1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #include <linux/init.h> 14 #include <linux/types.h> 15 #include <linux/input.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/random.h> 19 #include <linux/major.h> 20 #include <linux/proc_fs.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/device.h> 25 #include <linux/mutex.h> 26 #include <linux/rcupdate.h> 27 #include <linux/smp_lock.h> 28 #include "input-compat.h" 29 30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 31 MODULE_DESCRIPTION("Input core"); 32 MODULE_LICENSE("GPL"); 33 34 #define INPUT_DEVICES 256 35 36 /* 37 * EV_ABS events which should not be cached are listed here. 38 */ 39 static unsigned int input_abs_bypass_init_data[] __initdata = { 40 ABS_MT_TOUCH_MAJOR, 41 ABS_MT_TOUCH_MINOR, 42 ABS_MT_WIDTH_MAJOR, 43 ABS_MT_WIDTH_MINOR, 44 ABS_MT_ORIENTATION, 45 ABS_MT_POSITION_X, 46 ABS_MT_POSITION_Y, 47 ABS_MT_TOOL_TYPE, 48 ABS_MT_BLOB_ID, 49 ABS_MT_TRACKING_ID, 50 ABS_MT_PRESSURE, 51 0 52 }; 53 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)]; 54 55 static LIST_HEAD(input_dev_list); 56 static LIST_HEAD(input_handler_list); 57 58 /* 59 * input_mutex protects access to both input_dev_list and input_handler_list. 60 * This also causes input_[un]register_device and input_[un]register_handler 61 * be mutually exclusive which simplifies locking in drivers implementing 62 * input handlers. 63 */ 64 static DEFINE_MUTEX(input_mutex); 65 66 static struct input_handler *input_table[8]; 67 68 static inline int is_event_supported(unsigned int code, 69 unsigned long *bm, unsigned int max) 70 { 71 return code <= max && test_bit(code, bm); 72 } 73 74 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 75 { 76 if (fuzz) { 77 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 78 return old_val; 79 80 if (value > old_val - fuzz && value < old_val + fuzz) 81 return (old_val * 3 + value) / 4; 82 83 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 84 return (old_val + value) / 2; 85 } 86 87 return value; 88 } 89 90 /* 91 * Pass event first through all filters and then, if event has not been 92 * filtered out, through all open handles. This function is called with 93 * dev->event_lock held and interrupts disabled. 94 */ 95 static void input_pass_event(struct input_dev *dev, 96 unsigned int type, unsigned int code, int value) 97 { 98 struct input_handler *handler; 99 struct input_handle *handle; 100 101 rcu_read_lock(); 102 103 handle = rcu_dereference(dev->grab); 104 if (handle) 105 handle->handler->event(handle, type, code, value); 106 else { 107 bool filtered = false; 108 109 list_for_each_entry_rcu(handle, &dev->h_list, d_node) { 110 if (!handle->open) 111 continue; 112 113 handler = handle->handler; 114 if (!handler->filter) { 115 if (filtered) 116 break; 117 118 handler->event(handle, type, code, value); 119 120 } else if (handler->filter(handle, type, code, value)) 121 filtered = true; 122 } 123 } 124 125 rcu_read_unlock(); 126 } 127 128 /* 129 * Generate software autorepeat event. Note that we take 130 * dev->event_lock here to avoid racing with input_event 131 * which may cause keys get "stuck". 132 */ 133 static void input_repeat_key(unsigned long data) 134 { 135 struct input_dev *dev = (void *) data; 136 unsigned long flags; 137 138 spin_lock_irqsave(&dev->event_lock, flags); 139 140 if (test_bit(dev->repeat_key, dev->key) && 141 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 142 143 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 144 145 if (dev->sync) { 146 /* 147 * Only send SYN_REPORT if we are not in a middle 148 * of driver parsing a new hardware packet. 149 * Otherwise assume that the driver will send 150 * SYN_REPORT once it's done. 151 */ 152 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 153 } 154 155 if (dev->rep[REP_PERIOD]) 156 mod_timer(&dev->timer, jiffies + 157 msecs_to_jiffies(dev->rep[REP_PERIOD])); 158 } 159 160 spin_unlock_irqrestore(&dev->event_lock, flags); 161 } 162 163 static void input_start_autorepeat(struct input_dev *dev, int code) 164 { 165 if (test_bit(EV_REP, dev->evbit) && 166 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 167 dev->timer.data) { 168 dev->repeat_key = code; 169 mod_timer(&dev->timer, 170 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 171 } 172 } 173 174 static void input_stop_autorepeat(struct input_dev *dev) 175 { 176 del_timer(&dev->timer); 177 } 178 179 #define INPUT_IGNORE_EVENT 0 180 #define INPUT_PASS_TO_HANDLERS 1 181 #define INPUT_PASS_TO_DEVICE 2 182 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 183 184 static void input_handle_event(struct input_dev *dev, 185 unsigned int type, unsigned int code, int value) 186 { 187 int disposition = INPUT_IGNORE_EVENT; 188 189 switch (type) { 190 191 case EV_SYN: 192 switch (code) { 193 case SYN_CONFIG: 194 disposition = INPUT_PASS_TO_ALL; 195 break; 196 197 case SYN_REPORT: 198 if (!dev->sync) { 199 dev->sync = 1; 200 disposition = INPUT_PASS_TO_HANDLERS; 201 } 202 break; 203 case SYN_MT_REPORT: 204 dev->sync = 0; 205 disposition = INPUT_PASS_TO_HANDLERS; 206 break; 207 } 208 break; 209 210 case EV_KEY: 211 if (is_event_supported(code, dev->keybit, KEY_MAX) && 212 !!test_bit(code, dev->key) != value) { 213 214 if (value != 2) { 215 __change_bit(code, dev->key); 216 if (value) 217 input_start_autorepeat(dev, code); 218 else 219 input_stop_autorepeat(dev); 220 } 221 222 disposition = INPUT_PASS_TO_HANDLERS; 223 } 224 break; 225 226 case EV_SW: 227 if (is_event_supported(code, dev->swbit, SW_MAX) && 228 !!test_bit(code, dev->sw) != value) { 229 230 __change_bit(code, dev->sw); 231 disposition = INPUT_PASS_TO_HANDLERS; 232 } 233 break; 234 235 case EV_ABS: 236 if (is_event_supported(code, dev->absbit, ABS_MAX)) { 237 238 if (test_bit(code, input_abs_bypass)) { 239 disposition = INPUT_PASS_TO_HANDLERS; 240 break; 241 } 242 243 value = input_defuzz_abs_event(value, 244 dev->abs[code], dev->absfuzz[code]); 245 246 if (dev->abs[code] != value) { 247 dev->abs[code] = value; 248 disposition = INPUT_PASS_TO_HANDLERS; 249 } 250 } 251 break; 252 253 case EV_REL: 254 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 255 disposition = INPUT_PASS_TO_HANDLERS; 256 257 break; 258 259 case EV_MSC: 260 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 261 disposition = INPUT_PASS_TO_ALL; 262 263 break; 264 265 case EV_LED: 266 if (is_event_supported(code, dev->ledbit, LED_MAX) && 267 !!test_bit(code, dev->led) != value) { 268 269 __change_bit(code, dev->led); 270 disposition = INPUT_PASS_TO_ALL; 271 } 272 break; 273 274 case EV_SND: 275 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 276 277 if (!!test_bit(code, dev->snd) != !!value) 278 __change_bit(code, dev->snd); 279 disposition = INPUT_PASS_TO_ALL; 280 } 281 break; 282 283 case EV_REP: 284 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 285 dev->rep[code] = value; 286 disposition = INPUT_PASS_TO_ALL; 287 } 288 break; 289 290 case EV_FF: 291 if (value >= 0) 292 disposition = INPUT_PASS_TO_ALL; 293 break; 294 295 case EV_PWR: 296 disposition = INPUT_PASS_TO_ALL; 297 break; 298 } 299 300 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 301 dev->sync = 0; 302 303 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 304 dev->event(dev, type, code, value); 305 306 if (disposition & INPUT_PASS_TO_HANDLERS) 307 input_pass_event(dev, type, code, value); 308 } 309 310 /** 311 * input_event() - report new input event 312 * @dev: device that generated the event 313 * @type: type of the event 314 * @code: event code 315 * @value: value of the event 316 * 317 * This function should be used by drivers implementing various input 318 * devices to report input events. See also input_inject_event(). 