xref: /linux/drivers/input/input.c (revision c053784454550cf750399caa65482b31ffbe3c57)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
29 
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
33 
34 #define INPUT_DEVICES	256
35 
36 static LIST_HEAD(input_dev_list);
37 static LIST_HEAD(input_handler_list);
38 
39 /*
40  * input_mutex protects access to both input_dev_list and input_handler_list.
41  * This also causes input_[un]register_device and input_[un]register_handler
42  * be mutually exclusive which simplifies locking in drivers implementing
43  * input handlers.
44  */
45 static DEFINE_MUTEX(input_mutex);
46 
47 static struct input_handler *input_table[8];
48 
49 static inline int is_event_supported(unsigned int code,
50 				     unsigned long *bm, unsigned int max)
51 {
52 	return code <= max && test_bit(code, bm);
53 }
54 
55 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
56 {
57 	if (fuzz) {
58 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
59 			return old_val;
60 
61 		if (value > old_val - fuzz && value < old_val + fuzz)
62 			return (old_val * 3 + value) / 4;
63 
64 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
65 			return (old_val + value) / 2;
66 	}
67 
68 	return value;
69 }
70 
71 /*
72  * Pass event first through all filters and then, if event has not been
73  * filtered out, through all open handles. This function is called with
74  * dev->event_lock held and interrupts disabled.
75  */
76 static void input_pass_event(struct input_dev *dev,
77 			     unsigned int type, unsigned int code, int value)
78 {
79 	struct input_handler *handler;
80 	struct input_handle *handle;
81 
82 	rcu_read_lock();
83 
84 	handle = rcu_dereference(dev->grab);
85 	if (handle)
86 		handle->handler->event(handle, type, code, value);
87 	else {
88 		bool filtered = false;
89 
90 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
91 			if (!handle->open)
92 				continue;
93 
94 			handler = handle->handler;
95 			if (!handler->filter) {
96 				if (filtered)
97 					break;
98 
99 				handler->event(handle, type, code, value);
100 
101 			} else if (handler->filter(handle, type, code, value))
102 				filtered = true;
103 		}
104 	}
105 
106 	rcu_read_unlock();
107 }
108 
109 /*
110  * Generate software autorepeat event. Note that we take
111  * dev->event_lock here to avoid racing with input_event
112  * which may cause keys get "stuck".
113  */
114 static void input_repeat_key(unsigned long data)
115 {
116 	struct input_dev *dev = (void *) data;
117 	unsigned long flags;
118 
119 	spin_lock_irqsave(&dev->event_lock, flags);
120 
121 	if (test_bit(dev->repeat_key, dev->key) &&
122 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
123 
124 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
125 
126 		if (dev->sync) {
127 			/*
128 			 * Only send SYN_REPORT if we are not in a middle
129 			 * of driver parsing a new hardware packet.
130 			 * Otherwise assume that the driver will send
131 			 * SYN_REPORT once it's done.
132 			 */
133 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
134 		}
135 
136 		if (dev->rep[REP_PERIOD])
137 			mod_timer(&dev->timer, jiffies +
138 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
139 	}
140 
141 	spin_unlock_irqrestore(&dev->event_lock, flags);
142 }
143 
144 static void input_start_autorepeat(struct input_dev *dev, int code)
145 {
146 	if (test_bit(EV_REP, dev->evbit) &&
147 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
148 	    dev->timer.data) {
149 		dev->repeat_key = code;
150 		mod_timer(&dev->timer,
151 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
152 	}
153 }
154 
155 static void input_stop_autorepeat(struct input_dev *dev)
156 {
157 	del_timer(&dev->timer);
158 }
159 
160 #define INPUT_IGNORE_EVENT	0
161 #define INPUT_PASS_TO_HANDLERS	1
162 #define INPUT_PASS_TO_DEVICE	2
163 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
164 
165 static int input_handle_abs_event(struct input_dev *dev,
166 				  unsigned int code, int *pval)
167 {
168 	bool is_mt_event;
169 	int *pold;
170 
171 	if (code == ABS_MT_SLOT) {
172 		/*
173 		 * "Stage" the event; we'll flush it later, when we
174 		 * get actual touch data.
175 		 */
176 		if (*pval >= 0 && *pval < dev->mtsize)
177 			dev->slot = *pval;
178 
179 		return INPUT_IGNORE_EVENT;
180 	}
181 
182 	is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
183 
184 	if (!is_mt_event) {
185 		pold = &dev->absinfo[code].value;
186 	} else if (dev->mt) {
187 		struct input_mt_slot *mtslot = &dev->mt[dev->slot];
188 		pold = &mtslot->abs[code - ABS_MT_FIRST];
189 	} else {
190 		/*
191 		 * Bypass filtering for multi-touch events when
192 		 * not employing slots.
193 		 */
194 		pold = NULL;
195 	}
196 
197 	if (pold) {
198 		*pval = input_defuzz_abs_event(*pval, *pold,
199 						dev->absinfo[code].fuzz);
200 		if (*pold == *pval)
201 			return INPUT_IGNORE_EVENT;
202 
203 		*pold = *pval;
204 	}
205 
206 	/* Flush pending "slot" event */
207 	if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
208 		input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
209 		input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
210 	}
211 
212 	return INPUT_PASS_TO_HANDLERS;
213 }
214 
215 static void input_handle_event(struct input_dev *dev,
216 			       unsigned int type, unsigned int code, int value)
217 {
218 	int disposition = INPUT_IGNORE_EVENT;
219 
220 	switch (type) {
221 
222 	case EV_SYN:
223 		switch (code) {
224 		case SYN_CONFIG:
225 			disposition = INPUT_PASS_TO_ALL;
226 			break;
227 
228 		case SYN_REPORT:
229 			if (!dev->sync) {
230 				dev->sync = true;
231 				disposition = INPUT_PASS_TO_HANDLERS;
232 			}
233 			break;
234 		case SYN_MT_REPORT:
235 			dev->sync = false;
236 			disposition = INPUT_PASS_TO_HANDLERS;
237 			break;
238 		}
239 		break;
240 
241 	case EV_KEY:
242 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
243 		    !!test_bit(code, dev->key) != value) {
244 
245 			if (value != 2) {
246 				__change_bit(code, dev->key);
247 				if (value)
248 					input_start_autorepeat(dev, code);
249 				else
250 					input_stop_autorepeat(dev);
251 			}
252 
253 			disposition = INPUT_PASS_TO_HANDLERS;
254 		}
255 		break;
256 
257 	case EV_SW:
258 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
259 		    !!test_bit(code, dev->sw) != value) {
260 
261 			__change_bit(code, dev->sw);
262 			disposition = INPUT_PASS_TO_HANDLERS;
263 		}
264 		break;
265 
266 	case EV_ABS:
267 		if (is_event_supported(code, dev->absbit, ABS_MAX))
268 			disposition = input_handle_abs_event(dev, code, &value);
269 
270 		break;
271 
272 	case EV_REL:
273 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
274 			disposition = INPUT_PASS_TO_HANDLERS;
275 
276 		break;
277 
278 	case EV_MSC:
279 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
280 			disposition = INPUT_PASS_TO_ALL;
281 
282 		break;
283 
284 	case EV_LED:
285 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
286 		    !!test_bit(code, dev->led) != value) {
287 
288 			__change_bit(code, dev->led);
289 			disposition = INPUT_PASS_TO_ALL;
290 		}
291 		break;
292 
293 	case EV_SND:
294 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
295 
296 			if (!!test_bit(code, dev->snd) != !!value)
297 				__change_bit(code, dev->snd);
298 			disposition = INPUT_PASS_TO_ALL;
299 		}
300 		break;
301 
302 	case EV_REP:
303 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
304 			dev->rep[code] = value;
305 			disposition = INPUT_PASS_TO_ALL;
306 		}
307 		break;
308 
309 	case EV_FF:
310 		if (value >= 0)
311 			disposition = INPUT_PASS_TO_ALL;
312 		break;
313 
314 	case EV_PWR:
315 		disposition = INPUT_PASS_TO_ALL;
316 		break;
317 	}
318 
319 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
320 		dev->sync = false;
321 
322 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
323 		dev->event(dev, type, code, value);
324 
325 	if (disposition & INPUT_PASS_TO_HANDLERS)
326 		input_pass_event(dev, type, code, value);
327 }
328 
329 /**
330  * input_event() - report new input event
331  * @dev: device that generated the event
332  * @type: type of the event
333  * @code: event code
334  * @value: value of the event
335  *
336  * This function should be used by drivers implementing various input
337  * devices to report input events. See also input_inject_event().
