xref: /linux/drivers/input/input.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
29 
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
33 
34 #define INPUT_DEVICES	256
35 
36 /*
37  * EV_ABS events which should not be cached are listed here.
38  */
39 static unsigned int input_abs_bypass_init_data[] __initdata = {
40 	ABS_MT_TOUCH_MAJOR,
41 	ABS_MT_TOUCH_MINOR,
42 	ABS_MT_WIDTH_MAJOR,
43 	ABS_MT_WIDTH_MINOR,
44 	ABS_MT_ORIENTATION,
45 	ABS_MT_POSITION_X,
46 	ABS_MT_POSITION_Y,
47 	ABS_MT_TOOL_TYPE,
48 	ABS_MT_BLOB_ID,
49 	ABS_MT_TRACKING_ID,
50 	ABS_MT_PRESSURE,
51 	0
52 };
53 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
54 
55 static LIST_HEAD(input_dev_list);
56 static LIST_HEAD(input_handler_list);
57 
58 /*
59  * input_mutex protects access to both input_dev_list and input_handler_list.
60  * This also causes input_[un]register_device and input_[un]register_handler
61  * be mutually exclusive which simplifies locking in drivers implementing
62  * input handlers.
63  */
64 static DEFINE_MUTEX(input_mutex);
65 
66 static struct input_handler *input_table[8];
67 
68 static inline int is_event_supported(unsigned int code,
69 				     unsigned long *bm, unsigned int max)
70 {
71 	return code <= max && test_bit(code, bm);
72 }
73 
74 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
75 {
76 	if (fuzz) {
77 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
78 			return old_val;
79 
80 		if (value > old_val - fuzz && value < old_val + fuzz)
81 			return (old_val * 3 + value) / 4;
82 
83 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
84 			return (old_val + value) / 2;
85 	}
86 
87 	return value;
88 }
89 
90 /*
91  * Pass event first through all filters and then, if event has not been
92  * filtered out, through all open handles. This function is called with
93  * dev->event_lock held and interrupts disabled.
94  */
95 static void input_pass_event(struct input_dev *dev,
96 			     unsigned int type, unsigned int code, int value)
97 {
98 	struct input_handler *handler;
99 	struct input_handle *handle;
100 
101 	rcu_read_lock();
102 
103 	handle = rcu_dereference(dev->grab);
104 	if (handle)
105 		handle->handler->event(handle, type, code, value);
106 	else {
107 		bool filtered = false;
108 
109 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
110 			if (!handle->open)
111 				continue;
112 
113 			handler = handle->handler;
114 			if (!handler->filter) {
115 				if (filtered)
116 					break;
117 
118 				handler->event(handle, type, code, value);
119 
120 			} else if (handler->filter(handle, type, code, value))
121 				filtered = true;
122 		}
123 	}
124 
125 	rcu_read_unlock();
126 }
127 
128 /*
129  * Generate software autorepeat event. Note that we take
130  * dev->event_lock here to avoid racing with input_event
131  * which may cause keys get "stuck".
132  */
133 static void input_repeat_key(unsigned long data)
134 {
135 	struct input_dev *dev = (void *) data;
136 	unsigned long flags;
137 
138 	spin_lock_irqsave(&dev->event_lock, flags);
139 
140 	if (test_bit(dev->repeat_key, dev->key) &&
141 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
142 
143 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
144 
145 		if (dev->sync) {
146 			/*
147 			 * Only send SYN_REPORT if we are not in a middle
148 			 * of driver parsing a new hardware packet.
149 			 * Otherwise assume that the driver will send
150 			 * SYN_REPORT once it's done.
151 			 */
152 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
153 		}
154 
155 		if (dev->rep[REP_PERIOD])
156 			mod_timer(&dev->timer, jiffies +
157 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
158 	}
159 
160 	spin_unlock_irqrestore(&dev->event_lock, flags);
161 }
162 
163 static void input_start_autorepeat(struct input_dev *dev, int code)
164 {
165 	if (test_bit(EV_REP, dev->evbit) &&
166 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
167 	    dev->timer.data) {
168 		dev->repeat_key = code;
169 		mod_timer(&dev->timer,
170 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
171 	}
172 }
173 
174 static void input_stop_autorepeat(struct input_dev *dev)
175 {
176 	del_timer(&dev->timer);
177 }
178 
179 #define INPUT_IGNORE_EVENT	0
180 #define INPUT_PASS_TO_HANDLERS	1
181 #define INPUT_PASS_TO_DEVICE	2
182 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
183 
184 static void input_handle_event(struct input_dev *dev,
185 			       unsigned int type, unsigned int code, int value)
186 {
187 	int disposition = INPUT_IGNORE_EVENT;
188 
189 	switch (type) {
190 
191 	case EV_SYN:
192 		switch (code) {
193 		case SYN_CONFIG:
194 			disposition = INPUT_PASS_TO_ALL;
195 			break;
196 
197 		case SYN_REPORT:
198 			if (!dev->sync) {
199 				dev->sync = 1;
200 				disposition = INPUT_PASS_TO_HANDLERS;
201 			}
202 			break;
203 		case SYN_MT_REPORT:
204 			dev->sync = 0;
205 			disposition = INPUT_PASS_TO_HANDLERS;
206 			break;
207 		}
208 		break;
209 
210 	case EV_KEY:
211 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
212 		    !!test_bit(code, dev->key) != value) {
213 
214 			if (value != 2) {
215 				__change_bit(code, dev->key);
216 				if (value)
217 					input_start_autorepeat(dev, code);
218 				else
219 					input_stop_autorepeat(dev);
220 			}
221 
222 			disposition = INPUT_PASS_TO_HANDLERS;
223 		}
224 		break;
225 
226 	case EV_SW:
227 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
228 		    !!test_bit(code, dev->sw) != value) {
229 
230 			__change_bit(code, dev->sw);
231 			disposition = INPUT_PASS_TO_HANDLERS;
232 		}
233 		break;
234 
235 	case EV_ABS:
236 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
237 
238 			if (test_bit(code, input_abs_bypass)) {
239 				disposition = INPUT_PASS_TO_HANDLERS;
240 				break;
241 			}
242 
243 			value = input_defuzz_abs_event(value,
244 					dev->abs[code], dev->absfuzz[code]);
245 
246 			if (dev->abs[code] != value) {
247 				dev->abs[code] = value;
248 				disposition = INPUT_PASS_TO_HANDLERS;
249 			}
250 		}
251 		break;
252 
253 	case EV_REL:
254 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
255 			disposition = INPUT_PASS_TO_HANDLERS;
256 
257 		break;
258 
259 	case EV_MSC:
260 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
261 			disposition = INPUT_PASS_TO_ALL;
262 
263 		break;
264 
265 	case EV_LED:
266 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
267 		    !!test_bit(code, dev->led) != value) {
268 
269 			__change_bit(code, dev->led);
270 			disposition = INPUT_PASS_TO_ALL;
271 		}
272 		break;
273 
274 	case EV_SND:
275 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
276 
277 			if (!!test_bit(code, dev->snd) != !!value)
278 				__change_bit(code, dev->snd);
279 			disposition = INPUT_PASS_TO_ALL;
280 		}
281 		break;
282 
283 	case EV_REP:
284 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
285 			dev->rep[code] = value;
286 			disposition = INPUT_PASS_TO_ALL;
287 		}
288 		break;
289 
290 	case EV_FF:
291 		if (value >= 0)
292 			disposition = INPUT_PASS_TO_ALL;
293 		break;
294 
295 	case EV_PWR:
296 		disposition = INPUT_PASS_TO_ALL;
297 		break;
298 	}
299 
300 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
301 		dev->sync = 0;
302 
303 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
304 		dev->event(dev, type, code, value);
305 
306 	if (disposition & INPUT_PASS_TO_HANDLERS)
307 		input_pass_event(dev, type, code, value);
308 }
309 
310 /**
311  * input_event() - report new input event
312  * @dev: device that generated the event
313  * @type: type of the event
314  * @code: event code
315  * @value: value of the event
316  *
317  * This function should be used by drivers implementing various input
318  * devices to report input events. See also input_inject_event().
