xref: /linux/drivers/input/input.c (revision 9fffa4e9b3b158f63334e603e610da7d529a0f9a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static const unsigned int input_max_code[EV_CNT] = {
54 	[EV_KEY] = KEY_MAX,
55 	[EV_REL] = REL_MAX,
56 	[EV_ABS] = ABS_MAX,
57 	[EV_MSC] = MSC_MAX,
58 	[EV_SW] = SW_MAX,
59 	[EV_LED] = LED_MAX,
60 	[EV_SND] = SND_MAX,
61 	[EV_FF] = FF_MAX,
62 };
63 
64 static inline int is_event_supported(unsigned int code,
65 				     unsigned long *bm, unsigned int max)
66 {
67 	return code <= max && test_bit(code, bm);
68 }
69 
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 	if (fuzz) {
73 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 			return old_val;
75 
76 		if (value > old_val - fuzz && value < old_val + fuzz)
77 			return (old_val * 3 + value) / 4;
78 
79 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 			return (old_val + value) / 2;
81 	}
82 
83 	return value;
84 }
85 
86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 	if (test_bit(EV_REP, dev->evbit) &&
89 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 	    dev->timer.function) {
91 		dev->repeat_key = code;
92 		mod_timer(&dev->timer,
93 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 	}
95 }
96 
97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 	del_timer(&dev->timer);
100 }
101 
102 /*
103  * Pass values first through all filters and then, if event has not been
104  * filtered out, through all open handles. This order is achieved by placing
105  * filters at the head of the list of handles attached to the device, and
106  * placing regular handles at the tail of the list.
107  *
108  * This function is called with dev->event_lock held and interrupts disabled.
109  */
110 static void input_pass_values(struct input_dev *dev,
111 			      struct input_value *vals, unsigned int count)
112 {
113 	struct input_handle *handle;
114 	struct input_value *v;
115 
116 	lockdep_assert_held(&dev->event_lock);
117 
118 	rcu_read_lock();
119 
120 	handle = rcu_dereference(dev->grab);
121 	if (handle) {
122 		count = handle->handler->events(handle, vals, count);
123 	} else {
124 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
125 			if (handle->open) {
126 				count = handle->handler->events(handle, vals,
127 								count);
128 				if (!count)
129 					break;
130 			}
131 	}
132 
133 	rcu_read_unlock();
134 
135 	/* trigger auto repeat for key events */
136 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 		for (v = vals; v != vals + count; v++) {
138 			if (v->type == EV_KEY && v->value != 2) {
139 				if (v->value)
140 					input_start_autorepeat(dev, v->code);
141 				else
142 					input_stop_autorepeat(dev);
143 			}
144 		}
145 	}
146 }
147 
148 #define INPUT_IGNORE_EVENT	0
149 #define INPUT_PASS_TO_HANDLERS	1
150 #define INPUT_PASS_TO_DEVICE	2
151 #define INPUT_SLOT		4
152 #define INPUT_FLUSH		8
153 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
154 
155 static int input_handle_abs_event(struct input_dev *dev,
156 				  unsigned int code, int *pval)
157 {
158 	struct input_mt *mt = dev->mt;
159 	bool is_new_slot = false;
160 	bool is_mt_event;
161 	int *pold;
162 
163 	if (code == ABS_MT_SLOT) {
164 		/*
165 		 * "Stage" the event; we'll flush it later, when we
166 		 * get actual touch data.
167 		 */
168 		if (mt && *pval >= 0 && *pval < mt->num_slots)
169 			mt->slot = *pval;
170 
171 		return INPUT_IGNORE_EVENT;
172 	}
173 
174 	is_mt_event = input_is_mt_value(code);
175 
176 	if (!is_mt_event) {
177 		pold = &dev->absinfo[code].value;
178 	} else if (mt) {
179 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
181 	} else {
182 		/*
183 		 * Bypass filtering for multi-touch events when
184 		 * not employing slots.
185 		 */
186 		pold = NULL;
187 	}
188 
189 	if (pold) {
190 		*pval = input_defuzz_abs_event(*pval, *pold,
191 						dev->absinfo[code].fuzz);
192 		if (*pold == *pval)
193 			return INPUT_IGNORE_EVENT;
194 
195 		*pold = *pval;
196 	}
197 
198 	/* Flush pending "slot" event */
199 	if (is_new_slot) {
200 		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
202 	}
203 
204 	return INPUT_PASS_TO_HANDLERS;
205 }
206 
207 static int input_get_disposition(struct input_dev *dev,
208 			  unsigned int type, unsigned int code, int *pval)
209 {
210 	int disposition = INPUT_IGNORE_EVENT;
211 	int value = *pval;
212 
213 	/* filter-out events from inhibited devices */
214 	if (dev->inhibited)
215 		return INPUT_IGNORE_EVENT;
216 
217 	switch (type) {
218 
219 	case EV_SYN:
220 		switch (code) {
221 		case SYN_CONFIG:
222 			disposition = INPUT_PASS_TO_ALL;
223 			break;
224 
225 		case SYN_REPORT:
226 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
227 			break;
228 		case SYN_MT_REPORT:
229 			disposition = INPUT_PASS_TO_HANDLERS;
230 			break;
231 		}
232 		break;
233 
234 	case EV_KEY:
235 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
236 
237 			/* auto-repeat bypasses state updates */
238 			if (value == 2) {
239 				disposition = INPUT_PASS_TO_HANDLERS;
240 				break;
241 			}
242 
243 			if (!!test_bit(code, dev->key) != !!value) {
244 
245 				__change_bit(code, dev->key);
246 				disposition = INPUT_PASS_TO_HANDLERS;
247 			}
248 		}
249 		break;
250 
251 	case EV_SW:
252 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 		    !!test_bit(code, dev->sw) != !!value) {
254 
255 			__change_bit(code, dev->sw);
256 			disposition = INPUT_PASS_TO_HANDLERS;
257 		}
258 		break;
259 
260 	case EV_ABS:
261 		if (is_event_supported(code, dev->absbit, ABS_MAX))
262 			disposition = input_handle_abs_event(dev, code, &value);
263 
264 		break;
265 
266 	case EV_REL:
267 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 			disposition = INPUT_PASS_TO_HANDLERS;
269 
270 		break;
271 
272 	case EV_MSC:
273 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 			disposition = INPUT_PASS_TO_ALL;
275 
276 		break;
277 
278 	case EV_LED:
279 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 		    !!test_bit(code, dev->led) != !!value) {
281 
282 			__change_bit(code, dev->led);
283 			disposition = INPUT_PASS_TO_ALL;
284 		}
285 		break;
286 
287 	case EV_SND:
288 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
289 
290 			if (!!test_bit(code, dev->snd) != !!value)
291 				__change_bit(code, dev->snd);
292 			disposition = INPUT_PASS_TO_ALL;
293 		}
294 		break;
295 
296 	case EV_REP:
297 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 			dev->rep[code] = value;
299 			disposition = INPUT_PASS_TO_ALL;
300 		}
301 		break;
302 
303 	case EV_FF:
304 		if (value >= 0)
305 			disposition = INPUT_PASS_TO_ALL;
306 		break;
307 
308 	case EV_PWR:
309 		disposition = INPUT_PASS_TO_ALL;
310 		break;
311 	}
312 
313 	*pval = value;
314 	return disposition;
315 }
316 
317 static void input_event_dispose(struct input_dev *dev, int disposition,
318 				unsigned int type, unsigned int code, int value)
319 {
320 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 		dev->event(dev, type, code, value);
322 
323 	if (disposition & INPUT_PASS_TO_HANDLERS) {
324 		struct input_value *v;
325 
326 		if (disposition & INPUT_SLOT) {
327 			v = &dev->vals[dev->num_vals++];
328 			v->type = EV_ABS;
329 			v->code = ABS_MT_SLOT;
330 			v->value = dev->mt->slot;
331 		}
332 
333 		v = &dev->vals[dev->num_vals++];
334 		v->type = type;
335 		v->code = code;
336 		v->value = value;
337 	}
338 
339 	if (disposition & INPUT_FLUSH) {
340 		if (dev->num_vals >= 2)
341 			input_pass_values(dev, dev->vals, dev->num_vals);
342 		dev->num_vals = 0;
343 		/*
344 		 * Reset the timestamp on flush so we won't end up
345 		 * with a stale one. Note we only need to reset the
346 		 * monolithic one as we use its presence when deciding
347 		 * whether to generate a synthetic timestamp.
348 		 */
349 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 	} else if (dev->num_vals >= dev->max_vals - 2) {
351 		dev->vals[dev->num_vals++] = input_value_sync;
352 		input_pass_values(dev, dev->vals, dev->num_vals);
353 		dev->num_vals = 0;
354 	}
355 }
356 
357 void input_handle_event(struct input_dev *dev,
358 			unsigned int type, unsigned int code, int value)
359 {
360 	int disposition;
361 
362 	lockdep_assert_held(&dev->event_lock);
363 
364 	disposition = input_get_disposition(dev, type, code, &value);
365 	if (disposition != INPUT_IGNORE_EVENT) {
366 		if (type != EV_SYN)
367 			add_input_randomness(type, code, value);
368 
369 		input_event_dispose(dev, disposition, type, code, value);
370 	}
371 }
372 
373 /**
374  * input_event() - report new input event
375  * @dev: device that generated the event
376  * @type: type of the event
377  * @code: event code
378  * @value: value of the event
379  *
380  * This function should be used by drivers implementing various input
381  * devices to report input events. See also input_inject_event().
