1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * The input core 4 * 5 * Copyright (c) 1999-2002 Vojtech Pavlik 6 */ 7 8 9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/idr.h> 14 #include <linux/input/mt.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/major.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/poll.h> 23 #include <linux/device.h> 24 #include <linux/mutex.h> 25 #include <linux/rcupdate.h> 26 #include "input-compat.h" 27 #include "input-core-private.h" 28 #include "input-poller.h" 29 30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 31 MODULE_DESCRIPTION("Input core"); 32 MODULE_LICENSE("GPL"); 33 34 #define INPUT_MAX_CHAR_DEVICES 1024 35 #define INPUT_FIRST_DYNAMIC_DEV 256 36 static DEFINE_IDA(input_ida); 37 38 static LIST_HEAD(input_dev_list); 39 static LIST_HEAD(input_handler_list); 40 41 /* 42 * input_mutex protects access to both input_dev_list and input_handler_list. 43 * This also causes input_[un]register_device and input_[un]register_handler 44 * be mutually exclusive which simplifies locking in drivers implementing 45 * input handlers. 46 */ 47 static DEFINE_MUTEX(input_mutex); 48 49 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 50 51 static const unsigned int input_max_code[EV_CNT] = { 52 [EV_KEY] = KEY_MAX, 53 [EV_REL] = REL_MAX, 54 [EV_ABS] = ABS_MAX, 55 [EV_MSC] = MSC_MAX, 56 [EV_SW] = SW_MAX, 57 [EV_LED] = LED_MAX, 58 [EV_SND] = SND_MAX, 59 [EV_FF] = FF_MAX, 60 }; 61 62 static inline int is_event_supported(unsigned int code, 63 unsigned long *bm, unsigned int max) 64 { 65 return code <= max && test_bit(code, bm); 66 } 67 68 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 69 { 70 if (fuzz) { 71 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 72 return old_val; 73 74 if (value > old_val - fuzz && value < old_val + fuzz) 75 return (old_val * 3 + value) / 4; 76 77 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 78 return (old_val + value) / 2; 79 } 80 81 return value; 82 } 83 84 static void input_start_autorepeat(struct input_dev *dev, int code) 85 { 86 if (test_bit(EV_REP, dev->evbit) && 87 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 88 dev->timer.function) { 89 dev->repeat_key = code; 90 mod_timer(&dev->timer, 91 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 92 } 93 } 94 95 static void input_stop_autorepeat(struct input_dev *dev) 96 { 97 del_timer(&dev->timer); 98 } 99 100 /* 101 * Pass event first through all filters and then, if event has not been 102 * filtered out, through all open handles. This function is called with 103 * dev->event_lock held and interrupts disabled. 104 */ 105 static unsigned int input_to_handler(struct input_handle *handle, 106 struct input_value *vals, unsigned int count) 107 { 108 struct input_handler *handler = handle->handler; 109 struct input_value *end = vals; 110 struct input_value *v; 111 112 if (handler->filter) { 113 for (v = vals; v != vals + count; v++) { 114 if (handler->filter(handle, v->type, v->code, v->value)) 115 continue; 116 if (end != v) 117 *end = *v; 118 end++; 119 } 120 count = end - vals; 121 } 122 123 if (!count) 124 return 0; 125 126 if (handler->events) 127 handler->events(handle, vals, count); 128 else if (handler->event) 129 for (v = vals; v != vals + count; v++) 130 handler->event(handle, v->type, v->code, v->value); 131 132 return count; 133 } 134 135 /* 136 * Pass values first through all filters and then, if event has not been 137 * filtered out, through all open handles. This function is called with 138 * dev->event_lock held and interrupts disabled. 139 */ 140 static void input_pass_values(struct input_dev *dev, 141 struct input_value *vals, unsigned int count) 142 { 143 struct input_handle *handle; 144 struct input_value *v; 145 146 lockdep_assert_held(&dev->event_lock); 147 148 if (!count) 149 return; 150 151 rcu_read_lock(); 152 153 handle = rcu_dereference(dev->grab); 154 if (handle) { 155 count = input_to_handler(handle, vals, count); 156 } else { 157 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 158 if (handle->open) { 159 count = input_to_handler(handle, vals, count); 160 if (!count) 161 break; 162 } 163 } 164 165 rcu_read_unlock(); 166 167 /* trigger auto repeat for key events */ 168 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { 169 for (v = vals; v != vals + count; v++) { 170 if (v->type == EV_KEY && v->value != 2) { 171 if (v->value) 172 input_start_autorepeat(dev, v->code); 173 else 174 input_stop_autorepeat(dev); 175 } 176 } 177 } 178 } 179 180 #define INPUT_IGNORE_EVENT 0 181 #define INPUT_PASS_TO_HANDLERS 1 182 #define INPUT_PASS_TO_DEVICE 2 183 #define INPUT_SLOT 4 184 #define INPUT_FLUSH 8 185 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 186 187 static int input_handle_abs_event(struct input_dev *dev, 188 unsigned int code, int *pval) 189 { 190 struct input_mt *mt = dev->mt; 191 bool is_mt_event; 192 int *pold; 193 194 if (code == ABS_MT_SLOT) { 195 /* 196 * "Stage" the event; we'll flush it later, when we 197 * get actual touch data. 198 */ 199 if (mt && *pval >= 0 && *pval < mt->num_slots) 200 mt->slot = *pval; 201 202 return INPUT_IGNORE_EVENT; 203 } 204 205 is_mt_event = input_is_mt_value(code); 206 207 if (!is_mt_event) { 208 pold = &dev->absinfo[code].value; 209 } else if (mt) { 210 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 211 } else { 212 /* 213 * Bypass filtering for multi-touch events when 214 * not employing slots. 215 */ 216 pold = NULL; 217 } 218 219 if (pold) { 220 *pval = input_defuzz_abs_event(*pval, *pold, 221 dev->absinfo[code].fuzz); 222 if (*pold == *pval) 223 return INPUT_IGNORE_EVENT; 224 225 *pold = *pval; 226 } 227 228 /* Flush pending "slot" event */ 229 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 230 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 231 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 232 } 233 234 return INPUT_PASS_TO_HANDLERS; 235 } 236 237 static int input_get_disposition(struct input_dev *dev, 238 unsigned int type, unsigned int code, int *pval) 239 { 240 int disposition = INPUT_IGNORE_EVENT; 241 int value = *pval; 242 243 /* filter-out events from inhibited devices */ 244 if (dev->inhibited) 245 return INPUT_IGNORE_EVENT; 246 247 switch (type) { 248 249 case EV_SYN: 250 switch (code) { 251 case SYN_CONFIG: 252 disposition = INPUT_PASS_TO_ALL; 253 break; 254 255 case SYN_REPORT: 256 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 257 break; 258 case SYN_MT_REPORT: 259 disposition = INPUT_PASS_TO_HANDLERS; 260 break; 261 } 262 break; 263 264 case EV_KEY: 265 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 266 267 /* auto-repeat bypasses state updates */ 268 if (value == 2) { 269 disposition = INPUT_PASS_TO_HANDLERS; 270 break; 271 } 272 273 if (!!test_bit(code, dev->key) != !!value) { 274 275 __change_bit(code, dev->key); 276 disposition = INPUT_PASS_TO_HANDLERS; 277 } 278 } 279 break; 280 281 case EV_SW: 282 if (is_event_supported(code, dev->swbit, SW_MAX) && 283 !!test_bit(code, dev->sw) != !!value) { 284 285 __change_bit(code, dev->sw); 286 disposition = INPUT_PASS_TO_HANDLERS; 287 } 288 break; 289 290 case EV_ABS: 291 if (is_event_supported(code, dev->absbit, ABS_MAX)) 292 disposition = input_handle_abs_event(dev, code, &value); 293 294 break; 295 296 case EV_REL: 297 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 298 disposition = INPUT_PASS_TO_HANDLERS; 299 300 break; 301 302 case EV_MSC: 303 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 304 disposition = INPUT_PASS_TO_ALL; 305 306 break; 307 308 case EV_LED: 309 if (is_event_supported(code, dev->ledbit, LED_MAX) && 310 !!test_bit(code, dev->led) != !!value) { 311 312 __change_bit(code, dev->led); 313 disposition = INPUT_PASS_TO_ALL; 314 } 315 break; 316 317 case EV_SND: 318 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 319 320 if (!!test_bit(code, dev->snd) != !!value) 321 __change_bit(code, dev->snd); 322 disposition = INPUT_PASS_TO_ALL; 323 } 324 break; 325 326 case EV_REP: 327 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 328 dev->rep[code] = value; 329 disposition = INPUT_PASS_TO_ALL; 330 } 331 break; 332 333 case EV_FF: 334 if (value >= 0) 335 disposition = INPUT_PASS_TO_ALL; 336 break; 337 338 case EV_PWR: 339 disposition = INPUT_PASS_TO_ALL; 340 break; 341 } 342 343 *pval = value; 344 return disposition; 345 } 346 347 static void input_event_dispose(struct input_dev *dev, int disposition, 348 unsigned int type, unsigned int code, int value) 349 { 350 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 351 dev->event(dev, type, code, value); 352 353 if (!dev->vals) 354 return; 355 356 if (disposition & INPUT_PASS_TO_HANDLERS) { 357 struct input_value *v; 358 359 if (disposition & INPUT_SLOT) { 360 v = &dev->vals[dev->num_vals++]; 361 v->type = EV_ABS; 362 v->code = ABS_MT_SLOT; 363 v->value = dev->mt->slot; 364 } 365 366 v = &dev->vals[dev->num_vals++]; 367 v->type = type; 368 v->code = code; 369 v->value = value; 370 } 371 372 if (disposition & INPUT_FLUSH) { 373 if (dev->num_vals >= 2) 374 input_pass_values(dev, dev->vals, dev->num_vals); 375 dev->num_vals = 0; 376 /* 377 * Reset the timestamp on flush so we won't end up 378 * with a stale one. Note we only need to reset the 379 * monolithic one as we use its presence when deciding 380 * whether to generate a synthetic timestamp. 