319  *
320  * NOTE: input_event() may be safely used right after input device was
321  * allocated with input_allocate_device(), even before it is registered
322  * with input_register_device(), but the event will not reach any of the
323  * input handlers. Such early invocation of input_event() may be used
324  * to 'seed' initial state of a switch or initial position of absolute
325  * axis, etc.
326  */
327 void input_event(struct input_dev *dev,
328 		 unsigned int type, unsigned int code, int value)
329 {
330 	unsigned long flags;
331 
332 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
333 
334 		spin_lock_irqsave(&dev->event_lock, flags);
335 		add_input_randomness(type, code, value);
336 		input_handle_event(dev, type, code, value);
337 		spin_unlock_irqrestore(&dev->event_lock, flags);
338 	}
339 }
340 EXPORT_SYMBOL(input_event);
341 
342 /**
343  * input_inject_event() - send input event from input handler
344  * @handle: input handle to send event through
345  * @type: type of the event
346  * @code: event code
347  * @value: value of the event
348  *
349  * Similar to input_event() but will ignore event if device is
350  * "grabbed" and handle injecting event is not the one that owns
351  * the device.
352  */
353 void input_inject_event(struct input_handle *handle,
354 			unsigned int type, unsigned int code, int value)
355 {
356 	struct input_dev *dev = handle->dev;
357 	struct input_handle *grab;
358 	unsigned long flags;
359 
360 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
361 		spin_lock_irqsave(&dev->event_lock, flags);
362 
363 		rcu_read_lock();
364 		grab = rcu_dereference(dev->grab);
365 		if (!grab || grab == handle)
366 			input_handle_event(dev, type, code, value);
367 		rcu_read_unlock();
368 
369 		spin_unlock_irqrestore(&dev->event_lock, flags);
370 	}
371 }
372 EXPORT_SYMBOL(input_inject_event);
373 
374 /**
375  * input_grab_device - grabs device for exclusive use
376  * @handle: input handle that wants to own the device
377  *
378  * When a device is grabbed by an input handle all events generated by
379  * the device are delivered only to this handle. Also events injected
380  * by other input handles are ignored while device is grabbed.
381  */
382 int input_grab_device(struct input_handle *handle)
383 {
384 	struct input_dev *dev = handle->dev;
385 	int retval;
386 
387 	retval = mutex_lock_interruptible(&dev->mutex);
388 	if (retval)
389 		return retval;
390 
391 	if (dev->grab) {
392 		retval = -EBUSY;
393 		goto out;
394 	}
395 
396 	rcu_assign_pointer(dev->grab, handle);
397 	synchronize_rcu();
398 
399  out:
400 	mutex_unlock(&dev->mutex);
401 	return retval;
402 }
403 EXPORT_SYMBOL(input_grab_device);
404 
405 static void __input_release_device(struct input_handle *handle)
406 {
407 	struct input_dev *dev = handle->dev;
408 
409 	if (dev->grab == handle) {
410 		rcu_assign_pointer(dev->grab, NULL);
411 		/* Make sure input_pass_event() notices that grab is gone */
412 		synchronize_rcu();
413 
414 		list_for_each_entry(handle, &dev->h_list, d_node)
415 			if (handle->open && handle->handler->start)
416 				handle->handler->start(handle);
417 	}
418 }
419 
420 /**
421  * input_release_device - release previously grabbed device
422  * @handle: input handle that owns the device
423  *
424  * Releases previously grabbed device so that other input handles can
425  * start receiving input events. Upon release all handlers attached
426  * to the device have their start() method called so they have a change
427  * to synchronize device state with the rest of the system.
428  */
429 void input_release_device(struct input_handle *handle)
430 {
431 	struct input_dev *dev = handle->dev;
432 
433 	mutex_lock(&dev->mutex);
434 	__input_release_device(handle);
435 	mutex_unlock(&dev->mutex);
436 }
437 EXPORT_SYMBOL(input_release_device);
438 
439 /**
440  * input_open_device - open input device
441  * @handle: handle through which device is being accessed
442  *
443  * This function should be called by input handlers when they
444  * want to start receive events from given input device.
445  */
446 int input_open_device(struct input_handle *handle)
447 {
448 	struct input_dev *dev = handle->dev;
449 	int retval;
450 
451 	retval = mutex_lock_interruptible(&dev->mutex);
452 	if (retval)
453 		return retval;
454 
455 	if (dev->going_away) {
456 		retval = -ENODEV;
457 		goto out;
458 	}
459 
460 	handle->open++;
461 
462 	if (!dev->users++ && dev->open)
463 		retval = dev->open(dev);
464 
465 	if (retval) {
466 		dev->users--;
467 		if (!--handle->open) {
468 			/*
469 			 * Make sure we are not delivering any more events
470 			 * through this handle
471 			 */
472 			synchronize_rcu();
473 		}
474 	}
475 
476  out:
477 	mutex_unlock(&dev->mutex);
478 	return retval;
479 }
480 EXPORT_SYMBOL(input_open_device);
481 
482 int input_flush_device(struct input_handle *handle, struct file *file)
483 {
484 	struct input_dev *dev = handle->dev;
485 	int retval;
486 
487 	retval = mutex_lock_interruptible(&dev->mutex);
488 	if (retval)
489 		return retval;
490 
491 	if (dev->flush)
492 		retval = dev->flush(dev, file);
493 
494 	mutex_unlock(&dev->mutex);
495 	return retval;
496 }
497 EXPORT_SYMBOL(input_flush_device);
498 
499 /**
500  * input_close_device - close input device
501  * @handle: handle through which device is being accessed
502  *
503  * This function should be called by input handlers when they
504  * want to stop receive events from given input device.
505  */
506 void input_close_device(struct input_handle *handle)
507 {
508 	struct input_dev *dev = handle->dev;
509 
510 	mutex_lock(&dev->mutex);
511 
512 	__input_release_device(handle);
513 
514 	if (!--dev->users && dev->close)
515 		dev->close(dev);
516 
517 	if (!--handle->open) {
518 		/*
519 		 * synchronize_rcu() makes sure that input_pass_event()
520 		 * completed and that no more input events are delivered
521 		 * through this handle
522 		 */
523 		synchronize_rcu();
524 	}
525 
526 	mutex_unlock(&dev->mutex);
527 }
528 EXPORT_SYMBOL(input_close_device);
529 
530 /*
531  * Prepare device for unregistering
532  */
533 static void input_disconnect_device(struct input_dev *dev)
534 {
535 	struct input_handle *handle;
536 	int code;
537 
538 	/*
539 	 * Mark device as going away. Note that we take dev->mutex here
540 	 * not to protect access to dev->going_away but rather to ensure
541 	 * that there are no threads in the middle of input_open_device()
542 	 */
543 	mutex_lock(&dev->mutex);
544 	dev->going_away = true;
545 	mutex_unlock(&dev->mutex);
546 
547 	spin_lock_irq(&dev->event_lock);
548 
549 	/*
550 	 * Simulate keyup events for all pressed keys so that handlers
551 	 * are not left with "stuck" keys. The driver may continue
552 	 * generate events even after we done here but they will not
553 	 * reach any handlers.
