xref: /linux/drivers/input/input.c (revision a17627ef8833ac30622a7b39b7be390e1b174405)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/interrupt.h>
21 #include <linux/poll.h>
22 #include <linux/device.h>
23 #include <linux/mutex.h>
24 
25 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
26 MODULE_DESCRIPTION("Input core");
27 MODULE_LICENSE("GPL");
28 
29 #define INPUT_DEVICES	256
30 
31 static LIST_HEAD(input_dev_list);
32 static LIST_HEAD(input_handler_list);
33 
34 static struct input_handler *input_table[8];
35 
36 /**
37  * input_event() - report new input event
38  * @dev: device that generated the event
39  * @type: type of the event
40  * @code: event code
41  * @value: value of the event
42  *
43  * This function should be used by drivers implementing various input devices
44  * See also input_inject_event()
45  */
46 void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
47 {
48 	struct input_handle *handle;
49 
50 	if (type > EV_MAX || !test_bit(type, dev->evbit))
51 		return;
52 
53 	add_input_randomness(type, code, value);
54 
55 	switch (type) {
56 
57 		case EV_SYN:
58 			switch (code) {
59 				case SYN_CONFIG:
60 					if (dev->event)
61 						dev->event(dev, type, code, value);
62 					break;
63 
64 				case SYN_REPORT:
65 					if (dev->sync)
66 						return;
67 					dev->sync = 1;
68 					break;
69 			}
70 			break;
71 
72 		case EV_KEY:
73 
74 			if (code > KEY_MAX || !test_bit(code, dev->keybit) || !!test_bit(code, dev->key) == value)
75 				return;
76 
77 			if (value == 2)
78 				break;
79 
80 			change_bit(code, dev->key);
81 
82 			if (test_bit(EV_REP, dev->evbit) && dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && dev->timer.data && value) {
83 				dev->repeat_key = code;
84 				mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
85 			}
86 
87 			break;
88 
89 		case EV_SW:
90 
91 			if (code > SW_MAX || !test_bit(code, dev->swbit) || !!test_bit(code, dev->sw) == value)
92 				return;
93 
94 			change_bit(code, dev->sw);
95 
96 			break;
97 
98 		case EV_ABS:
99 
100 			if (code > ABS_MAX || !test_bit(code, dev->absbit))
101 				return;
102 
103 			if (dev->absfuzz[code]) {
104 				if ((value > dev->abs[code] - (dev->absfuzz[code] >> 1)) &&
105 				    (value < dev->abs[code] + (dev->absfuzz[code] >> 1)))
106 					return;
107 
108 				if ((value > dev->abs[code] - dev->absfuzz[code]) &&
109 				    (value < dev->abs[code] + dev->absfuzz[code]))
110 					value = (dev->abs[code] * 3 + value) >> 2;
111 
112 				if ((value > dev->abs[code] - (dev->absfuzz[code] << 1)) &&
113 				    (value < dev->abs[code] + (dev->absfuzz[code] << 1)))
114 					value = (dev->abs[code] + value) >> 1;
115 			}
116 
117 			if (dev->abs[code] == value)
118 				return;
119 
120 			dev->abs[code] = value;
121 			break;
122 
123 		case EV_REL:
124 
125 			if (code > REL_MAX || !test_bit(code, dev->relbit) || (value == 0))
126 				return;
127 
128 			break;
129 
130 		case EV_MSC:
131 
132 			if (code > MSC_MAX || !test_bit(code, dev->mscbit))
133 				return;
134 
135 			if (dev->event)
136 				dev->event(dev, type, code, value);
137 
138 			break;
139 
140 		case EV_LED:
141 
142 			if (code > LED_MAX || !test_bit(code, dev->ledbit) || !!test_bit(code, dev->led) == value)
143 				return;
144 
145 			change_bit(code, dev->led);
146 
147 			if (dev->event)
148 				dev->event(dev, type, code, value);
149 
150 			break;
151 
152 		case EV_SND:
153 
154 			if (code > SND_MAX || !test_bit(code, dev->sndbit))
155 				return;
156 
157 			if (!!test_bit(code, dev->snd) != !!value)
158 				change_bit(code, dev->snd);
159 
160 			if (dev->event)
161 				dev->event(dev, type, code, value);
162 
163 			break;
164 
165 		case EV_REP:
166 
167 			if (code > REP_MAX || value < 0 || dev->rep[code] == value)
168 				return;
169 
170 			dev->rep[code] = value;
171 			if (dev->event)
172 				dev->event(dev, type, code, value);
173 
174 			break;
175 
176 		case EV_FF:
177 
178 			if (value < 0)
179 				return;
180 
181 			if (dev->event)
182 				dev->event(dev, type, code, value);
183 			break;
184 	}
185 
186 	if (type != EV_SYN)
187 		dev->sync = 0;
188 
189 	if (dev->grab)
190 		dev->grab->handler->event(dev->grab, type, code, value);
191 	else
192 		list_for_each_entry(handle, &dev->h_list, d_node)
193 			if (handle->open)
194 				handle->handler->event(handle, type, code, value);
195 }
196 EXPORT_SYMBOL(input_event);
197 
198 /**
199  * input_inject_event() - send input event from input handler
200  * @handle: input handle to send event through
201  * @type: type of the event
202  * @code: event code
203  * @value: value of the event
204  *
205  * Similar to input_event() but will ignore event if device is "grabbed" and handle
206  * injecting event is not the one that owns the device.