382  *
383  * NOTE: input_event() may be safely used right after input device was
384  * allocated with input_allocate_device(), even before it is registered
385  * with input_register_device(), but the event will not reach any of the
386  * input handlers. Such early invocation of input_event() may be used
387  * to 'seed' initial state of a switch or initial position of absolute
388  * axis, etc.
389  */
390 void input_event(struct input_dev *dev,
391 		 unsigned int type, unsigned int code, int value)
392 {
393 	unsigned long flags;
394 
395 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
396 
397 		spin_lock_irqsave(&dev->event_lock, flags);
398 		input_handle_event(dev, type, code, value);
399 		spin_unlock_irqrestore(&dev->event_lock, flags);
400 	}
401 }
402 EXPORT_SYMBOL(input_event);
403 
404 /**
405  * input_inject_event() - send input event from input handler
406  * @handle: input handle to send event through
407  * @type: type of the event
408  * @code: event code
409  * @value: value of the event
410  *
411  * Similar to input_event() but will ignore event if device is
412  * "grabbed" and handle injecting event is not the one that owns
413  * the device.
414  */
415 void input_inject_event(struct input_handle *handle,
416 			unsigned int type, unsigned int code, int value)
417 {
418 	struct input_dev *dev = handle->dev;
419 	struct input_handle *grab;
420 	unsigned long flags;
421 
422 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
423 		spin_lock_irqsave(&dev->event_lock, flags);
424 
425 		rcu_read_lock();
426 		grab = rcu_dereference(dev->grab);
427 		if (!grab || grab == handle)
428 			input_handle_event(dev, type, code, value);
429 		rcu_read_unlock();
430 
431 		spin_unlock_irqrestore(&dev->event_lock, flags);
432 	}
433 }
434 EXPORT_SYMBOL(input_inject_event);
435 
436 /**
437  * input_alloc_absinfo - allocates array of input_absinfo structs
438  * @dev: the input device emitting absolute events
439  *
440  * If the absinfo struct the caller asked for is already allocated, this
441  * functions will not do anything.
442  */
443 void input_alloc_absinfo(struct input_dev *dev)
444 {
445 	if (dev->absinfo)
446 		return;
447 
448 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
449 	if (!dev->absinfo) {
450 		dev_err(dev->dev.parent ?: &dev->dev,
451 			"%s: unable to allocate memory\n", __func__);
452 		/*
453 		 * We will handle this allocation failure in
454 		 * input_register_device() when we refuse to register input
455 		 * device with ABS bits but without absinfo.
456 		 */
457 	}
458 }
459 EXPORT_SYMBOL(input_alloc_absinfo);
460 
461 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462 			  int min, int max, int fuzz, int flat)
463 {
464 	struct input_absinfo *absinfo;
465 
466 	__set_bit(EV_ABS, dev->evbit);
467 	__set_bit(axis, dev->absbit);
468 
469 	input_alloc_absinfo(dev);
470 	if (!dev->absinfo)
471 		return;
472 
473 	absinfo = &dev->absinfo[axis];
474 	absinfo->minimum = min;
475 	absinfo->maximum = max;
476 	absinfo->fuzz = fuzz;
477 	absinfo->flat = flat;
478 }
479 EXPORT_SYMBOL(input_set_abs_params);
480 
481 /**
482  * input_copy_abs - Copy absinfo from one input_dev to another
483  * @dst: Destination input device to copy the abs settings to
484  * @dst_axis: ABS_* value selecting the destination axis
485  * @src: Source input device to copy the abs settings from
486  * @src_axis: ABS_* value selecting the source axis
487  *
488  * Set absinfo for the selected destination axis by copying it from
489  * the specified source input device's source axis.
490  * This is useful to e.g. setup a pen/stylus input-device for combined
491  * touchscreen/pen hardware where the pen uses the same coordinates as
492  * the touchscreen.
493  */
494 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495 		    const struct input_dev *src, unsigned int src_axis)
496 {
497 	/* src must have EV_ABS and src_axis set */
498 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499 		      test_bit(src_axis, src->absbit))))
500 		return;
501 
502 	/*
503 	 * input_alloc_absinfo() may have failed for the source. Our caller is
504 	 * expected to catch this when registering the input devices, which may
505 	 * happen after the input_copy_abs() call.
506 	 */
507 	if (!src->absinfo)
508 		return;
509 
510 	input_set_capability(dst, EV_ABS, dst_axis);
511 	if (!dst->absinfo)
512 		return;
513 
514 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
515 }
516 EXPORT_SYMBOL(input_copy_abs);
517 
518 /**
519  * input_grab_device - grabs device for exclusive use
520  * @handle: input handle that wants to own the device
521  *
522  * When a device is grabbed by an input handle all events generated by
523  * the device are delivered only to this handle. Also events injected
524  * by other input handles are ignored while device is grabbed.
525  */
526 int input_grab_device(struct input_handle *handle)
527 {
528 	struct input_dev *dev = handle->dev;
529 	int retval;
530 
531 	retval = mutex_lock_interruptible(&dev->mutex);
532 	if (retval)
533 		return retval;
534 
535 	if (dev->grab) {
536 		retval = -EBUSY;
537 		goto out;
538 	}
539 
540 	rcu_assign_pointer(dev->grab, handle);
541 
542  out:
543 	mutex_unlock(&dev->mutex);
544 	return retval;
545 }
546 EXPORT_SYMBOL(input_grab_device);
547 
548 static void __input_release_device(struct input_handle *handle)
549 {
550 	struct input_dev *dev = handle->dev;
551 	struct input_handle *grabber;
552 
553 	grabber = rcu_dereference_protected(dev->grab,
554 					    lockdep_is_held(&dev->mutex));
555 	if (grabber == handle) {
556 		rcu_assign_pointer(dev->grab, NULL);
557 		/* Make sure input_pass_values() notices that grab is gone */
558 		synchronize_rcu();
559 
560 		list_for_each_entry(handle, &dev->h_list, d_node)
561 			if (handle->open && handle->handler->start)
562 				handle->handler->start(handle);
563 	}
564 }
565 
566 /**
567  * input_release_device - release previously grabbed device
568  * @handle: input handle that owns the device
569  *
570  * Releases previously grabbed device so that other input handles can
571  * start receiving input events. Upon release all handlers attached
572  * to the device have their start() method called so they have a change
573  * to synchronize device state with the rest of the system.
574  */
575 void input_release_device(struct input_handle *handle)
576 {
577 	struct input_dev *dev = handle->dev;
578 
579 	mutex_lock(&dev->mutex);
580 	__input_release_device(handle);
581 	mutex_unlock(&dev->mutex);
582 }
583 EXPORT_SYMBOL(input_release_device);
584 
585 /**
586  * input_open_device - open input device
587  * @handle: handle through which device is being accessed
588  *
589  * This function should be called by input handlers when they
590  * want to start receive events from given input device.
591  */
592 int input_open_device(struct input_handle *handle)
593 {
594 	struct input_dev *dev = handle->dev;
595 	int retval;
596 
597 	retval = mutex_lock_interruptible(&dev->mutex);
598 	if (retval)
599 		return retval;
600 
601 	if (dev->going_away) {
602 		retval = -ENODEV;
603 		goto out;
604 	}
605 
606 	handle->open++;
607 
608 	if (dev->users++ || dev->inhibited) {
609 		/*
610 		 * Device is already opened and/or inhibited,
611 		 * so we can exit immediately and report success.
612 		 */
613 		goto out;
614 	}
615 
616 	if (dev->open) {
617 		retval = dev->open(dev);
618 		if (retval) {
619 			dev->users--;
620 			handle->open--;
621 			/*
622 			 * Make sure we are not delivering any more events
623 			 * through this handle
624 			 */
625 			synchronize_rcu();
626 			goto out;
627 		}
628 	}
629 
630 	if (dev->poller)
631 		input_dev_poller_start(dev->poller);
632 
633  out:
634 	mutex_unlock(&dev->mutex);
635 	return retval;
636 }
637 EXPORT_SYMBOL(input_open_device);
638 
639 int input_flush_device(struct input_handle *handle, struct file *file)
640 {
641 	struct input_dev *dev = handle->dev;
642 	int retval;
643 
644 	retval = mutex_lock_interruptible(&dev->mutex);
645 	if (retval)
646 		return retval;
647 
648 	if (dev->flush)
649 		retval = dev->flush(dev, file);
650 
651 	mutex_unlock(&dev->mutex);
652 	return retval;
653 }
654 EXPORT_SYMBOL(input_flush_device);
655 
656 /**
657  * input_close_device - close input device
658  * @handle: handle through which device is being accessed
659  *
660  * This function should be called by input handlers when they
661  * want to stop receive events from given input device.
662  */
663 void input_close_device(struct input_handle *handle)
664 {
665 	struct input_dev *dev = handle->dev;
666 
667 	mutex_lock(&dev->mutex);
668 
669 	__input_release_device(handle);
670 
671 	if (!--dev->users && !dev->inhibited) {
672 		if (dev->poller)
673 			input_dev_poller_stop(dev->poller);
674 		if (dev->close)
675 			dev->close(dev);
676 	}
677 
678 	if (!--handle->open) {
679 		/*
680 		 * synchronize_rcu() makes sure that input_pass_values()
681 		 * completed and that no more input events are delivered
682 		 * through this handle
683 		 */
684 		synchronize_rcu();
685 	}
686 
687 	mutex_unlock(&dev->mutex);
688 }
689 EXPORT_SYMBOL(input_close_device);
690 
691 /*
692  * Simulate keyup events for all keys that are marked as pressed.
693  * The function must be called with dev->event_lock held.