338  *
339  * NOTE: input_event() may be safely used right after input device was
340  * allocated with input_allocate_device(), even before it is registered
341  * with input_register_device(), but the event will not reach any of the
342  * input handlers. Such early invocation of input_event() may be used
343  * to 'seed' initial state of a switch or initial position of absolute
344  * axis, etc.
345  */
346 void input_event(struct input_dev *dev,
347 		 unsigned int type, unsigned int code, int value)
348 {
349 	unsigned long flags;
350 
351 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
352 
353 		spin_lock_irqsave(&dev->event_lock, flags);
354 		add_input_randomness(type, code, value);
355 		input_handle_event(dev, type, code, value);
356 		spin_unlock_irqrestore(&dev->event_lock, flags);
357 	}
358 }
359 EXPORT_SYMBOL(input_event);
360 
361 /**
362  * input_inject_event() - send input event from input handler
363  * @handle: input handle to send event through
364  * @type: type of the event
365  * @code: event code
366  * @value: value of the event
367  *
368  * Similar to input_event() but will ignore event if device is
369  * "grabbed" and handle injecting event is not the one that owns
370  * the device.
371  */
372 void input_inject_event(struct input_handle *handle,
373 			unsigned int type, unsigned int code, int value)
374 {
375 	struct input_dev *dev = handle->dev;
376 	struct input_handle *grab;
377 	unsigned long flags;
378 
379 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
380 		spin_lock_irqsave(&dev->event_lock, flags);
381 
382 		rcu_read_lock();
383 		grab = rcu_dereference(dev->grab);
384 		if (!grab || grab == handle)
385 			input_handle_event(dev, type, code, value);
386 		rcu_read_unlock();
387 
388 		spin_unlock_irqrestore(&dev->event_lock, flags);
389 	}
390 }
391 EXPORT_SYMBOL(input_inject_event);
392 
393 /**
394  * input_alloc_absinfo - allocates array of input_absinfo structs
395  * @dev: the input device emitting absolute events
396  *
397  * If the absinfo struct the caller asked for is already allocated, this
398  * functions will not do anything.
399  */
400 void input_alloc_absinfo(struct input_dev *dev)
401 {
402 	if (!dev->absinfo)
403 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
404 					GFP_KERNEL);
405 
406 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
407 }
408 EXPORT_SYMBOL(input_alloc_absinfo);
409 
410 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
411 			  int min, int max, int fuzz, int flat)
412 {
413 	struct input_absinfo *absinfo;
414 
415 	input_alloc_absinfo(dev);
416 	if (!dev->absinfo)
417 		return;
418 
419 	absinfo = &dev->absinfo[axis];
420 	absinfo->minimum = min;
421 	absinfo->maximum = max;
422 	absinfo->fuzz = fuzz;
423 	absinfo->flat = flat;
424 
425 	dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
426 }
427 EXPORT_SYMBOL(input_set_abs_params);
428 
429 
430 /**
431  * input_grab_device - grabs device for exclusive use
432  * @handle: input handle that wants to own the device
433  *
434  * When a device is grabbed by an input handle all events generated by
435  * the device are delivered only to this handle. Also events injected
436  * by other input handles are ignored while device is grabbed.
437  */
438 int input_grab_device(struct input_handle *handle)
439 {
440 	struct input_dev *dev = handle->dev;
441 	int retval;
442 
443 	retval = mutex_lock_interruptible(&dev->mutex);
444 	if (retval)
445 		return retval;
446 
447 	if (dev->grab) {
448 		retval = -EBUSY;
449 		goto out;
450 	}
451 
452 	rcu_assign_pointer(dev->grab, handle);
453 	synchronize_rcu();
454 
455  out:
456 	mutex_unlock(&dev->mutex);
457 	return retval;
458 }
459 EXPORT_SYMBOL(input_grab_device);
460 
461 static void __input_release_device(struct input_handle *handle)
462 {
463 	struct input_dev *dev = handle->dev;
464 
465 	if (dev->grab == handle) {
466 		rcu_assign_pointer(dev->grab, NULL);
467 		/* Make sure input_pass_event() notices that grab is gone */
468 		synchronize_rcu();
469 
470 		list_for_each_entry(handle, &dev->h_list, d_node)
471 			if (handle->open && handle->handler->start)
472 				handle->handler->start(handle);
473 	}
474 }
475 
476 /**
477  * input_release_device - release previously grabbed device
478  * @handle: input handle that owns the device
479  *
480  * Releases previously grabbed device so that other input handles can
481  * start receiving input events. Upon release all handlers attached
482  * to the device have their start() method called so they have a change
483  * to synchronize device state with the rest of the system.
484  */
485 void input_release_device(struct input_handle *handle)
486 {
487 	struct input_dev *dev = handle->dev;
488 
489 	mutex_lock(&dev->mutex);
490 	__input_release_device(handle);
491 	mutex_unlock(&dev->mutex);
492 }
493 EXPORT_SYMBOL(input_release_device);
494 
495 /**
496  * input_open_device - open input device
497  * @handle: handle through which device is being accessed
498  *
499  * This function should be called by input handlers when they
500  * want to start receive events from given input device.
501  */
502 int input_open_device(struct input_handle *handle)
503 {
504 	struct input_dev *dev = handle->dev;
505 	int retval;
506 
507 	retval = mutex_lock_interruptible(&dev->mutex);
508 	if (retval)
509 		return retval;
510 
511 	if (dev->going_away) {
512 		retval = -ENODEV;
513 		goto out;
514 	}
515 
516 	handle->open++;
517 
518 	if (!dev->users++ && dev->open)
519 		retval = dev->open(dev);
520 
521 	if (retval) {
522 		dev->users--;
523 		if (!--handle->open) {
524 			/*
525 			 * Make sure we are not delivering any more events
526 			 * through this handle
527 			 */
528 			synchronize_rcu();
529 		}
530 	}
531 
532  out:
533 	mutex_unlock(&dev->mutex);
534 	return retval;
535 }
536 EXPORT_SYMBOL(input_open_device);
537 
538 int input_flush_device(struct input_handle *handle, struct file *file)
539 {
540 	struct input_dev *dev = handle->dev;
541 	int retval;
542 
543 	retval = mutex_lock_interruptible(&dev->mutex);
544 	if (retval)
545 		return retval;
546 
547 	if (dev->flush)
548 		retval = dev->flush(dev, file);
549 
550 	mutex_unlock(&dev->mutex);
551 	return retval;
552 }
553 EXPORT_SYMBOL(input_flush_device);
554 
555 /**
556  * input_close_device - close input device
557  * @handle: handle through which device is being accessed
558  *
559  * This function should be called by input handlers when they
560  * want to stop receive events from given input device.
561  */
562 void input_close_device(struct input_handle *handle)
563 {
564 	struct input_dev *dev = handle->dev;
565 
566 	mutex_lock(&dev->mutex);
567 
568 	__input_release_device(handle);
569 
570 	if (!--dev->users && dev->close)
571 		dev->close(dev);
572 
573 	if (!--handle->open) {
574 		/*
575 		 * synchronize_rcu() makes sure that input_pass_event()
576 		 * completed and that no more input events are delivered
577 		 * through this handle
578 		 */
579 		synchronize_rcu();
580 	}
581 
582 	mutex_unlock(&dev->mutex);
583 }
584 EXPORT_SYMBOL(input_close_device);
585 
586 /*
587  * Simulate keyup events for all keys that are marked as pressed.
588  * The function must be called with dev->event_lock held.