207  */
208 void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value)
209 {
210 	if (!handle->dev->grab || handle->dev->grab == handle)
211 		input_event(handle->dev, type, code, value);
212 }
213 EXPORT_SYMBOL(input_inject_event);
214 
215 static void input_repeat_key(unsigned long data)
216 {
217 	struct input_dev *dev = (void *) data;
218 
219 	if (!test_bit(dev->repeat_key, dev->key))
220 		return;
221 
222 	input_event(dev, EV_KEY, dev->repeat_key, 2);
223 	input_sync(dev);
224 
225 	if (dev->rep[REP_PERIOD])
226 		mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_PERIOD]));
227 }
228 
229 int input_grab_device(struct input_handle *handle)
230 {
231 	if (handle->dev->grab)
232 		return -EBUSY;
233 
234 	handle->dev->grab = handle;
235 	return 0;
236 }
237 EXPORT_SYMBOL(input_grab_device);
238 
239 void input_release_device(struct input_handle *handle)
240 {
241 	struct input_dev *dev = handle->dev;
242 
243 	if (dev->grab == handle) {
244 		dev->grab = NULL;
245 
246 		list_for_each_entry(handle, &dev->h_list, d_node)
247 			if (handle->handler->start)
248 				handle->handler->start(handle);
249 	}
250 }
251 EXPORT_SYMBOL(input_release_device);
252 
253 int input_open_device(struct input_handle *handle)
254 {
255 	struct input_dev *dev = handle->dev;
256 	int err;
257 
258 	err = mutex_lock_interruptible(&dev->mutex);
259 	if (err)
260 		return err;
261 
262 	handle->open++;
263 
264 	if (!dev->users++ && dev->open)
265 		err = dev->open(dev);
266 
267 	if (err)
268 		handle->open--;
269 
270 	mutex_unlock(&dev->mutex);
271 
272 	return err;
273 }
274 EXPORT_SYMBOL(input_open_device);
275 
276 int input_flush_device(struct input_handle* handle, struct file* file)
277 {
278 	if (handle->dev->flush)
279 		return handle->dev->flush(handle->dev, file);
280 
281 	return 0;
282 }
283 EXPORT_SYMBOL(input_flush_device);
284 
285 void input_close_device(struct input_handle *handle)
286 {
287 	struct input_dev *dev = handle->dev;
288 
289 	input_release_device(handle);
290 
291 	mutex_lock(&dev->mutex);
292 
293 	if (!--dev->users && dev->close)
294 		dev->close(dev);
295 	handle->open--;
296 
297 	mutex_unlock(&dev->mutex);
298 }
299 EXPORT_SYMBOL(input_close_device);
300 
301 static int input_fetch_keycode(struct input_dev *dev, int scancode)
302 {
303 	switch (dev->keycodesize) {
304 		case 1:
305 			return ((u8 *)dev->keycode)[scancode];
306 
307 		case 2:
308 			return ((u16 *)dev->keycode)[scancode];
309 
310 		default:
311 			return ((u32 *)dev->keycode)[scancode];
312 	}
313 }
314 
315 static int input_default_getkeycode(struct input_dev *dev,
316 				    int scancode, int *keycode)
317 {
318 	if (!dev->keycodesize)
319 		return -EINVAL;
320 
321 	if (scancode < 0 || scancode >= dev->keycodemax)
322 		return -EINVAL;
323 
324 	*keycode = input_fetch_keycode(dev, scancode);
325 
326 	return 0;
327 }
328 
329 static int input_default_setkeycode(struct input_dev *dev,
330 				    int scancode, int keycode)
331 {
332 	int old_keycode;
333 	int i;
334 
335 	if (scancode < 0 || scancode >= dev->keycodemax)
336 		return -EINVAL;
337 
338 	if (keycode < 0 || keycode > KEY_MAX)
339 		return -EINVAL;
340 
341 	if (!dev->keycodesize)
342 		return -EINVAL;
343 
344 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
345 		return -EINVAL;
346 
347 	switch (dev->keycodesize) {
348 		case 1: {
349 			u8 *k = (u8 *)dev->keycode;
350 			old_keycode = k[scancode];
351 			k[scancode] = keycode;
352 			break;
353 		}
354 		case 2: {
355 			u16 *k = (u16 *)dev->keycode;
356 			old_keycode = k[scancode];
357 			k[scancode] = keycode;
358 			break;
359 		}
360 		default: {
361 			u32 *k = (u32 *)dev->keycode;
362 			old_keycode = k[scancode];
363 			k[scancode] = keycode;
364 			break;
365 		}
366 	}
367 
368 	clear_bit(old_keycode, dev->keybit);
369 	set_bit(keycode, dev->keybit);
370 
371 	for (i = 0; i < dev->keycodemax; i++) {
372 		if (input_fetch_keycode(dev, i) == old_keycode) {
373 			set_bit(old_keycode, dev->keybit);
374 			break; /* Setting the bit twice is useless, so break */
375 		}
376 	}
377 
378 	return 0;
379 }
380 
381 
382 #define MATCH_BIT(bit, max) \
383 		for (i = 0; i < NBITS(max); i++) \
384 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
385 				break; \
386 		if (i != NBITS(max)) \
387 			continue;
388 
389 static const struct input_device_id *input_match_device(const struct input_device_id *id,
390 							struct input_dev *dev)
391 {
392 	int i;
393 
394 	for (; id->flags || id->driver_info; id++) {
395 
396 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
397 			if (id->bustype != dev->id.bustype)
398 				continue;
399 
400 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
401 			if (id->vendor != dev->id.vendor)
402 				continue;