694  */
695 static bool input_dev_release_keys(struct input_dev *dev)
696 {
697 	bool need_sync = false;
698 	int code;
699 
700 	lockdep_assert_held(&dev->event_lock);
701 
702 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
703 		for_each_set_bit(code, dev->key, KEY_CNT) {
704 			input_handle_event(dev, EV_KEY, code, 0);
705 			need_sync = true;
706 		}
707 	}
708 
709 	return need_sync;
710 }
711 
712 /*
713  * Prepare device for unregistering
714  */
715 static void input_disconnect_device(struct input_dev *dev)
716 {
717 	struct input_handle *handle;
718 
719 	/*
720 	 * Mark device as going away. Note that we take dev->mutex here
721 	 * not to protect access to dev->going_away but rather to ensure
722 	 * that there are no threads in the middle of input_open_device()
723 	 */
724 	mutex_lock(&dev->mutex);
725 	dev->going_away = true;
726 	mutex_unlock(&dev->mutex);
727 
728 	spin_lock_irq(&dev->event_lock);
729 
730 	/*
731 	 * Simulate keyup events for all pressed keys so that handlers
732 	 * are not left with "stuck" keys. The driver may continue
733 	 * generate events even after we done here but they will not
734 	 * reach any handlers.
735 	 */
736 	if (input_dev_release_keys(dev))
737 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
738 
739 	list_for_each_entry(handle, &dev->h_list, d_node)
740 		handle->open = 0;
741 
742 	spin_unlock_irq(&dev->event_lock);
743 }
744 
745 /**
746  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
747  * @ke: keymap entry containing scancode to be converted.
748  * @scancode: pointer to the location where converted scancode should
749  *	be stored.
750  *
751  * This function is used to convert scancode stored in &struct keymap_entry
752  * into scalar form understood by legacy keymap handling methods. These
753  * methods expect scancodes to be represented as 'unsigned int'.
754  */
755 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
756 			     unsigned int *scancode)
757 {
758 	switch (ke->len) {
759 	case 1:
760 		*scancode = *((u8 *)ke->scancode);
761 		break;
762 
763 	case 2:
764 		*scancode = *((u16 *)ke->scancode);
765 		break;
766 
767 	case 4:
768 		*scancode = *((u32 *)ke->scancode);
769 		break;
770 
771 	default:
772 		return -EINVAL;
773 	}
774 
775 	return 0;
776 }
777 EXPORT_SYMBOL(input_scancode_to_scalar);
778 
779 /*
780  * Those routines handle the default case where no [gs]etkeycode() is
781  * defined. In this case, an array indexed by the scancode is used.
782  */
783 
784 static unsigned int input_fetch_keycode(struct input_dev *dev,
785 					unsigned int index)
786 {
787 	switch (dev->keycodesize) {
788 	case 1:
789 		return ((u8 *)dev->keycode)[index];
790 
791 	case 2:
792 		return ((u16 *)dev->keycode)[index];
793 
794 	default:
795 		return ((u32 *)dev->keycode)[index];
796 	}
797 }
798 
799 static int input_default_getkeycode(struct input_dev *dev,
800 				    struct input_keymap_entry *ke)
801 {
802 	unsigned int index;
803 	int error;
804 
805 	if (!dev->keycodesize)
806 		return -EINVAL;
807 
808 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
809 		index = ke->index;
810 	else {
811 		error = input_scancode_to_scalar(ke, &index);
812 		if (error)
813 			return error;
814 	}
815 
816 	if (index >= dev->keycodemax)
817 		return -EINVAL;
818 
819 	ke->keycode = input_fetch_keycode(dev, index);
820 	ke->index = index;
821 	ke->len = sizeof(index);
822 	memcpy(ke->scancode, &index, sizeof(index));
823 
824 	return 0;
825 }
826 
827 static int input_default_setkeycode(struct input_dev *dev,
828 				    const struct input_keymap_entry *ke,
829 				    unsigned int *old_keycode)
830 {
831 	unsigned int index;
832 	int error;
833 	int i;
834 
835 	if (!dev->keycodesize)
836 		return -EINVAL;
837 
838 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
839 		index = ke->index;
840 	} else {
841 		error = input_scancode_to_scalar(ke, &index);
842 		if (error)
843 			return error;
844 	}
845 
846 	if (index >= dev->keycodemax)
847 		return -EINVAL;
848 
849 	if (dev->keycodesize < sizeof(ke->keycode) &&
850 			(ke->keycode >> (dev->keycodesize * 8)))
851 		return -EINVAL;
852 
853 	switch (dev->keycodesize) {
854 		case 1: {
855 			u8 *k = (u8 *)dev->keycode;
856 			*old_keycode = k[index];
857 			k[index] = ke->keycode;
858 			break;
859 		}
860 		case 2: {
861 			u16 *k = (u16 *)dev->keycode;
862 			*old_keycode = k[index];
863 			k[index] = ke->keycode;
864 			break;
865 		}
866 		default: {
867 			u32 *k = (u32 *)dev->keycode;
868 			*old_keycode = k[index];
869 			k[index] = ke->keycode;
870 			break;
871 		}
872 	}
873 
874 	if (*old_keycode <= KEY_MAX) {
875 		__clear_bit(*old_keycode, dev->keybit);
876 		for (i = 0; i < dev->keycodemax; i++) {
877 			if (input_fetch_keycode(dev, i) == *old_keycode) {
878 				__set_bit(*old_keycode, dev->keybit);
879 				/* Setting the bit twice is useless, so break */
880 				break;
881 			}
882 		}
883 	}
884 
885 	__set_bit(ke->keycode, dev->keybit);
886 	return 0;
887 }
888 
889 /**
890  * input_get_keycode - retrieve keycode currently mapped to a given scancode
891  * @dev: input device which keymap is being queried
892  * @ke: keymap entry
893  *
894  * This function should be called by anyone interested in retrieving current
895  * keymap. Presently evdev handlers use it.
896  */
897 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
898 {
899 	unsigned long flags;
900 	int retval;
901 
902 	spin_lock_irqsave(&dev->event_lock, flags);
903 	retval = dev->getkeycode(dev, ke);
904 	spin_unlock_irqrestore(&dev->event_lock, flags);
905 
906 	return retval;
907 }
908 EXPORT_SYMBOL(input_get_keycode);
909 
910 /**
911  * input_set_keycode - attribute a keycode to a given scancode
912  * @dev: input device which keymap is being updated
913  * @ke: new keymap entry
914  *
915  * This function should be called by anyone needing to update current
916  * keymap. Presently keyboard and evdev handlers use it.
917  */
918 int input_set_keycode(struct input_dev *dev,
919 		      const struct input_keymap_entry *ke)
920 {
921 	unsigned long flags;
922 	unsigned int old_keycode;
923 	int retval;
924 
925 	if (ke->keycode > KEY_MAX)
926 		return -EINVAL;
927 
928 	spin_lock_irqsave(&dev->event_lock, flags);
929 
930 	retval = dev->setkeycode(dev, ke, &old_keycode);
931 	if (retval)
932 		goto out;
933 
934 	/* Make sure KEY_RESERVED did not get enabled. */
935 	__clear_bit(KEY_RESERVED, dev->keybit);
936 
937 	/*
938 	 * Simulate keyup event if keycode is not present
939 	 * in the keymap anymore
940 	 */
941 	if (old_keycode > KEY_MAX) {
942 		dev_warn(dev->dev.parent ?: &dev->dev,
943 			 "%s: got too big old keycode %#x\n",
944 			 __func__, old_keycode);
945 	} else if (test_bit(EV_KEY, dev->evbit) &&
946 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
947 		   __test_and_clear_bit(old_keycode, dev->key)) {
948 		/*
949 		 * We have to use input_event_dispose() here directly instead
950 		 * of input_handle_event() because the key we want to release
951 		 * here is considered no longer supported by the device and
952 		 * input_handle_event() will ignore it.
953 		 */
954 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
955 				    EV_KEY, old_keycode, 0);
956 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
957 				    EV_SYN, SYN_REPORT, 1);
958 	}
959 
960  out:
961 	spin_unlock_irqrestore(&dev->event_lock, flags);
962 
963 	return retval;
964 }
965 EXPORT_SYMBOL(input_set_keycode);
966 
967 bool input_match_device_id(const struct input_dev *dev,
968 			   const struct input_device_id *id)
969 {
970 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
971 		if (id->bustype != dev->id.bustype)
972 			return false;
973 
974 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
975 		if (id->vendor != dev->id.vendor)
976 			return false;
977 
978 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
979 		if (id->product != dev->id.product)
980 			return false;
981 
982 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
983 		if (id->version != dev->id.version)
984 			return false;
985 
986 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
987 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
988 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
989 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
990 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
991 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
992 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
993 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
994 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
995 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
996 		return false;
997 	}
998 
999 	return true;
1000 }
1001 EXPORT_SYMBOL(input_match_device_id);
1002 
1003 static const struct input_device_id *input_match_device(struct input_handler *handler,
1004 							struct input_dev *dev)
1005 {
1006 	const struct input_device_id *id;
1007 
1008 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1009 		if (input_match_device_id(dev, id) &&
1010 		    (!handler->match || handler->match(handler, dev))) {
1011 			return id;
1012 		}
1013 	}
1014 
1015 	return NULL;
1016 }
1017 
1018 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1019 {
1020 	const struct input_device_id *id;
1021 	int error;
1022 
1023 	id = input_match_device(handler, dev);
1024 	if (!id)
1025 		return -ENODEV;
1026 
1027 	error = handler->connect(handler, dev, id);
1028 	if (error && error != -ENODEV)
1029 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1030 		       handler->name, kobject_name(&dev->dev.kobj), error);
1031 
1032 	return error;
1033 }
1034 
1035 #ifdef CONFIG_COMPAT
1036 
1037 static int input_bits_to_string(char *buf, int buf_size,
1038 				unsigned long bits, bool skip_empty)
1039 {
1040 	int len = 0;
1041 
1042 	if (in_compat_syscall()) {
1043 		u32 dword = bits >> 32;
1044 		if (dword || !skip_empty)
1045 			len += snprintf(buf, buf_size, "%x ", dword);
1046 
1047 		dword = bits & 0xffffffffUL;
1048 		if (dword || !skip_empty || len)
1049 			len += snprintf(buf + len, max(buf_size - len, 0),
1050 					"%x", dword);
1051 	} else {
1052 		if (bits || !skip_empty)
1053 			len += snprintf(buf, buf_size, "%lx", bits);
1054 	}
1055 
1056 	return len;
1057 }
1058 
1059 #else /* !CONFIG_COMPAT */
1060 
1061 static int input_bits_to_string(char *buf, int buf_size,
1062 				unsigned long bits, bool skip_empty)
1063 {
1064 	return bits || !skip_empty ?