554 	 */
555 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
556 		for (code = 0; code <= KEY_MAX; code++) {
557 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
558 			    __test_and_clear_bit(code, dev->key)) {
559 				input_pass_event(dev, EV_KEY, code, 0);
560 			}
561 		}
562 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
563 	}
564 
565 	list_for_each_entry(handle, &dev->h_list, d_node)
566 		handle->open = 0;
567 
568 	spin_unlock_irq(&dev->event_lock);
569 }
570 
571 static int input_fetch_keycode(struct input_dev *dev, int scancode)
572 {
573 	switch (dev->keycodesize) {
574 		case 1:
575 			return ((u8 *)dev->keycode)[scancode];
576 
577 		case 2:
578 			return ((u16 *)dev->keycode)[scancode];
579 
580 		default:
581 			return ((u32 *)dev->keycode)[scancode];
582 	}
583 }
584 
585 static int input_default_getkeycode(struct input_dev *dev,
586 				    unsigned int scancode,
587 				    unsigned int *keycode)
588 {
589 	if (!dev->keycodesize)
590 		return -EINVAL;
591 
592 	if (scancode >= dev->keycodemax)
593 		return -EINVAL;
594 
595 	*keycode = input_fetch_keycode(dev, scancode);
596 
597 	return 0;
598 }
599 
600 static int input_default_setkeycode(struct input_dev *dev,
601 				    unsigned int scancode,
602 				    unsigned int keycode)
603 {
604 	int old_keycode;
605 	int i;
606 
607 	if (scancode >= dev->keycodemax)
608 		return -EINVAL;
609 
610 	if (!dev->keycodesize)
611 		return -EINVAL;
612 
613 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
614 		return -EINVAL;
615 
616 	switch (dev->keycodesize) {
617 		case 1: {
618 			u8 *k = (u8 *)dev->keycode;
619 			old_keycode = k[scancode];
620 			k[scancode] = keycode;
621 			break;
622 		}
623 		case 2: {
624 			u16 *k = (u16 *)dev->keycode;
625 			old_keycode = k[scancode];
626 			k[scancode] = keycode;
627 			break;
628 		}
629 		default: {
630 			u32 *k = (u32 *)dev->keycode;
631 			old_keycode = k[scancode];
632 			k[scancode] = keycode;
633 			break;
634 		}
635 	}
636 
637 	__clear_bit(old_keycode, dev->keybit);
638 	__set_bit(keycode, dev->keybit);
639 
640 	for (i = 0; i < dev->keycodemax; i++) {
641 		if (input_fetch_keycode(dev, i) == old_keycode) {
642 			__set_bit(old_keycode, dev->keybit);
643 			break; /* Setting the bit twice is useless, so break */
644 		}
645 	}
646 
647 	return 0;
648 }
649 
650 /**
651  * input_get_keycode - retrieve keycode currently mapped to a given scancode
652  * @dev: input device which keymap is being queried
653  * @scancode: scancode (or its equivalent for device in question) for which
654  *	keycode is needed
655  * @keycode: result
656  *
657  * This function should be called by anyone interested in retrieving current
658  * keymap. Presently keyboard and evdev handlers use it.
659  */
660 int input_get_keycode(struct input_dev *dev,
661 		      unsigned int scancode, unsigned int *keycode)
662 {
663 	unsigned long flags;
664 	int retval;
665 
666 	spin_lock_irqsave(&dev->event_lock, flags);
667 	retval = dev->getkeycode(dev, scancode, keycode);
668 	spin_unlock_irqrestore(&dev->event_lock, flags);
669 
670 	return retval;
671 }
672 EXPORT_SYMBOL(input_get_keycode);
673 
674 /**
675  * input_get_keycode - assign new keycode to a given scancode
676  * @dev: input device which keymap is being updated
677  * @scancode: scancode (or its equivalent for device in question)
678  * @keycode: new keycode to be assigned to the scancode
679  *
680  * This function should be called by anyone needing to update current
681  * keymap. Presently keyboard and evdev handlers use it.
682  */
683 int input_set_keycode(struct input_dev *dev,
684 		      unsigned int scancode, unsigned int keycode)
685 {
686 	unsigned long flags;
687 	int old_keycode;
688 	int retval;
689 
690 	if (keycode > KEY_MAX)
691 		return -EINVAL;
692 
693 	spin_lock_irqsave(&dev->event_lock, flags);
694 
695 	retval = dev->getkeycode(dev, scancode, &old_keycode);
696 	if (retval)
697 		goto out;
698 
699 	retval = dev->setkeycode(dev, scancode, keycode);
700 	if (retval)
701 		goto out;
702 
703 	/* Make sure KEY_RESERVED did not get enabled. */
704 	__clear_bit(KEY_RESERVED, dev->keybit);
705 
706 	/*
707 	 * Simulate keyup event if keycode is not present
708 	 * in the keymap anymore
709 	 */
710 	if (test_bit(EV_KEY, dev->evbit) &&
711 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
712 	    __test_and_clear_bit(old_keycode, dev->key)) {
713 
714 		input_pass_event(dev, EV_KEY, old_keycode, 0);
715 		if (dev->sync)
716 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
717 	}
718 
719  out:
720 	spin_unlock_irqrestore(&dev->event_lock, flags);
721 
722 	return retval;
723 }
724 EXPORT_SYMBOL(input_set_keycode);
725 
726 #define MATCH_BIT(bit, max) \
727 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
728 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
729 				break; \
730 		if (i != BITS_TO_LONGS(max)) \
731 			continue;
732 
733 static const struct input_device_id *input_match_device(struct input_handler *handler,
734 							struct input_dev *dev)
735 {
736 	const struct input_device_id *id;
737 	int i;
738 
739 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
740 
741 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
742 			if (id->bustype != dev->id.bustype)
743 				continue;
744 
745 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
746 			if (id->vendor != dev->id.vendor)
747 				continue;
748 
749 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
750 			if (id->product != dev->id.product)
751 				continue;
752 
753 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
754 			if (id->version != dev->id.version)
755 				continue;
756 
757 		MATCH_BIT(evbit,  EV_MAX);
758 		MATCH_BIT(keybit, KEY_MAX);
759 		MATCH_BIT(relbit, REL_MAX);
760 		MATCH_BIT(absbit, ABS_MAX);
761 		MATCH_BIT(mscbit, MSC_MAX);
762 		MATCH_BIT(ledbit, LED_MAX);
763 		MATCH_BIT(sndbit, SND_MAX);
764 		MATCH_BIT(ffbit,  FF_MAX);
765 		MATCH_BIT(swbit,  SW_MAX);
766 
767 		if (!handler->match || handler->match(handler, dev))
768 			return id;
769 	}
770 
771 	return NULL;
772 }
773 
774 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
775 {
776 	const struct input_device_id *id;
777 	int error;
778 
779 	id = input_match_device(handler, dev);
780 	if (!id)
781 		return -ENODEV;
782 
783 	error = handler->connect(handler, dev, id);
784 	if (error && error != -ENODEV)
785 		printk(KERN_ERR
786 			"input: failed to attach handler %s to device %s, "
787 			"error: %d\n",
788 			handler->name, kobject_name(&dev->dev.kobj), error);
789 
790 	return error;
791 }
792 
793 #ifdef CONFIG_COMPAT
794 
795 static int input_bits_to_string(char *buf, int buf_size,
796 				unsigned long bits, bool skip_empty)
797 {
798 	int len = 0;
799 
800 	if (INPUT_COMPAT_TEST) {
801 		u32 dword = bits >> 32;
802 		if (dword || !skip_empty)
803 			len += snprintf(buf, buf_size, "%x ", dword);
804 
805 		dword = bits & 0xffffffffUL;
806 		if (dword || !skip_empty || len)
807 			len += snprintf(buf + len, max(buf_size - len, 0),
808 					"%x", dword);
809 	} else {
810 		if (bits || !skip_empty)
811 			len += snprintf(buf, buf_size, "%lx", bits);
812 	}
813 
814 	return len;
815 }
816 
817 #else /* !CONFIG_COMPAT */
818 
819 static int input_bits_to_string(char *buf, int buf_size,
820 				unsigned long bits, bool skip_empty)
821 {
822 	return bits || !skip_empty ?