403 
404 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
405 			if (id->product != dev->id.product)
406 				continue;
407 
408 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
409 			if (id->version != dev->id.version)
410 				continue;
411 
412 		MATCH_BIT(evbit,  EV_MAX);
413 		MATCH_BIT(keybit, KEY_MAX);
414 		MATCH_BIT(relbit, REL_MAX);
415 		MATCH_BIT(absbit, ABS_MAX);
416 		MATCH_BIT(mscbit, MSC_MAX);
417 		MATCH_BIT(ledbit, LED_MAX);
418 		MATCH_BIT(sndbit, SND_MAX);
419 		MATCH_BIT(ffbit,  FF_MAX);
420 		MATCH_BIT(swbit,  SW_MAX);
421 
422 		return id;
423 	}
424 
425 	return NULL;
426 }
427 
428 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
429 {
430 	const struct input_device_id *id;
431 	int error;
432 
433 	if (handler->blacklist && input_match_device(handler->blacklist, dev))
434 		return -ENODEV;
435 
436 	id = input_match_device(handler->id_table, dev);
437 	if (!id)
438 		return -ENODEV;
439 
440 	error = handler->connect(handler, dev, id);
441 	if (error && error != -ENODEV)
442 		printk(KERN_ERR
443 			"input: failed to attach handler %s to device %s, "
444 			"error: %d\n",
445 			handler->name, kobject_name(&dev->cdev.kobj), error);
446 
447 	return error;
448 }
449 
450 
451 #ifdef CONFIG_PROC_FS
452 
453 static struct proc_dir_entry *proc_bus_input_dir;
454 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
455 static int input_devices_state;
456 
457 static inline void input_wakeup_procfs_readers(void)
458 {
459 	input_devices_state++;
460 	wake_up(&input_devices_poll_wait);
461 }
462 
463 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
464 {
465 	int state = input_devices_state;
466 
467 	poll_wait(file, &input_devices_poll_wait, wait);
468 	if (state != input_devices_state)
469 		return POLLIN | POLLRDNORM;
470 
471 	return 0;
472 }
473 
474 static struct list_head *list_get_nth_element(struct list_head *list, loff_t *pos)
475 {
476 	struct list_head *node;
477 	loff_t i = 0;
478 
479 	list_for_each(node, list)
480 		if (i++ == *pos)
481 			return node;
482 
483 	return NULL;
484 }
485 
486 static struct list_head *list_get_next_element(struct list_head *list, struct list_head *element, loff_t *pos)
487 {
488 	if (element->next == list)
489 		return NULL;
490 
491 	++(*pos);
492 	return element->next;
493 }
494 
495 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
496 {
497 	/* acquire lock here ... Yes, we do need locking, I knowi, I know... */
498 
499 	return list_get_nth_element(&input_dev_list, pos);
500 }
501 
502 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
503 {
504 	return list_get_next_element(&input_dev_list, v, pos);
505 }
506 
507 static void input_devices_seq_stop(struct seq_file *seq, void *v)
508 {
509 	/* release lock here */
510 }
511 
512 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
513 				   unsigned long *bitmap, int max)
514 {
515 	int i;
516 
517 	for (i = NBITS(max) - 1; i > 0; i--)
518 		if (bitmap[i])
519 			break;
520 
521 	seq_printf(seq, "B: %s=", name);
522 	for (; i >= 0; i--)
523 		seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
524 	seq_putc(seq, '\n');
525 }
526 
527 static int input_devices_seq_show(struct seq_file *seq, void *v)
528 {
529 	struct input_dev *dev = container_of(v, struct input_dev, node);
530 	const char *path = kobject_get_path(&dev->cdev.kobj, GFP_KERNEL);
531 	struct input_handle *handle;
532 
533 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
534 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
535 
536 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
537 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
538 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
539 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
540 	seq_printf(seq, "H: Handlers=");
541 
542 	list_for_each_entry(handle, &dev->h_list, d_node)
543 		seq_printf(seq, "%s ", handle->name);
544 	seq_putc(seq, '\n');
545 
546 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
547 	if (test_bit(EV_KEY, dev->evbit))
548 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
549 	if (test_bit(EV_REL, dev->evbit))
550 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
551 	if (test_bit(EV_ABS, dev->evbit))
552 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
553 	if (test_bit(EV_MSC, dev->evbit))
554 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
555 	if (test_bit(EV_LED, dev->evbit))
556 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
557 	if (test_bit(EV_SND, dev->evbit))
558 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
559 	if (test_bit(EV_FF, dev->evbit))
560 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
561 	if (test_bit(EV_SW, dev->evbit))
562 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