1065 		snprintf(buf, buf_size, "%lx", bits) : 0;
1066 }
1067 
1068 #endif
1069 
1070 #ifdef CONFIG_PROC_FS
1071 
1072 static struct proc_dir_entry *proc_bus_input_dir;
1073 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1074 static int input_devices_state;
1075 
1076 static inline void input_wakeup_procfs_readers(void)
1077 {
1078 	input_devices_state++;
1079 	wake_up(&input_devices_poll_wait);
1080 }
1081 
1082 struct input_seq_state {
1083 	unsigned short pos;
1084 	bool mutex_acquired;
1085 	int input_devices_state;
1086 };
1087 
1088 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1089 {
1090 	struct seq_file *seq = file->private_data;
1091 	struct input_seq_state *state = seq->private;
1092 
1093 	poll_wait(file, &input_devices_poll_wait, wait);
1094 	if (state->input_devices_state != input_devices_state) {
1095 		state->input_devices_state = input_devices_state;
1096 		return EPOLLIN | EPOLLRDNORM;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1103 {
1104 	struct input_seq_state *state = seq->private;
1105 	int error;
1106 
1107 	error = mutex_lock_interruptible(&input_mutex);
1108 	if (error) {
1109 		state->mutex_acquired = false;
1110 		return ERR_PTR(error);
1111 	}
1112 
1113 	state->mutex_acquired = true;
1114 
1115 	return seq_list_start(&input_dev_list, *pos);
1116 }
1117 
1118 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1119 {
1120 	return seq_list_next(v, &input_dev_list, pos);
1121 }
1122 
1123 static void input_seq_stop(struct seq_file *seq, void *v)
1124 {
1125 	struct input_seq_state *state = seq->private;
1126 
1127 	if (state->mutex_acquired)
1128 		mutex_unlock(&input_mutex);
1129 }
1130 
1131 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1132 				   unsigned long *bitmap, int max)
1133 {
1134 	int i;
1135 	bool skip_empty = true;
1136 	char buf[18];
1137 
1138 	seq_printf(seq, "B: %s=", name);
1139 
1140 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1141 		if (input_bits_to_string(buf, sizeof(buf),
1142 					 bitmap[i], skip_empty)) {
1143 			skip_empty = false;
1144 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1145 		}
1146 	}
1147 
1148 	/*
1149 	 * If no output was produced print a single 0.
1150 	 */
1151 	if (skip_empty)
1152 		seq_putc(seq, '0');
1153 
1154 	seq_putc(seq, '\n');
1155 }
1156 
1157 static int input_devices_seq_show(struct seq_file *seq, void *v)
1158 {
1159 	struct input_dev *dev = container_of(v, struct input_dev, node);
1160 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1161 	struct input_handle *handle;
1162 
1163 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1164 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1165 
1166 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1167 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1168 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1169 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1170 	seq_puts(seq, "H: Handlers=");
1171 
1172 	list_for_each_entry(handle, &dev->h_list, d_node)
1173 		seq_printf(seq, "%s ", handle->name);
1174 	seq_putc(seq, '\n');
1175 
1176 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1177 
1178 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1179 	if (test_bit(EV_KEY, dev->evbit))
1180 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1181 	if (test_bit(EV_REL, dev->evbit))
1182 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1183 	if (test_bit(EV_ABS, dev->evbit))
1184 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1185 	if (test_bit(EV_MSC, dev->evbit))
1186 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1187 	if (test_bit(EV_LED, dev->evbit))
1188 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1189 	if (test_bit(EV_SND, dev->evbit))
1190 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1191 	if (test_bit(EV_FF, dev->evbit))
1192 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1193 	if (test_bit(EV_SW, dev->evbit))
1194 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1195 
1196 	seq_putc(seq, '\n');
1197 
1198 	kfree(path);
1199 	return 0;
1200 }
1201 
1202 static const struct seq_operations input_devices_seq_ops = {
1203 	.start	= input_devices_seq_start,
1204 	.next	= input_devices_seq_next,
1205 	.stop	= input_seq_stop,
1206 	.show	= input_devices_seq_show,
1207 };
1208 
1209 static int input_proc_devices_open(struct inode *inode, struct file *file)
1210 {
1211 	return seq_open_private(file, &input_devices_seq_ops,
1212 				sizeof(struct input_seq_state));
1213 }
1214 
1215 static const struct proc_ops input_devices_proc_ops = {
1216 	.proc_open	= input_proc_devices_open,
1217 	.proc_poll	= input_proc_devices_poll,
1218 	.proc_read	= seq_read,
1219 	.proc_lseek	= seq_lseek,
1220 	.proc_release	= seq_release_private,
1221 };
1222 
1223 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1224 {
1225 	struct input_seq_state *state = seq->private;
1226 	int error;
1227 
1228 	error = mutex_lock_interruptible(&input_mutex);
1229 	if (error) {
1230 		state->mutex_acquired = false;
1231 		return ERR_PTR(error);
1232 	}
1233 
1234 	state->mutex_acquired = true;
1235 	state->pos = *pos;
1236 
1237 	return seq_list_start(&input_handler_list, *pos);
1238 }
1239 
1240 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1241 {
1242 	struct input_seq_state *state = seq->private;
1243 
1244 	state->pos = *pos + 1;
1245 	return seq_list_next(v, &input_handler_list, pos);
1246 }
1247 
1248 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1249 {
1250 	struct input_handler *handler = container_of(v, struct input_handler, node);
1251 	struct input_seq_state *state = seq->private;
1252 
1253 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1254 	if (handler->filter)
1255 		seq_puts(seq, " (filter)");
1256 	if (handler->legacy_minors)
1257 		seq_printf(seq, " Minor=%d", handler->minor);
1258 	seq_putc(seq, '\n');
1259 
1260 	return 0;
1261 }
1262 
1263 static const struct seq_operations input_handlers_seq_ops = {
1264 	.start	= input_handlers_seq_start,
1265 	.next	= input_handlers_seq_next,
1266 	.stop	= input_seq_stop,
1267 	.show	= input_handlers_seq_show,
1268 };
1269 
1270 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1271 {
1272 	return seq_open_private(file, &input_handlers_seq_ops,
1273 				sizeof(struct input_seq_state));
1274 }
1275 
1276 static const struct proc_ops input_handlers_proc_ops = {
1277 	.proc_open	= input_proc_handlers_open,
1278 	.proc_read	= seq_read,
1279 	.proc_lseek	= seq_lseek,
1280 	.proc_release	= seq_release_private,
1281 };
1282 
1283 static int __init input_proc_init(void)
1284 {
1285 	struct proc_dir_entry *entry;
1286 
1287 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1288 	if (!proc_bus_input_dir)
1289 		return -ENOMEM;
1290 
1291 	entry = proc_create("devices", 0, proc_bus_input_dir,
1292 			    &input_devices_proc_ops);
1293 	if (!entry)
1294 		goto fail1;
1295 
1296 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1297 			    &input_handlers_proc_ops);
1298 	if (!entry)
1299 		goto fail2;
1300 
1301 	return 0;
1302 
1303  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1304  fail1: remove_proc_entry("bus/input", NULL);
1305 	return -ENOMEM;
1306 }
1307 
1308 static void input_proc_exit(void)
1309 {
1310 	remove_proc_entry("devices", proc_bus_input_dir);
1311 	remove_proc_entry("handlers", proc_bus_input_dir);
1312 	remove_proc_entry("bus/input", NULL);
1313 }
1314 
1315 #else /* !CONFIG_PROC_FS */
1316 static inline void input_wakeup_procfs_readers(void) { }
1317 static inline int input_proc_init(void) { return 0; }
1318 static inline void input_proc_exit(void) { }
1319 #endif
1320 
1321 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1322 static ssize_t input_dev_show_##name(struct device *dev,		\
1323 				     struct device_attribute *attr,	\
1324 				     char *buf)				\
1325 {									\
1326 	struct input_dev *input_dev = to_input_dev(dev);		\
1327 									\
1328 	return sysfs_emit(buf, "%s\n",					\
1329 			  input_dev->name ? input_dev->name : "");	\
1330 }									\
1331 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1332 
1333 INPUT_DEV_STRING_ATTR_SHOW(name);
1334 INPUT_DEV_STRING_ATTR_SHOW(phys);
1335 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1336 
1337 static int input_print_modalias_bits(char *buf, int size,
1338 				     char name, const unsigned long *bm,
1339 				     unsigned int min_bit, unsigned int max_bit)
1340 {
1341 	int bit = min_bit;
1342 	int len = 0;
1343 
1344 	len += snprintf(buf, max(size, 0), "%c", name);
1345 	for_each_set_bit_from(bit, bm, max_bit)
1346 		len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1347 	return len;
1348 }
1349 
1350 static int input_print_modalias_parts(char *buf, int size, int full_len,
1351 				      const struct input_dev *id)
1352 {
1353 	int len, klen, remainder, space;
1354 
1355 	len = snprintf(buf, max(size, 0),
1356 		       "input:b%04Xv%04Xp%04Xe%04X-",
1357 		       id->id.bustype, id->id.vendor,
1358 		       id->id.product, id->id.version);
1359 
1360 	len += input_print_modalias_bits(buf + len, size - len,
1361 				'e', id->evbit, 0, EV_MAX);
1362 
1363 	/*
1364 	 * Calculate the remaining space in the buffer making sure we
1365 	 * have place for the terminating 0.