319 * 320 * NOTE: input_event() may be safely used right after input device was 321 * allocated with input_allocate_device(), even before it is registered 322 * with input_register_device(), but the event will not reach any of the 323 * input handlers. Such early invocation of input_event() may be used 324 * to 'seed' initial state of a switch or initial position of absolute 325 * axis, etc. 326 */ 327 void input_event(struct input_dev *dev, 328 unsigned int type, unsigned int code, int value) 329 { 330 unsigned long flags; 331 332 if (is_event_supported(type, dev->evbit, EV_MAX)) { 333 334 spin_lock_irqsave(&dev->event_lock, flags); 335 add_input_randomness(type, code, value); 336 input_handle_event(dev, type, code, value); 337 spin_unlock_irqrestore(&dev->event_lock, flags); 338 } 339 } 340 EXPORT_SYMBOL(input_event); 341 342 /** 343 * input_inject_event() - send input event from input handler 344 * @handle: input handle to send event through 345 * @type: type of the event 346 * @code: event code 347 * @value: value of the event 348 * 349 * Similar to input_event() but will ignore event if device is 350 * "grabbed" and handle injecting event is not the one that owns 351 * the device. 352 */ 353 void input_inject_event(struct input_handle *handle, 354 unsigned int type, unsigned int code, int value) 355 { 356 struct input_dev *dev = handle->dev; 357 struct input_handle *grab; 358 unsigned long flags; 359 360 if (is_event_supported(type, dev->evbit, EV_MAX)) { 361 spin_lock_irqsave(&dev->event_lock, flags); 362 363 rcu_read_lock(); 364 grab = rcu_dereference(dev->grab); 365 if (!grab || grab == handle) 366 input_handle_event(dev, type, code, value); 367 rcu_read_unlock(); 368 369 spin_unlock_irqrestore(&dev->event_lock, flags); 370 } 371 } 372 EXPORT_SYMBOL(input_inject_event); 373 374 /** 375 * input_grab_device - grabs device for exclusive use 376 * @handle: input handle that wants to own the device 377 * 378 * When a device is grabbed by an input handle all events generated by 379 * the device are delivered only to this handle. Also events injected 380 * by other input handles are ignored while device is grabbed. 381 */ 382 int input_grab_device(struct input_handle *handle) 383 { 384 struct input_dev *dev = handle->dev; 385 int retval; 386 387 retval = mutex_lock_interruptible(&dev->mutex); 388 if (retval) 389 return retval; 390 391 if (dev->grab) { 392 retval = -EBUSY; 393 goto out; 394 } 395 396 rcu_assign_pointer(dev->grab, handle); 397 synchronize_rcu(); 398 399 out: 400 mutex_unlock(&dev->mutex); 401 return retval; 402 } 403 EXPORT_SYMBOL(input_grab_device); 404 405 static void __input_release_device(struct input_handle *handle) 406 { 407 struct input_dev *dev = handle->dev; 408 409 if (dev->grab == handle) { 410 rcu_assign_pointer(dev->grab, NULL); 411 /* Make sure input_pass_event() notices that grab is gone */ 412 synchronize_rcu(); 413 414 list_for_each_entry(handle, &dev->h_list, d_node) 415 if (handle->open && handle->handler->start) 416 handle->handler->start(handle); 417 } 418 } 419 420 /** 421 * input_release_device - release previously grabbed device 422 * @handle: input handle that owns the device 423 * 424 * Releases previously grabbed device so that other input handles can 425 * start receiving input events. Upon release all handlers attached 426 * to the device have their start() method called so they have a change 427 * to synchronize device state with the rest of the system. 428 */ 429 void input_release_device(struct input_handle *handle) 430 { 431 struct input_dev *dev = handle->dev; 432 433 mutex_lock(&dev->mutex); 434 __input_release_device(handle); 435 mutex_unlock(&dev->mutex); 436 } 437 EXPORT_SYMBOL(input_release_device); 438 439 /** 440 * input_open_device - open input device 441 * @handle: handle through which device is being accessed 442 * 443 * This function should be called by input handlers when they 444 * want to start receive events from given input device. 445 */ 446 int input_open_device(struct input_handle *handle) 447 { 448 struct input_dev *dev = handle->dev; 449 int retval; 450 451 retval = mutex_lock_interruptible(&dev->mutex); 452 if (retval) 453 return retval; 454 455 if (dev->going_away) { 456 retval = -ENODEV; 457 goto out; 458 } 459 460 handle->open++; 461 462 if (!dev->users++ && dev->open) 463 retval = dev->open(dev); 464 465 if (retval) { 466 dev->users--; 467 if (!--handle->open) { 468 /* 469 * Make sure we are not delivering any more events 470 * through this handle 471 */ 472 synchronize_rcu(); 473 } 474 } 475 476 out: 477 mutex_unlock(&dev->mutex); 478 return retval; 479 } 480 EXPORT_SYMBOL(input_open_device); 481 482 int input_flush_device(struct input_handle *handle, struct file *file) 483 { 484 struct input_dev *dev = handle->dev; 485 int retval; 486 487 retval = mutex_lock_interruptible(&dev->mutex); 488 if (retval) 489 return retval; 490 491 if (dev->flush) 492 retval = dev->flush(dev, file); 493 494 mutex_unlock(&dev->mutex); 495 return retval; 496 } 497 EXPORT_SYMBOL(input_flush_device); 498 499 /** 500 * input_close_device - close input device 501 * @handle: handle through which device is being accessed 502 * 503 * This function should be called by input handlers when they 504 * want to stop receive events from given input device. 505 */ 506 void input_close_device(struct input_handle *handle) 507 { 508 struct input_dev *dev = handle->dev; 509 510 mutex_lock(&dev->mutex); 511 512 __input_release_device(handle); 513 514 if (!--dev->users && dev->close) 515 dev->close(dev); 516 517 if (!