563 
564 	seq_putc(seq, '\n');
565 
566 	kfree(path);
567 	return 0;
568 }
569 
570 static struct seq_operations input_devices_seq_ops = {
571 	.start	= input_devices_seq_start,
572 	.next	= input_devices_seq_next,
573 	.stop	= input_devices_seq_stop,
574 	.show	= input_devices_seq_show,
575 };
576 
577 static int input_proc_devices_open(struct inode *inode, struct file *file)
578 {
579 	return seq_open(file, &input_devices_seq_ops);
580 }
581 
582 static const struct file_operations input_devices_fileops = {
583 	.owner		= THIS_MODULE,
584 	.open		= input_proc_devices_open,
585 	.poll		= input_proc_devices_poll,
586 	.read		= seq_read,
587 	.llseek		= seq_lseek,
588 	.release	= seq_release,
589 };
590 
591 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
592 {
593 	/* acquire lock here ... Yes, we do need locking, I knowi, I know... */
594 	seq->private = (void *)(unsigned long)*pos;
595 	return list_get_nth_element(&input_handler_list, pos);
596 }
597 
598 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
599 {
600 	seq->private = (void *)(unsigned long)(*pos + 1);
601 	return list_get_next_element(&input_handler_list, v, pos);
602 }
603 
604 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
605 {
606 	/* release lock here */
607 }
608 
609 static int input_handlers_seq_show(struct seq_file *seq, void *v)
610 {
611 	struct input_handler *handler = container_of(v, struct input_handler, node);
612 
613 	seq_printf(seq, "N: Number=%ld Name=%s",
614 		   (unsigned long)seq->private, handler->name);
615 	if (handler->fops)
616 		seq_printf(seq, " Minor=%d", handler->minor);
617 	seq_putc(seq, '\n');
618 
619 	return 0;
620 }
621 static struct seq_operations input_handlers_seq_ops = {
622 	.start	= input_handlers_seq_start,
623 	.next	= input_handlers_seq_next,
624 	.stop	= input_handlers_seq_stop,
625 	.show	= input_handlers_seq_show,
626 };
627 
628 static int input_proc_handlers_open(struct inode *inode, struct file *file)
629 {
630 	return seq_open(file, &input_handlers_seq_ops);
631 }
632 
633 static const struct file_operations input_handlers_fileops = {
634 	.owner		= THIS_MODULE,
635 	.open		= input_proc_handlers_open,
636 	.read		= seq_read,
637 	.llseek		= seq_lseek,
638 	.release	= seq_release,
639 };
640 
641 static int __init input_proc_init(void)
642 {
643 	struct proc_dir_entry *entry;
644 
645 	proc_bus_input_dir = proc_mkdir("input", proc_bus);
646 	if (!proc_bus_input_dir)
647 		return -ENOMEM;
648 
649 	proc_bus_input_dir->owner = THIS_MODULE;
650 
651 	entry = create_proc_entry("devices", 0, proc_bus_input_dir);
652 	if (!entry)
653 		goto fail1;
654 
655 	entry->owner = THIS_MODULE;
656 	entry->proc_fops = &input_devices_fileops;
657 
658 	entry = create_proc_entry("handlers", 0, proc_bus_input_dir);
659 	if (!entry)
660 		goto fail2;
661 
662 	entry->owner = THIS_MODULE;
663 	entry->proc_fops = &input_handlers_fileops;
664 
665 	return 0;
666 
667  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
668  fail1: remove_proc_entry("input", proc_bus);
669 	return -ENOMEM;
670 }
671 
672 static void input_proc_exit(void)
673 {
674 	remove_proc_entry("devices", proc_bus_input_dir);
675 	remove_proc_entry("handlers", proc_bus_input_dir);
676 	remove_proc_entry("input", proc_bus);
677 }
678 
679 #else /* !CONFIG_PROC_FS */
680 static inline void input_wakeup_procfs_readers(void) { }
681 static inline int input_proc_init(void) { return 0; }
682 static inline void input_proc_exit(void) { }
683 #endif
684 
685 #define INPUT_DEV_STRING_ATTR_SHOW(name)					\
686 static ssize_t input_dev_show_##name(struct class_device *dev, char *buf)	\
687 {										\
688 	struct input_dev *input_dev = to_input_dev(dev);			\
689 										\
690 	return scnprintf(buf, PAGE_SIZE, "%s\n",				\
691 			 input_dev->name ? input_dev->name : "");		\
692 }										\
693 static CLASS_DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL);
694 
695 INPUT_DEV_STRING_ATTR_SHOW(name);
696 INPUT_DEV_STRING_ATTR_SHOW(phys);
697 INPUT_DEV_STRING_ATTR_SHOW(uniq);
698 
699 static int input_print_modalias_bits(char *buf, int size,
700 				     char name, unsigned long *bm,
701 				     unsigned int min_bit, unsigned int max_bit)
702 {
703 	int len = 0, i;
704 
705 	len += snprintf(buf, max(size, 0), "%c", name);
706 	for (i = min_bit; i < max_bit; i++)
707 		if (bm[LONG(i)] & BIT(i))
708 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
709 	return len;
710 }
711 
712 static int input_print_modalias(char *buf, int size, struct input_dev *id,
713 				int add_cr)
714 {
715 	int len;
716 
717 	len = snprintf(buf, max(size, 0),
718 		       "input:b%04Xv%04Xp%04Xe%04X-",
719 		       id->id.bustype, id->id.vendor,
720 		       id->id.product, id->id.version);
721 