1366 	 */
1367 	space = max(size - (len + 1), 0);
1368 
1369 	klen = input_print_modalias_bits(buf + len, size - len,
1370 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1371 	len += klen;
1372 
1373 	/*
1374 	 * If we have more data than we can fit in the buffer, check
1375 	 * if we can trim key data to fit in the rest. We will indicate
1376 	 * that key data is incomplete by adding "+" sign at the end, like
1377 	 * this: * "k1,2,3,45,+,".
1378 	 *
1379 	 * Note that we shortest key info (if present) is "k+," so we
1380 	 * can only try to trim if key data is longer than that.
1381 	 */
1382 	if (full_len && size < full_len + 1 && klen > 3) {
1383 		remainder = full_len - len;
1384 		/*
1385 		 * We can only trim if we have space for the remainder
1386 		 * and also for at least "k+," which is 3 more characters.
1387 		 */
1388 		if (remainder <= space - 3) {
1389 			/*
1390 			 * We are guaranteed to have 'k' in the buffer, so
1391 			 * we need at least 3 additional bytes for storing
1392 			 * "+," in addition to the remainder.
1393 			 */
1394 			for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1395 				if (buf[i] == 'k' || buf[i] == ',') {
1396 					strcpy(buf + i + 1, "+,");
1397 					len = i + 3; /* Not counting '\0' */
1398 					break;
1399 				}
1400 			}
1401 		}
1402 	}
1403 
1404 	len += input_print_modalias_bits(buf + len, size - len,
1405 				'r', id->relbit, 0, REL_MAX);
1406 	len += input_print_modalias_bits(buf + len, size - len,
1407 				'a', id->absbit, 0, ABS_MAX);
1408 	len += input_print_modalias_bits(buf + len, size - len,
1409 				'm', id->mscbit, 0, MSC_MAX);
1410 	len += input_print_modalias_bits(buf + len, size - len,
1411 				'l', id->ledbit, 0, LED_MAX);
1412 	len += input_print_modalias_bits(buf + len, size - len,
1413 				's', id->sndbit, 0, SND_MAX);
1414 	len += input_print_modalias_bits(buf + len, size - len,
1415 				'f', id->ffbit, 0, FF_MAX);
1416 	len += input_print_modalias_bits(buf + len, size - len,
1417 				'w', id->swbit, 0, SW_MAX);
1418 
1419 	return len;
1420 }
1421 
1422 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1423 {
1424 	int full_len;
1425 
1426 	/*
1427 	 * Printing is done in 2 passes: first one figures out total length
1428 	 * needed for the modalias string, second one will try to trim key
1429 	 * data in case when buffer is too small for the entire modalias.
1430 	 * If the buffer is too small regardless, it will fill as much as it
1431 	 * can (without trimming key data) into the buffer and leave it to
1432 	 * the caller to figure out what to do with the result.
1433 	 */
1434 	full_len = input_print_modalias_parts(NULL, 0, 0, id);
1435 	return input_print_modalias_parts(buf, size, full_len, id);
1436 }
1437 
1438 static ssize_t input_dev_show_modalias(struct device *dev,
1439 				       struct device_attribute *attr,
1440 				       char *buf)
1441 {
1442 	struct input_dev *id = to_input_dev(dev);
1443 	ssize_t len;
1444 
1445 	len = input_print_modalias(buf, PAGE_SIZE, id);
1446 	if (len < PAGE_SIZE - 2)
1447 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1448 
1449 	return min_t(int, len, PAGE_SIZE);
1450 }
1451 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1452 
1453 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1454 			      int max, int add_cr);
1455 
1456 static ssize_t input_dev_show_properties(struct device *dev,
1457 					 struct device_attribute *attr,
1458 					 char *buf)
1459 {
1460 	struct input_dev *input_dev = to_input_dev(dev);
1461 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1462 				     INPUT_PROP_MAX, true);
1463 	return min_t(int, len, PAGE_SIZE);
1464 }
1465 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1466 
1467 static int input_inhibit_device(struct input_dev *dev);
1468 static int input_uninhibit_device(struct input_dev *dev);
1469 
1470 static ssize_t inhibited_show(struct device *dev,
1471 			      struct device_attribute *attr,
1472 			      char *buf)
1473 {
1474 	struct input_dev *input_dev = to_input_dev(dev);
1475 
1476 	return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1477 }
1478 
1479 static ssize_t inhibited_store(struct device *dev,
1480 			       struct device_attribute *attr, const char *buf,
1481 			       size_t len)
1482 {
1483 	struct input_dev *input_dev = to_input_dev(dev);
1484 	ssize_t rv;
1485 	bool inhibited;
1486 
1487 	if (kstrtobool(buf, &inhibited))
1488 		return -EINVAL;
1489 
1490 	if (inhibited)
1491 		rv = input_inhibit_device(input_dev);
1492 	else
1493 		rv = input_uninhibit_device(input_dev);
1494 
1495 	if (rv != 0)
1496 		return rv;
1497 
1498 	return len;
1499 }
1500 
1501 static DEVICE_ATTR_RW(inhibited);
1502 
1503 static struct attribute *input_dev_attrs[] = {
1504 	&dev_attr_name.attr,
1505 	&dev_attr_phys.attr,
1506 	&dev_attr_uniq.attr,
1507 	&dev_attr_modalias.attr,
1508 	&dev_attr_properties.attr,
1509 	&dev_attr_inhibited.attr,
1510 	NULL
1511 };
1512 
1513 static const struct attribute_group input_dev_attr_group = {
1514 	.attrs	= input_dev_attrs,
1515 };
1516 
1517 #define INPUT_DEV_ID_ATTR(name)						\
1518 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1519 					struct device_attribute *attr,	\
1520 					char *buf)			\
1521 {									\
1522 	struct input_dev *input_dev = to_input_dev(dev);		\
1523 	return sysfs_emit(buf, "%04x\n", input_dev->id.name);		\
1524 }									\
1525 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1526 
1527 INPUT_DEV_ID_ATTR(bustype);
1528 INPUT_DEV_ID_ATTR(vendor);
1529 INPUT_DEV_ID_ATTR(product);
1530 INPUT_DEV_ID_ATTR(version);
1531 
1532 static struct attribute *input_dev_id_attrs[] = {
1533 	&dev_attr_bustype.attr,
1534 	&dev_attr_vendor.attr,
1535 	&dev_attr_product.attr,
1536 	&dev_attr_version.attr,
1537 	NULL
1538 };
1539 
1540 static const struct attribute_group input_dev_id_attr_group = {
1541 	.name	= "id",
1542 	.attrs	= input_dev_id_attrs,
1543 };
1544 
1545 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1546 			      int max, int add_cr)
1547 {
1548 	int i;
1549 	int len = 0;
1550 	bool skip_empty = true;
1551 
1552 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1553 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1554 					    bitmap[i], skip_empty);
1555 		if (len) {
1556 			skip_empty = false;
1557 			if (i > 0)
1558 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * If no output was produced print a single 0.
1564 	 */
1565 	if (len == 0)
1566 		len = snprintf(buf, buf_size, "%d", 0);
1567 
1568 	if (add_cr)
1569 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1570 
1571 	return len;
1572 }
1573 
1574 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1575 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1576 				       struct device_attribute *attr,	\
1577 				       char *buf)			\
1578 {									\
1579 	struct input_dev *input_dev = to_input_dev(dev);		\
1580 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1581 				     input_dev->bm##bit, ev##_MAX,	\
1582 				     true);				\
1583 	return min_t(int, len, PAGE_SIZE);				\
1584 }									\
1585 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1586 
1587 INPUT_DEV_CAP_ATTR(EV, ev);
1588 INPUT_DEV_CAP_ATTR(KEY, key);
1589 INPUT_DEV_CAP_ATTR(REL, rel);
1590 INPUT_DEV_CAP_ATTR(ABS, abs);
1591 INPUT_DEV_CAP_ATTR(MSC, msc);
1592 INPUT_DEV_CAP_ATTR(LED, led);
1593 INPUT_DEV_CAP_ATTR(SND, snd);
1594 INPUT_DEV_CAP_ATTR(FF, ff);
1595 INPUT_DEV_CAP_ATTR(SW, sw);
1596 
1597 static struct attribute *input_dev_caps_attrs[] = {
1598 	&dev_attr_ev.attr,
1599 	&dev_attr_key.attr,
1600 	&dev_attr_rel.attr,
1601 	&dev_attr_abs.attr,
1602 	&dev_attr_msc.attr,
1603 	&dev_attr_led.attr,
1604 	&dev_attr_snd.attr,
1605 	&dev_attr_ff.attr,
1606 	&dev_attr_sw.attr,
1607 	NULL
1608 };
1609 
1610 static const struct attribute_group input_dev_caps_attr_group = {
1611 	.name	= "capabilities",
1612 	.attrs	= input_dev_caps_attrs,
1613 };
1614 
1615 static const struct attribute_group *input_dev_attr_groups[] = {
1616 	&input_dev_attr_group,
1617 	&input_dev_id_attr_group,
1618 	&input_dev_caps_attr_group,
1619 	&input_poller_attribute_group,
1620 	NULL
1621 };
1622 
1623 static void input_dev_release(struct device *device)
1624 {
1625 	struct input_dev *dev = to_input_dev(device);
1626 
1627 	input_ff_destroy(dev);
1628 	input_mt_destroy_slots(dev);
1629 	kfree(dev->poller);
1630 	kfree(dev->absinfo);
1631 	kfree(dev->vals);
1632 	kfree(dev);
1633 
1634 	module_put(THIS_MODULE);
1635 }
1636 
1637 /*
1638  * Input uevent interface - loading event handlers based on
1639  * device bitfields.
