - mark device as capable of a certain event 1741 * @dev: device that is capable of emitting or accepting event 1742 * @type: type of the event (EV_KEY, EV_REL, etc...) 1743 * @code: event code 1744 * 1745 * In addition to setting up corresponding bit in appropriate capability 1746 * bitmap the function also adjusts dev->evbit. 1747 */ 1748 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1749 { 1750 switch (type) { 1751 case EV_KEY: 1752 __set_bit(code, dev->keybit); 1753 break; 1754 1755 case EV_REL: 1756 __set_bit(code, dev->relbit); 1757 break; 1758 1759 case EV_ABS: 1760 __set_bit(code, dev->absbit); 1761 break; 1762 1763 case EV_MSC: 1764 __set_bit(code, dev->mscbit); 1765 break; 1766 1767 case EV_SW: 1768 __set_bit(code, dev->swbit); 1769 break; 1770 1771 case EV_LED: 1772 __set_bit(code, dev->ledbit); 1773 break; 1774 1775 case EV_SND: 1776 __set_bit(code, dev->sndbit); 1777 break; 1778 1779 case EV_FF: 1780 __set_bit(code, dev->ffbit); 1781 break; 1782 1783 case EV_PWR: 1784 /* do nothing */ 1785 break; 1786 1787 default: 1788 printk(KERN_ERR 1789 "input_set_capability: unknown type %u (code %u)\n", 1790 type, code); 1791 dump_stack(); 1792 return; 1793 } 1794 1795 __set_bit(type, dev->evbit); 1796 } 1797 EXPORT_SYMBOL(input_set_capability); 1798 1799 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1800 do { \ 1801 if (!test_bit(EV_##type, dev->evbit)) \ 1802 memset(dev->bits##bit, 0, \ 1803 sizeof(dev->bits##bit)); \ 1804 } while (0) 1805 1806 static void input_cleanse_bitmasks(struct input_dev *dev) 1807 { 1808 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1809 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1810 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1811 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1812 INPUT_CLEANSE_BITMASK(dev, LED, led); 1813 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1814 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1815 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1816 } 1817 1818 /** 1819 * input_register_device - register device with input core 1820 * @dev: device to be registered 1821 * 1822 * This function registers device with input core. The device must be 1823 * allocated with input_allocate_device() and all it's capabilities 1824 * set up before registering. 1825 * If function fails the device must be freed with input_free_device(). 1826 * Once device has been successfully registered it can be unregistered 1827 * with input_unregister_device(); input_free_device() should not be 1828 * called in this case. 1829 */ 1830 int input_register_device(struct input_dev *dev) 1831 { 1832 static atomic_t input_no = ATOMIC_INIT(0); 1833 struct input_handler *handler; 1834 const char *path; 1835 int error; 1836 1837 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1838 __set_bit(EV_SYN, dev->evbit); 1839 1840 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1841 __clear_bit(KEY_RESERVED, dev->keybit); 1842 1843 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1844 input_cleanse_bitmasks(dev); 1845 1846 /* 1847 * If delay and period are pre-set by the driver, then autorepeating 1848 * is handled by the driver itself and we don't do it in input.c. 1849 */ 1850 init_timer(&dev->timer); 1851 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1852 dev->timer.data = (long) dev; 1853 dev->timer.function = input_repeat_key; 1854 dev->rep[REP_DELAY] = 250; 1855 dev->rep[REP_PERIOD] = 33; 1856 } 1857 1858 if (!dev->getkeycode && !dev->getkeycode_new) 1859 dev->getkeycode_new = input_default_getkeycode; 1860 1861 if (!dev->setkeycode && !dev->setkeycode_new) 1862 dev->setkeycode_new = input_default_setkeycode; 1863 1864 dev_set_name(&dev->dev, "input%ld", 1865 (unsigned long) atomic_inc_return(&input_no) - 1); 1866 1867 error = device_add(&dev->dev); 1868 if (error) 1869 return error; 1870 1871 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1872 printk(KERN_INFO "input: %s as %s\n", 1873 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1874 kfree(path); 1875 1876 error = mutex_lock_interruptible(&input_mutex); 1877 if (error) { 1878 device_del(&dev->dev); 1879 return error; 1880 } 1881 1882 list_add_tail(&dev->node, &input_dev_list); 1883 1884 list_for_each_entry(handler, &input_handler_list, node) 1885 input_attach_handler(dev, handler); 1886 1887 input_wakeup_procfs_readers(); 1888 1889 mutex_unlock(&input_mutex); 1890 1891 return 0; 1892 } 1893 EXPORT_SYMBOL(input_register_device); 1894 1895 /** 1896 * input_unregister_device - unregister previously registered device 1897 * @dev: device to be unregistered 1898 * 1899 * This function unregisters an input device. Once device is unregistered 1900 * the caller should not try to access it as it may get freed at any moment. 1901 */ 1902 void input_unregister_device(struct input_dev *dev) 1903 { 1904 struct input_handle *handle, *next; 1905 1906 input_disconnect_device(dev); 1907 1908 mutex_lock(&input_mutex); 1909 1910 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1911 handle->handler->disconnect(handle); 1912 WARN_ON(!list_empty(&dev->h_list)); 1913 1914 del_timer_sync(&dev->timer); 1915 list_del_init(&dev->node); 1916 1917 input_wakeup_procfs_readers(); 1918 1919 mutex_unlock(&input_mutex); 1920 1921 device_unregister(&dev->dev); 1922 } 1923 EXPORT_SYMBOL(input_unregister_device); 1924 1925 /** 1926 * input_register_handler - register a new input handler 1927 * @handler: handler to be registered 1928 * 1929 * This function registers a new input handler (interface) for input 1930 * devices in the system and attaches it to all input devices that 1931 * are compatible with the handler. 1932 */ 1933 int input_register_handler(struct input_handler *handler) 1934 { 1935 struct input_dev *dev; 1936 int retval; 1937 1938 retval = mutex_lock_interruptible(&input_mutex); 1939 if (retval) 1940 return retval; 1941 1942 INIT_LIST_HEAD(&handler->h_list); 1943 1944 if (handler->fops != NULL) { 1945 if (input_table[handler->minor >> 5]) { 1946 retval = -EBUSY; 1947 goto out; 1948 } 1949 input_table[handler->minor >> 5] = handler; 1950 } 1951 1952 list_add_tail(&handler->node, &input_handler_list); 1953 1954 list_for_each_entry(dev, &input_dev_list, node) 1955 input_attach_handler(dev, handler); 1956 1957 input_wakeup_procfs_readers(); 1958 1959 out: 1960 mutex_unlock(&input_mutex); 1961 return retval; 1962 } 1963 EXPORT_SYMBOL(input_register_handler); 1964 1965 /** 1966 * input_unregister_handler - unregisters an input handler 1967 * @handler: handler to be unregistered 1968 * 1969 * This function disconnects a handler from its input devices and 1970 * removes it from lists of known handlers. 1971 */ 1972 void input_unregister_handler(struct input_handler *handler) 1973 { 1974 struct input_handle *handle, *next; 1975 1976 mutex_lock(&input_mutex); 1977 1978 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1979 handler->disconnect(handle); 1980 WARN_ON(!list_empty(&handler->h_list)); 1981 1982 list_del_init(&handler->node); 1983 1984 if (handler->fops != NULL) 1985 input_table[handler->minor >> 5] = NULL; 1986 1987 input_wakeup_procfs_readers(); 1988 1989 mutex_unlock(&input_mutex); 1990 } 1991 EXPORT_SYMBOL(input_unregister_handler); 1992 1993 /** 1994 * input_handler_for_each_handle - handle iterator 1995 * @handler: input handler to iterate 1996 * @data: data for the callback 1997 * @fn: function to be called for each handle 1998 * 1999 * Iterate over @bus's list of devices, and call @fn for each, passing 2000 * it @data and stop when @fn returns a non-zero value. The function is 2001 * using RCU to traverse the list and therefore may be usind in atonic 2002 * contexts. The @fn callback is invoked from RCU critical section and 2003 * thus must not sleep. 2004 */ 2005 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2006 int (*fn)(struct input_handle *, void *)) 2007 { 2008 struct input_handle *handle; 2009 int retval = 0; 2010 2011 rcu_read_lock(); 2012 2013 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2014 retval = fn(handle, data); 2015 if (retval) 2016 break; 2017 } 2018 2019 rcu_read_unlock(); 2020 2021 return retval; 2022 } 2023 EXPORT_SYMBOL(input_handler_for_each_handle); 2024 2025 /** 2026 * input_register_handle - register a new input handle 2027 * @handle: handle to register 2028 * 2029 * This function puts a new input handle onto device's 2030 * and handler's lists so that events can flow through 2031 * it once it is opened using input_open_device(). 