823 		snprintf(buf, buf_size, "%lx", bits) : 0;
824 }
825 
826 #endif
827 
828 #ifdef CONFIG_PROC_FS
829 
830 static struct proc_dir_entry *proc_bus_input_dir;
831 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
832 static int input_devices_state;
833 
834 static inline void input_wakeup_procfs_readers(void)
835 {
836 	input_devices_state++;
837 	wake_up(&input_devices_poll_wait);
838 }
839 
840 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
841 {
842 	poll_wait(file, &input_devices_poll_wait, wait);
843 	if (file->f_version != input_devices_state) {
844 		file->f_version = input_devices_state;
845 		return POLLIN | POLLRDNORM;
846 	}
847 
848 	return 0;
849 }
850 
851 union input_seq_state {
852 	struct {
853 		unsigned short pos;
854 		bool mutex_acquired;
855 	};
856 	void *p;
857 };
858 
859 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
860 {
861 	union input_seq_state *state = (union input_seq_state *)&seq->private;
862 	int error;
863 
864 	/* We need to fit into seq->private pointer */
865 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
866 
867 	error = mutex_lock_interruptible(&input_mutex);
868 	if (error) {
869 		state->mutex_acquired = false;
870 		return ERR_PTR(error);
871 	}
872 
873 	state->mutex_acquired = true;
874 
875 	return seq_list_start(&input_dev_list, *pos);
876 }
877 
878 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
879 {
880 	return seq_list_next(v, &input_dev_list, pos);
881 }
882 
883 static void input_seq_stop(struct seq_file *seq, void *v)
884 {
885 	union input_seq_state *state = (union input_seq_state *)&seq->private;
886 
887 	if (state->mutex_acquired)
888 		mutex_unlock(&input_mutex);
889 }
890 
891 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
892 				   unsigned long *bitmap, int max)
893 {
894 	int i;
895 	bool skip_empty = true;
896 	char buf[18];
897 
898 	seq_printf(seq, "B: %s=", name);
899 
900 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
901 		if (input_bits_to_string(buf, sizeof(buf),
902 					 bitmap[i], skip_empty)) {
903 			skip_empty = false;
904 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
905 		}
906 	}
907 
908 	/*
909 	 * If no output was produced print a single 0.
910 	 */
911 	if (skip_empty)
912 		seq_puts(seq, "0");
913 
914 	seq_putc(seq, '\n');
915 }
916 
917 static int input_devices_seq_show(struct seq_file *seq, void *v)
918 {
919 	struct input_dev *dev = container_of(v, struct input_dev, node);
920 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
921 	struct input_handle *handle;
922 
923 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
924 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
925 
926 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
927 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
928 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
929 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
930 	seq_printf(seq, "H: Handlers=");
931 
932 	list_for_each_entry(handle, &dev->h_list, d_node)
933 		seq_printf(seq, "%s ", handle->name);
934 	seq_putc(seq, '\n');
935 
936 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
937 	if (test_bit(EV_KEY, dev->evbit))
938 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
939 	if (test_bit(EV_REL, dev->evbit))
940 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
941 	if (test_bit(EV_ABS, dev->evbit))
942 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
943 	if (test_bit(EV_MSC, dev->evbit))
944 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
945 	if (test_bit(EV_LED, dev->evbit))
946 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
947 	if (test_bit(EV_SND, dev->evbit))
948 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
949 	if (test_bit(EV_FF, dev->evbit))
950 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
951 	if (test_bit(EV_SW, dev->evbit))
952 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
953 
954 	seq_putc(seq, '\n');
955 
956 	kfree(path);
957 	return 0;
958 }
959 
960 static const struct seq_operations input_devices_seq_ops = {
961 	.start	= input_devices_seq_start,
962 	.next	= input_devices_seq_next,
963 	.stop	= input_seq_stop,
964 	.show	= input_devices_seq_show,
965 };
966 
967 static int input_proc_devices_open(struct inode *inode, struct file *file)
968 {
969 	return seq_open(file, &input_devices_seq_ops);
970 }
971 
972 static const struct file_operations input_devices_fileops = {
973 	.owner		= THIS_MODULE,
974 	.open		= input_proc_devices_open,
975 	.poll		= input_proc_devices_poll,
976 	.read		= seq_read,
977 	.llseek		= seq_lseek,
978 	.release	= seq_release,
979 };
980 
981 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
982 {
983 	union input_seq_state *state = (union input_seq_state *)&seq->private;
984 	int error;
985 
986 	/* We need to fit into seq->private pointer */
987 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
988 
989 	error = mutex_lock_interruptible(&input_mutex);
990 	if (error) {
991 		state->mutex_acquired = false;
992 		return ERR_PTR(error);
993 	}
994 
995 	state->mutex_acquired = true;
996 	state->pos = *pos;
997 
998 	return seq_list_start(&input_handler_list, *pos);
999 }
1000 
1001 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1002 {
1003 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1004 
1005 	state->pos = *pos + 1;
1006 	return seq_list_next(v, &input_handler_list, pos);
1007 }
1008 
1009 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1010 {
1011 	struct input_handler *handler = container_of(v, struct input_handler, node);
1012 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1013 
1014 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1015 	if (handler->filter)
1016 		seq_puts(seq, " (filter)");
1017 	if (handler->fops)
1018 		seq_printf(seq, " Minor=%d", handler->minor);
1019 	seq_putc(seq, '\n');
1020 
1021 	return 0;
1022 }
1023 
1024 static const struct seq_operations input_handlers_seq_ops = {
1025 	.start	= input_handlers_seq_start,
1026 	.next	= input_handlers_seq_next,