1640  */
1641 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1642 				   const char *name, const unsigned long *bitmap, int max)
1643 {
1644 	int len;
1645 
1646 	if (add_uevent_var(env, "%s", name))
1647 		return -ENOMEM;
1648 
1649 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1650 				 sizeof(env->buf) - env->buflen,
1651 				 bitmap, max, false);
1652 	if (len >= (sizeof(env->buf) - env->buflen))
1653 		return -ENOMEM;
1654 
1655 	env->buflen += len;
1656 	return 0;
1657 }
1658 
1659 /*
1660  * This is a pretty gross hack. When building uevent data the driver core
1661  * may try adding more environment variables to kobj_uevent_env without
1662  * telling us, so we have no idea how much of the buffer we can use to
1663  * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1664  * reduce amount of memory we will use for the modalias environment variable.
1665  *
1666  * The potential additions are:
1667  *
1668  * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1669  * HOME=/ (6 bytes)
1670  * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1671  *
1672  * 68 bytes total. Allow extra buffer - 96 bytes
1673  */
1674 #define UEVENT_ENV_EXTRA_LEN	96
1675 
1676 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1677 					 const struct input_dev *dev)
1678 {
1679 	int len;
1680 
1681 	if (add_uevent_var(env, "MODALIAS="))
1682 		return -ENOMEM;
1683 
1684 	len = input_print_modalias(&env->buf[env->buflen - 1],
1685 				   (int)sizeof(env->buf) - env->buflen -
1686 					UEVENT_ENV_EXTRA_LEN,
1687 				   dev);
1688 	if (len >= ((int)sizeof(env->buf) - env->buflen -
1689 					UEVENT_ENV_EXTRA_LEN))
1690 		return -ENOMEM;
1691 
1692 	env->buflen += len;
1693 	return 0;
1694 }
1695 
1696 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1697 	do {								\
1698 		int err = add_uevent_var(env, fmt, val);		\
1699 		if (err)						\
1700 			return err;					\
1701 	} while (0)
1702 
1703 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1704 	do {								\
1705 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1706 		if (err)						\
1707 			return err;					\
1708 	} while (0)
1709 
1710 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1711 	do {								\
1712 		int err = input_add_uevent_modalias_var(env, dev);	\
1713 		if (err)						\
1714 			return err;					\
1715 	} while (0)
1716 
1717 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1718 {
1719 	const struct input_dev *dev = to_input_dev(device);
1720 
1721 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1722 				dev->id.bustype, dev->id.vendor,
1723 				dev->id.product, dev->id.version);
1724 	if (dev->name)
1725 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1726 	if (dev->phys)
1727 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1728 	if (dev->uniq)
1729 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1730 
1731 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1732 
1733 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1734 	if (test_bit(EV_KEY, dev->evbit))
1735 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1736 	if (test_bit(EV_REL, dev->evbit))
1737 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1738 	if (test_bit(EV_ABS, dev->evbit))
1739 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1740 	if (test_bit(EV_MSC, dev->evbit))
1741 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1742 	if (test_bit(EV_LED, dev->evbit))
1743 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1744 	if (test_bit(EV_SND, dev->evbit))
1745 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1746 	if (test_bit(EV_FF, dev->evbit))
1747 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1748 	if (test_bit(EV_SW, dev->evbit))
1749 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1750 
1751 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1752 
1753 	return 0;
1754 }
1755 
1756 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1757 	do {								\
1758 		int i;							\
1759 		bool active;						\
1760 									\
1761 		if (!test_bit(EV_##type, dev->evbit))			\
1762 			break;						\
1763 									\
1764 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1765 			active = test_bit(i, dev->bits);		\
1766 			if (!active && !on)				\
1767 				continue;				\
1768 									\
1769 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1770 		}							\
1771 	} while (0)
1772 
1773 static void input_dev_toggle(struct input_dev *dev, bool activate)
1774 {
1775 	if (!dev->event)
1776 		return;
1777 
1778 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1779 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1780 
1781 	if (activate && test_bit(EV_REP, dev->evbit)) {
1782 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1783 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1784 	}
1785 }
1786 
1787 /**
1788  * input_reset_device() - reset/restore the state of input device
1789  * @dev: input device whose state needs to be reset
1790  *
1791  * This function tries to reset the state of an opened input device and
1792  * bring internal state and state if the hardware in sync with each other.
1793  * We mark all keys as released, restore LED state, repeat rate, etc.
1794  */
1795 void input_reset_device(struct input_dev *dev)
1796 {
1797 	unsigned long flags;
1798 
1799 	mutex_lock(&dev->mutex);
1800 	spin_lock_irqsave(&dev->event_lock, flags);
1801 
1802 	input_dev_toggle(dev, true);
1803 	if (input_dev_release_keys(dev))
1804 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1805 
1806 	spin_unlock_irqrestore(&dev->event_lock, flags);
1807 	mutex_unlock(&dev->mutex);
1808 }
1809 EXPORT_SYMBOL(input_reset_device);
1810 
1811 static int input_inhibit_device(struct input_dev *dev)
1812 {
1813 	mutex_lock(&dev->mutex);
1814 
1815 	if (dev->inhibited)
1816 		goto out;
1817 
1818 	if (dev->users) {
1819 		if (dev->close)
1820 			dev->close(dev);
1821 		if (dev->poller)
1822 			input_dev_poller_stop(dev->poller);
1823 	}
1824 
1825 	spin_lock_irq(&dev->event_lock);
1826 	input_mt_release_slots(dev);
1827 	input_dev_release_keys(dev);
1828 	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1829 	input_dev_toggle(dev, false);
1830 	spin_unlock_irq(&dev->event_lock);
1831 
1832 	dev->inhibited = true;
1833 
1834 out:
1835 	mutex_unlock(&dev->mutex);
1836 	return 0;
1837 }
1838 
1839 static int input_uninhibit_device(struct input_dev *dev)
1840 {
1841 	int ret = 0;
1842 
1843 	mutex_lock(&dev->mutex);
1844 
1845 	if (!dev->inhibited)
1846 		goto out;
1847 
1848 	if (dev->users) {
1849 		if (dev->open) {
1850 			ret = dev->open(dev);
1851 			if (ret)
1852 				goto out;
1853 		}
1854 		if (dev->poller)
1855 			input_dev_poller_start(dev->poller);
1856 	}
1857 
1858 	dev->inhibited = false;
1859 	spin_lock_irq(&dev->event_lock);
1860 	input_dev_toggle(dev, true);
1861 	spin_unlock_irq(&dev->event_lock);
1862 
1863 out:
1864 	mutex_unlock(&dev->mutex);
1865 	return ret;
1866 }
1867 
1868 static int input_dev_suspend(struct device *dev)
1869 {
1870 	struct input_dev *input_dev = to_input_dev(dev);
1871 
1872 	spin_lock_irq(&input_dev->event_lock);
1873 
1874 	/*
1875 	 * Keys that are pressed now are unlikely to be
1876 	 * still pressed when we resume.
1877 	 */
1878 	if (input_dev_release_keys(input_dev))
1879 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1880 
1881 	/* Turn off LEDs and sounds, if any are active. */
1882 	input_dev_toggle(input_dev, false);
1883 
1884 	spin_unlock_irq(&input_dev->event_lock);
1885 
1886 	return 0;
1887 }
1888 
1889 static int input_dev_resume(struct device *dev)
1890 {
1891 	struct input_dev *input_dev = to_input_dev(dev);
1892 
1893 	spin_lock_irq(&input_dev->event_lock);
1894 
1895 	/* Restore state of LEDs and sounds, if any were active. */
1896 	input_dev_toggle(input_dev, true);
1897 
1898 	spin_unlock_irq(&input_dev->event_lock);
1899 
1900 	return 0;
1901 }
1902 
1903 static int input_dev_freeze(struct device *dev)
1904 {
1905 	struct input_dev *input_dev = to_input_dev(dev);
1906 
1907 	spin_lock_irq(&input_dev->event_lock);
1908 
1909 	/*
1910 	 * Keys that are pressed now are unlikely to be
1911 	 * still pressed when we resume.