--handle->open) { 518 /* 519 * synchronize_rcu() makes sure that input_pass_event() 520 * completed and that no more input events are delivered 521 * through this handle 522 */ 523 synchronize_rcu(); 524 } 525 526 mutex_unlock(&dev->mutex); 527 } 528 EXPORT_SYMBOL(input_close_device); 529 530 /* 531 * Prepare device for unregistering 532 */ 533 static void input_disconnect_device(struct input_dev *dev) 534 { 535 struct input_handle *handle; 536 int code; 537 538 /* 539 * Mark device as going away. Note that we take dev->mutex here 540 * not to protect access to dev->going_away but rather to ensure 541 * that there are no threads in the middle of input_open_device() 542 */ 543 mutex_lock(&dev->mutex); 544 dev->going_away = true; 545 mutex_unlock(&dev->mutex); 546 547 spin_lock_irq(&dev->event_lock); 548 549 /* 550 * Simulate keyup events for all pressed keys so that handlers 551 * are not left with "stuck" keys. The driver may continue 552 * generate events even after we done here but they will not 553 * reach any handlers. 554 */ 555 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 556 for (code = 0; code <= KEY_MAX; code++) { 557 if (is_event_supported(code, dev->keybit, KEY_MAX) && 558 __test_and_clear_bit(code, dev->key)) { 559 input_pass_event(dev, EV_KEY, code, 0); 560 } 561 } 562 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 563 } 564 565 list_for_each_entry(handle, &dev->h_list, d_node) 566 handle->open = 0; 567 568 spin_unlock_irq(&dev->event_lock); 569 } 570 571 static int input_fetch_keycode(struct input_dev *dev, int scancode) 572 { 573 switch (dev->keycodesize) { 574 case 1: 575 return ((u8 *)dev->keycode)[scancode]; 576 577 case 2: 578 return ((u16 *)dev->keycode)[scancode]; 579 580 default: 581 return ((u32 *)dev->keycode)[scancode]; 582 } 583 } 584 585 static int input_default_getkeycode(struct input_dev *dev, 586 unsigned int scancode, 587 unsigned int *keycode) 588 { 589 if (!dev->keycodesize) 590 return -EINVAL; 591 592 if (scancode >= dev->keycodemax) 593 return -EINVAL; 594 595 *keycode = input_fetch_keycode(dev, scancode); 596 597 return 0; 598 } 599 600 static int input_default_setkeycode(struct input_dev *dev, 601 unsigned int scancode, 602 unsigned int keycode) 603 { 604 int old_keycode; 605 int i; 606 607 if (scancode >= dev->keycodemax) 608 return -EINVAL; 609 610 if (!dev->keycodesize) 611 return -EINVAL; 612 613 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 614 return -EINVAL; 615 616 switch (dev->keycodesize) { 617 case 1: { 618 u8 *k = (u8 *)dev->keycode; 619 old_keycode = k[scancode]; 620 k[scancode] = keycode; 621 break; 622 } 623 case 2: { 624 u16 *k = (u16 *)dev->keycode; 625 old_keycode = k[scancode]; 626 k[scancode] = keycode; 627 break; 628 } 629 default: { 630 u32 *k = (u32 *)dev->keycode; 631 old_keycode = k[scancode]; 632 k[scancode] = keycode; 633 break; 634 } 635 } 636 637 __clear_bit(old_keycode, dev->keybit); 638 __set_bit(keycode, dev->keybit); 639 640 for (i = 0; i < dev->keycodemax; i++) { 641 if (input_fetch_keycode(dev, i) == old_keycode) { 642 __set_bit(old_keycode, dev->keybit); 643 break; /* Setting the bit twice is useless, so break */ 644 } 645 } 646 647 return 0; 648 } 649 650 /** 651 * input_get_keycode - retrieve keycode currently mapped to a given scancode 652 * @dev: input device which keymap is being queried 653 * @scancode: scancode (or its equivalent for device in question) for which 654 * keycode is needed 655 * @keycode: result 656 * 657 * This function should be called by anyone interested in retrieving current 658 * keymap. Presently keyboard and evdev handlers use it. 659 */ 660 int input_get_keycode(struct input_dev *dev, 661 unsigned int scancode, unsigned int *keycode) 662 { 663 unsigned long flags; 664 int retval; 665 666 spin_lock_irqsave(&dev->event_lock, flags); 667 retval = dev->getkeycode(dev, scancode, keycode); 668 spin_unlock_irqrestore(&dev->event_lock, flags); 669 670 return retval; 671 } 672 EXPORT_SYMBOL(input_get_keycode); 673 674 /** 675 * input_get_keycode - assign new keycode to a given scancode 676 * @dev: input device which keymap is being updated 677 * @scancode: scancode (or its equivalent for device in question) 678 * @keycode: new keycode to be assigned to the scancode 679 * 680 * This function should be called by anyone needing to update current 681 * keymap. Presently keyboard and evdev handlers use it. 682 */ 683 int input_set_keycode(struct input_dev *dev, 684 unsigned int scancode, unsigned int keycode) 685 { 686 unsigned long flags; 687 int old_keycode; 688 int retval; 689 690 if (keycode > KEY_MAX) 691 return -EINVAL; 692 693 spin_lock_irqsave(&dev->event_lock, flags); 694 695 retval = dev->getkeycode(dev, scancode, &old_keycode); 696 if (retval) 697 goto out; 698 699 retval = dev->setkeycode(dev, scancode, keycode); 700 if (retval) 701 goto out; 702 703 /* Make sure KEY_RESERVED did not get enabled. */ 704 __clear_bit(KEY_RESERVED, dev->keybit); 705 706 /* 707 * Simulate keyup event if keycode is not present 708 * in the keymap anymore 709 */ 710 if (test_bit(EV_KEY, dev->evbit) && 711 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 712 __test_and_clear_bit(old_keycode, dev->key)) { 713 714 input_pass_event(dev, EV_KEY, old_keycode, 0); 715 if (dev->sync) 716 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 717 } 718 719 out: 720 spin_unlock_irqrestore(&dev->event_lock, flags); 721 722 return retval; 723 } 724 EXPORT_SYMBOL(input_set_keycode); 725 726 #define MATCH_BIT(bit, max) \ 727 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 728 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 729 break; \ 730 if (i != BITS_TO_LONGS(max)) \ 731 continue; 732 733 static const struct input_device_id *input_match_device(struct input_handler *handler, 734 struct input_dev *dev) 735 { 736 const struct input_device_id *id; 737 int i; 738 739 for (id = handler->id_table; id->flags || id->driver_info; id++) { 740 741 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 742 if (id->bustype != dev->id.bustype) 743 continue; 744 745 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 746 if (id->vendor != dev->id.vendor) 747 continue; 748 749 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 750 if (id->product != dev->id.product) 751 continue; 752 753 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 754 if (id->version != dev->id.version) 755 continue; 756 757 MATCH_BIT(evbit, EV_MAX); 758 MATCH_BIT(keybit, KEY_MAX); 759 MATCH_BIT(relbit, REL_MAX); 760 MATCH_BIT(absbit, ABS_MAX); 761 MATCH_BIT(mscbit, MSC_MAX); 762 MATCH_BIT(ledbit, LED_MAX); 763 MATCH_BIT(sndbit, SND_MAX); 764 MATCH_BIT(ffbit, FF_MAX); 765 MATCH_BIT(swbit, SW_MAX); 766 767 if (!handler->match || handler->match(handler, dev)) 768 return id; 769 } 770 771 return NULL; 772 } 773 774 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 775 { 776 const struct input_device_id *id; 777 int error; 778 779 id = input_match_device(handler, dev); 