381 */ 382 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0); 383 } else if (dev->num_vals >= dev->max_vals - 2) { 384 dev->vals[dev->num_vals++] = input_value_sync; 385 input_pass_values(dev, dev->vals, dev->num_vals); 386 dev->num_vals = 0; 387 } 388 } 389 390 void input_handle_event(struct input_dev *dev, 391 unsigned int type, unsigned int code, int value) 392 { 393 int disposition; 394 395 lockdep_assert_held(&dev->event_lock); 396 397 disposition = input_get_disposition(dev, type, code, &value); 398 if (disposition != INPUT_IGNORE_EVENT) { 399 if (type != EV_SYN) 400 add_input_randomness(type, code, value); 401 402 input_event_dispose(dev, disposition, type, code, value); 403 } 404 } 405 406 /** 407 * input_event() - report new input event 408 * @dev: device that generated the event 409 * @type: type of the event 410 * @code: event code 411 * @value: value of the event 412 * 413 * This function should be used by drivers implementing various input 414 * devices to report input events. See also input_inject_event(). 415 * 416 * NOTE: input_event() may be safely used right after input device was 417 * allocated with input_allocate_device(), even before it is registered 418 * with input_register_device(), but the event will not reach any of the 419 * input handlers. Such early invocation of input_event() may be used 420 * to 'seed' initial state of a switch or initial position of absolute 421 * axis, etc. 422 */ 423 void input_event(struct input_dev *dev, 424 unsigned int type, unsigned int code, int value) 425 { 426 unsigned long flags; 427 428 if (is_event_supported(type, dev->evbit, EV_MAX)) { 429 430 spin_lock_irqsave(&dev->event_lock, flags); 431 input_handle_event(dev, type, code, value); 432 spin_unlock_irqrestore(&dev->event_lock, flags); 433 } 434 } 435 EXPORT_SYMBOL(input_event); 436 437 /** 438 * input_inject_event() - send input event from input handler 439 * @handle: input handle to send event through 440 * @type: type of the event 441 * @code: event code 442 * @value: value of the event 443 * 444 * Similar to input_event() but will ignore event if device is 445 * "grabbed" and handle injecting event is not the one that owns 446 * the device. 447 */ 448 void input_inject_event(struct input_handle *handle, 449 unsigned int type, unsigned int code, int value) 450 { 451 struct input_dev *dev = handle->dev; 452 struct input_handle *grab; 453 unsigned long flags; 454 455 if (is_event_supported(type, dev->evbit, EV_MAX)) { 456 spin_lock_irqsave(&dev->event_lock, flags); 457 458 rcu_read_lock(); 459 grab = rcu_dereference(dev->grab); 460 if (!grab || grab == handle) 461 input_handle_event(dev, type, code, value); 462 rcu_read_unlock(); 463 464 spin_unlock_irqrestore(&dev->event_lock, flags); 465 } 466 } 467 EXPORT_SYMBOL(input_inject_event); 468 469 /** 470 * input_alloc_absinfo - allocates array of input_absinfo structs 471 * @dev: the input device emitting absolute events 472 * 473 * If the absinfo struct the caller asked for is already allocated, this 474 * functions will not do anything. 475 */ 476 void input_alloc_absinfo(struct input_dev *dev) 477 { 478 if (dev->absinfo) 479 return; 480 481 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); 482 if (!dev->absinfo) { 483 dev_err(dev->dev.parent ?: &dev->dev, 484 "%s: unable to allocate memory\n", __func__); 485 /* 486 * We will handle this allocation failure in 487 * input_register_device() when we refuse to register input 488 * device with ABS bits but without absinfo. 489 */ 490 } 491 } 492 EXPORT_SYMBOL(input_alloc_absinfo); 493 494 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 495 int min, int max, int fuzz, int flat) 496 { 497 struct input_absinfo *absinfo; 498 499 __set_bit(EV_ABS, dev->evbit); 500 __set_bit(axis, dev->absbit); 501 502 input_alloc_absinfo(dev); 503 if (!dev->absinfo) 504 return; 505 506 absinfo = &dev->absinfo[axis]; 507 absinfo->minimum = min; 508 absinfo->maximum = max; 509 absinfo->fuzz = fuzz; 510 absinfo->flat = flat; 511 } 512 EXPORT_SYMBOL(input_set_abs_params); 513 514 /** 515 * input_copy_abs - Copy absinfo from one input_dev to another 516 * @dst: Destination input device to copy the abs settings to 517 * @dst_axis: ABS_* value selecting the destination axis 518 * @src: Source input device to copy the abs settings from 519 * @src_axis: ABS_* value selecting the source axis 520 * 521 * Set absinfo for the selected destination axis by copying it from 522 * the specified source input device's source axis. 523 * This is useful to e.g. setup a pen/stylus input-device for combined 524 * touchscreen/pen hardware where the pen uses the same coordinates as 525 * the touchscreen. 526 */ 527 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis, 528 const struct input_dev *src, unsigned int src_axis) 529 { 530 /* src must have EV_ABS and src_axis set */ 531 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) && 532 test_bit(src_axis, src->absbit)))) 533 return; 534 535 /* 536 * input_alloc_absinfo() may have failed for the source. Our caller is 537 * expected to catch this when registering the input devices, which may 538 * happen after the input_copy_abs() call. 539 */ 540 if (!src->absinfo) 541 return; 542 543 input_set_capability(dst, EV_ABS, dst_axis); 544 if (!dst->absinfo) 545 return; 546 547 dst->absinfo[dst_axis] = src->absinfo[src_axis]; 548 } 549 EXPORT_SYMBOL(input_copy_abs); 550 551 /** 552 * input_grab_device - grabs device for exclusive use 553 * @handle: input handle that wants to own the device 554 * 555 * When a device is grabbed by an input handle all events generated by 556 * the device are delivered only to this handle. Also events injected 557 * by other input handles are ignored while device is grabbed. 558 */ 559 int input_grab_device(struct input_handle *handle) 560 { 561 struct input_dev *dev = handle->dev; 562 int retval; 563 564 retval = mutex_lock_interruptible(&dev->mutex); 565 if (retval) 566 return retval; 567 568 if (dev->grab) { 569 retval = -EBUSY; 570 goto out; 571 } 572 573 rcu_assign_pointer(dev->grab, handle); 574 575 out: 576 mutex_unlock(&dev->mutex); 577 return retval; 578 } 579 EXPORT_SYMBOL(input_grab_device); 580 581 static void __input_release_device(struct input_handle *handle) 582 { 583 struct input_dev *dev = handle->dev; 584 struct input_handle *grabber; 585 586 grabber = rcu_dereference_protected(dev->grab, 587 lockdep_is_held(&dev->mutex)); 588 if (grabber == handle) { 589 rcu_assign_pointer(dev->grab, NULL); 590 /* Make sure input_pass_values() notices that grab is gone */ 591 synchronize_rcu(); 592 593 list_for_each_entry(handle, &dev->h_list, d_node) 594 if (handle->open && handle->handler->start) 595 handle->handler->start(handle); 596 } 597 } 598 599 /** 600 * input_release_device - release previously grabbed device 601 * @handle: input handle that owns the device 602 * 603 * Releases previously grabbed device so that other input handles can 604 * start receiving input events. Upon release all handlers attached 605 * to the device have their start() method called so they have a change 606 * to synchronize device state with the rest of the system. 607 */ 608 void input_release_device(struct input_handle *handle) 609 { 610 struct input_dev *dev = handle->dev; 611 612 mutex_lock(&dev->mutex); 613 __input_release_device(handle); 614 mutex_unlock(&dev->mutex); 615 } 616 EXPORT_SYMBOL(input_release_device); 617 618 /** 619 * input_open_device - open input device 620 * @handle: handle through which device is being accessed 621 * 622 * This function should be called by input handlers when they 623 * want to start receive events from given input device. 624 */ 625 int input_open_device(struct input_handle *handle) 626 { 627 struct input_dev *dev = handle->dev; 628 int retval; 629 630 retval = mutex_lock_interruptible(&dev->mutex); 631 if (retval) 632 return retval; 633 634 if (dev->going_away) { 635 retval = -ENODEV; 636 goto out; 637 } 638 639 handle->open++; 640 641 if (dev->users++ || dev->inhibited) { 642 /* 643 * Device is already opened and/or inhibited, 644 * so we can exit immediately and report success. 645 */ 646 goto out; 647 } 648 649 if (dev->open) { 650 retval = dev->open(dev); 651 if (retval) { 652 dev->users--; 653 handle->open--; 654 /* 655 * Make sure we are not delivering any more events 656 * through this handle 657 */ 658 synchronize_rcu(); 659 goto out; 660 } 661 } 662 663 if (dev->poller) 664 input_dev_poller_start(dev->poller); 665 666 out: 667 mutex_unlock(&dev->mutex); 668 return retval; 669 } 670 EXPORT_SYMBOL(input_open_device); 671 672 int input_flush_device(struct input_handle *handle, struct file *file) 673 { 674 struct input_dev *dev = handle->dev; 675 int retval; 676 677 retval = mutex_lock_interruptible(&dev->mutex); 678 if (retval) 679 return retval; 680 681 if (dev->flush) 682 retval = dev->flush(dev, file); 683 684 mutex_unlock(&dev->mutex); 685 return retval; 686 } 687 EXPORT_SYMBOL(input_flush_device); 688 689 /** 690 * input_close_device - close input device 691 * @handle: handle through which device is being accessed 692 * 693 * This function should be called by input handlers when they 694 * want to stop receive events from given input device. 695 */ 696 void input_close_device(struct input_handle *handle) 697 { 698 struct input_dev *dev = handle->dev; 699 700 mutex_lock(&dev->mutex); 701 702 __input_release_device(handle); 703 704 if (!dev->inhibited && !--dev->users) { 705 if (dev->poller) 706 input_dev_poller_stop(dev->poller); 707 if (dev->close) 708 dev->close(dev); 709 } 710 711 if (!