1027 	.stop	= input_seq_stop,
1028 	.show	= input_handlers_seq_show,
1029 };
1030 
1031 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1032 {
1033 	return seq_open(file, &input_handlers_seq_ops);
1034 }
1035 
1036 static const struct file_operations input_handlers_fileops = {
1037 	.owner		= THIS_MODULE,
1038 	.open		= input_proc_handlers_open,
1039 	.read		= seq_read,
1040 	.llseek		= seq_lseek,
1041 	.release	= seq_release,
1042 };
1043 
1044 static int __init input_proc_init(void)
1045 {
1046 	struct proc_dir_entry *entry;
1047 
1048 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1049 	if (!proc_bus_input_dir)
1050 		return -ENOMEM;
1051 
1052 	entry = proc_create("devices", 0, proc_bus_input_dir,
1053 			    &input_devices_fileops);
1054 	if (!entry)
1055 		goto fail1;
1056 
1057 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1058 			    &input_handlers_fileops);
1059 	if (!entry)
1060 		goto fail2;
1061 
1062 	return 0;
1063 
1064  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1065  fail1: remove_proc_entry("bus/input", NULL);
1066 	return -ENOMEM;
1067 }
1068 
1069 static void input_proc_exit(void)
1070 {
1071 	remove_proc_entry("devices", proc_bus_input_dir);
1072 	remove_proc_entry("handlers", proc_bus_input_dir);
1073 	remove_proc_entry("bus/input", NULL);
1074 }
1075 
1076 #else /* !CONFIG_PROC_FS */
1077 static inline void input_wakeup_procfs_readers(void) { }
1078 static inline int input_proc_init(void) { return 0; }
1079 static inline void input_proc_exit(void) { }
1080 #endif
1081 
1082 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1083 static ssize_t input_dev_show_##name(struct device *dev,		\
1084 				     struct device_attribute *attr,	\
1085 				     char *buf)				\
1086 {									\
1087 	struct input_dev *input_dev = to_input_dev(dev);		\
1088 									\
1089 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1090 			 input_dev->name ? input_dev->name : "");	\
1091 }									\
1092 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1093 
1094 INPUT_DEV_STRING_ATTR_SHOW(name);
1095 INPUT_DEV_STRING_ATTR_SHOW(phys);
1096 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1097 
1098 static int input_print_modalias_bits(char *buf, int size,
1099 				     char name, unsigned long *bm,
1100 				     unsigned int min_bit, unsigned int max_bit)
1101 {
1102 	int len = 0, i;
1103 
1104 	len += snprintf(buf, max(size, 0), "%c", name);
1105 	for (i = min_bit; i < max_bit; i++)
1106 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1107 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1108 	return len;
1109 }
1110 
1111 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1112 				int add_cr)
1113 {
1114 	int len;
1115 
1116 	len = snprintf(buf, max(size, 0),
1117 		       "input:b%04Xv%04Xp%04Xe%04X-",
1118 		       id->id.bustype, id->id.vendor,
1119 		       id->id.product, id->id.version);
1120 
1121 	len += input_print_modalias_bits(buf + len, size - len,
1122 				'e', id->evbit, 0, EV_MAX);
1123 	len += input_print_modalias_bits(buf + len, size - len,
1124 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1125 	len += input_print_modalias_bits(buf + len, size - len,
1126 				'r', id->relbit, 0, REL_MAX);
1127 	len += input_print_modalias_bits(buf + len, size - len,
1128 				'a', id->absbit, 0, ABS_MAX);
1129 	len += input_print_modalias_bits(buf + len, size - len,
1130 				'm', id->mscbit, 0, MSC_MAX);
1131 	len += input_print_modalias_bits(buf + len, size - len,
1132 				'l', id->ledbit, 0, LED_MAX);
1133 	len += input_print_modalias_bits(buf + len, size - len,
1134 				's', id->sndbit, 0, SND_MAX);
1135 	len += input_print_modalias_bits(buf + len, size - len,
1136 				'f', id->ffbit, 0, FF_MAX);
1137 	len += input_print_modalias_bits(buf + len, size - len,
1138 				'w', id->swbit, 0, SW_MAX);
1139 
1140 	if (add_cr)
1141 		len += snprintf(buf + len, max(size - len, 0), "\n");
1142 
1143 	return len;
1144 }
1145 
1146 static ssize_t input_dev_show_modalias(struct device *dev,
1147 				       struct device_attribute *attr,
1148 				       char *buf)
1149 {
1150 	struct input_dev *id = to_input_dev(dev);
1151 	ssize_t len;
1152 
1153 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1154 
1155 	return min_t(int, len, PAGE_SIZE);
1156 }
1157 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1158 
1159 static struct attribute *input_dev_attrs[] = {
1160 	&dev_attr_name.attr,
1161 	&dev_attr_phys.attr,
1162 	&dev_attr_uniq.attr,
1163 	&dev_attr_modalias.attr,
1164 	NULL
1165 };
1166 
1167 static struct attribute_group input_dev_attr_group = {
1168 	.attrs	= input_dev_attrs,
1169 };
1170 
1171 #define INPUT_DEV_ID_ATTR(name)						\
1172 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1173 					struct device_attribute *attr,	\
1174 					char *buf)			\
1175 {									\
1176 	struct input_dev *input_dev = to_input_dev(dev);		\
1177 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1178 }									\
1179 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1180 
1181 INPUT_DEV_ID_ATTR(bustype);
1182 INPUT_DEV_ID_ATTR(vendor);
1183 INPUT_DEV_ID_ATTR(product);
1184 INPUT_DEV_ID_ATTR(version);
1185 
1186 static struct attribute *input_dev_id_attrs[] = {
1187 	&dev_attr_bustype.attr,
1188 	&dev_attr_vendor.attr,
1189 	&dev_attr_product.attr,
1190 	&dev_attr_version.attr,
1191 	NULL
1192 };
1193 
1194 static struct attribute_group input_dev_id_attr_group = {
1195 	.name	= "id",
1196 	.attrs	= input_dev_id_attrs,
1197 };
1198 
1199 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1200 			      int max, int add_cr)
1201 {
1202 	int i;
1203 	int len = 0;
1204 	bool skip_empty = true;
1205 
1206 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1207 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1208 					    bitmap[i], skip_empty);
1209 		if (len) {
1210 			skip_empty = false;
1211 			if (i > 0)
1212 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1213 		}
1214 	}
1215 
1216 	/*
1217 	 * If no output was produced print a single 0.