589  */
590 static void input_dev_release_keys(struct input_dev *dev)
591 {
592 	int code;
593 
594 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
595 		for (code = 0; code <= KEY_MAX; code++) {
596 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
597 			    __test_and_clear_bit(code, dev->key)) {
598 				input_pass_event(dev, EV_KEY, code, 0);
599 			}
600 		}
601 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
602 	}
603 }
604 
605 /*
606  * Prepare device for unregistering
607  */
608 static void input_disconnect_device(struct input_dev *dev)
609 {
610 	struct input_handle *handle;
611 
612 	/*
613 	 * Mark device as going away. Note that we take dev->mutex here
614 	 * not to protect access to dev->going_away but rather to ensure
615 	 * that there are no threads in the middle of input_open_device()
616 	 */
617 	mutex_lock(&dev->mutex);
618 	dev->going_away = true;
619 	mutex_unlock(&dev->mutex);
620 
621 	spin_lock_irq(&dev->event_lock);
622 
623 	/*
624 	 * Simulate keyup events for all pressed keys so that handlers
625 	 * are not left with "stuck" keys. The driver may continue
626 	 * generate events even after we done here but they will not
627 	 * reach any handlers.
628 	 */
629 	input_dev_release_keys(dev);
630 
631 	list_for_each_entry(handle, &dev->h_list, d_node)
632 		handle->open = 0;
633 
634 	spin_unlock_irq(&dev->event_lock);
635 }
636 
637 /**
638  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
639  * @ke: keymap entry containing scancode to be converted.
640  * @scancode: pointer to the location where converted scancode should
641  *	be stored.
642  *
643  * This function is used to convert scancode stored in &struct keymap_entry
644  * into scalar form understood by legacy keymap handling methods. These
645  * methods expect scancodes to be represented as 'unsigned int'.
646  */
647 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
648 			     unsigned int *scancode)
649 {
650 	switch (ke->len) {
651 	case 1:
652 		*scancode = *((u8 *)ke->scancode);
653 		break;
654 
655 	case 2:
656 		*scancode = *((u16 *)ke->scancode);
657 		break;
658 
659 	case 4:
660 		*scancode = *((u32 *)ke->scancode);
661 		break;
662 
663 	default:
664 		return -EINVAL;
665 	}
666 
667 	return 0;
668 }
669 EXPORT_SYMBOL(input_scancode_to_scalar);
670 
671 /*
672  * Those routines handle the default case where no [gs]etkeycode() is
673  * defined. In this case, an array indexed by the scancode is used.
674  */
675 
676 static unsigned int input_fetch_keycode(struct input_dev *dev,
677 					unsigned int index)
678 {
679 	switch (dev->keycodesize) {
680 	case 1:
681 		return ((u8 *)dev->keycode)[index];
682 
683 	case 2:
684 		return ((u16 *)dev->keycode)[index];
685 
686 	default:
687 		return ((u32 *)dev->keycode)[index];
688 	}
689 }
690 
691 static int input_default_getkeycode(struct input_dev *dev,
692 				    struct input_keymap_entry *ke)
693 {
694 	unsigned int index;
695 	int error;
696 
697 	if (!dev->keycodesize)
698 		return -EINVAL;
699 
700 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
701 		index = ke->index;
702 	else {
703 		error = input_scancode_to_scalar(ke, &index);
704 		if (error)
705 			return error;
706 	}
707 
708 	if (index >= dev->keycodemax)
709 		return -EINVAL;
710 
711 	ke->keycode = input_fetch_keycode(dev, index);
712 	ke->index = index;
713 	ke->len = sizeof(index);
714 	memcpy(ke->scancode, &index, sizeof(index));
715 
716 	return 0;
717 }
718 
719 static int input_default_setkeycode(struct input_dev *dev,
720 				    const struct input_keymap_entry *ke,
721 				    unsigned int *old_keycode)
722 {
723 	unsigned int index;
724 	int error;
725 	int i;
726 
727 	if (!dev->keycodesize)
728 		return -EINVAL;
729 
730 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
731 		index = ke->index;
732 	} else {
733 		error = input_scancode_to_scalar(ke, &index);
734 		if (error)
735 			return error;
736 	}
737 
738 	if (index >= dev->keycodemax)
739 		return -EINVAL;
740 
741 	if (dev->keycodesize < sizeof(dev->keycode) &&
742 			(ke->keycode >> (dev->keycodesize * 8)))
743 		return -EINVAL;
744 
745 	switch (dev->keycodesize) {
746 		case 1: {
747 			u8 *k = (u8 *)dev->keycode;
748 			*old_keycode = k[index];
749 			k[index] = ke->keycode;
750 			break;
751 		}
752 		case 2: {
753 			u16 *k = (u16 *)dev->keycode;
754 			*old_keycode = k[index];
755 			k[index] = ke->keycode;
756 			break;
757 		}
758 		default: {
759 			u32 *k = (u32 *)dev->keycode;
760 			*old_keycode = k[index];
761 			k[index] = ke->keycode;
762 			break;
763 		}
764 	}
765 
766 	__clear_bit(*old_keycode, dev->keybit);
767 	__set_bit(ke->keycode, dev->keybit);
768 
769 	for (i = 0; i < dev->keycodemax; i++) {
770 		if (input_fetch_keycode(dev, i) == *old_keycode) {
771 			__set_bit(*old_keycode, dev->keybit);
772 			break; /* Setting the bit twice is useless, so break */
773 		}
774 	}
775 
776 	return 0;
777 }
778 
779 /**
780  * input_get_keycode - retrieve keycode currently mapped to a given scancode
781  * @dev: input device which keymap is being queried
782  * @ke: keymap entry
783  *
784  * This function should be called by anyone interested in retrieving current
785  * keymap. Presently evdev handlers use it.
786  */
787 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
788 {
789 	unsigned long flags;
790 	int retval;
791 
792 	spin_lock_irqsave(&dev->event_lock, flags);
793 
794 	if (dev->getkeycode) {
795 		/*
796 		 * Support for legacy drivers, that don't implement the new
797 		 * ioctls
798 		 */
799 		u32 scancode = ke->index;
800 
801 		memcpy(ke->scancode, &scancode, sizeof(scancode));
802 		ke->len = sizeof(scancode);
803 		retval = dev->getkeycode(dev, scancode, &ke->keycode);
804 	} else {
805 		retval = dev->getkeycode_new(dev, ke);
806 	}
807 
808 	spin_unlock_irqrestore(&dev->event_lock, flags);
809 	return retval;
810 }
811 EXPORT_SYMBOL(input_get_keycode);
812 
813 /**
814  * input_set_keycode - attribute a keycode to a given scancode
815  * @dev: input device which keymap is being updated
816  * @ke: new keymap entry
817  *
818  * This function should be called by anyone needing to update current
819  * keymap. Presently keyboard and evdev handlers use it.