--handle->open) { 712 /* 713 * synchronize_rcu() makes sure that input_pass_values() 714 * completed and that no more input events are delivered 715 * through this handle 716 */ 717 synchronize_rcu(); 718 } 719 720 mutex_unlock(&dev->mutex); 721 } 722 EXPORT_SYMBOL(input_close_device); 723 724 /* 725 * Simulate keyup events for all keys that are marked as pressed. 726 * The function must be called with dev->event_lock held. 727 */ 728 static bool input_dev_release_keys(struct input_dev *dev) 729 { 730 bool need_sync = false; 731 int code; 732 733 lockdep_assert_held(&dev->event_lock); 734 735 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 736 for_each_set_bit(code, dev->key, KEY_CNT) { 737 input_handle_event(dev, EV_KEY, code, 0); 738 need_sync = true; 739 } 740 } 741 742 return need_sync; 743 } 744 745 /* 746 * Prepare device for unregistering 747 */ 748 static void input_disconnect_device(struct input_dev *dev) 749 { 750 struct input_handle *handle; 751 752 /* 753 * Mark device as going away. Note that we take dev->mutex here 754 * not to protect access to dev->going_away but rather to ensure 755 * that there are no threads in the middle of input_open_device() 756 */ 757 mutex_lock(&dev->mutex); 758 dev->going_away = true; 759 mutex_unlock(&dev->mutex); 760 761 spin_lock_irq(&dev->event_lock); 762 763 /* 764 * Simulate keyup events for all pressed keys so that handlers 765 * are not left with "stuck" keys. The driver may continue 766 * generate events even after we done here but they will not 767 * reach any handlers. 768 */ 769 if (input_dev_release_keys(dev)) 770 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 771 772 list_for_each_entry(handle, &dev->h_list, d_node) 773 handle->open = 0; 774 775 spin_unlock_irq(&dev->event_lock); 776 } 777 778 /** 779 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 780 * @ke: keymap entry containing scancode to be converted. 781 * @scancode: pointer to the location where converted scancode should 782 * be stored. 783 * 784 * This function is used to convert scancode stored in &struct keymap_entry 785 * into scalar form understood by legacy keymap handling methods. These 786 * methods expect scancodes to be represented as 'unsigned int'. 787 */ 788 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 789 unsigned int *scancode) 790 { 791 switch (ke->len) { 792 case 1: 793 *scancode = *((u8 *)ke->scancode); 794 break; 795 796 case 2: 797 *scancode = *((u16 *)ke->scancode); 798 break; 799 800 case 4: 801 *scancode = *((u32 *)ke->scancode); 802 break; 803 804 default: 805 return -EINVAL; 806 } 807 808 return 0; 809 } 810 EXPORT_SYMBOL(input_scancode_to_scalar); 811 812 /* 813 * Those routines handle the default case where no [gs]etkeycode() is 814 * defined. In this case, an array indexed by the scancode is used. 815 */ 816 817 static unsigned int input_fetch_keycode(struct input_dev *dev, 818 unsigned int index) 819 { 820 switch (dev->keycodesize) { 821 case 1: 822 return ((u8 *)dev->keycode)[index]; 823 824 case 2: 825 return ((u16 *)dev->keycode)[index]; 826 827 default: 828 return ((u32 *)dev->keycode)[index]; 829 } 830 } 831 832 static int input_default_getkeycode(struct input_dev *dev, 833 struct input_keymap_entry *ke) 834 { 835 unsigned int index; 836 int error; 837 838 if (!dev->keycodesize) 839 return -EINVAL; 840 841 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 842 index = ke->index; 843 else { 844 error = input_scancode_to_scalar(ke, &index); 845 if (error) 846 return error; 847 } 848 849 if (index >= dev->keycodemax) 850 return -EINVAL; 851 852 ke->keycode = input_fetch_keycode(dev, index); 853 ke->index = index; 854 ke->len = sizeof(index); 855 memcpy(ke->scancode, &index, sizeof(index)); 856 857 return 0; 858 } 859 860 static int input_default_setkeycode(struct input_dev *dev, 861 const struct input_keymap_entry *ke, 862 unsigned int *old_keycode) 863 { 864 unsigned int index; 865 int error; 866 int i; 867 868 if (!dev->keycodesize) 869 return -EINVAL; 870 871 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 872 index = ke->index; 873 } else { 874 error = input_scancode_to_scalar(ke, &index); 875 if (error) 876 return error; 877 } 878 879 if (index >= dev->keycodemax) 880 return -EINVAL; 881 882 if (dev->keycodesize < sizeof(ke->keycode) && 883 (ke->keycode >> (dev->keycodesize * 8))) 884 return -EINVAL; 885 886 switch (dev->keycodesize) { 887 case 1: { 888 u8 *k = (u8 *)dev->keycode; 889 *old_keycode = k[index]; 890 k[index] = ke->keycode; 891 break; 892 } 893 case 2: { 894 u16 *k = (u16 *)dev->keycode; 895 *old_keycode = k[index]; 896 k[index] = ke->keycode; 897 break; 898 } 899 default: { 900 u32 *k = (u32 *)dev->keycode; 901 *old_keycode = k[index]; 902 k[index] = ke->keycode; 903 break; 904 } 905 } 906 907 if (*old_keycode <= KEY_MAX) { 908 __clear_bit(*old_keycode, dev->keybit); 909 for (i = 0; i < dev->keycodemax; i++) { 910 if (input_fetch_keycode(dev, i) == *old_keycode) { 911 __set_bit(*old_keycode, dev->keybit); 912 /* Setting the bit twice is useless, so break */ 913 break; 914 } 915 } 916 } 917 918 __set_bit(ke->keycode, dev->keybit); 919 return 0; 920 } 921 922 /** 923 * input_get_keycode - retrieve keycode currently mapped to a given scancode 924 * @dev: input device which keymap is being queried 925 * @ke: keymap entry 926 * 927 * This function should be called by anyone interested in retrieving current 928 * keymap. Presently evdev handlers use it. 929 */ 930 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 931 { 932 unsigned long flags; 933 int retval; 934 935 spin_lock_irqsave(&dev->event_lock, flags); 936 retval = dev->getkeycode(dev, ke); 937 spin_unlock_irqrestore(&dev->event_lock, flags); 938 939 return retval; 940 } 941 EXPORT_SYMBOL(input_get_keycode); 942 943 /** 944 * input_set_keycode - attribute a keycode to a given scancode 945 * @dev: input device which keymap is being updated 946 * @ke: new keymap entry 947 * 948 * This function should be called by anyone needing to update current 949 * keymap. Presently keyboard and evdev handlers use it. 950 */ 951 int input_set_keycode(struct input_dev *dev, 952 const struct input_keymap_entry *ke) 953 { 954 unsigned long flags; 955 unsigned int old_keycode; 956 int retval; 957 958 if (ke->keycode > KEY_MAX) 959 return -EINVAL; 960 961 spin_lock_irqsave(&dev->event_lock, flags); 962 963 retval = dev->setkeycode(dev, ke, &old_keycode); 964 if (retval) 965 goto out; 966 967 /* Make sure KEY_RESERVED did not get enabled. */ 968 __clear_bit(KEY_RESERVED, dev->keybit); 969 970 /* 971 * Simulate keyup event if keycode is not present 972 * in the keymap anymore 973 */ 974 if (old_keycode > KEY_MAX) { 975 dev_warn(dev->dev.parent ?: &dev->dev, 976 "%s: got too big old keycode %#x\n", 977 __func__, old_keycode); 978 } else if (test_bit(EV_KEY, dev->evbit) && 979 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 980 __test_and_clear_bit(old_keycode, dev->key)) { 981 /* 982 * We have to use input_event_dispose() here directly instead 983 * of input_handle_event() because the key we want to release 984 * here is considered no longer supported by the device and 985 * input_handle_event() will ignore it. 986 */ 987 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS, 988 EV_KEY, old_keycode, 0); 989 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH, 990 EV_SYN, SYN_REPORT, 1); 991 } 992 993 out: 994 spin_unlock_irqrestore(&dev->event_lock, flags); 995 996 return retval; 997 } 998 EXPORT_SYMBOL(input_set_keycode); 999 1000 bool input_match_device_id(const struct input_dev *dev, 1001 const struct input_device_id *id) 1002 { 1003 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 1004 if (id->bustype != dev->id.bustype) 1005 return false; 1006 1007 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 1008 if (id->vendor != dev->id.vendor) 1009 return false; 1010 1011 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 1012 if (id->product != dev->id.product) 1013 return false; 1014 1015 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 1016 if (id->version != dev->id.version) 1017 return false; 1018 1019 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || 1020 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || 1021 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || 1022 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || 1023 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || 1024 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || 1025 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || 1026 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || 1027 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || 1028 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { 1029 return false; 1030 } 1031 1032 return true; 1033 } 1034 EXPORT_SYMBOL(input_match_device_id); 1035 1036 static const struct input_device_id *input_match_device(struct input_handler *handler, 1037 struct input_dev *dev) 1038 { 1039 const struct input_device_id *id; 1040 1041 for (id = handler->id_table; id->flags || id->driver_info; id++) { 1042 if (input_match_device_id(dev, id) && 1043 (!handler->match || handler->match(handler, dev))) { 1044 return id; 1045 } 1046 } 1047 1048 return NULL; 1049 } 1050 1051 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 1052 { 1053 const struct input_device_id *id; 1054 int error; 1055 1056 id = input_match_device(handler, dev); 1057 if (!id) 1058 return -ENODEV; 1059 1060 error = handler->connect(handler, dev, id); 1061 if (error && error != -ENODEV) 1062 pr_err("failed to attach handler %s to device %s, error: %d\n", 1063 handler->name, kobject_name(&dev->dev.kobj), error); 1064 1065 return error; 1066 } 1067 1068 #ifdef CONFIG_COMPAT 1069 1070 static int input_bits_to_string(char *buf, int buf_size, 1071 unsigned long bits, bool skip_empty) 1072 { 1073 int len = 0; 1074 1075 if (in_compat_syscall()) { 1076 u32 dword = bits >> 32; 1077 if (dword || !skip_empty) 1078 len += snprintf(buf, buf_size, "%x ", dword); 1079 1080 dword = bits & 0xffffffffUL; 1081 if (dword || !skip_empty || len) 1082 len += snprintf(buf + len, max(buf_size - len, 0), 1083 "%x", dword); 1084 } else { 1085 if (bits || !skip_empty) 1086 len += snprintf(buf, buf_size, "%lx", bits); 1087 } 1088 1089 return len; 1090 } 1091 1092 #else /* !CONFIG_COMPAT */ 1093 1094 static int input_bits_to_string(char *buf, int buf_size, 1095 unsigned long bits, bool skip_empty) 1096 { 1097 return bits || !skip_empty ? 