722 	len += input_print_modalias_bits(buf + len, size - len,
723 				'e', id->evbit, 0, EV_MAX);
724 	len += input_print_modalias_bits(buf + len, size - len,
725 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
726 	len += input_print_modalias_bits(buf + len, size - len,
727 				'r', id->relbit, 0, REL_MAX);
728 	len += input_print_modalias_bits(buf + len, size - len,
729 				'a', id->absbit, 0, ABS_MAX);
730 	len += input_print_modalias_bits(buf + len, size - len,
731 				'm', id->mscbit, 0, MSC_MAX);
732 	len += input_print_modalias_bits(buf + len, size - len,
733 				'l', id->ledbit, 0, LED_MAX);
734 	len += input_print_modalias_bits(buf + len, size - len,
735 				's', id->sndbit, 0, SND_MAX);
736 	len += input_print_modalias_bits(buf + len, size - len,
737 				'f', id->ffbit, 0, FF_MAX);
738 	len += input_print_modalias_bits(buf + len, size - len,
739 				'w', id->swbit, 0, SW_MAX);
740 
741 	if (add_cr)
742 		len += snprintf(buf + len, max(size - len, 0), "\n");
743 
744 	return len;
745 }
746 
747 static ssize_t input_dev_show_modalias(struct class_device *dev, char *buf)
748 {
749 	struct input_dev *id = to_input_dev(dev);
750 	ssize_t len;
751 
752 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
753 
754 	return min_t(int, len, PAGE_SIZE);
755 }
756 static CLASS_DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
757 
758 static struct attribute *input_dev_attrs[] = {
759 	&class_device_attr_name.attr,
760 	&class_device_attr_phys.attr,
761 	&class_device_attr_uniq.attr,
762 	&class_device_attr_modalias.attr,
763 	NULL
764 };
765 
766 static struct attribute_group input_dev_attr_group = {
767 	.attrs	= input_dev_attrs,
768 };
769 
770 #define INPUT_DEV_ID_ATTR(name)							\
771 static ssize_t input_dev_show_id_##name(struct class_device *dev, char *buf)	\
772 {										\
773 	struct input_dev *input_dev = to_input_dev(dev);			\
774 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);		\
775 }										\
776 static CLASS_DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL);
777 
778 INPUT_DEV_ID_ATTR(bustype);
779 INPUT_DEV_ID_ATTR(vendor);
780 INPUT_DEV_ID_ATTR(product);
781 INPUT_DEV_ID_ATTR(version);
782 
783 static struct attribute *input_dev_id_attrs[] = {
784 	&class_device_attr_bustype.attr,
785 	&class_device_attr_vendor.attr,
786 	&class_device_attr_product.attr,
787 	&class_device_attr_version.attr,
788 	NULL
789 };
790 
791 static struct attribute_group input_dev_id_attr_group = {
792 	.name	= "id",
793 	.attrs	= input_dev_id_attrs,
794 };
795 
796 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
797 			      int max, int add_cr)
798 {
799 	int i;
800 	int len = 0;
801 
802 	for (i = NBITS(max) - 1; i > 0; i--)
803 		if (bitmap[i])
804 			break;
805 
806 	for (; i >= 0; i--)
807 		len += snprintf(buf + len, max(buf_size - len, 0),
808 				"%lx%s", bitmap[i], i > 0 ? " " : "");
809 
810 	if (add_cr)
811 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
812 
813 	return len;
814 }
815 
816 #define INPUT_DEV_CAP_ATTR(ev, bm)						\
817 static ssize_t input_dev_show_cap_##bm(struct class_device *dev, char *buf)	\
818 {										\
819 	struct input_dev *input_dev = to_input_dev(dev);			\
820 	int len = input_print_bitmap(buf, PAGE_SIZE,				\
821 				     input_dev->bm##bit, ev##_MAX, 1);		\
822 	return min_t(int, len, PAGE_SIZE);					\
823 }										\
824 static CLASS_DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL);
825 
826 INPUT_DEV_CAP_ATTR(EV, ev);
827 INPUT_DEV_CAP_ATTR(KEY, key);
828 INPUT_DEV_CAP_ATTR(REL, rel);
829 INPUT_DEV_CAP_ATTR(ABS, abs);
830 INPUT_DEV_CAP_ATTR(MSC, msc);
831 INPUT_DEV_CAP_ATTR(LED, led);
832 INPUT_DEV_CAP_ATTR(SND, snd);
833 INPUT_DEV_CAP_ATTR(FF, ff);
834 INPUT_DEV_CAP_ATTR(SW, sw);
835 
836 static struct attribute *input_dev_caps_attrs[] = {
837 	&class_device_attr_ev.attr,
838 	&class_device_attr_key.attr,
839 	&class_device_attr_rel.attr,
840 	&class_device_attr_abs.attr,
841 	&class_device_attr_msc.attr,
842 	&class_device_attr_led.attr,
843 	&class_device_attr_snd.attr,
844 	&class_device_attr_ff.attr,
845 	&class_device_attr_sw.attr,
846 	NULL
847 };
848 
849 static struct attribute_group input_dev_caps_attr_group = {
850 	.name	= "capabilities",
851 	.attrs	= input_dev_caps_attrs,
852 };
853 
854 static struct attribute_group *input_dev_attr_groups[] = {
855 	&input_dev_attr_group,
856 	&input_dev_id_attr_group,
857 	&input_dev_caps_attr_group,
858 	NULL
859 };
860 
861 static void input_dev_release(struct class_device *class_dev)
862 {
863 	struct input_dev *dev = to_input_dev(class_dev);
864 
865 	input_ff_destroy(dev);
866 	kfree(dev);
867 
868 	module_put(THIS_MODULE);
869 }
870 
871 /*
872  * Input uevent interface - loading event handlers based on
873  * device bitfields.