780 if (!id) 781 return -ENODEV; 782 783 error = handler->connect(handler, dev, id); 784 if (error && error != -ENODEV) 785 printk(KERN_ERR 786 "input: failed to attach handler %s to device %s, " 787 "error: %d\n", 788 handler->name, kobject_name(&dev->dev.kobj), error); 789 790 return error; 791 } 792 793 #ifdef CONFIG_COMPAT 794 795 static int input_bits_to_string(char *buf, int buf_size, 796 unsigned long bits, bool skip_empty) 797 { 798 int len = 0; 799 800 if (INPUT_COMPAT_TEST) { 801 u32 dword = bits >> 32; 802 if (dword || !skip_empty) 803 len += snprintf(buf, buf_size, "%x ", dword); 804 805 dword = bits & 0xffffffffUL; 806 if (dword || !skip_empty || len) 807 len += snprintf(buf + len, max(buf_size - len, 0), 808 "%x", dword); 809 } else { 810 if (bits || !skip_empty) 811 len += snprintf(buf, buf_size, "%lx", bits); 812 } 813 814 return len; 815 } 816 817 #else /* !CONFIG_COMPAT */ 818 819 static int input_bits_to_string(char *buf, int buf_size, 820 unsigned long bits, bool skip_empty) 821 { 822 return bits || !skip_empty ? 823 snprintf(buf, buf_size, "%lx", bits) : 0; 824 } 825 826 #endif 827 828 #ifdef CONFIG_PROC_FS 829 830 static struct proc_dir_entry *proc_bus_input_dir; 831 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 832 static int input_devices_state; 833 834 static inline void input_wakeup_procfs_readers(void) 835 { 836 input_devices_state++; 837 wake_up(&input_devices_poll_wait); 838 } 839 840 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 841 { 842 poll_wait(file, &input_devices_poll_wait, wait); 843 if (file->f_version != input_devices_state) { 844 file->f_version = input_devices_state; 845 return POLLIN | POLLRDNORM; 846 } 847 848 return 0; 849 } 850 851 union input_seq_state { 852 struct { 853 unsigned short pos; 854 bool mutex_acquired; 855 }; 856 void *p; 857 }; 858 859 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 860 { 861 union input_seq_state *state = (union input_seq_state *)&seq->private; 862 int error; 863 864 /* We need to fit into seq->private pointer */ 865 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 866 867 error = mutex_lock_interruptible(&input_mutex); 868 if (error) { 869 state->mutex_acquired = false; 870 return ERR_PTR(error); 871 } 872 873 state->mutex_acquired = true; 874 875 return seq_list_start(&input_dev_list, *pos); 876 } 877 878 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 879 { 880 return seq_list_next(v, &input_dev_list, pos); 881 } 882 883 static void input_seq_stop(struct seq_file *seq, void *v) 884 { 885 union input_seq_state *state = (union input_seq_state *)&seq->private; 886 887 if (state->mutex_acquired) 888 mutex_unlock(&input_mutex); 889 } 890 891 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 892 unsigned long *bitmap, int max) 893 { 894 int i; 895 bool skip_empty = true; 896 char buf[18]; 897 898 seq_printf(seq, "B: %s=", name); 899 900 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 901 if (input_bits_to_string(buf, sizeof(buf), 902 bitmap[i], skip_empty)) { 903 skip_empty = false; 904 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 905 } 906 } 907 908 /* 909 * If no output was produced print a single 0. 910 */ 911 if (skip_empty) 912 seq_puts(seq, "0"); 913 914 seq_putc(seq, '\n'); 915 } 916 917 static int input_devices_seq_show(struct seq_file *seq, void *v) 918 { 919 struct input_dev *dev = container_of(v, struct input_dev, node); 920 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 921 struct input_handle *handle; 922 923 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 924 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 925 926 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 927 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 928 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 929 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 930 seq_printf(seq, "H: Handlers="); 931 932 list_for_each_entry(handle, &dev->h_list, d_node) 933 seq_printf(seq, "%s ", handle->name); 934 seq_putc(seq, '\n'); 935 936 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 937 if (test_bit(EV_KEY, dev->evbit)) 938 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 939 if (test_bit(EV_REL, dev->evbit)) 940 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 941 if (test_bit(EV_ABS, dev->evbit)) 942 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 943 if (test_bit(EV_MSC, dev->evbit)) 944 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 945 if (test_bit(EV_LED, dev->evbit)) 946 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 947 if (test_bit(EV_SND, dev->evbit)) 948 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 949 if (test_bit(EV_FF, dev->evbit)) 950 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 951 if (test_bit(EV_SW, dev->evbit)) 952 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 953 954 seq_putc(seq, '\n'); 955 956 kfree(path); 957 return 0; 958 } 959 960 static const struct seq_operations input_devices_seq_ops = { 961 .start = input_devices_seq_start, 962 .next = input_devices_seq_next, 963 .stop = input_seq_stop, 964 .show = input_devices_seq_show, 965 }; 966 967 static int input_proc_devices_open(struct inode *inode, struct file *file) 968 { 969 return seq_open(file, &input_devices_seq_ops); 970 } 971 972 static const struct file_operations input_devices_fileops = { 973 .owner = THIS_MODULE, 974 .open = input_proc_devices_open, 975 .poll = input_proc_devices_poll, 976 .read = seq_read, 977 .llseek = seq_lseek, 978 .release = seq_release, 979 }; 980 981 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 982 { 983 union input_seq_state *state = (union input_seq_state *)&seq->private; 984 int error; 985 986 /* We need to fit into seq->private pointer */ 987 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 988 989 error = mutex_lock_interruptible(&input_mutex); 990 if (error) { 991 state->mutex_acquired = false; 992 return ERR_PTR(error); 993 } 994 995 state->mutex_acquired = true; 996 state->pos = *pos; 997 998 return seq_list_start(&input_handler_list, *pos); 999 } 1000 1001 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1002 { 1003 union input_seq_state *state = (union input_seq_state *)&seq->private; 1004 1005 state->pos = *pos + 1; 1006 return seq_list_next(v, &input_handler_list, pos); 1007 } 1008 1009 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1010 { 1011 struct input_handler *handler = container_of(v, struct input_handler, node); 1012 union input_seq_state *state = (union input_seq_state *)&seq->private; 1013 1014 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1015 if (handler->filter) 1016 seq_puts(seq, " (filter)"); 1017 if (handler->fops) 1018 seq_printf(seq, " Minor=%d", handler->minor); 