1098 snprintf(buf, buf_size, "%lx", bits) : 0; 1099 } 1100 1101 #endif 1102 1103 #ifdef CONFIG_PROC_FS 1104 1105 static struct proc_dir_entry *proc_bus_input_dir; 1106 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1107 static int input_devices_state; 1108 1109 static inline void input_wakeup_procfs_readers(void) 1110 { 1111 input_devices_state++; 1112 wake_up(&input_devices_poll_wait); 1113 } 1114 1115 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) 1116 { 1117 poll_wait(file, &input_devices_poll_wait, wait); 1118 if (file->f_version != input_devices_state) { 1119 file->f_version = input_devices_state; 1120 return EPOLLIN | EPOLLRDNORM; 1121 } 1122 1123 return 0; 1124 } 1125 1126 union input_seq_state { 1127 struct { 1128 unsigned short pos; 1129 bool mutex_acquired; 1130 }; 1131 void *p; 1132 }; 1133 1134 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1135 { 1136 union input_seq_state *state = (union input_seq_state *)&seq->private; 1137 int error; 1138 1139 /* We need to fit into seq->private pointer */ 1140 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1141 1142 error = mutex_lock_interruptible(&input_mutex); 1143 if (error) { 1144 state->mutex_acquired = false; 1145 return ERR_PTR(error); 1146 } 1147 1148 state->mutex_acquired = true; 1149 1150 return seq_list_start(&input_dev_list, *pos); 1151 } 1152 1153 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1154 { 1155 return seq_list_next(v, &input_dev_list, pos); 1156 } 1157 1158 static void input_seq_stop(struct seq_file *seq, void *v) 1159 { 1160 union input_seq_state *state = (union input_seq_state *)&seq->private; 1161 1162 if (state->mutex_acquired) 1163 mutex_unlock(&input_mutex); 1164 } 1165 1166 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1167 unsigned long *bitmap, int max) 1168 { 1169 int i; 1170 bool skip_empty = true; 1171 char buf[18]; 1172 1173 seq_printf(seq, "B: %s=", name); 1174 1175 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1176 if (input_bits_to_string(buf, sizeof(buf), 1177 bitmap[i], skip_empty)) { 1178 skip_empty = false; 1179 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1180 } 1181 } 1182 1183 /* 1184 * If no output was produced print a single 0. 1185 */ 1186 if (skip_empty) 1187 seq_putc(seq, '0'); 1188 1189 seq_putc(seq, '\n'); 1190 } 1191 1192 static int input_devices_seq_show(struct seq_file *seq, void *v) 1193 { 1194 struct input_dev *dev = container_of(v, struct input_dev, node); 1195 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1196 struct input_handle *handle; 1197 1198 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1199 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1200 1201 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1202 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1203 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1204 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1205 seq_puts(seq, "H: Handlers="); 1206 1207 list_for_each_entry(handle, &dev->h_list, d_node) 1208 seq_printf(seq, "%s ", handle->name); 1209 seq_putc(seq, '\n'); 1210 1211 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1212 1213 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1214 if (test_bit(EV_KEY, dev->evbit)) 1215 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1216 if (test_bit(EV_REL, dev->evbit)) 1217 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1218 if (test_bit(EV_ABS, dev->evbit)) 1219 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1220 if (test_bit(EV_MSC, dev->evbit)) 1221 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1222 if (test_bit(EV_LED, dev->evbit)) 1223 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1224 if (test_bit(EV_SND, dev->evbit)) 1225 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1226 if (test_bit(EV_FF, dev->evbit)) 1227 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1228 if (test_bit(EV_SW, dev->evbit)) 1229 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1230 1231 seq_putc(seq, '\n'); 1232 1233 kfree(path); 1234 return 0; 1235 } 1236 1237 static const struct seq_operations input_devices_seq_ops = { 1238 .start = input_devices_seq_start, 1239 .next = input_devices_seq_next, 1240 .stop = input_seq_stop, 1241 .show = input_devices_seq_show, 1242 }; 1243 1244 static int input_proc_devices_open(struct inode *inode, struct file *file) 1245 { 1246 return seq_open(file, &input_devices_seq_ops); 1247 } 1248 1249 static const struct proc_ops input_devices_proc_ops = { 1250 .proc_open = input_proc_devices_open, 1251 .proc_poll = input_proc_devices_poll, 1252 .proc_read = seq_read, 1253 .proc_lseek = seq_lseek, 1254 .proc_release = seq_release, 1255 }; 1256 1257 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1258 { 1259 union input_seq_state *state = (union input_seq_state *)&seq->private; 1260 int error; 1261 1262 /* We need to fit into seq->private pointer */ 1263 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1264 1265 error = mutex_lock_interruptible(&input_mutex); 1266 if (error) { 1267 state->mutex_acquired = false; 1268 return ERR_PTR(error); 1269 } 1270 1271 state->mutex_acquired = true; 1272 state->pos = *pos; 1273 1274 return seq_list_start(&input_handler_list, *pos); 1275 } 1276 1277 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1278 { 1279 union input_seq_state *state = (union input_seq_state *)&seq->private; 1280 1281 state->pos = *pos + 1; 1282 return seq_list_next(v, &input_handler_list, pos); 1283 } 1284 1285 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1286 { 1287 struct input_handler *handler = container_of(v, struct input_handler, node); 1288 union input_seq_state *state = (union input_seq_state *)&seq->private; 1289 1290 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1291 if (handler->filter) 1292 seq_puts(seq, " (filter)"); 1293 if (handler->legacy_minors) 1294 seq_printf(seq, " Minor=%d", handler->minor); 1295 seq_putc(seq, '\n'); 1296 1297 return 0; 1298 } 1299 1300 static const struct seq_operations input_handlers_seq_ops = { 1301 .start = input_handlers_seq_start, 1302 .next = input_handlers_seq_next, 1303 .stop = input_seq_stop, 1304 .show = input_handlers_seq_show, 1305 }; 1306 1307 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1308 { 1309 return seq_open(file, &input_handlers_seq_ops); 1310 } 1311 1312 static const struct proc_ops input_handlers_proc_ops = { 1313 .proc_open = input_proc_handlers_open, 1314 .proc_read = seq_read, 1315 .proc_lseek = seq_lseek, 1316 .proc_release = seq_release, 1317 }; 1318 1319 static int __init input_proc_init(void) 1320 { 1321 struct proc_dir_entry *entry; 1322 1323 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1324 if (!proc_bus_input_dir) 1325 return -ENOMEM; 1326 1327 entry = proc_create("devices", 0, proc_bus_input_dir, 1328 &input_devices_proc_ops); 1329 if (!entry) 1330 goto fail1; 1331 1332 entry = proc_create("handlers", 0, proc_bus_input_dir, 1333 &input_handlers_proc_ops); 1334 if (!entry) 1335 goto fail2; 1336 1337 return 0; 1338 1339 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1340 fail1: remove_proc_entry("bus/input", NULL); 1341 return -ENOMEM; 1342 } 1343 1344 static void input_proc_exit(void) 1345 { 1346 remove_proc_entry("devices", proc_bus_input_dir); 1347 remove_proc_entry("handlers", proc_bus_input_dir); 1348 remove_proc_entry("bus/input", NULL); 1349 } 1350 1351 #else /* !CONFIG_PROC_FS */ 1352 static inline void input_wakeup_procfs_readers(void) { } 1353 static inline int input_proc_init(void) { return 0; } 1354 static inline void input_proc_exit(void) { } 1355 #endif 1356 1357 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1358 static ssize_t input_dev_show_##name(struct device *dev, \ 1359 struct device_attribute *attr, \ 1360 char *buf) \ 1361 { \ 1362 struct input_dev *input_dev = to_input_dev(dev); \ 1363 \ 1364 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1365 input_dev->name ? input_dev->name : ""); \ 1366 } \ 1367 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1368 1369 INPUT_DEV_STRING_ATTR_SHOW(name); 1370 INPUT_DEV_STRING_ATTR_SHOW(phys); 1371 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1372 1373 static int input_print_modalias_bits(char *buf, int size, 1374 char name, unsigned long *bm, 1375 unsigned int min_bit, unsigned int max_bit) 1376 { 1377 int len = 0, i; 1378 1379 len += snprintf(buf, max(size, 0), "%c", name); 1380 for (i = min_bit; i < max_bit; i++) 1381 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1382 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1383 return len; 1384 } 1385 1386 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1387 int add_cr) 1388 { 1389 int len; 1390 1391 len = snprintf(buf, max(size, 