874  */
875 static int input_add_uevent_bm_var(char **envp, int num_envp, int *cur_index,
876 				   char *buffer, int buffer_size, int *cur_len,
877 				   const char *name, unsigned long *bitmap, int max)
878 {
879 	if (*cur_index >= num_envp - 1)
880 		return -ENOMEM;
881 
882 	envp[*cur_index] = buffer + *cur_len;
883 
884 	*cur_len += snprintf(buffer + *cur_len, max(buffer_size - *cur_len, 0), name);
885 	if (*cur_len >= buffer_size)
886 		return -ENOMEM;
887 
888 	*cur_len += input_print_bitmap(buffer + *cur_len,
889 					max(buffer_size - *cur_len, 0),
890 					bitmap, max, 0) + 1;
891 	if (*cur_len > buffer_size)
892 		return -ENOMEM;
893 
894 	(*cur_index)++;
895 	return 0;
896 }
897 
898 static int input_add_uevent_modalias_var(char **envp, int num_envp, int *cur_index,
899 					 char *buffer, int buffer_size, int *cur_len,
900 					 struct input_dev *dev)
901 {
902 	if (*cur_index >= num_envp - 1)
903 		return -ENOMEM;
904 
905 	envp[*cur_index] = buffer + *cur_len;
906 
907 	*cur_len += snprintf(buffer + *cur_len, max(buffer_size - *cur_len, 0),
908 			     "MODALIAS=");
909 	if (*cur_len >= buffer_size)
910 		return -ENOMEM;
911 
912 	*cur_len += input_print_modalias(buffer + *cur_len,
913 					 max(buffer_size - *cur_len, 0),
914 					 dev, 0) + 1;
915 	if (*cur_len > buffer_size)
916 		return -ENOMEM;
917 
918 	(*cur_index)++;
919 	return 0;
920 }
921 
922 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
923 	do {								\
924 		int err = add_uevent_var(envp, num_envp, &i,		\
925 					buffer, buffer_size, &len,	\
926 					fmt, val);			\
927 		if (err)						\
928 			return err;					\
929 	} while (0)
930 
931 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
932 	do {								\
933 		int err = input_add_uevent_bm_var(envp, num_envp, &i,	\
934 					buffer, buffer_size, &len,	\
935 					name, bm, max);			\
936 		if (err)						\
937 			return err;					\
938 	} while (0)
939 
940 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
941 	do {								\
942 		int err = input_add_uevent_modalias_var(envp,		\
943 					num_envp, &i,			\
944 					buffer, buffer_size, &len,	\
945 					dev);				\
946 		if (err)						\
947 			return err;					\
948 	} while (0)
949 
950 static int input_dev_uevent(struct class_device *cdev, char **envp,
951 			    int num_envp, char *buffer, int buffer_size)
952 {
953 	struct input_dev *dev = to_input_dev(cdev);
954 	int i = 0;
955 	int len = 0;
956 
957 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
958 				dev->id.bustype, dev->id.vendor,
959 				dev->id.product, dev->id.version);
960 	if (dev->name)
961 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
962 	if (dev->phys)
963 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
964 	if (dev->uniq)
965 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
966 
967 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
968 	if (test_bit(EV_KEY, dev->evbit))
969 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
970 	if (test_bit(EV_REL, dev->evbit))
971 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
972 	if (test_bit(EV_ABS, dev->evbit))
973 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
974 	if (test_bit(EV_MSC, dev->evbit))
975 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
976 	if (test_bit(EV_LED, dev->evbit))
977 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
978 	if (test_bit(EV_SND, dev->evbit))
979 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
980 	if (test_bit(EV_FF, dev->evbit))
981 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
982 	if (test_bit(EV_SW, dev->evbit))
983 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
984 
985 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
986 
987 	envp[i] = NULL;
988 	return 0;
989 }
990 
991 struct class input_class = {
992 	.name			= "input",
993 	.release		= input_dev_release,
994 	.uevent			= input_dev_uevent,
995 };
996 EXPORT_SYMBOL_GPL(input_class);
997 
998 /**
999  * input_allocate_device - allocate memory for new input device
1000  *
1001  * Returns prepared struct input_dev or NULL.