1912 	 */
1913 	if (input_dev_release_keys(input_dev))
1914 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1915 
1916 	spin_unlock_irq(&input_dev->event_lock);
1917 
1918 	return 0;
1919 }
1920 
1921 static int input_dev_poweroff(struct device *dev)
1922 {
1923 	struct input_dev *input_dev = to_input_dev(dev);
1924 
1925 	spin_lock_irq(&input_dev->event_lock);
1926 
1927 	/* Turn off LEDs and sounds, if any are active. */
1928 	input_dev_toggle(input_dev, false);
1929 
1930 	spin_unlock_irq(&input_dev->event_lock);
1931 
1932 	return 0;
1933 }
1934 
1935 static const struct dev_pm_ops input_dev_pm_ops = {
1936 	.suspend	= input_dev_suspend,
1937 	.resume		= input_dev_resume,
1938 	.freeze		= input_dev_freeze,
1939 	.poweroff	= input_dev_poweroff,
1940 	.restore	= input_dev_resume,
1941 };
1942 
1943 static const struct device_type input_dev_type = {
1944 	.groups		= input_dev_attr_groups,
1945 	.release	= input_dev_release,
1946 	.uevent		= input_dev_uevent,
1947 	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1948 };
1949 
1950 static char *input_devnode(const struct device *dev, umode_t *mode)
1951 {
1952 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1953 }
1954 
1955 const struct class input_class = {
1956 	.name		= "input",
1957 	.devnode	= input_devnode,
1958 };
1959 EXPORT_SYMBOL_GPL(input_class);
1960 
1961 /**
1962  * input_allocate_device - allocate memory for new input device
1963  *
1964  * Returns prepared struct input_dev or %NULL.
1965  *
1966  * NOTE: Use input_free_device() to free devices that have not been
1967  * registered; input_unregister_device() should be used for already
1968  * registered devices.
1969  */
1970 struct input_dev *input_allocate_device(void)
1971 {
1972 	static atomic_t input_no = ATOMIC_INIT(-1);
1973 	struct input_dev *dev;
1974 
1975 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1976 	if (!dev)
1977 		return NULL;
1978 
1979 	/*
1980 	 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1981 	 * see input_estimate_events_per_packet(). We will tune the number
1982 	 * when we register the device.
1983 	 */
1984 	dev->max_vals = 10;
1985 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1986 	if (!dev->vals) {
1987 		kfree(dev);
1988 		return NULL;
1989 	}
1990 
1991 	mutex_init(&dev->mutex);
1992 	spin_lock_init(&dev->event_lock);
1993 	timer_setup(&dev->timer, NULL, 0);
1994 	INIT_LIST_HEAD(&dev->h_list);
1995 	INIT_LIST_HEAD(&dev->node);
1996 
1997 	dev->dev.type = &input_dev_type;
1998 	dev->dev.class = &input_class;
1999 	device_initialize(&dev->dev);
2000 	/*
2001 	 * From this point on we can no longer simply "kfree(dev)", we need
2002 	 * to use input_free_device() so that device core properly frees its
2003 	 * resources associated with the input device.
2004 	 */
2005 
2006 	dev_set_name(&dev->dev, "input%lu",
2007 		     (unsigned long)atomic_inc_return(&input_no));
2008 
2009 	__module_get(THIS_MODULE);
2010 
2011 	return dev;
2012 }
2013 EXPORT_SYMBOL(input_allocate_device);
2014 
2015 struct input_devres {
2016 	struct input_dev *input;
2017 };
2018 
2019 static int devm_input_device_match(struct device *dev, void *res, void *data)
2020 {
2021 	struct input_devres *devres = res;
2022 
2023 	return devres->input == data;
2024 }
2025 
2026 static void devm_input_device_release(struct device *dev, void *res)
2027 {
2028 	struct input_devres *devres = res;
2029 	struct input_dev *input = devres->input;
2030 
2031 	dev_dbg(dev, "%s: dropping reference to %s\n",
2032 		__func__, dev_name(&input->dev));
2033 	input_put_device(input);
2034 }
2035 
2036 /**
2037  * devm_input_allocate_device - allocate managed input device
2038  * @dev: device owning the input device being created
2039  *
2040  * Returns prepared struct input_dev or %NULL.
2041  *
2042  * Managed input devices do not need to be explicitly unregistered or
2043  * freed as it will be done automatically when owner device unbinds from
2044  * its driver (or binding fails). Once managed input device is allocated,
2045  * it is ready to be set up and registered in the same fashion as regular
2046  * input device. There are no special devm_input_device_[un]register()
2047  * variants, regular ones work with both managed and unmanaged devices,
2048  * should you need them. In most cases however, managed input device need
2049  * not be explicitly unregistered or freed.
2050  *
2051  * NOTE: the owner device is set up as parent of input device and users
2052  * should not override it.
2053  */
2054 struct input_dev *devm_input_allocate_device(struct device *dev)
2055 {
2056 	struct input_dev *input;
2057 	struct input_devres *devres;
2058 
2059 	devres = devres_alloc(devm_input_device_release,
2060 			      sizeof(*devres), GFP_KERNEL);
2061 	if (!devres)
2062 		return NULL;
2063 
2064 	input = input_allocate_device();
2065 	if (!input) {
2066 		devres_free(devres);
2067 		return NULL;
2068 	}
2069 
2070 	input->dev.parent = dev;
2071 	input->devres_managed = true;
2072 
2073 	devres->input = input;
2074 	devres_add(dev, devres);
2075 
2076 	return input;
2077 }
2078 EXPORT_SYMBOL(devm_input_allocate_device);
2079 
2080 /**
2081  * input_free_device - free memory occupied by input_dev structure
2082  * @dev: input device to free
2083  *
2084  * This function should only be used if input_register_device()
2085  * was not called yet or if it failed. Once device was registered
2086  * use input_unregister_device() and memory will be freed once last
2087  * reference to the device is dropped.
2088  *
2089  * Device should be allocated by input_allocate_device().
2090  *
2091  * NOTE: If there are references to the input device then memory
2092  * will not be freed until last reference is dropped.
2093  */
2094 void input_free_device(struct input_dev *dev)
2095 {
2096 	if (dev) {
2097 		if (dev->devres_managed)
2098 			WARN_ON(devres_destroy(dev->dev.parent,
2099 						devm_input_device_release,
2100 						devm_input_device_match,
2101 						dev));
2102 		input_put_device(dev);
2103 	}
2104 }
2105 EXPORT_SYMBOL(input_free_device);
2106 
2107 /**
2108  * input_set_timestamp - set timestamp for input events
2109  * @dev: input device to set timestamp for
2110  * @timestamp: the time at which the event has occurred
2111  *   in CLOCK_MONOTONIC
2112  *
2113  * This function is intended to provide to the input system a more
2114  * accurate time of when an event actually occurred. The driver should
2115  * call this function as soon as a timestamp is acquired ensuring
2116  * clock conversions in input_set_timestamp are done correctly.
2117  *
2118  * The system entering suspend state between timestamp acquisition and
2119  * calling input_set_timestamp can result in inaccurate conversions.
2120  */
2121 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2122 {
2123 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2124 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2125 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2126 							   TK_OFFS_BOOT);
2127 }
2128 EXPORT_SYMBOL(input_set_timestamp);
2129 
2130 /**
2131  * input_get_timestamp - get timestamp for input events
2132  * @dev: input device to get timestamp from
2133  *
2134  * A valid timestamp is a timestamp of non-zero value.
2135  */
2136 ktime_t *input_get_timestamp(struct input_dev *dev)
2137 {
2138 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2139 
2140 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2141 		input_set_timestamp(dev, ktime_get());
2142 
2143 	return dev->timestamp;
2144 }
2145 EXPORT_SYMBOL(input_get_timestamp);
2146 
2147 /**
2148  * input_set_capability - mark device as capable of a certain event
2149  * @dev: device that is capable of emitting or accepting event
2150  * @type: type of the event (EV_KEY, EV_REL, etc...)
2151  * @code: event code
2152  *
2153  * In addition to setting up corresponding bit in appropriate capability
2154  * bitmap the function also adjusts dev->evbit.
2155  */
2156 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2157 {
2158 	if (type < EV_CNT && input_max_code[type] &&
2159 	    code > input_max_code[type]) {
2160 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2161 		       type);
2162 		dump_stack();
2163 		return;
2164 	}
2165 
2166 	switch (type) {
2167 	case EV_KEY:
2168 		__set_bit(code, dev->keybit);
2169 		break;
2170 
2171 	case EV_REL:
2172 		__set_bit(code, dev->relbit);
2173 		break;
2174 
2175 	case EV_ABS:
2176 		input_alloc_absinfo(dev);
2177 		__set_bit(code, dev->absbit);
2178 		break;
2179 
2180 	case EV_MSC:
2181 		__set_bit(code, dev->mscbit);
2182 		break;
2183 
2184 	case EV_SW:
2185 		__set_bit(code, dev->swbit);
2186 		break;
2187 
2188 	case EV_LED:
2189 		__set_bit(code, dev->ledbit);
2190 		break;
2191 
2192 	case EV_SND:
2193 		__set_bit(code, dev->sndbit);
2194 		break;
2195 
2196 	case EV_FF:
2197 		__set_bit(code, dev->ffbit);
2198 		break;
2199 
2200 	case EV_PWR:
2201 		/* do nothing */
2202 		break;
2203 
2204 	default:
2205 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2206 		dump_stack();
2207 		return;
2208 	}
2209 
2210 	__set_bit(type, dev->evbit);
2211 }
2212 EXPORT_SYMBOL(input_set_capability);
2213 
2214 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2215 {
2216 	int mt_slots;
2217 	int i;
2218 	unsigned int events;
2219 
2220 	if (dev->mt) {
2221 		mt_slots = dev->mt->num_slots;
2222 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2223 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2224 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2225 		mt_slots = clamp(mt_slots, 2, 32);
2226 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2227 		mt_slots = 2;
2228 	} else {
2229 		mt_slots = 0;
2230 	}
2231 
2232 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2233 
2234 	if (test_bit(EV_ABS, dev->evbit))
2235 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2236 			events += input_is_mt_axis(i) ? mt_slots : 1;
2237 
2238 	if (test_bit(EV_REL, dev->evbit))
2239 		events += bitmap_weight(dev->relbit, REL_CNT);
2240 
2241 	/* Make room for KEY and MSC events */
2242 	events += 7;
2243 
2244 	return events;
2245 }
2246 
2247 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2248 	do {								\
2249 		if (!test_bit(EV_##type, dev->evbit))			\
2250 			memset(dev->bits##bit, 0,			\
2251 				sizeof(dev->bits##bit));		\
2252 	} while (0)
2253 
2254 static void input_cleanse_bitmasks(struct input_dev *dev)
2255 {
2256 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2257 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2258 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2259 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2260 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2261 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2262 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2263 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2264 }
2265 
2266 static void __input_unregister_device(struct input_dev *dev)
2267 {
2268 	struct input_handle *handle, *next;
2269 
2270 	input_disconnect_device(dev);
2271 
2272 	mutex_lock(&input_mutex);
2273 
2274 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2275 		handle->handler->disconnect(handle);
2276 	WARN_ON(!list_empty(&dev->h_list));
2277 
2278 	del_timer_sync(&dev->timer);
2279 	list_del_init(&dev->node);
2280 
2281 	input_wakeup_procfs_readers();
2282 
2283 	mutex_unlock(&input_mutex);
2284 
2285 	device_del(&dev->dev);
2286 }
2287 
2288 static void devm_input_device_unregister(struct device *dev, void *res)
2289 {
2290 	struct input_devres *devres = res;
2291 	struct input_dev *input = devres->input;
2292 
2293 	dev_dbg(dev, "%s: unregistering device %s\n",
2294 		__func__, dev_name(&input->dev));
2295 	__input_unregister_device(input);
2296 }
2297 
2298 /*
2299  * Generate software autorepeat event. Note that we take
2300  * dev->event_lock here to avoid racing with input_event
2301  * which may cause keys get "stuck".