0), 1392 "input:b%04Xv%04Xp%04Xe%04X-", 1393 id->id.bustype, id->id.vendor, 1394 id->id.product, id->id.version); 1395 1396 len += input_print_modalias_bits(buf + len, size - len, 1397 'e', id->evbit, 0, EV_MAX); 1398 len += input_print_modalias_bits(buf + len, size - len, 1399 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1400 len += input_print_modalias_bits(buf + len, size - len, 1401 'r', id->relbit, 0, REL_MAX); 1402 len += input_print_modalias_bits(buf + len, size - len, 1403 'a', id->absbit, 0, ABS_MAX); 1404 len += input_print_modalias_bits(buf + len, size - len, 1405 'm', id->mscbit, 0, MSC_MAX); 1406 len += input_print_modalias_bits(buf + len, size - len, 1407 'l', id->ledbit, 0, LED_MAX); 1408 len += input_print_modalias_bits(buf + len, size - len, 1409 's', id->sndbit, 0, SND_MAX); 1410 len += input_print_modalias_bits(buf + len, size - len, 1411 'f', id->ffbit, 0, FF_MAX); 1412 len += input_print_modalias_bits(buf + len, size - len, 1413 'w', id->swbit, 0, SW_MAX); 1414 1415 if (add_cr) 1416 len += snprintf(buf + len, max(size - len, 0), "\n"); 1417 1418 return len; 1419 } 1420 1421 static ssize_t input_dev_show_modalias(struct device *dev, 1422 struct device_attribute *attr, 1423 char *buf) 1424 { 1425 struct input_dev *id = to_input_dev(dev); 1426 ssize_t len; 1427 1428 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1429 1430 return min_t(int, len, PAGE_SIZE); 1431 } 1432 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1433 1434 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1435 int max, int add_cr); 1436 1437 static ssize_t input_dev_show_properties(struct device *dev, 1438 struct device_attribute *attr, 1439 char *buf) 1440 { 1441 struct input_dev *input_dev = to_input_dev(dev); 1442 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1443 INPUT_PROP_MAX, true); 1444 return min_t(int, len, PAGE_SIZE); 1445 } 1446 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1447 1448 static int input_inhibit_device(struct input_dev *dev); 1449 static int input_uninhibit_device(struct input_dev *dev); 1450 1451 static ssize_t inhibited_show(struct device *dev, 1452 struct device_attribute *attr, 1453 char *buf) 1454 { 1455 struct input_dev *input_dev = to_input_dev(dev); 1456 1457 return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited); 1458 } 1459 1460 static ssize_t inhibited_store(struct device *dev, 1461 struct device_attribute *attr, const char *buf, 1462 size_t len) 1463 { 1464 struct input_dev *input_dev = to_input_dev(dev); 1465 ssize_t rv; 1466 bool inhibited; 1467 1468 if (strtobool(buf, &inhibited)) 1469 return -EINVAL; 1470 1471 if (inhibited) 1472 rv = input_inhibit_device(input_dev); 1473 else 1474 rv = input_uninhibit_device(input_dev); 1475 1476 if (rv != 0) 1477 return rv; 1478 1479 return len; 1480 } 1481 1482 static DEVICE_ATTR_RW(inhibited); 1483 1484 static struct attribute *input_dev_attrs[] = { 1485 &dev_attr_name.attr, 1486 &dev_attr_phys.attr, 1487 &dev_attr_uniq.attr, 1488 &dev_attr_modalias.attr, 1489 &dev_attr_properties.attr, 1490 &dev_attr_inhibited.attr, 1491 NULL 1492 }; 1493 1494 static const struct attribute_group input_dev_attr_group = { 1495 .attrs = input_dev_attrs, 1496 }; 1497 1498 #define INPUT_DEV_ID_ATTR(name) \ 1499 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1500 struct device_attribute *attr, \ 1501 char *buf) \ 1502 { \ 1503 struct input_dev *input_dev = to_input_dev(dev); \ 1504 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1505 } \ 1506 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1507 1508 INPUT_DEV_ID_ATTR(bustype); 1509 INPUT_DEV_ID_ATTR(vendor); 1510 INPUT_DEV_ID_ATTR(product); 1511 INPUT_DEV_ID_ATTR(version); 1512 1513 static struct attribute *input_dev_id_attrs[] = { 1514 &dev_attr_bustype.attr, 1515 &dev_attr_vendor.attr, 1516 &dev_attr_product.attr, 1517 &dev_attr_version.attr, 1518 NULL 1519 }; 1520 1521 static const struct attribute_group input_dev_id_attr_group = { 1522 .name = "id", 1523 .attrs = input_dev_id_attrs, 1524 }; 1525 1526 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1527 int max, int add_cr) 1528 { 1529 int i; 1530 int len = 0; 1531 bool skip_empty = true; 1532 1533 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1534 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1535 bitmap[i], skip_empty); 1536 if (len) { 1537 skip_empty = false; 1538 if (i > 0) 1539 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1540 } 1541 } 1542 1543 /* 1544 * If no output was produced print a single 0. 1545 */ 1546 if (len == 0) 1547 len = snprintf(buf, buf_size, "%d", 0); 1548 1549 if (add_cr) 1550 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1551 1552 return len; 1553 } 1554 1555 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1556 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1557 struct device_attribute *attr, \ 1558 char *buf) \ 1559 { \ 1560 struct input_dev *input_dev = to_input_dev(dev); \ 1561 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1562 input_dev->bm##bit, ev##_MAX, \ 1563 true); \ 1564 return min_t(int, len, PAGE_SIZE); \ 1565 } \ 1566 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1567 1568 INPUT_DEV_CAP_ATTR(EV, ev); 1569 INPUT_DEV_CAP_ATTR(KEY, key); 1570 INPUT_DEV_CAP_ATTR(REL, rel); 1571 INPUT_DEV_CAP_ATTR(ABS, abs); 1572 INPUT_DEV_CAP_ATTR(MSC, msc); 1573 INPUT_DEV_CAP_ATTR(LED, led); 1574 INPUT_DEV_CAP_ATTR(SND, snd); 1575 INPUT_DEV_CAP_ATTR(FF, ff); 1576 INPUT_DEV_CAP_ATTR(SW, sw); 1577 1578 static struct attribute *input_dev_caps_attrs[] = { 1579 &dev_attr_ev.attr, 1580 &dev_attr_key.attr, 1581 &dev_attr_rel.attr, 1582 &dev_attr_abs.attr, 1583 &dev_attr_msc.attr, 1584 &dev_attr_led.attr, 1585 &dev_attr_snd.attr, 1586 &dev_attr_ff.attr, 1587 &dev_attr_sw.attr, 1588 NULL 1589 }; 1590 1591 static const struct attribute_group input_dev_caps_attr_group = { 1592 .name = "capabilities", 1593 .attrs = input_dev_caps_attrs, 1594 }; 1595 1596 static const struct attribute_group *input_dev_attr_groups[] = { 1597 &input_dev_attr_group, 1598 &input_dev_id_attr_group, 1599 &input_dev_caps_attr_group, 1600 &input_poller_attribute_group, 1601 NULL 1602 }; 1603 1604 static void input_dev_release(struct device *device) 1605 { 1606 struct input_dev *dev = to_input_dev(device); 1607 1608 input_ff_destroy(dev); 1609 input_mt_destroy_slots(dev); 1610 kfree(dev->poller); 1611 kfree(dev->absinfo); 1612 kfree(dev->vals); 1613 kfree(dev); 1614 1615 module_put(THIS_MODULE); 1616 } 1617 1618 /* 1619 * Input uevent interface - loading event handlers based on 1620 * device bitfields. 1621 */ 1622 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1623 const char *name, unsigned long *bitmap, int max) 1624 { 1625 int len; 1626 1627 if (add_uevent_var(env, "%s", name)) 1628 return -ENOMEM; 1629 1630 len = input_print_bitmap(&env->buf[env->buflen - 1], 1631 sizeof(env->buf) - env->buflen, 1632 bitmap, max, false); 1633 if (len >= (sizeof(env->buf) - env->buflen)) 1634 return -ENOMEM; 1635 1636 env->buflen += len; 1637 return 0; 1638 } 1639 1640 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1641 struct input_dev *dev) 1642 { 1643 int len; 1644 1645 if (add_uevent_var(env, "MODALIAS=")) 1646 return -ENOMEM; 1647 1648 len = input_print_modalias(&env->buf[env->buflen - 1], 1649 sizeof(env->buf) - env->buflen, 1650 dev, 0); 1651 if (len >= (sizeof(env->buf) - env->buflen)) 1652 return -ENOMEM; 1653 1654 env->buflen += len; 1655 return 0; 1656 } 1657 1658 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1659 do { \ 1660 int err = add_uevent_var(env, fmt, val); \ 1661 if (err) \ 1662 return err; \ 1663 } while (0) 1664 1665 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1666 do { \ 1667 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1668 if (err) \ 1669 return err; \ 1670 } while (0) 1671 1672 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1673 do { \ 1674 int err = input_add_uevent_modalias_var(env, dev); \ 1675 if (err) \ 1676 return err; \ 1677 } while (0) 1678 1679 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1680 { 1681 struct input_dev *dev = to_input_dev(device); 1682 1683 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1684 dev->id.bustype, dev->id.vendor, 1685 dev->id.product, dev->id.version); 1686 if (dev->name) 1687 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1688 if (dev->phys) 1689 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1690 if (dev->uniq) 1691 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1692 1693 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1694 1695 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1696 if (test_bit(EV_KEY, dev->evbit)) 1697 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1698 if (test_bit(EV_REL, dev->evbit)) 1699 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1700 if (test_bit(EV_ABS, dev->evbit)) 1701 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1702 if (test_bit(EV_MSC, dev->evbit)) 1703 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1704 if (test_bit(EV_LED, dev->evbit)) 1705 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1706 if (test_bit(EV_SND, dev->evbit)) 1707 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1708 if (test_bit(EV_FF, dev->evbit)) 1709 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1710 if (test_bit(EV_SW, dev->evbit)) 1711 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1712 1713 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1714 1715 return 0; 1716 } 1717 1718 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1719 do { \ 1720 int i; \ 1721 bool active; \ 1722 \ 1723 if (!test_bit(EV_##type, dev->evbit)) \ 1724 break; \ 1725 \ 1726 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ 1727 active = test_bit(i, dev->bits); \ 1728 if (!active && !on) \ 1729 continue; \ 1730 \ 1731 dev->event(dev, EV_##type, i, on ? active : 0); \ 1732 } \ 1733 } while (0) 1734 1735 static void input_dev_toggle(struct input_dev *dev, bool activate) 1736 { 1737 if (!dev->event) 1738 return; 1739 1740 INPUT_DO_TOGGLE(dev, LED, led, activate); 1741 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1742 1743 if (activate && test_bit(EV_REP, dev->evbit)) { 1744 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1745 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1746 } 1747 } 1748 1749 /** 1750 * input_reset_device() - reset/restore the state of input device 1751 * @dev: input device whose state needs to be reset 1752 * 1753 * This function tries to reset the state of an opened input device and 1754 * bring internal state and state if the hardware in sync with each other. 