1019 seq_putc(seq, '\n'); 1020 1021 return 0; 1022 } 1023 1024 static const struct seq_operations input_handlers_seq_ops = { 1025 .start = input_handlers_seq_start, 1026 .next = input_handlers_seq_next, 1027 .stop = input_seq_stop, 1028 .show = input_handlers_seq_show, 1029 }; 1030 1031 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1032 { 1033 return seq_open(file, &input_handlers_seq_ops); 1034 } 1035 1036 static const struct file_operations input_handlers_fileops = { 1037 .owner = THIS_MODULE, 1038 .open = input_proc_handlers_open, 1039 .read = seq_read, 1040 .llseek = seq_lseek, 1041 .release = seq_release, 1042 }; 1043 1044 static int __init input_proc_init(void) 1045 { 1046 struct proc_dir_entry *entry; 1047 1048 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1049 if (!proc_bus_input_dir) 1050 return -ENOMEM; 1051 1052 entry = proc_create("devices", 0, proc_bus_input_dir, 1053 &input_devices_fileops); 1054 if (!entry) 1055 goto fail1; 1056 1057 entry = proc_create("handlers", 0, proc_bus_input_dir, 1058 &input_handlers_fileops); 1059 if (!entry) 1060 goto fail2; 1061 1062 return 0; 1063 1064 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1065 fail1: remove_proc_entry("bus/input", NULL); 1066 return -ENOMEM; 1067 } 1068 1069 static void input_proc_exit(void) 1070 { 1071 remove_proc_entry("devices", proc_bus_input_dir); 1072 remove_proc_entry("handlers", proc_bus_input_dir); 1073 remove_proc_entry("bus/input", NULL); 1074 } 1075 1076 #else /* !CONFIG_PROC_FS */ 1077 static inline void input_wakeup_procfs_readers(void) { } 1078 static inline int input_proc_init(void) { return 0; } 1079 static inline void input_proc_exit(void) { } 1080 #endif 1081 1082 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1083 static ssize_t input_dev_show_##name(struct device *dev, \ 1084 struct device_attribute *attr, \ 1085 char *buf) \ 1086 { \ 1087 struct input_dev *input_dev = to_input_dev(dev); \ 1088 \ 1089 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1090 input_dev->name ? input_dev->name : ""); \ 1091 } \ 1092 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1093 1094 INPUT_DEV_STRING_ATTR_SHOW(name); 1095 INPUT_DEV_STRING_ATTR_SHOW(phys); 1096 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1097 1098 static int input_print_modalias_bits(char *buf, int size, 1099 char name, unsigned long *bm, 1100 unsigned int min_bit, unsigned int max_bit) 1101 { 1102 int len = 0, i; 1103 1104 len += snprintf(buf, max(size, 0), "%c", name); 1105 for (i = min_bit; i < max_bit; i++) 1106 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1107 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1108 return len; 1109 } 1110 1111 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1112 int add_cr) 1113 { 1114 int len; 1115 1116 len = snprintf(buf, max(size, 0), 1117 "input:b%04Xv%04Xp%04Xe%04X-", 1118 id->id.bustype, id->id.vendor, 1119 id->id.product, id->id.version); 1120 1121 len += input_print_modalias_bits(buf + len, size - len, 1122 'e', id->evbit, 0, EV_MAX); 1123 len += input_print_modalias_bits(buf + len, size - len, 1124 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1125 len += input_print_modalias_bits(buf + len, size - len, 1126 'r', id->relbit, 0, REL_MAX); 1127 len += input_print_modalias_bits(buf + len, size - len, 1128 'a', id->absbit, 0, ABS_MAX); 1129 len += input_print_modalias_bits(buf + len, size - len, 1130 'm', id->mscbit, 0, MSC_MAX); 1131 len += input_print_modalias_bits(buf + len, size - len, 1132 'l', id->ledbit, 0, LED_MAX); 1133 len += input_print_modalias_bits(buf + len, size - len, 1134 's', id->sndbit, 0, SND_MAX); 1135 len += input_print_modalias_bits(buf + len, size - len, 1136 'f', id->ffbit, 0, FF_MAX); 1137 len += input_print_modalias_bits(buf + len, size - len, 1138 'w', id->swbit, 0, SW_MAX); 1139 1140 if (add_cr) 1141 len += snprintf(buf + len, max(size - len, 0), "\n"); 1142 1143 return len; 1144 } 1145 1146 static ssize_t input_dev_show_modalias(struct device *dev, 1147 struct device_attribute *attr, 1148 char *buf) 1149 { 1150 struct input_dev *id = to_input_dev(dev); 1151 ssize_t len; 1152 1153 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1154 1155 return min_t(int, len, PAGE_SIZE); 1156 } 1157 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1158 1159 static struct attribute *input_dev_attrs[] = { 1160 &dev_attr_name.attr, 1161 &dev_attr_phys.attr, 1162 &dev_attr_uniq.attr, 1163 &dev_attr_modalias.attr, 1164 NULL 1165 }; 1166 1167 static struct attribute_group input_dev_attr_group = { 1168 .attrs = input_dev_attrs, 1169 }; 1170 1171 #define INPUT_DEV_ID_ATTR(name) \ 1172 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1173 struct device_attribute *attr, \ 1174 char *buf) \ 1175 { \ 1176 struct input_dev *input_dev = to_input_dev(dev); \ 1177 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1178 } \ 1179 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1180 1181 INPUT_DEV_ID_ATTR(bustype); 1182 INPUT_DEV_ID_ATTR(vendor); 1183 INPUT_DEV_ID_ATTR(product); 1184 INPUT_DEV_ID_ATTR(version); 1185 1186 static struct attribute *input_dev_id_attrs[] = { 1187 &dev_attr_bustype.attr, 1188 &dev_attr_vendor.attr, 1189 &dev_attr_product.attr, 1190 &dev_attr_version.attr, 1191 NULL 1192 }; 1193 1194 static struct attribute_group input_dev_id_attr_group = { 1195 .name = "id", 1196 .attrs = input_dev_id_attrs, 1197 }; 1198 1199 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1200 int max, int add_cr) 1201 { 1202 int i; 1203 int len = 0; 1204 bool skip_empty = true; 1205 1206 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1207 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1208 bitmap[i], skip_empty); 1209 if (len) { 1210 skip_empty = false; 1211 if (i > 0) 1212 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1213 } 1214 } 1215 1216 /* 1217 * If no output was produced print a single 0. 