1218 	 */
1219 	if (len == 0)
1220 		len = snprintf(buf, buf_size, "%d", 0);
1221 
1222 	if (add_cr)
1223 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1224 
1225 	return len;
1226 }
1227 
1228 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1229 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1230 				       struct device_attribute *attr,	\
1231 				       char *buf)			\
1232 {									\
1233 	struct input_dev *input_dev = to_input_dev(dev);		\
1234 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1235 				     input_dev->bm##bit, ev##_MAX,	\
1236 				     true);				\
1237 	return min_t(int, len, PAGE_SIZE);				\
1238 }									\
1239 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1240 
1241 INPUT_DEV_CAP_ATTR(EV, ev);
1242 INPUT_DEV_CAP_ATTR(KEY, key);
1243 INPUT_DEV_CAP_ATTR(REL, rel);
1244 INPUT_DEV_CAP_ATTR(ABS, abs);
1245 INPUT_DEV_CAP_ATTR(MSC, msc);
1246 INPUT_DEV_CAP_ATTR(LED, led);
1247 INPUT_DEV_CAP_ATTR(SND, snd);
1248 INPUT_DEV_CAP_ATTR(FF, ff);
1249 INPUT_DEV_CAP_ATTR(SW, sw);
1250 
1251 static struct attribute *input_dev_caps_attrs[] = {
1252 	&dev_attr_ev.attr,
1253 	&dev_attr_key.attr,
1254 	&dev_attr_rel.attr,
1255 	&dev_attr_abs.attr,
1256 	&dev_attr_msc.attr,
1257 	&dev_attr_led.attr,
1258 	&dev_attr_snd.attr,
1259 	&dev_attr_ff.attr,
1260 	&dev_attr_sw.attr,
1261 	NULL
1262 };
1263 
1264 static struct attribute_group input_dev_caps_attr_group = {
1265 	.name	= "capabilities",
1266 	.attrs	= input_dev_caps_attrs,
1267 };
1268 
1269 static const struct attribute_group *input_dev_attr_groups[] = {
1270 	&input_dev_attr_group,
1271 	&input_dev_id_attr_group,
1272 	&input_dev_caps_attr_group,
1273 	NULL
1274 };
1275 
1276 static void input_dev_release(struct device *device)
1277 {
1278 	struct input_dev *dev = to_input_dev(device);
1279 
1280 	input_ff_destroy(dev);
1281 	kfree(dev);
1282 
1283 	module_put(THIS_MODULE);
1284 }
1285 
1286 /*
1287  * Input uevent interface - loading event handlers based on
1288  * device bitfields.
1289  */
1290 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1291 				   const char *name, unsigned long *bitmap, int max)
1292 {
1293 	int len;
1294 
1295 	if (add_uevent_var(env, "%s=", name))
1296 		return -ENOMEM;
1297 
1298 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1299 				 sizeof(env->buf) - env->buflen,
1300 				 bitmap, max, false);
1301 	if (len >= (sizeof(env->buf) - env->buflen))
1302 		return -ENOMEM;
1303 
1304 	env->buflen += len;
1305 	return 0;
1306 }
1307 
1308 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1309 					 struct input_dev *dev)
1310 {
1311 	int len;
1312 
1313 	if (add_uevent_var(env, "MODALIAS="))
1314 		return -ENOMEM;
1315 
1316 	len = input_print_modalias(&env->buf[env->buflen - 1],
1317 				   sizeof(env->buf) - env->buflen,
1318 				   dev, 0);
1319 	if (len >= (sizeof(env->buf) - env->buflen))
1320 		return -ENOMEM;
1321 
1322 	env->buflen += len;
1323 	return 0;
1324 }
1325 
1326 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1327 	do {								\
1328 		int err = add_uevent_var(env, fmt, val);		\
1329 		if (err)						\
1330 			return err;					\
1331 	} while (0)
1332 
1333 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1334 	do {								\
1335 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1336 		if (err)						\
1337 			return err;					\
1338 	} while (0)
1339 
1340 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1341 	do {								\
1342 		int err = input_add_uevent_modalias_var(env, dev);	\
1343 		if (err)						\
1344 			return err;					\
1345 	} while (0)
1346 
1347 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1348 {
1349 	struct input_dev *dev = to_input_dev(device);
1350 
1351 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1352 				dev->id.bustype, dev->id.vendor,
1353 				dev->id.product, dev->id.version);
1354 	if (dev->name)
1355 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1356 	if (dev->phys)
1357 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1358 	if (dev->uniq)
1359 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1360 
1361 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1362 	if (test_bit(EV_KEY, dev->evbit))
1363 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1364 	if (test_bit(EV_REL, dev->evbit))
1365 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1366 	if (test_bit(EV_ABS, dev->evbit))
1367 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1368 	if (test_bit(EV_MSC, dev->evbit))
1369 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1370 	if (test_bit(EV_LED, dev->evbit))
1371 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1372 	if (test_bit(EV_SND, dev->evbit))
1373 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1374 	if (test_bit(EV_FF, dev->evbit))
1375 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1376 	if (test_bit(EV_SW, dev->evbit))
1377 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1378 
1379 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1380 
1381 	return 0;
1382 }
1383 
1384 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1385 	do {								\
1386 		int i;							\
1387 		bool active;						\
1388 									\
1389 		if (!test_bit(EV_##type, dev->evbit))			\
1390 			break;						\
1391 									\
1392 		for (i = 0; i < type##_MAX; i++) {			\
1393 			if (!test_bit(i, dev->bits##bit))		\
1394 				continue;				\
1395 									\
1396 			active = test_bit(i, dev->bits);		\
1397 			if (!active && !on)				\
1398 				continue;				\
1399 									\
1400 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1401 		}							\
1402 	} while (0)
1403 
1404 #ifdef CONFIG_PM
1405 static void input_dev_reset(struct input_dev *dev, bool activate)
1406 {
1407 	if (!dev->event)
1408 		return;
1409 
1410 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1411 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1412 
1413 	if (activate && test_bit(EV_REP, dev->evbit)) {
1414 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1415 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1416 	}
1417 }
1418 
1419 static int input_dev_suspend(struct device *dev)
1420 {
1421 	struct input_dev *input_dev = to_input_dev(dev);
1422 
1423 	mutex_lock(&input_dev->mutex);
1424 	input_dev_reset(input_dev, false);
1425 	mutex_unlock(&input_dev->mutex);
1426 
1427 	return 0;
1428 }
1429 
1430 static int input_dev_resume(struct device *dev)
1431 {
1432 	struct input_dev *input_dev = to_input_dev(dev);
1433 
1434 	mutex_lock(&input_dev->mutex);
1435 	input_dev_reset(input_dev, true);
1436 	mutex_unlock(&input_dev->mutex);
1437 
1438 	return 0;
1439 }
1440 
1441 static const struct dev_pm_ops input_dev_pm_ops = {
1442 	.suspend	= input_dev_suspend,
1443 	.resume		= input_dev_resume,
1444 	.poweroff	= input_dev_suspend,
1445 	.restore	= input_dev_resume,
1446 };
1447 #endif /* CONFIG_PM */
1448 
1449 static struct device_type input_dev_type = {
1450 	.groups		= input_dev_attr_groups,
1451 	.release	= input_dev_release,
1452 	.uevent		= input_dev_uevent,
1453 #ifdef CONFIG_PM
1454 	.pm		= &input_dev_pm_ops,
1455 #endif
1456 };
1457 
1458 static char *input_devnode(struct device *dev, mode_t *mode)
1459 {
1460 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1461 }
1462 
1463 struct class input_class = {
1464 	.name		= "input",
1465 	.devnode	= input_devnode,
1466 };
1467 EXPORT_SYMBOL_GPL(input_class);
1468 
1469 /**
1470  * input_allocate_device - allocate memory for new input device
1471  *
1472  * Returns prepared struct input_dev or NULL.
1473  *
1474  * NOTE: Use input_free_device() to free devices that have not been
1475  * registered; input_unregister_device() should be used for already
1476  * registered devices.