1755 * We mark all keys as released, restore LED state, repeat rate, etc. 1756 */ 1757 void input_reset_device(struct input_dev *dev) 1758 { 1759 unsigned long flags; 1760 1761 mutex_lock(&dev->mutex); 1762 spin_lock_irqsave(&dev->event_lock, flags); 1763 1764 input_dev_toggle(dev, true); 1765 if (input_dev_release_keys(dev)) 1766 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 1767 1768 spin_unlock_irqrestore(&dev->event_lock, flags); 1769 mutex_unlock(&dev->mutex); 1770 } 1771 EXPORT_SYMBOL(input_reset_device); 1772 1773 static int input_inhibit_device(struct input_dev *dev) 1774 { 1775 mutex_lock(&dev->mutex); 1776 1777 if (dev->inhibited) 1778 goto out; 1779 1780 if (dev->users) { 1781 if (dev->close) 1782 dev->close(dev); 1783 if (dev->poller) 1784 input_dev_poller_stop(dev->poller); 1785 } 1786 1787 spin_lock_irq(&dev->event_lock); 1788 input_mt_release_slots(dev); 1789 input_dev_release_keys(dev); 1790 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 1791 input_dev_toggle(dev, false); 1792 spin_unlock_irq(&dev->event_lock); 1793 1794 dev->inhibited = true; 1795 1796 out: 1797 mutex_unlock(&dev->mutex); 1798 return 0; 1799 } 1800 1801 static int input_uninhibit_device(struct input_dev *dev) 1802 { 1803 int ret = 0; 1804 1805 mutex_lock(&dev->mutex); 1806 1807 if (!dev->inhibited) 1808 goto out; 1809 1810 if (dev->users) { 1811 if (dev->open) { 1812 ret = dev->open(dev); 1813 if (ret) 1814 goto out; 1815 } 1816 if (dev->poller) 1817 input_dev_poller_start(dev->poller); 1818 } 1819 1820 dev->inhibited = false; 1821 spin_lock_irq(&dev->event_lock); 1822 input_dev_toggle(dev, true); 1823 spin_unlock_irq(&dev->event_lock); 1824 1825 out: 1826 mutex_unlock(&dev->mutex); 1827 return ret; 1828 } 1829 1830 #ifdef CONFIG_PM_SLEEP 1831 static int input_dev_suspend(struct device *dev) 1832 { 1833 struct input_dev *input_dev = to_input_dev(dev); 1834 1835 spin_lock_irq(&input_dev->event_lock); 1836 1837 /* 1838 * Keys that are pressed now are unlikely to be 1839 * still pressed when we resume. 1840 */ 1841 if (input_dev_release_keys(input_dev)) 1842 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); 1843 1844 /* Turn off LEDs and sounds, if any are active. */ 1845 input_dev_toggle(input_dev, false); 1846 1847 spin_unlock_irq(&input_dev->event_lock); 1848 1849 return 0; 1850 } 1851 1852 static int input_dev_resume(struct device *dev) 1853 { 1854 struct input_dev *input_dev = to_input_dev(dev); 1855 1856 spin_lock_irq(&input_dev->event_lock); 1857 1858 /* Restore state of LEDs and sounds, if any were active. */ 1859 input_dev_toggle(input_dev, true); 1860 1861 spin_unlock_irq(&input_dev->event_lock); 1862 1863 return 0; 1864 } 1865 1866 static int input_dev_freeze(struct device *dev) 1867 { 1868 struct input_dev *input_dev = to_input_dev(dev); 1869 1870 spin_lock_irq(&input_dev->event_lock); 1871 1872 /* 1873 * Keys that are pressed now are unlikely to be 1874 * still pressed when we resume. 1875 */ 1876 if (input_dev_release_keys(input_dev)) 1877 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); 1878 1879 spin_unlock_irq(&input_dev->event_lock); 1880 1881 return 0; 1882 } 1883 1884 static int input_dev_poweroff(struct device *dev) 1885 { 1886 struct input_dev *input_dev = to_input_dev(dev); 1887 1888 spin_lock_irq(&input_dev->event_lock); 1889 1890 /* Turn off LEDs and sounds, if any are active. */ 1891 input_dev_toggle(input_dev, false); 1892 1893 spin_unlock_irq(&input_dev->event_lock); 1894 1895 return 0; 1896 } 1897 1898 static const struct dev_pm_ops input_dev_pm_ops = { 1899 .suspend = input_dev_suspend, 1900 .resume = input_dev_resume, 1901 .freeze = input_dev_freeze, 1902 .poweroff = input_dev_poweroff, 1903 .restore = input_dev_resume, 1904 }; 1905 #endif /* CONFIG_PM */ 1906 1907 static const struct device_type input_dev_type = { 1908 .groups = input_dev_attr_groups, 1909 .release = input_dev_release, 1910 .uevent = input_dev_uevent, 1911 #ifdef CONFIG_PM_SLEEP 1912 .pm = &input_dev_pm_ops, 1913 #endif 1914 }; 1915 1916 static char *input_devnode(struct device *dev, umode_t *mode) 1917 { 1918 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1919 } 1920 1921 struct class input_class = { 1922 .name = "input", 1923 .devnode = input_devnode, 1924 }; 1925 EXPORT_SYMBOL_GPL(input_class); 1926 1927 /** 1928 * input_allocate_device - allocate memory for new input device 1929 * 1930 * Returns prepared struct input_dev or %NULL. 1931 * 1932 * NOTE: Use input_free_device() to free devices that have not been 1933 * registered; input_unregister_device() should be used for already 1934 * registered devices. 1935 */ 1936 struct input_dev *input_allocate_device(void) 1937 { 1938 static atomic_t input_no = ATOMIC_INIT(-1); 1939 struct input_dev *dev; 1940 1941 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1942 if (dev) { 1943 dev->dev.type = &input_dev_type; 1944 dev->dev.class = &input_class; 1945 device_initialize(&dev->dev); 1946 mutex_init(&dev->mutex); 1947 spin_lock_init(&dev->event_lock); 1948 timer_setup(&dev->timer, NULL, 0); 1949 INIT_LIST_HEAD(&dev->h_list); 1950 INIT_LIST_HEAD(&dev->node); 1951 1952 dev_set_name(&dev->dev, "input%lu", 1953 (unsigned long)atomic_inc_return(&input_no)); 1954 1955 __module_get(THIS_MODULE); 1956 } 1957 1958 return dev; 1959 } 1960 EXPORT_SYMBOL(input_allocate_device); 1961 1962 struct input_devres { 1963 struct input_dev *input; 1964 }; 1965 1966 static int devm_input_device_match(struct device *dev, void *res, void *data) 1967 { 1968 struct input_devres *devres = res; 1969 1970 return devres->input == data; 1971 } 1972 1973 static void devm_input_device_release(struct device *dev, void *res) 1974 { 1975 struct input_devres *devres = res; 1976 struct input_dev *input = devres->input; 1977 1978 dev_dbg(dev, "%s: dropping reference to %s\n", 1979 __func__, dev_name(&input->dev)); 1980 input_put_device(input); 1981 } 1982 1983 /** 1984 * devm_input_allocate_device - allocate managed input device 1985 * @dev: device owning the input device being created 1986 * 1987 * Returns prepared struct input_dev or %NULL. 1988 * 1989 * Managed input devices do not need to be explicitly unregistered or 1990 * freed as it will be done automatically when owner device unbinds from 1991 * its driver (or binding fails). Once managed input device is allocated, 1992 * it is ready to be set up and registered in the same fashion as regular 1993 * input device. There are no special devm_input_device_[un]register() 1994 * variants, regular ones work with both managed and unmanaged devices, 1995 * should you need them. In most cases however, managed input device need 1996 * not be explicitly unregistered or freed. 1997 * 1998 * NOTE: the owner device is set up as parent of input device and users 1999 * should not override it. 2000 */ 2001 struct input_dev *devm_input_allocate_device(struct device *dev) 2002 { 2003 struct input_dev *input; 2004 struct input_devres *devres; 2005 2006 devres = devres_alloc(devm_input_device_release, 2007 sizeof(*devres), GFP_KERNEL); 2008 if (!devres) 2009 return NULL; 2010 2011 input = input_allocate_device(); 2012 if (!input) { 2013 devres_free(devres); 2014 return NULL; 2015 } 2016 2017 input->dev.parent = dev; 2018 input->devres_managed = true; 2019 2020 devres->input = input; 2021 devres_add(dev, devres); 2022 2023 return input; 2024 } 2025 EXPORT_SYMBOL(devm_input_allocate_device); 2026 2027 /** 2028 * input_free_device - free memory occupied by input_dev structure 2029 * @dev: input device to free 2030 * 2031 * This function should only be used if input_register_device() 2032 * was not called yet or if it failed. Once device was registered 2033 * use input_unregister_device() and memory will be freed once last 2034 * reference to the device is dropped. 2035 * 2036 * Device should be allocated by input_allocate_device(). 2037 * 2038 * NOTE: If there are references to the input device then memory 2039 * will not be freed until last reference is dropped. 2040 */ 2041 void input_free_device(struct input_dev *dev) 2042 { 2043 if (dev) { 2044 if (dev->devres_managed) 2045 WARN_ON(devres_destroy(dev->dev.parent, 2046 devm_input_device_release, 2047 devm_input_device_match, 2048 dev)); 2049 input_put_device(dev); 2050 } 2051 } 2052 EXPORT_SYMBOL(input_free_device); 2053 2054 /** 2055 * input_set_timestamp - set timestamp for input events 2056 * @dev: input device to set timestamp for 2057 * @timestamp: the time at which the event has occurred 2058 * in CLOCK_MONOTONIC 2059 * 2060 * This function is intended to provide to the input system a more 2061 * accurate time of when an event actually occurred. The driver should 2062 * call this function as soon as a timestamp is acquired ensuring 2063 * clock conversions in input_set_timestamp are done correctly. 