1218 */ 1219 if (len == 0) 1220 len = snprintf(buf, buf_size, "%d", 0); 1221 1222 if (add_cr) 1223 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1224 1225 return len; 1226 } 1227 1228 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1229 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1230 struct device_attribute *attr, \ 1231 char *buf) \ 1232 { \ 1233 struct input_dev *input_dev = to_input_dev(dev); \ 1234 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1235 input_dev->bm##bit, ev##_MAX, \ 1236 true); \ 1237 return min_t(int, len, PAGE_SIZE); \ 1238 } \ 1239 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1240 1241 INPUT_DEV_CAP_ATTR(EV, ev); 1242 INPUT_DEV_CAP_ATTR(KEY, key); 1243 INPUT_DEV_CAP_ATTR(REL, rel); 1244 INPUT_DEV_CAP_ATTR(ABS, abs); 1245 INPUT_DEV_CAP_ATTR(MSC, msc); 1246 INPUT_DEV_CAP_ATTR(LED, led); 1247 INPUT_DEV_CAP_ATTR(SND, snd); 1248 INPUT_DEV_CAP_ATTR(FF, ff); 1249 INPUT_DEV_CAP_ATTR(SW, sw); 1250 1251 static struct attribute *input_dev_caps_attrs[] = { 1252 &dev_attr_ev.attr, 1253 &dev_attr_key.attr, 1254 &dev_attr_rel.attr, 1255 &dev_attr_abs.attr, 1256 &dev_attr_msc.attr, 1257 &dev_attr_led.attr, 1258 &dev_attr_snd.attr, 1259 &dev_attr_ff.attr, 1260 &dev_attr_sw.attr, 1261 NULL 1262 }; 1263 1264 static struct attribute_group input_dev_caps_attr_group = { 1265 .name = "capabilities", 1266 .attrs = input_dev_caps_attrs, 1267 }; 1268 1269 static const struct attribute_group *input_dev_attr_groups[] = { 1270 &input_dev_attr_group, 1271 &input_dev_id_attr_group, 1272 &input_dev_caps_attr_group, 1273 NULL 1274 }; 1275 1276 static void input_dev_release(struct device *device) 1277 { 1278 struct input_dev *dev = to_input_dev(device); 1279 1280 input_ff_destroy(dev); 1281 kfree(dev); 1282 1283 module_put(THIS_MODULE); 1284 } 1285 1286 /* 1287 * Input uevent interface - loading event handlers based on 1288 * device bitfields. 1289 */ 1290 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1291 const char *name, unsigned long *bitmap, int max) 1292 { 1293 int len; 1294 1295 if (add_uevent_var(env, "%s=", name)) 1296 return -ENOMEM; 1297 1298 len = input_print_bitmap(&env->buf[env->buflen - 1], 1299 sizeof(env->buf) - env->buflen, 1300 bitmap, max, false); 1301 if (len >= (sizeof(env->buf) - env->buflen)) 1302 return -ENOMEM; 1303 1304 env->buflen += len; 1305 return 0; 1306 } 1307 1308 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1309 struct input_dev *dev) 1310 { 1311 int len; 1312 1313 if (add_uevent_var(env, "MODALIAS=")) 1314 return -ENOMEM; 1315 1316 len = input_print_modalias(&env->buf[env->buflen - 1], 1317 sizeof(env->buf) - env->buflen, 1318 dev, 0); 1319 if (len >= (sizeof(env->buf) - env->buflen)) 1320 return -ENOMEM; 1321 1322 env->buflen += len; 1323 return 0; 1324 } 1325 1326 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1327 do { \ 1328 int err = add_uevent_var(env, fmt, val); \ 1329 if (err) \ 1330 return err; \ 1331 } while (0) 1332 1333 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1334 do { \ 1335 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1336 if (err) \ 1337 return err; \ 1338 } while (0) 1339 1340 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1341 do { \ 1342 int err = input_add_uevent_modalias_var(env, dev); \ 1343 if (err) \ 1344 return err; \ 1345 } while (0) 1346 1347 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1348 { 1349 struct input_dev *dev = to_input_dev(device); 1350 1351 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1352 dev->id.bustype, dev->id.vendor, 1353 dev->id.product, dev->id.version); 1354 if (dev->name) 1355 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1356 if (dev->phys) 1357 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1358 if (dev->uniq) 1359 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1360 1361 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1362 if (test_bit(EV_KEY, dev->evbit)) 1363 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1364 if (test_bit(EV_REL, dev->evbit)) 1365 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1366 if (test_bit(EV_ABS, dev->evbit)) 1367 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1368 if (test_bit(EV_MSC, dev->evbit)) 1369 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1370 if (test_bit(EV_LED, dev->evbit)) 1371 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1372 if (test_bit(EV_SND, dev->evbit)) 1373 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1374 if (test_bit(EV_FF, dev->evbit)) 1375 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1376 if (test_bit(EV_SW, dev->evbit)) 1377 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1378 1379 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1380 1381 return 0; 1382 } 1383 1384 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1385 do { \ 1386 int i; \ 1387 bool active; \ 1388 \ 1389 if (!test_bit(EV_##type, dev->evbit)) \ 1390 break; \ 1391 \ 1392 for (i = 0; i < type##_MAX; i++) { \ 1393 if (!test_bit(i, dev->bits##bit)) \ 1394 continue; \ 1395 \ 1396 active = test_bit(i, dev->bits); \ 1397 if (!active && !on) \ 1398 continue; \ 1399 \ 1400 dev->event(dev, EV_##type, i, on ? active : 0); \ 1401 } \ 1402 } while (0) 1403 1404 #ifdef CONFIG_PM 1405 static void input_dev_reset(struct input_dev *dev, bool activate) 1406 { 1407 if (!dev->event) 1408 return; 1409 1410 INPUT_DO_TOGGLE(dev, LED, led, activate); 1411 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1412 1413 if (activate && test_bit(EV_REP, dev->evbit)) { 1414 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1415 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1416 } 1417 } 1418 1419 static int input_dev_suspend(struct device *dev) 1420 { 1421 struct input_dev *input_dev = to_input_dev(dev); 1422 1423 mutex_lock(&input_dev->mutex); 1424 input_dev_reset(input_dev, false); 1425 mutex_unlock(&input_dev->mutex); 1426 1427 return 0; 1428 } 1429 1430 static int input_dev_resume(struct device *dev) 1431 { 1432 struct input_dev *input_dev = to_input_dev(dev); 1433 1434 mutex_lock(&input_dev->mutex); 1435 input_dev_reset(input_dev, true); 1436 mutex_unlock(&input_dev->mutex); 1437 1438 return 0; 1439 } 1440 1441 static const struct dev_pm_ops input_dev_pm_ops = { 1442 .suspend = input_dev_suspend, 1443 .resume = input_dev_resume, 1444 .poweroff = input_dev_suspend, 1445 .restore = input_dev_resume, 1446 }; 1447 #endif /* CONFIG_PM */ 1448 1449 static struct device_type input_dev_type = { 1450 .groups = input_dev_attr_groups, 1451 .release = input_dev_release, 1452 .uevent = input_dev_uevent, 1453 #ifdef CONFIG_PM 1454 .pm = &input_dev_pm_ops, 1455 #endif 1456 }; 1457 1458 static char *input_devnode(struct device *dev, mode_t *mode) 1459 { 1460 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1461 } 1462 1463 struct class input_class = { 1464 .name = "input", 1465 .devnode = input_devnode, 1466 }; 1467 EXPORT_SYMBOL_GPL(input_class); 1468 1469 /** 1470 * input_allocate_device - allocate memory for new input device 1471 * 1472 * Returns prepared struct input_dev or NULL. 1473 * 1474 * NOTE: Use input_free_device() to free devices that have not been 1475 * registered; input_unregister_device() should be used for already 1476 * registered devices. 