1477  */
1478 struct input_dev *input_allocate_device(void)
1479 {
1480 	struct input_dev *dev;
1481 
1482 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1483 	if (dev) {
1484 		dev->dev.type = &input_dev_type;
1485 		dev->dev.class = &input_class;
1486 		device_initialize(&dev->dev);
1487 		mutex_init(&dev->mutex);
1488 		spin_lock_init(&dev->event_lock);
1489 		INIT_LIST_HEAD(&dev->h_list);
1490 		INIT_LIST_HEAD(&dev->node);
1491 
1492 		__module_get(THIS_MODULE);
1493 	}
1494 
1495 	return dev;
1496 }
1497 EXPORT_SYMBOL(input_allocate_device);
1498 
1499 /**
1500  * input_free_device - free memory occupied by input_dev structure
1501  * @dev: input device to free
1502  *
1503  * This function should only be used if input_register_device()
1504  * was not called yet or if it failed. Once device was registered
1505  * use input_unregister_device() and memory will be freed once last
1506  * reference to the device is dropped.
1507  *
1508  * Device should be allocated by input_allocate_device().
1509  *
1510  * NOTE: If there are references to the input device then memory
1511  * will not be freed until last reference is dropped.
1512  */
1513 void input_free_device(struct input_dev *dev)
1514 {
1515 	if (dev)
1516 		input_put_device(dev);
1517 }
1518 EXPORT_SYMBOL(input_free_device);
1519 
1520 /**
1521  * input_set_capability - mark device as capable of a certain event
1522  * @dev: device that is capable of emitting or accepting event
1523  * @type: type of the event (EV_KEY, EV_REL, etc...)
1524  * @code: event code
1525  *
1526  * In addition to setting up corresponding bit in appropriate capability
1527  * bitmap the function also adjusts dev->evbit.
1528  */
1529 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1530 {
1531 	switch (type) {
1532 	case EV_KEY:
1533 		__set_bit(code, dev->keybit);
1534 		break;
1535 
1536 	case EV_REL:
1537 		__set_bit(code, dev->relbit);
1538 		break;
1539 
1540 	case EV_ABS:
1541 		__set_bit(code, dev->absbit);
1542 		break;
1543 
1544 	case EV_MSC:
1545 		__set_bit(code, dev->mscbit);
1546 		break;
1547 
1548 	case EV_SW:
1549 		__set_bit(code, dev->swbit);
1550 		break;
1551 
1552 	case EV_LED:
1553 		__set_bit(code, dev->ledbit);
1554 		break;
1555 
1556 	case EV_SND:
1557 		__set_bit(code, dev->sndbit);
1558 		break;
1559 
1560 	case EV_FF:
1561 		__set_bit(code, dev->ffbit);
1562 		break;
1563 
1564 	case EV_PWR:
1565 		/* do nothing */
1566 		break;
1567 
1568 	default:
1569 		printk(KERN_ERR
1570 			"input_set_capability: unknown type %u (code %u)\n",
1571 			type, code);
1572 		dump_stack();
1573 		return;
1574 	}
1575 
1576 	__set_bit(type, dev->evbit);
1577 }
1578 EXPORT_SYMBOL(input_set_capability);
1579 
1580 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1581 	do {								\
1582 		if (!test_bit(EV_##type, dev->evbit))			\
1583 			memset(dev->bits##bit, 0,			\
1584 				sizeof(dev->bits##bit));		\
1585 	} while (0)
1586 
1587 static void input_cleanse_bitmasks(struct input_dev *dev)
1588 {
1589 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1590 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1591 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1592 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1593 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1594 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1595 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1596 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1597 }
1598 
1599 /**
1600  * input_register_device - register device with input core
1601  * @dev: device to be registered
1602  *
1603  * This function registers device with input core. The device must be
1604  * allocated with input_allocate_device() and all it's capabilities
1605  * set up before registering.
1606  * If function fails the device must be freed with input_free_device().
1607  * Once device has been successfully registered it can be unregistered
1608  * with input_unregister_device(); input_free_device() should not be
1609  * called in this case.
1610  */
1611 int input_register_device(struct input_dev *dev)
1612 {
1613 	static atomic_t input_no = ATOMIC_INIT(0);
1614 	struct input_handler *handler;
1615 	const char *path;
1616 	int error;
1617 
1618 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1619 	__set_bit(EV_SYN, dev->evbit);
1620 
1621 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1622 	__clear_bit(KEY_RESERVED, dev->keybit);
1623 
1624 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1625 	input_cleanse_bitmasks(dev);
1626 
1627 	/*
1628 	 * If delay and period are pre-set by the driver, then autorepeating
1629 	 * is handled by the driver itself and we don't do it in input.c.
1630 	 */
1631 	init_timer(&dev->timer);
1632 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1633 		dev->timer.data = (long) dev;
1634 		dev->timer.function = input_repeat_key;
1635 		dev->rep[REP_DELAY] = 250;
1636 		dev->rep[REP_PERIOD] = 33;
1637 	}
1638 
1639 	if (!dev->getkeycode)
1640 		dev->getkeycode = input_default_getkeycode;
1641 
1642 	if (!dev->setkeycode)
1643 		dev->setkeycode = input_default_setkeycode;
1644 
1645 	dev_set_name(&dev->dev, "input%ld",
1646 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1647 
1648 	error = device_add(&dev->dev);
1649 	if (error)
1650 		return error;
1651 
1652 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1653 	printk(KERN_INFO "input: %s as %s\n",
1654 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1655 	kfree(path);
1656 
1657 	error = mutex_lock_interruptible(&input_mutex);
1658 	if (error) {
1659 		device_del(&dev->dev);
1660 		return error;
1661 	}
1662 
1663 	list_add_tail(&dev->node, &input_dev_list);
1664 
1665 	list_for_each_entry(handler, &input_handler_list, node)
1666 		input_attach_handler(dev, handler);
1667 
1668 	input_wakeup_procfs_readers();
1669 
1670 	mutex_unlock(&input_mutex);
1671 
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL(input_register_device);
1675 
1676 /**
1677  * input_unregister_device - unregister previously registered device
1678  * @dev: device to be unregistered
1679  *
1680  * This function unregisters an input device. Once device is unregistered
1681  * the caller should not try to access it as it may get freed at any moment.
1682  */
1683 void input_unregister_device(struct input_dev *dev)
1684 {
1685 	struct input_handle *handle, *next;
1686 
1687 	input_disconnect_device(dev);
1688 
1689 	mutex_lock(&input_mutex);
1690 
1691 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1692 		handle->handler->disconnect(handle);
1693 	WARN_ON(!list_empty(&dev->h_list));
1694 
1695 	del_timer_sync(&dev->timer);
1696 	list_del_init(&dev->node);
1697 
1698 	input_wakeup_procfs_readers();
1699 
1700 	mutex_unlock(&input_mutex);
1701 
1702 	device_unregister(&dev->dev);
1703 }
1704 EXPORT_SYMBOL(input_unregister_device);
1705 
1706 /**
1707  * input_register_handler - register a new input handler
1708  * @handler: handler to be registered
1709  *
1710  * This function registers a new input handler (interface) for input
1711  * devices in the system and attaches it to all input devices that
1712  * are compatible with the handler.