2064 * 2065 * The system entering suspend state between timestamp acquisition and 2066 * calling input_set_timestamp can result in inaccurate conversions. 2067 */ 2068 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) 2069 { 2070 dev->timestamp[INPUT_CLK_MONO] = timestamp; 2071 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp); 2072 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp, 2073 TK_OFFS_BOOT); 2074 } 2075 EXPORT_SYMBOL(input_set_timestamp); 2076 2077 /** 2078 * input_get_timestamp - get timestamp for input events 2079 * @dev: input device to get timestamp from 2080 * 2081 * A valid timestamp is a timestamp of non-zero value. 2082 */ 2083 ktime_t *input_get_timestamp(struct input_dev *dev) 2084 { 2085 const ktime_t invalid_timestamp = ktime_set(0, 0); 2086 2087 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp)) 2088 input_set_timestamp(dev, ktime_get()); 2089 2090 return dev->timestamp; 2091 } 2092 EXPORT_SYMBOL(input_get_timestamp); 2093 2094 /** 2095 * input_set_capability - mark device as capable of a certain event 2096 * @dev: device that is capable of emitting or accepting event 2097 * @type: type of the event (EV_KEY, EV_REL, etc...) 2098 * @code: event code 2099 * 2100 * In addition to setting up corresponding bit in appropriate capability 2101 * bitmap the function also adjusts dev->evbit. 2102 */ 2103 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 2104 { 2105 if (type < EV_CNT && input_max_code[type] && 2106 code > input_max_code[type]) { 2107 pr_err("%s: invalid code %u for type %u\n", __func__, code, 2108 type); 2109 dump_stack(); 2110 return; 2111 } 2112 2113 switch (type) { 2114 case EV_KEY: 2115 __set_bit(code, dev->keybit); 2116 break; 2117 2118 case EV_REL: 2119 __set_bit(code, dev->relbit); 2120 break; 2121 2122 case EV_ABS: 2123 input_alloc_absinfo(dev); 2124 __set_bit(code, dev->absbit); 2125 break; 2126 2127 case EV_MSC: 2128 __set_bit(code, dev->mscbit); 2129 break; 2130 2131 case EV_SW: 2132 __set_bit(code, dev->swbit); 2133 break; 2134 2135 case EV_LED: 2136 __set_bit(code, dev->ledbit); 2137 break; 2138 2139 case EV_SND: 2140 __set_bit(code, dev->sndbit); 2141 break; 2142 2143 case EV_FF: 2144 __set_bit(code, dev->ffbit); 2145 break; 2146 2147 case EV_PWR: 2148 /* do nothing */ 2149 break; 2150 2151 default: 2152 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); 2153 dump_stack(); 2154 return; 2155 } 2156 2157 __set_bit(type, dev->evbit); 2158 } 2159 EXPORT_SYMBOL(input_set_capability); 2160 2161 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 2162 { 2163 int mt_slots; 2164 int i; 2165 unsigned int events; 2166 2167 if (dev->mt) { 2168 mt_slots = dev->mt->num_slots; 2169 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 2170 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 2171 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 2172 mt_slots = clamp(mt_slots, 2, 32); 2173 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 2174 mt_slots = 2; 2175 } else { 2176 mt_slots = 0; 2177 } 2178 2179 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 2180 2181 if (test_bit(EV_ABS, dev->evbit)) 2182 for_each_set_bit(i, dev->absbit, ABS_CNT) 2183 events += input_is_mt_axis(i) ? mt_slots : 1; 2184 2185 if (test_bit(EV_REL, dev->evbit)) 2186 events += bitmap_weight(dev->relbit, REL_CNT); 2187 2188 /* Make room for KEY and MSC events */ 2189 events += 7; 2190 2191 return events; 2192 } 2193 2194 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 2195 do { \ 2196 if (!test_bit(EV_##type, dev->evbit)) \ 2197 memset(dev->bits##bit, 0, \ 2198 sizeof(dev->bits##bit)); \ 2199 } while (0) 2200 2201 static void input_cleanse_bitmasks(struct input_dev *dev) 2202 { 2203 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2204 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2205 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2206 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2207 INPUT_CLEANSE_BITMASK(dev, LED, led); 2208 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2209 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2210 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2211 } 2212 2213 static void __input_unregister_device(struct input_dev *dev) 2214 { 2215 struct input_handle *handle, *next; 2216 2217 input_disconnect_device(dev); 2218 2219 mutex_lock(&input_mutex); 2220 2221 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2222 handle->handler->disconnect(handle); 2223 WARN_ON(!list_empty(&dev->h_list)); 2224 2225 del_timer_sync(&dev->timer); 2226 list_del_init(&dev->node); 2227 2228 input_wakeup_procfs_readers(); 2229 2230 mutex_unlock(&input_mutex); 2231 2232 device_del(&dev->dev); 2233 } 2234 2235 static void devm_input_device_unregister(struct device *dev, void *res) 2236 { 2237 struct input_devres *devres = res; 2238 struct input_dev *input = devres->input; 2239 2240 dev_dbg(dev, "%s: unregistering device %s\n", 2241 __func__, dev_name(&input->dev)); 2242 __input_unregister_device(input); 2243 } 2244 2245 /* 2246 * Generate software autorepeat event. Note that we take 2247 * dev->event_lock here to avoid racing with input_event 2248 * which may cause keys get "stuck". 2249 */ 2250 static void input_repeat_key(struct timer_list *t) 2251 { 2252 struct input_dev *dev = from_timer(dev, t, timer); 2253 unsigned long flags; 2254 2255 spin_lock_irqsave(&dev->event_lock, flags); 2256 2257 if (!dev->inhibited && 2258 test_bit(dev->repeat_key, dev->key) && 2259 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 2260 2261 input_set_timestamp(dev, ktime_get()); 2262 input_handle_event(dev, EV_KEY, dev->repeat_key, 2); 2263 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 2264 2265 if (dev->rep[REP_PERIOD]) 2266 mod_timer(&dev->timer, jiffies + 2267 msecs_to_jiffies(dev->rep[REP_PERIOD])); 2268 } 2269 2270 spin_unlock_irqrestore(&dev->event_lock, flags); 2271 } 2272 2273 /** 2274 * input_enable_softrepeat - enable software autorepeat 2275 * @dev: input device 2276 * @delay: repeat delay 2277 * @period: repeat period 2278 * 2279 * Enable software autorepeat on the input device. 2280 */ 2281 void input_enable_softrepeat(struct input_dev *dev, int delay, int period) 2282 { 2283 dev->timer.function = input_repeat_key; 2284 dev->rep[REP_DELAY] = delay; 2285 dev->rep[REP_PERIOD] = period; 2286 } 2287 EXPORT_SYMBOL(input_enable_softrepeat); 2288 2289 bool input_device_enabled(struct input_dev *dev) 2290 { 2291 lockdep_assert_held(&dev->mutex); 2292 2293 return !dev->inhibited && dev->users > 0; 2294 } 2295 EXPORT_SYMBOL_GPL(input_device_enabled); 2296 2297 /** 2298 * input_register_device - register device with input core 2299 * @dev: device to be registered 2300 * 2301 * This function registers device with input core. The device must be 2302 * allocated with input_allocate_device() and all it's capabilities 2303 * set up before registering. 2304 * If function fails the device must be freed with input_free_device(). 2305 * Once device has been successfully registered it can be unregistered 2306 * with input_unregister_device(); input_free_device() should not be 2307 * called in this case. 2308 * 2309 * Note that this function is also used to register managed input devices 2310 * (ones allocated with devm_input_allocate_device()). Such managed input 2311 * devices need not be explicitly unregistered or freed, their tear down 2312 * is controlled by the devres infrastructure. It is also worth noting 2313 * that tear down of managed input devices is internally a 2-step process: 2314 * registered managed input device is first unregistered, but stays in 2315 * memory and can still handle input_event() calls (although events will 2316 * not be delivered anywhere). The freeing of managed input device will 2317 * happen later, when devres stack is unwound to the point where device 2318 * allocation was made. 2319 */ 2320 int input_register_device(struct input_dev *dev) 2321 { 2322 struct input_devres *devres = NULL; 2323 struct input_handler *handler; 2324 unsigned int packet_size; 2325 const char *path; 2326 int error; 2327 2328 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { 2329 dev_err(&dev->dev, 2330 "Absolute device without dev->absinfo, refusing to register\n"); 2331 return -EINVAL; 2332 } 2333 2334 if (dev->devres_managed) { 2335 devres = devres_alloc(devm_input_device_unregister, 2336 sizeof(*devres), GFP_KERNEL); 2337 if (!devres) 2338 return -ENOMEM; 2339 2340 devres->input = dev; 2341 } 2342 2343 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2344 __set_bit(EV_SYN, dev->evbit); 2345 2346 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2347 __clear_bit(KEY_RESERVED, dev->keybit); 2348 2349 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2350 input_cleanse_bitmasks(dev); 2351 2352 packet_size = input_estimate_events_per_packet(dev); 2353 if (dev->hint_events_per_packet < packet_size) 2354 dev->hint_events_per_packet = packet_size; 2355 2356 dev->max_vals = dev->hint_events_per_packet + 2; 2357 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 2358 if (!dev->vals) { 2359 error = -ENOMEM; 2360 goto err_devres_free; 2361 } 2362 2363 /* 2364 * If delay and