2032 * 2033 * This function is supposed to be called from handler's 2034 * connect() method. 2035 */ 2036 int input_register_handle(struct input_handle *handle) 2037 { 2038 struct input_handler *handler = handle->handler; 2039 struct input_dev *dev = handle->dev; 2040 int error; 2041 2042 /* 2043 * We take dev->mutex here to prevent race with 2044 * input_release_device(). 2045 */ 2046 error = mutex_lock_interruptible(&dev->mutex); 2047 if (error) 2048 return error; 2049 2050 /* 2051 * Filters go to the head of the list, normal handlers 2052 * to the tail. 2053 */ 2054 if (handler->filter) 2055 list_add_rcu(&handle->d_node, &dev->h_list); 2056 else 2057 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2058 2059 mutex_unlock(&dev->mutex); 2060 2061 /* 2062 * Since we are supposed to be called from ->connect() 2063 * which is mutually exclusive with ->disconnect() 2064 * we can't be racing with input_unregister_handle() 2065 * and so separate lock is not needed here. 2066 */ 2067 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2068 2069 if (handler->start) 2070 handler->start(handle); 2071 2072 return 0; 2073 } 2074 EXPORT_SYMBOL(input_register_handle); 2075 2076 /** 2077 * input_unregister_handle - unregister an input handle 2078 * @handle: handle to unregister 2079 * 2080 * This function removes input handle from device's 2081 * and handler's lists. 2082 * 2083 * This function is supposed to be called from handler's 2084 * disconnect() method. 2085 */ 2086 void input_unregister_handle(struct input_handle *handle) 2087 { 2088 struct input_dev *dev = handle->dev; 2089 2090 list_del_rcu(&handle->h_node); 2091 2092 /* 2093 * Take dev->mutex to prevent race with input_release_device(). 2094 */ 2095 mutex_lock(&dev->mutex); 2096 list_del_rcu(&handle->d_node); 2097 mutex_unlock(&dev->mutex); 2098 2099 synchronize_rcu(); 2100 } 2101 EXPORT_SYMBOL(input_unregister_handle); 2102 2103 static int input_open_file(struct inode *inode, struct file *file) 2104 { 2105 struct input_handler *handler; 2106 const struct file_operations *old_fops, *new_fops = NULL; 2107 int err; 2108 2109 err = mutex_lock_interruptible(&input_mutex); 2110 if (err) 2111 return err; 2112 2113 /* No load-on-demand here? */ 2114 handler = input_table[iminor(inode) >> 5]; 2115 if (handler) 2116 new_fops = fops_get(handler->fops); 2117 2118 mutex_unlock(&input_mutex); 2119 2120 /* 2121 * That's _really_ odd. Usually NULL ->open means "nothing special", 2122 * not "no device". Oh, well... 2123 */ 2124 if (!new_fops || !new_fops->open) { 2125 fops_put(new_fops); 2126 err = -ENODEV; 2127 goto out; 2128 } 2129 2130 old_fops = file->f_op; 2131 file->f_op = new_fops; 2132 2133 err = new_fops->open(inode, file); 2134 if (err) { 2135 fops_put(file->f_op); 2136 file->f_op = fops_get(old_fops); 2137 } 2138 fops_put(old_fops); 2139 out: 2140 return err; 2141 } 2142 2143 static const struct file_operations input_fops = { 2144 .owner = THIS_MODULE, 2145 .open = input_open_file, 2146 .llseek = noop_llseek, 2147 }; 2148 2149 static int __init input_init(void) 2150 { 2151 int err; 2152 2153 err = class_register(&input_class); 2154 if (err) { 2155 printk(KERN_ERR "input: unable to register input_dev class\n"); 2156 return err; 2157 } 2158 2159 err = input_proc_init(); 2160 if (err) 2161 goto fail1; 2162 2163 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 2164 if (err) { 2165 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 2166 goto fail2; 2167 } 2168 2169 return 0; 2170 2171 fail2: input_proc_exit(); 2172 fail1: class_unregister(&input_class); 2173 return err; 2174 } 2175 2176 static void __exit input_exit(void) 2177 { 2178 input_proc_exit(); 2179 unregister_chrdev(INPUT_MAJOR, "input"); 2180 class_unregister(&input_class); 2181 } 2182 2183 subsys_initcall(input_init); 2184 module_exit(input_exit); 2185