1477 */ 1478 struct input_dev *input_allocate_device(void) 1479 { 1480 struct input_dev *dev; 1481 1482 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1483 if (dev) { 1484 dev->dev.type = &input_dev_type; 1485 dev->dev.class = &input_class; 1486 device_initialize(&dev->dev); 1487 mutex_init(&dev->mutex); 1488 spin_lock_init(&dev->event_lock); 1489 INIT_LIST_HEAD(&dev->h_list); 1490 INIT_LIST_HEAD(&dev->node); 1491 1492 __module_get(THIS_MODULE); 1493 } 1494 1495 return dev; 1496 } 1497 EXPORT_SYMBOL(input_allocate_device); 1498 1499 /** 1500 * input_free_device - free memory occupied by input_dev structure 1501 * @dev: input device to free 1502 * 1503 * This function should only be used if input_register_device() 1504 * was not called yet or if it failed. Once device was registered 1505 * use input_unregister_device() and memory will be freed once last 1506 * reference to the device is dropped. 1507 * 1508 * Device should be allocated by input_allocate_device(). 1509 * 1510 * NOTE: If there are references to the input device then memory 1511 * will not be freed until last reference is dropped. 1512 */ 1513 void input_free_device(struct input_dev *dev) 1514 { 1515 if (dev) 1516 input_put_device(dev); 1517 } 1518 EXPORT_SYMBOL(input_free_device); 1519 1520 /** 1521 * input_set_capability - mark device as capable of a certain event 1522 * @dev: device that is capable of emitting or accepting event 1523 * @type: type of the event (EV_KEY, EV_REL, etc...) 1524 * @code: event code 1525 * 1526 * In addition to setting up corresponding bit in appropriate capability 1527 * bitmap the function also adjusts dev->evbit. 1528 */ 1529 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1530 { 1531 switch (type) { 1532 case EV_KEY: 1533 __set_bit(code, dev->keybit); 1534 break; 1535 1536 case EV_REL: 1537 __set_bit(code, dev->relbit); 1538 break; 1539 1540 case EV_ABS: 1541 __set_bit(code, dev->absbit); 1542 break; 1543 1544 case EV_MSC: 1545 __set_bit(code, dev->mscbit); 1546 break; 1547 1548 case EV_SW: 1549 __set_bit(code, dev->swbit); 1550 break; 1551 1552 case EV_LED: 1553 __set_bit(code, dev->ledbit); 1554 break; 1555 1556 case EV_SND: 1557 __set_bit(code, dev->sndbit); 1558 break; 1559 1560 case EV_FF: 1561 __set_bit(code, dev->ffbit); 1562 break; 1563 1564 case EV_PWR: 1565 /* do nothing */ 1566 break; 1567 1568 default: 1569 printk(KERN_ERR 1570 "input_set_capability: unknown type %u (code %u)\n", 1571 type, code); 1572 dump_stack(); 1573 return; 1574 } 1575 1576 __set_bit(type, dev->evbit); 1577 } 1578 EXPORT_SYMBOL(input_set_capability); 1579 1580 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1581 do { \ 1582 if (!test_bit(EV_##type, dev->evbit)) \ 1583 memset(dev->bits##bit, 0, \ 1584 sizeof(dev->bits##bit)); \ 1585 } while (0) 1586 1587 static void input_cleanse_bitmasks(struct input_dev *dev) 1588 { 1589 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1590 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1591 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1592 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1593 INPUT_CLEANSE_BITMASK(dev, LED, led); 1594 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1595 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1596 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1597 } 1598 1599 /** 1600 * input_register_device - register device with input core 1601 * @dev: device to be registered 1602 * 1603 * This function registers device with input core. The device must be 1604 * allocated with input_allocate_device() and all it's capabilities 1605 * set up before registering. 1606 * If function fails the device must be freed with input_free_device(). 1607 * Once device has been successfully registered it can be unregistered 1608 * with input_unregister_device(); input_free_device() should not be 1609 * called in this case. 1610 */ 1611 int input_register_device(struct input_dev *dev) 1612 { 1613 static atomic_t input_no = ATOMIC_INIT(0); 1614 struct input_handler *handler; 1615 const char *path; 1616 int error; 1617 1618 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1619 __set_bit(EV_SYN, dev->evbit); 1620 1621 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1622 __clear_bit(KEY_RESERVED, dev->keybit); 1623 1624 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1625 input_cleanse_bitmasks(dev); 1626 1627 /* 1628 * If delay and period are pre-set by the driver, then autorepeating 1629 * is handled by the driver itself and we don't do it in input.c. 1630 */ 1631 init_timer(&dev->timer); 1632 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1633 dev->timer.data = (long) dev; 1634 dev->timer.function = input_repeat_key; 1635 dev->rep[REP_DELAY] = 250; 1636 dev->rep[REP_PERIOD] = 33; 1637 } 1638 1639 if (!dev->getkeycode) 1640 dev->getkeycode = input_default_getkeycode; 1641 1642 if (!dev->setkeycode) 1643 dev->setkeycode = input_default_setkeycode; 1644 1645 dev_set_name(&dev->dev, "input%ld", 1646 (unsigned long) atomic_inc_return(&input_no) - 1); 1647 1648 error = device_add(&dev->dev); 1649 if (error) 1650 return error; 1651 1652 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1653 printk(KERN_INFO "input: %s as %s\n", 1654 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1655 kfree(path); 1656 1657 error = mutex_lock_interruptible(&input_mutex); 1658 if (error) { 1659 device_del(&dev->dev); 1660 return error; 1661 } 1662 1663 list_add_tail(&dev->node, &input_dev_list); 1664 1665 list_for_each_entry(handler, &input_handler_list, node) 1666 input_attach_handler(dev, handler); 1667 1668 input_wakeup_procfs_readers(); 1669 1670 mutex_unlock(&input_mutex); 1671 1672 return 0; 1673 } 1674 EXPORT_SYMBOL(input_register_device); 1675 1676 /** 1677 * input_unregister_device - unregister previously registered device 1678 * @dev: device to be unregistered 1679 * 1680 * This function unregisters an input device. Once device is unregistered 1681 * the caller should not try to access it as it may get freed at any moment. 1682 */ 1683 void input_unregister_device(struct input_dev *dev) 1684 { 1685 struct input_handle *handle, *next; 1686 1687 input_disconnect_device(dev); 1688 1689 mutex_lock(&input_mutex); 1690 1691 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1692 handle->handler->disconnect(handle); 1693 WARN_ON(!list_empty(&dev->h_list)); 1694 1695 del_timer_sync(&dev->timer); 1696 list_del_init(&dev->node); 1697 1698 input_wakeup_procfs_readers(); 1699 1700 mutex_unlock(&input_mutex); 1701 1702 device_unregister(&dev->dev); 1703 } 1704 EXPORT_SYMBOL(input_unregister_device); 1705 1706 /** 1707 * input_register_handler - register a new input handler 1708 * @handler: handler to be registered 1709 * 1710 * This function registers a new input handler (interface) for input 1711 * devices in the system and attaches it to all input devices that 1712 * are compatible with the handler. 