1002  *
1003  * NOTE: Use input_free_device() to free devices that have not been
1004  * registered; input_unregister_device() should be used for already
1005  * registered devices.
1006  */
1007 struct input_dev *input_allocate_device(void)
1008 {
1009 	struct input_dev *dev;
1010 
1011 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1012 	if (dev) {
1013 		dev->cdev.class = &input_class;
1014 		dev->cdev.groups = input_dev_attr_groups;
1015 		class_device_initialize(&dev->cdev);
1016 		mutex_init(&dev->mutex);
1017 		INIT_LIST_HEAD(&dev->h_list);
1018 		INIT_LIST_HEAD(&dev->node);
1019 
1020 		__module_get(THIS_MODULE);
1021 	}
1022 
1023 	return dev;
1024 }
1025 EXPORT_SYMBOL(input_allocate_device);
1026 
1027 /**
1028  * input_free_device - free memory occupied by input_dev structure
1029  * @dev: input device to free
1030  *
1031  * This function should only be used if input_register_device()
1032  * was not called yet or if it failed. Once device was registered
1033  * use input_unregister_device() and memory will be freed once last
1034  * refrence to the device is dropped.
1035  *
1036  * Device should be allocated by input_allocate_device().
1037  *
1038  * NOTE: If there are references to the input device then memory
1039  * will not be freed until last reference is dropped.
1040  */
1041 void input_free_device(struct input_dev *dev)
1042 {
1043 	if (dev)
1044 		input_put_device(dev);
1045 }
1046 EXPORT_SYMBOL(input_free_device);
1047 
1048 /**
1049  * input_set_capability - mark device as capable of a certain event
1050  * @dev: device that is capable of emitting or accepting event
1051  * @type: type of the event (EV_KEY, EV_REL, etc...)
1052  * @code: event code
1053  *
1054  * In addition to setting up corresponding bit in appropriate capability
1055  * bitmap the function also adjusts dev->evbit.
1056  */
1057 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1058 {
1059 	switch (type) {
1060 	case EV_KEY:
1061 		__set_bit(code, dev->keybit);
1062 		break;
1063 
1064 	case EV_REL:
1065 		__set_bit(code, dev->relbit);
1066 		break;
1067 
1068 	case EV_ABS:
1069 		__set_bit(code, dev->absbit);
1070 		break;
1071 
1072 	case EV_MSC:
1073 		__set_bit(code, dev->mscbit);
1074 		break;
1075 
1076 	case EV_SW:
1077 		__set_bit(code, dev->swbit);
1078 		break;
1079 
1080 	case EV_LED:
1081 		__set_bit(code, dev->ledbit);
1082 		break;
1083 
1084 	case EV_SND:
1085 		__set_bit(code, dev->sndbit);
1086 		break;
1087 
1088 	case EV_FF:
1089 		__set_bit(code, dev->ffbit);
1090 		break;
1091 
1092 	default:
1093 		printk(KERN_ERR
1094 			"input_set_capability: unknown type %u (code %u)\n",
1095 			type, code);
1096 		dump_stack();
1097 		return;
1098 	}
1099 
1100 	__set_bit(type, dev->evbit);
1101 }
1102 EXPORT_SYMBOL(input_set_capability);
1103 
1104 int input_register_device(struct input_dev *dev)
1105 {
1106 	static atomic_t input_no = ATOMIC_INIT(0);
1107 	struct input_handler *handler;
1108 	const char *path;
1109 	int error;
1110 
1111 	set_bit(EV_SYN, dev->evbit);
1112 
1113 	/*
1114 	 * If delay and period are pre-set by the driver, then autorepeating
1115 	 * is handled by the driver itself and we don't do it in input.c.