period are pre-set by the driver, then autorepeating 2365 * is handled by the driver itself and we don't do it in input.c. 2366 */ 2367 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) 2368 input_enable_softrepeat(dev, 250, 33); 2369 2370 if (!dev->getkeycode) 2371 dev->getkeycode = input_default_getkeycode; 2372 2373 if (!dev->setkeycode) 2374 dev->setkeycode = input_default_setkeycode; 2375 2376 if (dev->poller) 2377 input_dev_poller_finalize(dev->poller); 2378 2379 error = device_add(&dev->dev); 2380 if (error) 2381 goto err_free_vals; 2382 2383 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2384 pr_info("%s as %s\n", 2385 dev->name ? dev->name : "Unspecified device", 2386 path ? path : "N/A"); 2387 kfree(path); 2388 2389 error = mutex_lock_interruptible(&input_mutex); 2390 if (error) 2391 goto err_device_del; 2392 2393 list_add_tail(&dev->node, &input_dev_list); 2394 2395 list_for_each_entry(handler, &input_handler_list, node) 2396 input_attach_handler(dev, handler); 2397 2398 input_wakeup_procfs_readers(); 2399 2400 mutex_unlock(&input_mutex); 2401 2402 if (dev->devres_managed) { 2403 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2404 __func__, dev_name(&dev->dev)); 2405 devres_add(dev->dev.parent, devres); 2406 } 2407 return 0; 2408 2409 err_device_del: 2410 device_del(&dev->dev); 2411 err_free_vals: 2412 kfree(dev->vals); 2413 dev->vals = NULL; 2414 err_devres_free: 2415 devres_free(devres); 2416 return error; 2417 } 2418 EXPORT_SYMBOL(input_register_device); 2419 2420 /** 2421 * input_unregister_device - unregister previously registered device 2422 * @dev: device to be unregistered 2423 * 2424 * This function unregisters an input device. Once device is unregistered 2425 * the caller should not try to access it as it may get freed at any moment. 2426 */ 2427 void input_unregister_device(struct input_dev *dev) 2428 { 2429 if (dev->devres_managed) { 2430 WARN_ON(devres_destroy(dev->dev.parent, 2431 devm_input_device_unregister, 2432 devm_input_device_match, 2433 dev)); 2434 __input_unregister_device(dev); 2435 /* 2436 * We do not do input_put_device() here because it will be done 2437 * when 2nd devres fires up. 2438 */ 2439 } else { 2440 __input_unregister_device(dev); 2441 input_put_device(dev); 2442 } 2443 } 2444 EXPORT_SYMBOL(input_unregister_device); 2445 2446 /** 2447 * input_register_handler - register a new input handler 2448 * @handler: handler to be registered 2449 * 2450 * This function registers a new input handler (interface) for input 2451 * devices in the system and attaches it to all input devices that 2452 * are compatible with the handler. 2453 */ 2454 int input_register_handler(struct input_handler *handler) 2455 { 2456 struct input_dev *dev; 2457 int error; 2458 2459 error = mutex_lock_interruptible(&input_mutex); 2460 if (error) 2461 return error; 2462 2463 INIT_LIST_HEAD(&handler->h_list); 2464 2465 list_add_tail(&handler->node, &input_handler_list); 2466 2467 list_for_each_entry(dev, &input_dev_list, node) 2468 input_attach_handler(dev, handler); 2469 2470 input_wakeup_procfs_readers(); 2471 2472 mutex_unlock(&input_mutex); 2473 return 0; 2474 } 2475 EXPORT_SYMBOL(input_register_handler); 2476 2477 /** 2478 * input_unregister_handler - unregisters an input handler 2479 * @handler: handler to be unregistered 2480 * 2481 * This function disconnects a handler from its input devices and 2482 * removes it from lists of known handlers. 2483 */ 2484 void input_unregister_handler(struct input_handler *handler) 2485 { 2486 struct input_handle *handle, *next; 2487 2488 mutex_lock(&input_mutex); 2489 2490 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2491 handler->disconnect(handle); 2492 WARN_ON(!list_empty(&handler->h_list)); 2493 2494 list_del_init(&handler->node); 2495 2496 input_wakeup_procfs_readers(); 2497 2498 mutex_unlock(&input_mutex); 2499 } 2500 EXPORT_SYMBOL(input_unregister_handler); 2501 2502 /** 2503 * input_handler_for_each_handle - handle iterator 2504 * @handler: input handler to iterate 2505 * @data: data for the callback 2506 * @fn: function to be called for each handle 2507 * 2508 * Iterate over @bus's list of devices, and call @fn for each, passing 2509 * it @data and stop when @fn returns a non-zero value. The function is 2510 * using RCU to traverse the list and therefore may be using in atomic 2511 * contexts. The @fn callback is invoked from RCU critical section and 2512 * thus must not sleep. 2513 */ 2514 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2515 int (*fn)(struct input_handle *, void *)) 2516 { 2517 struct input_handle *handle; 2518 int retval = 0; 2519 2520 rcu_read_lock(); 2521 2522 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2523 retval = fn(handle, data); 2524 if (retval) 2525 break; 2526 } 2527 2528 rcu_read_unlock(); 2529 2530 return retval; 2531 } 2532 EXPORT_SYMBOL(input_handler_for_each_handle); 2533 2534 /** 2535 * input_register_handle - register a new input handle 2536 * @handle: handle to register 2537 * 2538 * This function puts a new input handle onto device's 2539 * and handler's lists so that events can flow through 2540 * it once it is opened using input_open_device(). 2541 * 2542 * This function is supposed to be called from handler's 2543 * connect() method. 2544 */ 2545 int input_register_handle(struct input_handle *handle) 2546 { 2547 struct input_handler *handler = handle->handler; 2548 struct input_dev *dev = handle->dev; 2549 int error; 2550 2551 /* 2552 * We take dev->mutex here to prevent race with 2553 * input_release_device(). 2554 */ 2555 error = mutex_lock_interruptible(&dev->mutex); 2556 if (error) 2557 return error; 2558 2559 /* 2560 * Filters go to the head of the list, normal handlers 2561 * to the tail. 2562 */ 2563 if (handler->filter) 2564 list_add_rcu(&handle->d_node, &dev->h_list); 2565 else 2566 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2567 2568 mutex_unlock(&dev->mutex); 2569 2570 /* 2571 * Since we are supposed to be called from ->connect() 2572 * which is mutually exclusive with ->disconnect() 2573 * we can't be racing with input_unregister_handle() 2574 * and so separate lock is not needed here. 2575 */ 2576 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2577 2578 if (handler->start) 2579 handler->start(handle); 2580 2581 return 0; 2582 } 2583 EXPORT_SYMBOL(input_register_handle); 2584 2585 /** 2586 * input_unregister_handle - unregister an input handle 2587 * @handle: handle to unregister 2588 * 2589 * This function removes input handle from device's 2590 * and handler's lists. 2591 * 2592 * This function is supposed to be called from handler's 2593 * disconnect() method. 2594 */ 2595 void input_unregister_handle(struct input_handle *handle) 2596 { 2597 struct input_dev *dev = handle->dev; 2598 2599 list_del_rcu(&handle->h_node); 2600 2601 /* 2602 * Take dev->mutex to prevent race with input_release_device(). 2603 */ 2604 mutex_lock(&dev->mutex); 2605 list_del_rcu(&handle->d_node); 2606 mutex_unlock(&dev->mutex); 2607 2608 synchronize_rcu(); 2609 } 2610 EXPORT_SYMBOL(input_unregister_handle); 2611 2612 /** 2613 * input_get_new_minor - allocates a new input minor number 2614 * @legacy_base: beginning or the legacy range to be searched 2615 * @legacy_num: size of legacy range 2616 * @allow_dynamic: whether we can also take ID from the dynamic range 2617 * 2618 * This function allocates a new device minor for from input major namespace. 2619 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2620 * parameters and whether ID can be allocated from dynamic range if there are 2621 * no free IDs in legacy range. 2622 */ 2623 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2624 bool allow_dynamic) 2625 { 2626 /* 2627 * This function should be called from input handler's ->connect() 2628 * methods, which are serialized with input_mutex, so no additional 2629 * locking is needed here. 2630 */ 2631 if (legacy_base >= 0) { 2632 int minor = ida_simple_get(&input_ida, 2633 legacy_base, 2634 legacy_base + legacy_num, 2635 GFP_KERNEL); 2636 if (minor >= 0 || !allow_dynamic) 2637 return minor; 2638 } 2639 2640 return ida_simple_get(&input_ida, 2641 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, 2642 GFP_KERNEL); 2643 } 2644 EXPORT_SYMBOL(input_get_new_minor); 2645 2646 /** 2647 * input_free_minor - release previously allocated minor 2648 * @minor: minor to be released 2649 * 2650 * This function releases previously allocated input minor so that it can be 2651 * reused later. 2652 */ 2653 void input_free_minor(unsigned int minor) 2654 { 2655 ida_simple_remove(&input_ida, minor); 2656 } 2657 EXPORT_SYMBOL(input_free_minor); 2658 2659 static int __init input_init(void) 2660 { 2661 int err; 2662 2663 err = class_register(&input_class); 2664 if (err) { 2665 pr_err("unable to register input_dev class\n"); 2666 return err; 2667 } 2668 2669 err = input_proc_init(); 2670 if (err) 2671 goto fail1; 2672 2673 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2674 INPUT_MAX_CHAR_DEVICES, "input"); 2675 if (err) { 2676 pr_err("unable to register char major %d", INPUT_MAJOR); 2677 goto fail2; 2678 } 2679 2680 return 0; 2681 2682 fail2: input_proc_exit(); 2683 fail1: class_unregister(&input_class); 2684 return err; 2685 } 2686 2687 static void __exit input_exit(void) 2688 { 2689 input_proc_exit(); 2690 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2691 INPUT_MAX_CHAR_DEVICES); 2692 class_unregister(&input_class); 2693 } 2694 2695 subsys_initcall(input_init); 2696 module_exit(input_exit); 2697