820  */
821 int input_set_keycode(struct input_dev *dev,
822 		      const struct input_keymap_entry *ke)
823 {
824 	unsigned long flags;
825 	unsigned int old_keycode;
826 	int retval;
827 
828 	if (ke->keycode > KEY_MAX)
829 		return -EINVAL;
830 
831 	spin_lock_irqsave(&dev->event_lock, flags);
832 
833 	if (dev->setkeycode) {
834 		/*
835 		 * Support for legacy drivers, that don't implement the new
836 		 * ioctls
837 		 */
838 		unsigned int scancode;
839 
840 		retval = input_scancode_to_scalar(ke, &scancode);
841 		if (retval)
842 			goto out;
843 
844 		/*
845 		 * We need to know the old scancode, in order to generate a
846 		 * keyup effect, if the set operation happens successfully
847 		 */
848 		if (!dev->getkeycode) {
849 			retval = -EINVAL;
850 			goto out;
851 		}
852 
853 		retval = dev->getkeycode(dev, scancode, &old_keycode);
854 		if (retval)
855 			goto out;
856 
857 		retval = dev->setkeycode(dev, scancode, ke->keycode);
858 	} else {
859 		retval = dev->setkeycode_new(dev, ke, &old_keycode);
860 	}
861 
862 	if (retval)
863 		goto out;
864 
865 	/* Make sure KEY_RESERVED did not get enabled. */
866 	__clear_bit(KEY_RESERVED, dev->keybit);
867 
868 	/*
869 	 * Simulate keyup event if keycode is not present
870 	 * in the keymap anymore
871 	 */
872 	if (test_bit(EV_KEY, dev->evbit) &&
873 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
874 	    __test_and_clear_bit(old_keycode, dev->key)) {
875 
876 		input_pass_event(dev, EV_KEY, old_keycode, 0);
877 		if (dev->sync)
878 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
879 	}
880 
881  out:
882 	spin_unlock_irqrestore(&dev->event_lock, flags);
883 
884 	return retval;
885 }
886 EXPORT_SYMBOL(input_set_keycode);
887 
888 #define MATCH_BIT(bit, max) \
889 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
890 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
891 				break; \
892 		if (i != BITS_TO_LONGS(max)) \
893 			continue;
894 
895 static const struct input_device_id *input_match_device(struct input_handler *handler,
896 							struct input_dev *dev)
897 {
898 	const struct input_device_id *id;
899 	int i;
900 
901 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
902 
903 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
904 			if (id->bustype != dev->id.bustype)
905 				continue;
906 
907 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
908 			if (id->vendor != dev->id.vendor)
909 				continue;
910 
911 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
912 			if (id->product != dev->id.product)
913 				continue;
914 
915 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
916 			if (id->version != dev->id.version)
917 				continue;
918 
919 		MATCH_BIT(evbit,  EV_MAX);
920 		MATCH_BIT(keybit, KEY_MAX);
921 		MATCH_BIT(relbit, REL_MAX);
922 		MATCH_BIT(absbit, ABS_MAX);
923 		MATCH_BIT(mscbit, MSC_MAX);
924 		MATCH_BIT(ledbit, LED_MAX);
925 		MATCH_BIT(sndbit, SND_MAX);
926 		MATCH_BIT(ffbit,  FF_MAX);
927 		MATCH_BIT(swbit,  SW_MAX);
928 
929 		if (!handler->match || handler->match(handler, dev))
930 			return id;
931 	}
932 
933 	return NULL;
934 }
935 
936 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
937 {
938 	const struct input_device_id *id;
939 	int error;
940 
941 	id = input_match_device(handler, dev);
942 	if (!id)
943 		return -ENODEV;
944 
945 	error = handler->connect(handler, dev, id);
946 	if (error && error != -ENODEV)
947 		printk(KERN_ERR
948 			"input: failed to attach handler %s to device %s, "
949 			"error: %d\n",
950 			handler->name, kobject_name(&dev->dev.kobj), error);
951 
952 	return error;
953 }
954 
955 #ifdef CONFIG_COMPAT
956 
957 static int input_bits_to_string(char *buf, int buf_size,
958 				unsigned long bits, bool skip_empty)
959 {
960 	int len = 0;
961 
962 	if (INPUT_COMPAT_TEST) {
963 		u32 dword = bits >> 32;
964 		if (dword || !skip_empty)
965 			len += snprintf(buf, buf_size, "%x ", dword);
966 
967 		dword = bits & 0xffffffffUL;
968 		if (dword || !skip_empty || len)
969 			len += snprintf(buf + len, max(buf_size - len, 0),
970 					"%x", dword);
971 	} else {
972 		if (bits || !skip_empty)
973 			len += snprintf(buf, buf_size, "%lx", bits);
974 	}
975 
976 	return len;
977 }
978 
979 #else /* !CONFIG_COMPAT */
980 
981 static int input_bits_to_string(char *buf, int buf_size,
982 				unsigned long bits, bool skip_empty)
983 {
984 	return bits || !skip_empty ?
985 		snprintf(buf, buf_size, "%lx", bits) : 0;
986 }
987 
988 #endif
989 
990 #ifdef CONFIG_PROC_FS
991 
992 static struct proc_dir_entry *proc_bus_input_dir;
993 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
994 static int input_devices_state;
995 
996 static inline void input_wakeup_procfs_readers(void)
997 {
998 	input_devices_state++;
999 	wake_up(&input_devices_poll_wait);
1000 }
1001 
1002 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1003 {
1004 	poll_wait(file, &input_devices_poll_wait, wait);
1005 	if (file->f_version != input_devices_state) {
1006 		file->f_version = input_devices_state;
1007 		return POLLIN | POLLRDNORM;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 union input_seq_state {
1014 	struct {
1015 		unsigned short pos;
1016 		bool mutex_acquired;
1017 	};
1018 	void *p;
1019 };
1020 
1021 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1022 {
1023 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1024 	int error;
1025 
1026 	/* We need to fit into seq->private pointer */
1027 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1028 
1029 	error = mutex_lock_interruptible(&input_mutex);
1030 	if (error) {
1031 		state->mutex_acquired = false;
1032 		return ERR_PTR(error);
1033 	}
1034 
1035 	state->mutex_acquired = true;
1036 
1037 	return seq_list_start(&input_dev_list, *pos);
1038 }
1039 
1040 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1041 {
1042 	return seq_list_next(v, &input_dev_list, pos);
1043 }
1044 
1045 static void input_seq_stop(struct seq_file *seq, void *v)
1046 {
1047 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1048 
1049 	if (state->mutex_acquired)
1050 		mutex_unlock(&input_mutex);
1051 }
1052 
1053 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1054 				   unsigned long *bitmap, int max)
1055 {
1056 	int i;
1057 	bool skip_empty = true;
1058 	char buf[18];
1059 
1060 	seq_printf(seq, "B: %s=", name);
1061 
1062 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1063 		if (input_bits_to_string(buf, sizeof(buf),
1064 					 bitmap[i], skip_empty)) {
1065 			skip_empty = false;
1066 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * If no output was produced print a single 0.
1072 	 */
1073 	if (skip_empty)
1074 		seq_puts(seq, "0");
1075 
1076 	seq_putc(seq, '\n');
1077 }
1078 
1079 static int input_devices_seq_show(struct seq_file *seq, void *v)
1080 {
1081 	struct input_dev *dev = container_of(v, struct input_dev, node);
1082 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1083 	struct input_handle *handle;
1084 
1085 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1086 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1087 
1088 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1089 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1090 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1091 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1092 	seq_printf(seq, "H: Handlers=");
1093 
1094 	list_for_each_entry(handle, &dev->h_list, d_node)
1095 		seq_printf(seq, "%s ", handle->name);
1096 	seq_putc(seq, '\n');
1097 
1098 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1099 	if (test_bit(EV_KEY, dev->evbit))
1100 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1101 	if (test_bit(EV_REL, dev->evbit))
1102 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1103 	if (test_bit(EV_ABS, dev->evbit))
1104 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1105 	if (test_bit(EV_MSC, dev->evbit))
1106 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1107 	if (test_bit(EV_LED, dev->evbit))
1108 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1109 	if (test_bit(EV_SND, dev->evbit))
1110 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1111 	if (test_bit(EV_FF, dev->evbit))