1713  */
1714 int input_register_handler(struct input_handler *handler)
1715 {
1716 	struct input_dev *dev;
1717 	int retval;
1718 
1719 	retval = mutex_lock_interruptible(&input_mutex);
1720 	if (retval)
1721 		return retval;
1722 
1723 	INIT_LIST_HEAD(&handler->h_list);
1724 
1725 	if (handler->fops != NULL) {
1726 		if (input_table[handler->minor >> 5]) {
1727 			retval = -EBUSY;
1728 			goto out;
1729 		}
1730 		input_table[handler->minor >> 5] = handler;
1731 	}
1732 
1733 	list_add_tail(&handler->node, &input_handler_list);
1734 
1735 	list_for_each_entry(dev, &input_dev_list, node)
1736 		input_attach_handler(dev, handler);
1737 
1738 	input_wakeup_procfs_readers();
1739 
1740  out:
1741 	mutex_unlock(&input_mutex);
1742 	return retval;
1743 }
1744 EXPORT_SYMBOL(input_register_handler);
1745 
1746 /**
1747  * input_unregister_handler - unregisters an input handler
1748  * @handler: handler to be unregistered
1749  *
1750  * This function disconnects a handler from its input devices and
1751  * removes it from lists of known handlers.
1752  */
1753 void input_unregister_handler(struct input_handler *handler)
1754 {
1755 	struct input_handle *handle, *next;
1756 
1757 	mutex_lock(&input_mutex);
1758 
1759 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1760 		handler->disconnect(handle);
1761 	WARN_ON(!list_empty(&handler->h_list));
1762 
1763 	list_del_init(&handler->node);
1764 
1765 	if (handler->fops != NULL)
1766 		input_table[handler->minor >> 5] = NULL;
1767 
1768 	input_wakeup_procfs_readers();
1769 
1770 	mutex_unlock(&input_mutex);
1771 }
1772 EXPORT_SYMBOL(input_unregister_handler);
1773 
1774 /**
1775  * input_handler_for_each_handle - handle iterator
1776  * @handler: input handler to iterate
1777  * @data: data for the callback
1778  * @fn: function to be called for each handle
1779  *
1780  * Iterate over @bus's list of devices, and call @fn for each, passing
1781  * it @data and stop when @fn returns a non-zero value. The function is
1782  * using RCU to traverse the list and therefore may be usind in atonic
1783  * contexts. The @fn callback is invoked from RCU critical section and
1784  * thus must not sleep.
1785  */
1786 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1787 				  int (*fn)(struct input_handle *, void *))
1788 {
1789 	struct input_handle *handle;
1790 	int retval = 0;
1791 
1792 	rcu_read_lock();
1793 
1794 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1795 		retval = fn(handle, data);
1796 		if (retval)
1797 			break;
1798 	}
1799 
1800 	rcu_read_unlock();
1801 
1802 	return retval;
1803 }
1804 EXPORT_SYMBOL(input_handler_for_each_handle);
1805 
1806 /**
1807  * input_register_handle - register a new input handle
1808  * @handle: handle to register
1809  *
1810  * This function puts a new input handle onto device's
1811  * and handler's lists so that events can flow through
1812  * it once it is opened using input_open_device().
1813  *
1814  * This function is supposed to be called from handler's
1815  * connect() method.
1816  */
1817 int input_register_handle(struct input_handle *handle)
1818 {
1819 	struct input_handler *handler = handle->handler;
1820 	struct input_dev *dev = handle->dev;
1821 	int error;
1822 
1823 	/*
1824 	 * We take dev->mutex here to prevent race with
1825 	 * input_release_device().
1826 	 */
1827 	error = mutex_lock_interruptible(&dev->mutex);
1828 	if (error)
1829 		return error;
1830 
1831 	/*
1832 	 * Filters go to the head of the list, normal handlers
1833 	 * to the tail.
1834 	 */
1835 	if (handler->filter)
1836 		list_add_rcu(&handle->d_node, &dev->h_list);
1837 	else
1838 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
1839 
1840 	mutex_unlock(&dev->mutex);
1841 
1842 	/*
1843 	 * Since we are supposed to be called from ->connect()
1844 	 * which is mutually exclusive with ->disconnect()
1845 	 * we can't be racing with input_unregister_handle()
1846 	 * and so separate lock is not needed here.
1847 	 */
1848 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
1849 
1850 	if (handler->start)
1851 		handler->start(handle);
1852 
1853 	return 0;
1854 }
1855 EXPORT_SYMBOL(input_register_handle);
1856 
1857 /**
1858  * input_unregister_handle - unregister an input handle
1859  * @handle: handle to unregister
1860  *
1861  * This function removes input handle from device's
1862  * and handler's lists.
1863  *
1864  * This function is supposed to be called from handler's
1865  * disconnect() method.
1866  */
1867 void input_unregister_handle(struct input_handle *handle)
1868 {
1869 	struct input_dev *dev = handle->dev;
1870 
1871 	list_del_rcu(&handle->h_node);
1872 
1873 	/*
1874 	 * Take dev->mutex to prevent race with input_release_device().
1875 	 */
1876 	mutex_lock(&dev->mutex);
1877 	list_del_rcu(&handle->d_node);
1878 	mutex_unlock(&dev->mutex);
1879 
1880 	synchronize_rcu();
1881 }
1882 EXPORT_SYMBOL(input_unregister_handle);
1883 
1884 static int input_open_file(struct inode *inode, struct file *file)
1885 {
1886 	struct input_handler *handler;
1887 	const struct file_operations *old_fops, *new_fops = NULL;
1888 	int err;
1889 
1890 	err = mutex_lock_interruptible(&input_mutex);
1891 	if (err)
1892 		return err;
1893 
1894 	/* No load-on-demand here? */
1895 	handler = input_table[iminor(inode) >> 5];
1896 	if (handler)
1897 		new_fops = fops_get(handler->fops);
1898 
1899 	mutex_unlock(&input_mutex);
1900 
1901 	/*
1902 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1903 	 * not "no device". Oh, well...
1904 	 */
1905 	if (!new_fops || !new_fops->open) {
1906 		fops_put(new_fops);
1907 		err = -ENODEV;
1908 		goto out;
1909 	}
1910 
1911 	old_fops = file->f_op;
1912 	file->f_op = new_fops;
1913 
1914 	err = new_fops->open(inode, file);
1915 	if (err) {
1916 		fops_put(file->f_op);
1917 		file->f_op = fops_get(old_fops);
1918 	}
1919 	fops_put(old_fops);
1920 out:
1921 	return err;
1922 }
1923 
1924 static const struct file_operations input_fops = {
1925 	.owner = THIS_MODULE,
1926 	.open = input_open_file,
1927 };
1928 
1929 static void __init input_init_abs_bypass(void)
1930 {
1931 	const unsigned int *p;
1932 
1933 	for (p = input_abs_bypass_init_data; *p; p++)
1934 		input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1935 }
1936 
1937 static int __init input_init(void)
1938 {
1939 	int err;
1940 
1941 	input_init_abs_bypass();
1942 
1943 	err = class_register(&input_class);
1944 	if (err) {
1945 		printk(KERN_ERR "input: unable to register input_dev class\n");
1946 		return err;
1947 	}
1948 
1949 	err = input_proc_init();
1950 	if (err)
1951 		goto fail1;
1952 
1953 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1954 	if (err) {
1955 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1956 		goto fail2;
1957 	}
1958 
1959 	return 0;
1960 
1961  fail2:	input_proc_exit();
1962  fail1:	class_unregister(&input_class);
1963 	return err;
1964 }
1965 
1966 static void __exit input_exit(void)
1967 {
1968 	input_proc_exit();
1969 	unregister_chrdev(INPUT_MAJOR, "input");
1970 	class_unregister(&input_class);
1971 }
1972 
1973 subsys_initcall(input_init);
1974 module_exit(input_exit);
1975