1713 */ 1714 int input_register_handler(struct input_handler *handler) 1715 { 1716 struct input_dev *dev; 1717 int retval; 1718 1719 retval = mutex_lock_interruptible(&input_mutex); 1720 if (retval) 1721 return retval; 1722 1723 INIT_LIST_HEAD(&handler->h_list); 1724 1725 if (handler->fops != NULL) { 1726 if (input_table[handler->minor >> 5]) { 1727 retval = -EBUSY; 1728 goto out; 1729 } 1730 input_table[handler->minor >> 5] = handler; 1731 } 1732 1733 list_add_tail(&handler->node, &input_handler_list); 1734 1735 list_for_each_entry(dev, &input_dev_list, node) 1736 input_attach_handler(dev, handler); 1737 1738 input_wakeup_procfs_readers(); 1739 1740 out: 1741 mutex_unlock(&input_mutex); 1742 return retval; 1743 } 1744 EXPORT_SYMBOL(input_register_handler); 1745 1746 /** 1747 * input_unregister_handler - unregisters an input handler 1748 * @handler: handler to be unregistered 1749 * 1750 * This function disconnects a handler from its input devices and 1751 * removes it from lists of known handlers. 1752 */ 1753 void input_unregister_handler(struct input_handler *handler) 1754 { 1755 struct input_handle *handle, *next; 1756 1757 mutex_lock(&input_mutex); 1758 1759 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1760 handler->disconnect(handle); 1761 WARN_ON(!list_empty(&handler->h_list)); 1762 1763 list_del_init(&handler->node); 1764 1765 if (handler->fops != NULL) 1766 input_table[handler->minor >> 5] = NULL; 1767 1768 input_wakeup_procfs_readers(); 1769 1770 mutex_unlock(&input_mutex); 1771 } 1772 EXPORT_SYMBOL(input_unregister_handler); 1773 1774 /** 1775 * input_handler_for_each_handle - handle iterator 1776 * @handler: input handler to iterate 1777 * @data: data for the callback 1778 * @fn: function to be called for each handle 1779 * 1780 * Iterate over @bus's list of devices, and call @fn for each, passing 1781 * it @data and stop when @fn returns a non-zero value. The function is 1782 * using RCU to traverse the list and therefore may be usind in atonic 1783 * contexts. The @fn callback is invoked from RCU critical section and 1784 * thus must not sleep. 1785 */ 1786 int input_handler_for_each_handle(struct input_handler *handler, void *data, 1787 int (*fn)(struct input_handle *, void *)) 1788 { 1789 struct input_handle *handle; 1790 int retval = 0; 1791 1792 rcu_read_lock(); 1793 1794 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 1795 retval = fn(handle, data); 1796 if (retval) 1797 break; 1798 } 1799 1800 rcu_read_unlock(); 1801 1802 return retval; 1803 } 1804 EXPORT_SYMBOL(input_handler_for_each_handle); 1805 1806 /** 1807 * input_register_handle - register a new input handle 1808 * @handle: handle to register 1809 * 1810 * This function puts a new input handle onto device's 1811 * and handler's lists so that events can flow through 1812 * it once it is opened using input_open_device(). 1813 * 1814 * This function is supposed to be called from handler's 1815 * connect() method. 1816 */ 1817 int input_register_handle(struct input_handle *handle) 1818 { 1819 struct input_handler *handler = handle->handler; 1820 struct input_dev *dev = handle->dev; 1821 int error; 1822 1823 /* 1824 * We take dev->mutex here to prevent race with 1825 * input_release_device(). 1826 */ 1827 error = mutex_lock_interruptible(&dev->mutex); 1828 if (error) 1829 return error; 1830 1831 /* 1832 * Filters go to the head of the list, normal handlers 1833 * to the tail. 1834 */ 1835 if (handler->filter) 1836 list_add_rcu(&handle->d_node, &dev->h_list); 1837 else 1838 list_add_tail_rcu(&handle->d_node, &dev->h_list); 1839 1840 mutex_unlock(&dev->mutex); 1841 1842 /* 1843 * Since we are supposed to be called from ->connect() 1844 * which is mutually exclusive with ->disconnect() 1845 * we can't be racing with input_unregister_handle() 1846 * and so separate lock is not needed here. 1847 */ 1848 list_add_tail_rcu(&handle->h_node, &handler->h_list); 1849 1850 if (handler->start) 1851 handler->start(handle); 1852 1853 return 0; 1854 } 1855 EXPORT_SYMBOL(input_register_handle); 1856 1857 /** 1858 * input_unregister_handle - unregister an input handle 1859 * @handle: handle to unregister 1860 * 1861 * This function removes input handle from device's 1862 * and handler's lists. 1863 * 1864 * This function is supposed to be called from handler's 1865 * disconnect() method. 1866 */ 1867 void input_unregister_handle(struct input_handle *handle) 1868 { 1869 struct input_dev *dev = handle->dev; 1870 1871 list_del_rcu(&handle->h_node); 1872 1873 /* 1874 * Take dev->mutex to prevent race with input_release_device(). 1875 */ 1876 mutex_lock(&dev->mutex); 1877 list_del_rcu(&handle->d_node); 1878 mutex_unlock(&dev->mutex); 1879 1880 synchronize_rcu(); 1881 } 1882 EXPORT_SYMBOL(input_unregister_handle); 1883 1884 static int input_open_file(struct inode *inode, struct file *file) 1885 { 1886 struct input_handler *handler; 1887 const struct file_operations *old_fops, *new_fops = NULL; 1888 int err; 1889 1890 err = mutex_lock_interruptible(&input_mutex); 1891 if (err) 1892 return err; 1893 1894 /* No load-on-demand here? */ 1895 handler = input_table[iminor(inode) >> 5]; 1896 if (handler) 1897 new_fops = fops_get(handler->fops); 1898 1899 mutex_unlock(&input_mutex); 1900 1901 /* 1902 * That's _really_ odd. Usually NULL ->open means "nothing special", 1903 * not "no device". Oh, well... 1904 */ 1905 if (!new_fops || !new_fops->open) { 1906 fops_put(new_fops); 1907 err = -ENODEV; 1908 goto out; 1909 } 1910 1911 old_fops = file->f_op; 1912 file->f_op = new_fops; 1913 1914 err = new_fops->open(inode, file); 1915 if (err) { 1916 fops_put(file->f_op); 1917 file->f_op = fops_get(old_fops); 1918 } 1919 fops_put(old_fops); 1920 out: 1921 return err; 1922 } 1923 1924 static const struct file_operations input_fops = { 1925 .owner = THIS_MODULE, 1926 .open = input_open_file, 1927 }; 1928 1929 static void __init input_init_abs_bypass(void) 1930 { 1931 const unsigned int *p; 1932 1933 for (p = input_abs_bypass_init_data; *p; p++) 1934 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p); 1935 } 1936 1937 static int __init input_init(void) 1938 { 1939 int err; 1940 1941 input_init_abs_bypass(); 1942 1943 err = class_register(&input_class); 1944 if (err) { 1945 printk(KERN_ERR "input: unable to register input_dev class\n"); 1946 return err; 1947 } 1948 1949 err = input_proc_init(); 1950 if (err) 1951 goto fail1; 1952 1953 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 1954 if (err) { 1955 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 1956 goto fail2; 1957 } 1958 1959 return 0; 1960 1961 fail2: input_proc_exit(); 1962 fail1: class_unregister(&input_class); 1963 return err; 1964 } 1965 1966 static void __exit input_exit(void) 1967 { 1968 input_proc_exit(); 1969 unregister_chrdev(INPUT_MAJOR, "input"); 1970 class_unregister(&input_class); 1971 } 1972 1973 subsys_initcall(input_init); 1974 module_exit(input_exit); 1975