1112 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1113 	if (test_bit(EV_SW, dev->evbit))
1114 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1115 
1116 	seq_putc(seq, '\n');
1117 
1118 	kfree(path);
1119 	return 0;
1120 }
1121 
1122 static const struct seq_operations input_devices_seq_ops = {
1123 	.start	= input_devices_seq_start,
1124 	.next	= input_devices_seq_next,
1125 	.stop	= input_seq_stop,
1126 	.show	= input_devices_seq_show,
1127 };
1128 
1129 static int input_proc_devices_open(struct inode *inode, struct file *file)
1130 {
1131 	return seq_open(file, &input_devices_seq_ops);
1132 }
1133 
1134 static const struct file_operations input_devices_fileops = {
1135 	.owner		= THIS_MODULE,
1136 	.open		= input_proc_devices_open,
1137 	.poll		= input_proc_devices_poll,
1138 	.read		= seq_read,
1139 	.llseek		= seq_lseek,
1140 	.release	= seq_release,
1141 };
1142 
1143 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1144 {
1145 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1146 	int error;
1147 
1148 	/* We need to fit into seq->private pointer */
1149 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1150 
1151 	error = mutex_lock_interruptible(&input_mutex);
1152 	if (error) {
1153 		state->mutex_acquired = false;
1154 		return ERR_PTR(error);
1155 	}
1156 
1157 	state->mutex_acquired = true;
1158 	state->pos = *pos;
1159 
1160 	return seq_list_start(&input_handler_list, *pos);
1161 }
1162 
1163 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1164 {
1165 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1166 
1167 	state->pos = *pos + 1;
1168 	return seq_list_next(v, &input_handler_list, pos);
1169 }
1170 
1171 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1172 {
1173 	struct input_handler *handler = container_of(v, struct input_handler, node);
1174 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1175 
1176 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1177 	if (handler->filter)
1178 		seq_puts(seq, " (filter)");
1179 	if (handler->fops)
1180 		seq_printf(seq, " Minor=%d", handler->minor);
1181 	seq_putc(seq, '\n');
1182 
1183 	return 0;
1184 }
1185 
1186 static const struct seq_operations input_handlers_seq_ops = {
1187 	.start	= input_handlers_seq_start,
1188 	.next	= input_handlers_seq_next,
1189 	.stop	= input_seq_stop,
1190 	.show	= input_handlers_seq_show,
1191 };
1192 
1193 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1194 {
1195 	return seq_open(file, &input_handlers_seq_ops);
1196 }
1197 
1198 static const struct file_operations input_handlers_fileops = {
1199 	.owner		= THIS_MODULE,
1200 	.open		= input_proc_handlers_open,
1201 	.read		= seq_read,
1202 	.llseek		= seq_lseek,
1203 	.release	= seq_release,
1204 };
1205 
1206 static int __init input_proc_init(void)
1207 {
1208 	struct proc_dir_entry *entry;
1209 
1210 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1211 	if (!proc_bus_input_dir)
1212 		return -ENOMEM;
1213 
1214 	entry = proc_create("devices", 0, proc_bus_input_dir,
1215 			    &input_devices_fileops);
1216 	if (!entry)
1217 		goto fail1;
1218 
1219 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1220 			    &input_handlers_fileops);
1221 	if (!entry)
1222 		goto fail2;
1223 
1224 	return 0;
1225 
1226  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1227  fail1: remove_proc_entry("bus/input", NULL);
1228 	return -ENOMEM;
1229 }
1230 
1231 static void input_proc_exit(void)
1232 {
1233 	remove_proc_entry("devices", proc_bus_input_dir);
1234 	remove_proc_entry("handlers", proc_bus_input_dir);
1235 	remove_proc_entry("bus/input", NULL);
1236 }
1237 
1238 #else /* !CONFIG_PROC_FS */
1239 static inline void input_wakeup_procfs_readers(void) { }
1240 static inline int input_proc_init(void) { return 0; }
1241 static inline void input_proc_exit(void) { }
1242 #endif
1243 
1244 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1245 static ssize_t input_dev_show_##name(struct device *dev,		\
1246 				     struct device_attribute *attr,	\
1247 				     char *buf)				\
1248 {									\
1249 	struct input_dev *input_dev = to_input_dev(dev);		\
1250 									\
1251 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1252 			 input_dev->name ? input_dev->name : "");	\
1253 }									\
1254 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1255 
1256 INPUT_DEV_STRING_ATTR_SHOW(name);
1257 INPUT_DEV_STRING_ATTR_SHOW(phys);
1258 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1259 
1260 static int input_print_modalias_bits(char *buf, int size,
1261 				     char name, unsigned long *bm,
1262 				     unsigned int min_bit, unsigned int max_bit)
1263 {
1264 	int len = 0, i;
1265 
1266 	len += snprintf(buf, max(size, 0), "%c", name);
1267 	for (i = min_bit; i < max_bit; i++)
1268 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1269 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1270 	return len;
1271 }
1272 
1273 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1274 				int add_cr)
1275 {
1276 	int len;
1277 
1278 	len = snprintf(buf, max(size, 0),
1279 		       "input:b%04Xv%04Xp%04Xe%04X-",
1280 		       id->id.bustype, id->id.vendor,
1281 		       id->id.product, id->id.version);
1282 
1283 	len += input_print_modalias_bits(buf + len, size - len,
1284 				'e', id->evbit, 0, EV_MAX);
1285 	len += input_print_modalias_bits(buf + len, size - len,
1286 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1287 	len += input_print_modalias_bits(buf + len, size - len,
1288 				'r', id->relbit, 0, REL_MAX);
1289 	len += input_print_modalias_bits(buf + len, size - len,
1290 				'a', id->absbit, 0, ABS_MAX);
1291 	len += input_print_modalias_bits(buf + len, size - len,
1292 				'm', id->mscbit, 0, MSC_MAX);
1293 	len += input_print_modalias_bits(buf + len, size - len,
1294 				'l', id->ledbit, 0, LED_MAX);
1295 	len += input_print_modalias_bits(buf + len, size - len,
1296 				's', id->sndbit, 0, SND_MAX);
1297 	len += input_print_modalias_bits(buf + len, size - len,
1298 				'f', id->ffbit, 0, FF_MAX);
1299 	len += input_print_modalias_bits(buf + len, size - len,
1300 				'w', id->swbit, 0, SW_MAX);
1301 
1302 	if (add_cr)
1303 		len += snprintf(buf + len, max(size - len, 0), "\n");
1304 
1305 	return len;
1306 }
1307 
1308 static ssize_t input_dev_show_modalias(struct device *dev,
1309 				       struct device_attribute *attr,
1310 				       char *buf)
1311 {
1312 	struct input_dev *id = to_input_dev(dev);
1313 	ssize_t len;
1314 
1315 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1316 
1317 	return min_t(int, len, PAGE_SIZE);
1318 }
1319 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1320 
1321 static struct attribute *input_dev_attrs[] = {
1322 	&dev_attr_name.attr,
1323 	&dev_attr_phys.attr,
1324 	&dev_attr_uniq.attr,
1325 	&dev_attr_modalias.attr,
1326 	NULL
1327 };
1328 
1329 static struct attribute_group input_dev_attr_group = {
1330 	.attrs	= input_dev_attrs,
1331 };
1332 
1333 #define INPUT_DEV_ID_ATTR(name)						\
1334 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1335 					struct device_attribute *attr,	\
1336 					char *buf)			\
1337 {									\
1338 	struct input_dev *input_dev = to_input_dev(dev);		\
1339 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1340 }									\
1341 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1342 
1343 INPUT_DEV_ID_ATTR(bustype);
1344 INPUT_DEV_ID_ATTR(vendor);
1345 INPUT_DEV_ID_ATTR(product);
1346 INPUT_DEV_ID_ATTR(version);
1347 
1348 static struct attribute *input_dev_id_attrs[] = {
1349 	&dev_attr_bustype.attr,
1350 	&dev_attr_vendor.attr,
1351 	&dev_attr_product.attr,
1352 	&dev_attr_version.attr,
1353 	NULL
1354 };
1355 
1356 static struct attribute_group input_dev_id_attr_group = {
1357 	.name	= "id",
1358 	.attrs	= input_dev_id_attrs,
1359 };
1360 
1361 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1362 			      int max, int add_cr)
1363 {
1364 	int i;
1365 	int len = 0;
1366 	bool skip_empty = true;
1367 
1368 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1369 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1370 					    bitmap[i], skip_empty);
1371 		if (len) {
1372 			skip_empty = false;
1373 			if (i > 0)
1374 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * If no output was produced print a single 0.