1116 	 */
1117 
1118 	init_timer(&dev->timer);
1119 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1120 		dev->timer.data = (long) dev;
1121 		dev->timer.function = input_repeat_key;
1122 		dev->rep[REP_DELAY] = 250;
1123 		dev->rep[REP_PERIOD] = 33;
1124 	}
1125 
1126 	if (!dev->getkeycode)
1127 		dev->getkeycode = input_default_getkeycode;
1128 
1129 	if (!dev->setkeycode)
1130 		dev->setkeycode = input_default_setkeycode;
1131 
1132 	list_add_tail(&dev->node, &input_dev_list);
1133 
1134 	snprintf(dev->cdev.class_id, sizeof(dev->cdev.class_id),
1135 		 "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
1136 
1137 	if (!dev->cdev.dev)
1138 		dev->cdev.dev = dev->dev.parent;
1139 
1140 	error = class_device_add(&dev->cdev);
1141 	if (error)
1142 		return error;
1143 
1144 	path = kobject_get_path(&dev->cdev.kobj, GFP_KERNEL);
1145 	printk(KERN_INFO "input: %s as %s\n",
1146 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1147 	kfree(path);
1148 
1149 	list_for_each_entry(handler, &input_handler_list, node)
1150 		input_attach_handler(dev, handler);
1151 
1152 	input_wakeup_procfs_readers();
1153 
1154 	return 0;
1155 }
1156 EXPORT_SYMBOL(input_register_device);
1157 
1158 void input_unregister_device(struct input_dev *dev)
1159 {
1160 	struct input_handle *handle, *next;
1161 	int code;
1162 
1163 	for (code = 0; code <= KEY_MAX; code++)
1164 		if (test_bit(code, dev->key))
1165 			input_report_key(dev, code, 0);
1166 	input_sync(dev);
1167 
1168 	del_timer_sync(&dev->timer);
1169 
1170 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1171 		handle->handler->disconnect(handle);
1172 	WARN_ON(!list_empty(&dev->h_list));
1173 
1174 	list_del_init(&dev->node);
1175 
1176 	class_device_unregister(&dev->cdev);
1177 
1178 	input_wakeup_procfs_readers();
1179 }
1180 EXPORT_SYMBOL(input_unregister_device);
1181 
1182 int input_register_handler(struct input_handler *handler)
1183 {
1184 	struct input_dev *dev;
1185 
1186 	INIT_LIST_HEAD(&handler->h_list);
1187 
1188 	if (handler->fops != NULL) {
1189 		if (input_table[handler->minor >> 5])
1190 			return -EBUSY;
1191 
1192 		input_table[handler->minor >> 5] = handler;
1193 	}
1194 
1195 	list_add_tail(&handler->node, &input_handler_list);
1196 
1197 	list_for_each_entry(dev, &input_dev_list, node)
1198 		input_attach_handler(dev, handler);
1199 
1200 	input_wakeup_procfs_readers();
1201 	return 0;
1202 }
1203 EXPORT_SYMBOL(input_register_handler);
1204 
1205 void input_unregister_handler(struct input_handler *handler)
1206 {
1207 	struct input_handle *handle, *next;
1208 
1209 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1210 		handler->disconnect(handle);
1211 	WARN_ON(!list_empty(&handler->h_list));
1212 
1213 	list_del_init(&handler->node);
1214 
1215 	if (handler->fops != NULL)
1216 		input_table[handler->minor >> 5] = NULL;
1217 
1218 	input_wakeup_procfs_readers();
1219 }
1220 EXPORT_SYMBOL(input_unregister_handler);
1221 
1222 int input_register_handle(struct input_handle *handle)
1223 {
1224 	struct input_handler *handler = handle->handler;
1225 
1226 	list_add_tail(&handle->d_node, &handle->dev->h_list);
1227 	list_add_tail(&handle->h_node, &handler->h_list);
1228 
1229 	if (handler->start)
1230 		handler->start(handle);
1231 
1232 	return 0;
1233 }
1234 EXPORT_SYMBOL(input_register_handle);
1235 
1236 void input_unregister_handle(struct input_handle *handle)
1237 {
1238 	list_del_init(&handle->h_node);
1239 	list_del_init(&handle->d_node);
1240 }
1241 EXPORT_SYMBOL(input_unregister_handle);
1242 
1243 static int input_open_file(struct inode *inode, struct file *file)
1244 {
1245 	struct input_handler *handler = input_table[iminor(inode) >> 5];
1246 	const struct file_operations *old_fops, *new_fops = NULL;
1247 	int err;
1248 
1249 	/* No load-on-demand here? */
1250 	if (!handler || !(new_fops = fops_get(handler->fops)))
1251 		return -ENODEV;
1252 
1253 	/*
1254 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1255 	 * not "no device". Oh, well...
1256 	 */
1257 	if (!new_fops->open) {
1258 		fops_put(new_fops);
1259 		return -ENODEV;
1260 	}
1261 	old_fops = file->f_op;
1262 	file->f_op = new_fops;
1263 
1264 	err = new_fops->open(inode, file);
1265 
1266 	if (err) {
1267 		fops_put(file->f_op);
1268 		file->f_op = fops_get(old_fops);
1269 	}
1270 	fops_put(old_fops);
1271 	return err;
1272 }
1273 
1274 static const struct file_operations input_fops = {
1275 	.owner = THIS_MODULE,
1276 	.open = input_open_file,
1277 };
1278 
1279 static int __init input_init(void)
1280 {
1281 	int err;
1282 
1283 	err = class_register(&input_class);
1284 	if (err) {
1285 		printk(KERN_ERR "input: unable to register input_dev class\n");
1286 		return err;
1287 	}
1288 
1289 	err = input_proc_init();
1290 	if (err)
1291 		goto fail1;
1292 
1293 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1294 	if (err) {
1295 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1296 		goto fail2;
1297 	}
1298 
1299 	return 0;
1300 
1301  fail2:	input_proc_exit();
1302  fail1:	class_unregister(&input_class);
1303 	return err;
1304 }
1305 
1306 static void __exit input_exit(void)
1307 {
1308 	input_proc_exit();
1309 	unregister_chrdev(INPUT_MAJOR, "input");
1310 	class_unregister(&input_class);
1311 }
1312 
1313 subsys_initcall(input_init);
1314 module_exit(input_exit);
1315