1380 	 */
1381 	if (len == 0)
1382 		len = snprintf(buf, buf_size, "%d", 0);
1383 
1384 	if (add_cr)
1385 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1386 
1387 	return len;
1388 }
1389 
1390 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1391 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1392 				       struct device_attribute *attr,	\
1393 				       char *buf)			\
1394 {									\
1395 	struct input_dev *input_dev = to_input_dev(dev);		\
1396 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1397 				     input_dev->bm##bit, ev##_MAX,	\
1398 				     true);				\
1399 	return min_t(int, len, PAGE_SIZE);				\
1400 }									\
1401 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1402 
1403 INPUT_DEV_CAP_ATTR(EV, ev);
1404 INPUT_DEV_CAP_ATTR(KEY, key);
1405 INPUT_DEV_CAP_ATTR(REL, rel);
1406 INPUT_DEV_CAP_ATTR(ABS, abs);
1407 INPUT_DEV_CAP_ATTR(MSC, msc);
1408 INPUT_DEV_CAP_ATTR(LED, led);
1409 INPUT_DEV_CAP_ATTR(SND, snd);
1410 INPUT_DEV_CAP_ATTR(FF, ff);
1411 INPUT_DEV_CAP_ATTR(SW, sw);
1412 
1413 static struct attribute *input_dev_caps_attrs[] = {
1414 	&dev_attr_ev.attr,
1415 	&dev_attr_key.attr,
1416 	&dev_attr_rel.attr,
1417 	&dev_attr_abs.attr,
1418 	&dev_attr_msc.attr,
1419 	&dev_attr_led.attr,
1420 	&dev_attr_snd.attr,
1421 	&dev_attr_ff.attr,
1422 	&dev_attr_sw.attr,
1423 	NULL
1424 };
1425 
1426 static struct attribute_group input_dev_caps_attr_group = {
1427 	.name	= "capabilities",
1428 	.attrs	= input_dev_caps_attrs,
1429 };
1430 
1431 static const struct attribute_group *input_dev_attr_groups[] = {
1432 	&input_dev_attr_group,
1433 	&input_dev_id_attr_group,
1434 	&input_dev_caps_attr_group,
1435 	NULL
1436 };
1437 
1438 static void input_dev_release(struct device *device)
1439 {
1440 	struct input_dev *dev = to_input_dev(device);
1441 
1442 	input_ff_destroy(dev);
1443 	input_mt_destroy_slots(dev);
1444 	kfree(dev->absinfo);
1445 	kfree(dev);
1446 
1447 	module_put(THIS_MODULE);
1448 }
1449 
1450 /*
1451  * Input uevent interface - loading event handlers based on
1452  * device bitfields.
1453  */
1454 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1455 				   const char *name, unsigned long *bitmap, int max)
1456 {
1457 	int len;
1458 
1459 	if (add_uevent_var(env, "%s=", name))
1460 		return -ENOMEM;
1461 
1462 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1463 				 sizeof(env->buf) - env->buflen,
1464 				 bitmap, max, false);
1465 	if (len >= (sizeof(env->buf) - env->buflen))
1466 		return -ENOMEM;
1467 
1468 	env->buflen += len;
1469 	return 0;
1470 }
1471 
1472 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1473 					 struct input_dev *dev)
1474 {
1475 	int len;
1476 
1477 	if (add_uevent_var(env, "MODALIAS="))
1478 		return -ENOMEM;
1479 
1480 	len = input_print_modalias(&env->buf[env->buflen - 1],
1481 				   sizeof(env->buf) - env->buflen,
1482 				   dev, 0);
1483 	if (len >= (sizeof(env->buf) - env->buflen))
1484 		return -ENOMEM;
1485 
1486 	env->buflen += len;
1487 	return 0;
1488 }
1489 
1490 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1491 	do {								\
1492 		int err = add_uevent_var(env, fmt, val);		\
1493 		if (err)						\
1494 			return err;					\
1495 	} while (0)
1496 
1497 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1498 	do {								\
1499 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1500 		if (err)						\
1501 			return err;					\
1502 	} while (0)
1503 
1504 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1505 	do {								\
1506 		int err = input_add_uevent_modalias_var(env, dev);	\
1507 		if (err)						\
1508 			return err;					\
1509 	} while (0)
1510 
1511 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1512 {
1513 	struct input_dev *dev = to_input_dev(device);
1514 
1515 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1516 				dev->id.bustype, dev->id.vendor,
1517 				dev->id.product, dev->id.version);
1518 	if (dev->name)
1519 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1520 	if (dev->phys)
1521 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1522 	if (dev->uniq)
1523 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1524 
1525 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1526 	if (test_bit(EV_KEY, dev->evbit))
1527 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1528 	if (test_bit(EV_REL, dev->evbit))
1529 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1530 	if (test_bit(EV_ABS, dev->evbit))
1531 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1532 	if (test_bit(EV_MSC, dev->evbit))
1533 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1534 	if (test_bit(EV_LED, dev->evbit))
1535 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1536 	if (test_bit(EV_SND, dev->evbit))
1537 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1538 	if (test_bit(EV_FF, dev->evbit))
1539 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1540 	if (test_bit(EV_SW, dev->evbit))
1541 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1542 
1543 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1544 
1545 	return 0;
1546 }
1547 
1548 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1549 	do {								\
1550 		int i;							\
1551 		bool active;						\
1552 									\
1553 		if (!test_bit(EV_##type, dev->evbit))			\
1554 			break;						\
1555 									\
1556 		for (i = 0; i < type##_MAX; i++) {			\
1557 			if (!test_bit(i, dev->bits##bit))		\
1558 				continue;				\
1559 									\
1560 			active = test_bit(i, dev->bits);		\
1561 			if (!active && !on)				\
1562 				continue;				\
1563 									\
1564 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1565 		}							\
1566 	} while (0)
1567 
1568 #ifdef CONFIG_PM
1569 static void input_dev_reset(struct input_dev *dev, bool activate)
1570 {
1571 	if (!dev->event)
1572 		return;
1573 
1574 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1575 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1576 
1577 	if (activate && test_bit(EV_REP, dev->evbit)) {
1578 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1579 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1580 	}
1581 }
1582 
1583 static int input_dev_suspend(struct device *dev)
1584 {
1585 	struct input_dev *input_dev = to_input_dev(dev);
1586 
1587 	mutex_lock(&input_dev->mutex);
1588 	input_dev_reset(input_dev, false);
1589 	mutex_unlock(&input_dev->mutex);
1590 
1591 	return 0;
1592 }
1593 
1594 static int input_dev_resume(struct device *dev)
1595 {
1596 	struct input_dev *input_dev = to_input_dev(dev);
1597 
1598 	mutex_lock(&input_dev->mutex);
1599 	input_dev_reset(input_dev, true);
1600 
1601 	/*
1602 	 * Keys that have been pressed at suspend time are unlikely
1603 	 * to be still pressed when we resume.
1604 	 */
1605 	spin_lock_irq(&input_dev->event_lock);
1606 	input_dev_release_keys(input_dev);
1607 	spin_unlock_irq(&input_dev->event_lock);
1608 
1609 	mutex_unlock(&input_dev->mutex);
1610 
1611 	return 0;
1612 }
1613 
1614 static const struct dev_pm_ops input_dev_pm_ops = {
1615 	.suspend	= input_dev_suspend,
1616 	.resume		= input_dev_resume,
1617 	.poweroff	= input_dev_suspend,
1618 	.restore	= input_dev_resume,
1619 };
1620 #endif /* CONFIG_PM */
1621 
1622 static struct device_type input_dev_type = {
1623 	.groups		= input_dev_attr_groups,
1624 	.release	= input_dev_release,
1625 	.uevent		= input_dev_uevent,
1626 #ifdef CONFIG_PM
1627 	.pm		= &input_dev_pm_ops,
1628 #endif
1629 };
1630 
1631 static char *input_devnode(struct device *dev, mode_t *mode)
1632 {
1633 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1634 }
1635 
1636 struct class input_class = {
1637 	.name		= "input",
1638 	.devnode	= input_devnode,
1639 };
1640 EXPORT_SYMBOL_GPL(input_class);
1641 
1642 /**
1643  * input_allocate_device - allocate memory for new input device
1644  *
1645  * Returns prepared struct input_dev or NULL.
1646  *
1647  * NOTE: Use input_free_device() to free devices that have not been
1648  * registered; input_unregister_device() should be used for already
1649  * registered devices.
1650  */
1651 struct input_dev *input_allocate_device(void)
1652 {
1653 	struct input_dev *dev;
1654 
1655 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1656 	if (dev) {
1657 		dev->dev.type = &input_dev_type;
1658 		dev->dev.class = &input_class;
1659 		device_initialize(&dev->dev);
1660 		mutex_init(&dev->mutex);
1661 		spin_lock_init(&dev->event_lock);
1662 		INIT_LIST_HEAD(&dev->h_list);
1663 		INIT_LIST_HEAD(&dev->node);
1664 
1665 		__module_get(THIS_MODULE);
1666 	}
1667 
1668 	return dev;
1669 }
1670 EXPORT_SYMBOL(input_allocate_device);
1671 
1672 /**
1673  * input_free_device - free memory occupied by input_dev structure
1674  * @dev: input device to free
1675  *
1676  * This function should only be used if input_register_device()
1677  * was not called yet or if it failed. Once device was registered
1678  * use input_unregister_device() and memory will be freed once last
1679  * reference to the device is dropped.
1680  *
1681  * Device should be allocated by input_allocate_device().
1682  *
1683  * NOTE: If there are references to the input device then memory
1684  * will not be freed until last reference is dropped.
1685  */
1686 void input_free_device(struct input_dev *dev)
1687 {
1688 	if (dev)
1689 		input_put_device(dev);
1690 }
1691 EXPORT_SYMBOL(input_free_device);
1692 
1693 /**
1694  * input_mt_create_slots() - create MT input slots
1695  * @dev: input device supporting MT events and finger tracking
1696  * @num_slots: number of slots used by the device
1697  *
1698  * This function allocates all necessary memory for MT slot handling in the
1699  * input device, and adds ABS_MT_SLOT to the device capabilities. All slots
1700  * are initially marked as unused by setting ABS_MT_TRACKING_ID to -1.
1701  */
1702 int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots)
1703 {
1704 	int i;
1705 
1706 	if (!num_slots)
1707 		return 0;
1708 
1709 	dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL);
1710 	if (!dev->mt)
1711 		return -ENOMEM;
1712 
1713 	dev->mtsize = num_slots;
1714 	input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0);
1715 
1716 	/* Mark slots as 'unused' */
1717 	for (i = 0; i < num_slots; i++)
1718 		dev->mt[i].abs[ABS_MT_TRACKING_ID - ABS_MT_FIRST] = -1;
1719 
1720 	return 0;
1721 }
1722 EXPORT_SYMBOL(input_mt_create_slots);
1723 
1724 /**
1725  * input_mt_destroy_slots() - frees the MT slots of the input device
1726  * @dev: input device with allocated MT slots
1727  *
1728  * This function is only needed in error path as the input core will
1729  * automatically free the MT slots when the device is destroyed.
1730  */
1731 void input_mt_destroy_slots(struct input_dev *dev)
1732 {
1733 	kfree(dev->mt);
1734 	dev->mt = NULL;
1735 	dev->mtsize = 0;
1736 }
1737 EXPORT_SYMBOL(input_mt_destroy_slots);
1738 
1739 /**
1740  * input_set_capability - mark device as capable of a certain event
1741  * @dev: device that is capable of emitting or accepting event
1742  * @type: type of the event (EV_KEY, EV_REL, etc...)
1743  * @code: event code
1744  *
1745  * In addition to setting up corresponding bit in appropriate capability
1746  * bitmap the function also adjusts dev->evbit.
1747  */
1748 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1749 {
1750 	switch (type) {
1751 	case EV_KEY:
1752 		__set_bit(code, dev->keybit);
1753 		break;
1754 
1755 	case EV_REL:
1756 		__set_bit(code, dev->relbit);
1757 		break;
1758 
1759 	case EV_ABS:
1760 		__set_bit(code, dev->absbit);
1761 		break;
1762 
1763 	case EV_MSC:
1764 		__set_bit(code, dev->mscbit);
1765 		break;
1766 
1767 	case EV_SW:
1768 		__set_bit(code, dev->swbit);
1769 		break;
1770 
1771 	case EV_LED:
1772 		__set_bit(code, dev->ledbit);
1773 		break;
1774 
1775 	case EV_SND:
1776 		__set_bit(code, dev->sndbit);
1777 		break;
1778 
1779 	case EV_FF:
1780 		__set_bit(code, dev->ffbit);
1781 		break;
1782 
1783 	case EV_PWR:
1784 		/* do nothing */
1785 		break;
1786 
1787 	default:
1788 		printk(KERN_ERR
1789 			"input_set_capability: unknown type %u (code %u)\n",
1790 			type, code);
1791 		dump_stack();
1792 		return;
1793 	}
1794 
1795 	__set_bit(type, dev->evbit);
1796 }
1797 EXPORT_SYMBOL(input_set_capability);
1798 
1799 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1800 	do {								\
1801 		if (!test_bit(EV_##type, dev->evbit))			\
1802 			memset(dev->bits##bit, 0,			\
1803 				sizeof(dev->bits##bit));		\
1804 	} while (0)
1805 
1806 static void input_cleanse_bitmasks(struct input_dev *dev)
1807 {
1808 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1809 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1810 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1811 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1812 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1813 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1814 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1815 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1816 }
1817 
1818 /**
1819  * input_register_device - register device with input core
1820  * @dev: device to be registered
1821  *
1822  * This function registers device with input core. The device must be
1823  * allocated with input_allocate_device() and all it's capabilities
1824  * set up before registering.
1825  * If function fails the device must be freed with input_free_device().
1826  * Once device has been successfully registered it can be unregistered
1827  * with input_unregister_device(); input_free_device() should not be
1828  * called in this case.
1829  */
1830 int input_register_device(struct input_dev *dev)
1831 {
1832 	static atomic_t input_no = ATOMIC_INIT(0);
1833 	struct input_handler *handler;
1834 	const char *path;
1835 	int error;
1836 
1837 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1838 	__set_bit(EV_SYN, dev->evbit);
1839 
1840 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1841 	__clear_bit(KEY_RESERVED, dev->keybit);
1842 
1843 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1844 	input_cleanse_bitmasks(dev);
1845 
1846 	/*
1847 	 * If delay and period are pre-set by the driver, then autorepeating
1848 	 * is handled by the driver itself and we don't do it in input.c.
1849 	 */
1850 	init_timer(&dev->timer);
1851 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1852 		dev->timer.data = (long) dev;
1853 		dev->timer.function = input_repeat_key;
1854 		dev->rep[REP_DELAY] = 250;
1855 		dev->rep[REP_PERIOD] = 33;
1856 	}
1857 
1858 	if (!dev->getkeycode && !dev->getkeycode_new)
1859 		dev->getkeycode_new = input_default_getkeycode;
1860 
1861 	if (!dev->setkeycode && !dev->setkeycode_new)
1862 		dev->setkeycode_new = input_default_setkeycode;
1863 
1864 	dev_set_name(&dev->dev, "input%ld",
1865 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1866 
1867 	error = device_add(&dev->dev);
1868 	if (error)
1869 		return error;
1870 
1871 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1872 	printk(KERN_INFO "input: %s as %s\n",
1873 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1874 	kfree(path);
1875 
1876 	error = mutex_lock_interruptible(&input_mutex);
1877 	if (error) {
1878 		device_del(&dev->dev);
1879 		return error;
1880 	}
1881 
1882 	list_add_tail(&dev->node, &input_dev_list);
1883 
1884 	list_for_each_entry(handler, &input_handler_list, node)
1885 		input_attach_handler(dev, handler);
1886 
1887 	input_wakeup_procfs_readers();
1888 
1889 	mutex_unlock(&input_mutex);
1890 
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL(input_register_device);
1894 
1895 /**
1896  * input_unregister_device - unregister previously registered device
1897  * @dev: device to be unregistered
1898  *
1899  * This function unregisters an input device. Once device is unregistered
1900  * the caller should not try to access it as it may get freed at any moment.
1901  */
1902 void input_unregister_device(struct input_dev *dev)
1903 {
1904 	struct input_handle *handle, *next;
1905 
1906 	input_disconnect_device(dev);
1907 
1908 	mutex_lock(&input_mutex);
1909 
1910 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1911 		handle->handler->disconnect(handle);
1912 	WARN_ON(!list_empty(&dev->h_list));
1913 
1914 	del_timer_sync(&dev->timer);
1915 	list_del_init(&dev->node);
1916 
1917 	input_wakeup_procfs_readers();
1918 
1919 	mutex_unlock(&input_mutex);
1920 
1921 	device_unregister(&dev->dev);
1922 }
1923 EXPORT_SYMBOL(input_unregister_device);
1924 
1925 /**
1926  * input_register_handler - register a new input handler
1927  * @handler: handler to be registered
1928  *
1929  * This function registers a new input handler (interface) for input
1930  * devices in the system and attaches it to all input devices that
1931  * are compatible with the handler.
1932  */
1933 int input_register_handler(struct input_handler *handler)
1934 {
1935 	struct input_dev *dev;
1936 	int retval;
1937 
1938 	retval = mutex_lock_interruptible(&input_mutex);
1939 	if (retval)
1940 		return retval;
1941 
1942 	INIT_LIST_HEAD(&handler->h_list);
1943 
1944 	if (handler->fops != NULL) {
1945 		if (input_table[handler->minor >> 5]) {
1946 			retval = -EBUSY;
1947 			goto out;
1948 		}
1949 		input_table[handler->minor >> 5] = handler;
1950 	}
1951 
1952 	list_add_tail(&handler->node, &input_handler_list);
1953 
1954 	list_for_each_entry(dev, &input_dev_list, node)
1955 		input_attach_handler(dev, handler);
1956 
1957 	input_wakeup_procfs_readers();
1958 
1959  out:
1960 	mutex_unlock(&input_mutex);
1961 	return retval;
1962 }
1963 EXPORT_SYMBOL(input_register_handler);
1964 
1965 /**
1966  * input_unregister_handler - unregisters an input handler
1967  * @handler: handler to be unregistered
1968  *
1969  * This function disconnects a handler from its input devices and
1970  * removes it from lists of known handlers.
1971  */
1972 void input_unregister_handler(struct input_handler *handler)
1973 {
1974 	struct input_handle *handle, *next;
1975 
1976 	mutex_lock(&input_mutex);
1977 
1978 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1979 		handler->disconnect(handle);
1980 	WARN_ON(!list_empty(&handler->h_list));
1981 
1982 	list_del_init(&handler->node);
1983 
1984 	if (handler->fops != NULL)
1985 		input_table[handler->minor >> 5] = NULL;
1986 
1987 	input_wakeup_procfs_readers();
1988 
1989 	mutex_unlock(&input_mutex);
1990 }
1991 EXPORT_SYMBOL(input_unregister_handler);
1992 
1993 /**
1994  * input_handler_for_each_handle - handle iterator
1995  * @handler: input handler to iterate
1996  * @data: data for the callback
1997  * @fn: function to be called for each handle
1998  *
1999  * Iterate over @bus's list of devices, and call @fn for each, passing
2000  * it @data and stop when @fn returns a non-zero value. The function is
2001  * using RCU to traverse the list and therefore may be usind in atonic
2002  * contexts. The @fn callback is invoked from RCU critical section and
2003  * thus must not sleep.
2004  */
2005 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2006 				  int (*fn)(struct input_handle *, void *))
2007 {
2008 	struct input_handle *handle;
2009 	int retval = 0;
2010 
2011 	rcu_read_lock();
2012 
2013 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2014 		retval = fn(handle, data);
2015 		if (retval)
2016 			break;
2017 	}
2018 
2019 	rcu_read_unlock();
2020 
2021 	return retval;
2022 }
2023 EXPORT_SYMBOL(input_handler_for_each_handle);
2024 
2025 /**
2026  * input_register_handle - register a new input handle
2027  * @handle: handle to register
2028  *
2029  * This function puts a new input handle onto device's
2030  * and handler's lists so that events can flow through
2031  * it once it is opened using input_open_device().
2032  *
2033  * This function is supposed to be called from handler's
2034  * connect() method.
2035  */
2036 int input_register_handle(struct input_handle *handle)
2037 {
2038 	struct input_handler *handler = handle->handler;
2039 	struct input_dev *dev = handle->dev;
2040 	int error;
2041 
2042 	/*
2043 	 * We take dev->mutex here to prevent race with
2044 	 * input_release_device().
2045 	 */
2046 	error = mutex_lock_interruptible(&dev->mutex);
2047 	if (error)
2048 		return error;
2049 
2050 	/*
2051 	 * Filters go to the head of the list, normal handlers
2052 	 * to the tail.
2053 	 */
2054 	if (handler->filter)
2055 		list_add_rcu(&handle->d_node, &dev->h_list);
2056 	else
2057 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2058 
2059 	mutex_unlock(&dev->mutex);
2060 
2061 	/*
2062 	 * Since we are supposed to be called from ->connect()
2063 	 * which is mutually exclusive with ->disconnect()
2064 	 * we can't be racing with input_unregister_handle()
2065 	 * and so separate lock is not needed here.
2066 	 */
2067 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2068 
2069 	if (handler->start)
2070 		handler->start(handle);
2071 
2072 	return 0;
2073 }
2074 EXPORT_SYMBOL(input_register_handle);
2075 
2076 /**
2077  * input_unregister_handle - unregister an input handle
2078  * @handle: handle to unregister
2079  *
2080  * This function removes input handle from device's
2081  * and handler's lists.
2082  *
2083  * This function is supposed to be called from handler's
2084  * disconnect() method.
2085  */
2086 void input_unregister_handle(struct input_handle *handle)
2087 {
2088 	struct input_dev *dev = handle->dev;
2089 
2090 	list_del_rcu(&handle->h_node);
2091 
2092 	/*
2093 	 * Take dev->mutex to prevent race with input_release_device().
2094 	 */
2095 	mutex_lock(&dev->mutex);
2096 	list_del_rcu(&handle->d_node);
2097 	mutex_unlock(&dev->mutex);
2098 
2099 	synchronize_rcu();
2100 }
2101 EXPORT_SYMBOL(input_unregister_handle);
2102 
2103 static int input_open_file(struct inode *inode, struct file *file)
2104 {
2105 	struct input_handler *handler;
2106 	const struct file_operations *old_fops, *new_fops = NULL;
2107 	int err;
2108 
2109 	err = mutex_lock_interruptible(&input_mutex);
2110 	if (err)
2111 		return err;
2112 
2113 	/* No load-on-demand here? */
2114 	handler = input_table[iminor(inode) >> 5];
2115 	if (handler)
2116 		new_fops = fops_get(handler->fops);
2117 
2118 	mutex_unlock(&input_mutex);
2119 
2120 	/*
2121 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
2122 	 * not "no device". Oh, well...
2123 	 */
2124 	if (!new_fops || !new_fops->open) {
2125 		fops_put(new_fops);
2126 		err = -ENODEV;
2127 		goto out;
2128 	}
2129 
2130 	old_fops = file->f_op;
2131 	file->f_op = new_fops;
2132 
2133 	err = new_fops->open(inode, file);
2134 	if (err) {
2135 		fops_put(file->f_op);
2136 		file->f_op = fops_get(old_fops);
2137 	}
2138 	fops_put(old_fops);
2139 out:
2140 	return err;
2141 }
2142 
2143 static const struct file_operations input_fops = {
2144 	.owner = THIS_MODULE,
2145 	.open = input_open_file,
2146 	.llseek = noop_llseek,
2147 };
2148 
2149 static int __init input_init(void)
2150 {
2151 	int err;
2152 
2153 	err = class_register(&input_class);
2154 	if (err) {
2155 		printk(KERN_ERR "input: unable to register input_dev class\n");
2156 		return err;
2157 	}
2158 
2159 	err = input_proc_init();
2160 	if (err)
2161 		goto fail1;
2162 
2163 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2164 	if (err) {
2165 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
2166 		goto fail2;
2167 	}
2168 
2169 	return 0;
2170 
2171  fail2:	input_proc_exit();
2172  fail1:	class_unregister(&input_class);
2173 	return err;
2174 }
2175 
2176 static void __exit input_exit(void)
2177 {
2178 	input_proc_exit();
2179 	unregister_chrdev(INPUT_MAJOR, "input");
2180 	class_unregister(&input_class);
2181 }
2182 
2183 subsys_initcall(input_init);
2184 module_exit(input_exit);
2185