2302  */
2303 static void input_repeat_key(struct timer_list *t)
2304 {
2305 	struct input_dev *dev = from_timer(dev, t, timer);
2306 	unsigned long flags;
2307 
2308 	spin_lock_irqsave(&dev->event_lock, flags);
2309 
2310 	if (!dev->inhibited &&
2311 	    test_bit(dev->repeat_key, dev->key) &&
2312 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2313 
2314 		input_set_timestamp(dev, ktime_get());
2315 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2316 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2317 
2318 		if (dev->rep[REP_PERIOD])
2319 			mod_timer(&dev->timer, jiffies +
2320 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2321 	}
2322 
2323 	spin_unlock_irqrestore(&dev->event_lock, flags);
2324 }
2325 
2326 /**
2327  * input_enable_softrepeat - enable software autorepeat
2328  * @dev: input device
2329  * @delay: repeat delay
2330  * @period: repeat period
2331  *
2332  * Enable software autorepeat on the input device.
2333  */
2334 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2335 {
2336 	dev->timer.function = input_repeat_key;
2337 	dev->rep[REP_DELAY] = delay;
2338 	dev->rep[REP_PERIOD] = period;
2339 }
2340 EXPORT_SYMBOL(input_enable_softrepeat);
2341 
2342 bool input_device_enabled(struct input_dev *dev)
2343 {
2344 	lockdep_assert_held(&dev->mutex);
2345 
2346 	return !dev->inhibited && dev->users > 0;
2347 }
2348 EXPORT_SYMBOL_GPL(input_device_enabled);
2349 
2350 static int input_device_tune_vals(struct input_dev *dev)
2351 {
2352 	struct input_value *vals;
2353 	unsigned int packet_size;
2354 	unsigned int max_vals;
2355 
2356 	packet_size = input_estimate_events_per_packet(dev);
2357 	if (dev->hint_events_per_packet < packet_size)
2358 		dev->hint_events_per_packet = packet_size;
2359 
2360 	max_vals = dev->hint_events_per_packet + 2;
2361 	if (dev->max_vals >= max_vals)
2362 		return 0;
2363 
2364 	vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2365 	if (!vals)
2366 		return -ENOMEM;
2367 
2368 	spin_lock_irq(&dev->event_lock);
2369 	dev->max_vals = max_vals;
2370 	swap(dev->vals, vals);
2371 	spin_unlock_irq(&dev->event_lock);
2372 
2373 	/* Because of swap() above, this frees the old vals memory */
2374 	kfree(vals);
2375 
2376 	return 0;
2377 }
2378 
2379 /**
2380  * input_register_device - register device with input core
2381  * @dev: device to be registered
2382  *
2383  * This function registers device with input core. The device must be
2384  * allocated with input_allocate_device() and all it's capabilities
2385  * set up before registering.
2386  * If function fails the device must be freed with input_free_device().
2387  * Once device has been successfully registered it can be unregistered
2388  * with input_unregister_device(); input_free_device() should not be
2389  * called in this case.
2390  *
2391  * Note that this function is also used to register managed input devices
2392  * (ones allocated with devm_input_allocate_device()). Such managed input
2393  * devices need not be explicitly unregistered or freed, their tear down
2394  * is controlled by the devres infrastructure. It is also worth noting
2395  * that tear down of managed input devices is internally a 2-step process:
2396  * registered managed input device is first unregistered, but stays in
2397  * memory and can still handle input_event() calls (although events will
2398  * not be delivered anywhere). The freeing of managed input device will
2399  * happen later, when devres stack is unwound to the point where device
2400  * allocation was made.
2401  */
2402 int input_register_device(struct input_dev *dev)
2403 {
2404 	struct input_devres *devres = NULL;
2405 	struct input_handler *handler;
2406 	const char *path;
2407 	int error;
2408 
2409 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2410 		dev_err(&dev->dev,
2411 			"Absolute device without dev->absinfo, refusing to register\n");
2412 		return -EINVAL;
2413 	}
2414 
2415 	if (dev->devres_managed) {
2416 		devres = devres_alloc(devm_input_device_unregister,
2417 				      sizeof(*devres), GFP_KERNEL);
2418 		if (!devres)
2419 			return -ENOMEM;
2420 
2421 		devres->input = dev;
2422 	}
2423 
2424 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2425 	__set_bit(EV_SYN, dev->evbit);
2426 
2427 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2428 	__clear_bit(KEY_RESERVED, dev->keybit);
2429 
2430 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2431 	input_cleanse_bitmasks(dev);
2432 
2433 	error = input_device_tune_vals(dev);
2434 	if (error)
2435 		goto err_devres_free;
2436 
2437 	/*
2438 	 * If delay and period are pre-set by the driver, then autorepeating
2439 	 * is handled by the driver itself and we don't do it in input.c.
2440 	 */
2441 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2442 		input_enable_softrepeat(dev, 250, 33);
2443 
2444 	if (!dev->getkeycode)
2445 		dev->getkeycode = input_default_getkeycode;
2446 
2447 	if (!dev->setkeycode)
2448 		dev->setkeycode = input_default_setkeycode;
2449 
2450 	if (dev->poller)
2451 		input_dev_poller_finalize(dev->poller);
2452 
2453 	error = device_add(&dev->dev);
2454 	if (error)
2455 		goto err_devres_free;
2456 
2457 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2458 	pr_info("%s as %s\n",
2459 		dev->name ? dev->name : "Unspecified device",
2460 		path ? path : "N/A");
2461 	kfree(path);
2462 
2463 	error = mutex_lock_interruptible(&input_mutex);
2464 	if (error)
2465 		goto err_device_del;
2466 
2467 	list_add_tail(&dev->node, &input_dev_list);
2468 
2469 	list_for_each_entry(handler, &input_handler_list, node)
2470 		input_attach_handler(dev, handler);
2471 
2472 	input_wakeup_procfs_readers();
2473 
2474 	mutex_unlock(&input_mutex);
2475 
2476 	if (dev->devres_managed) {
2477 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2478 			__func__, dev_name(&dev->dev));
2479 		devres_add(dev->dev.parent, devres);
2480 	}
2481 	return 0;
2482 
2483 err_device_del:
2484 	device_del(&dev->dev);
2485 err_devres_free:
2486 	devres_free(devres);
2487 	return error;
2488 }
2489 EXPORT_SYMBOL(input_register_device);
2490 
2491 /**
2492  * input_unregister_device - unregister previously registered device
2493  * @dev: device to be unregistered
2494  *
2495  * This function unregisters an input device. Once device is unregistered
2496  * the caller should not try to access it as it may get freed at any moment.
2497  */
2498 void input_unregister_device(struct input_dev *dev)
2499 {
2500 	if (dev->devres_managed) {
2501 		WARN_ON(devres_destroy(dev->dev.parent,
2502 					devm_input_device_unregister,
2503 					devm_input_device_match,
2504 					dev));
2505 		__input_unregister_device(dev);
2506 		/*
2507 		 * We do not do input_put_device() here because it will be done
2508 		 * when 2nd devres fires up.
2509 		 */
2510 	} else {
2511 		__input_unregister_device(dev);
2512 		input_put_device(dev);
2513 	}
2514 }
2515 EXPORT_SYMBOL(input_unregister_device);
2516 
2517 static int input_handler_check_methods(const struct input_handler *handler)
2518 {
2519 	int count = 0;
2520 
2521 	if (handler->filter)
2522 		count++;
2523 	if (handler->events)
2524 		count++;
2525 	if (handler->event)
2526 		count++;
2527 
2528 	if (count > 1) {
2529 		pr_err("%s: only one event processing method can be defined (%s)\n",
2530 		       __func__, handler->name);
2531 		return -EINVAL;
2532 	}
2533 
2534 	return 0;
2535 }
2536 
2537 /*
2538  * An implementation of input_handler's events() method that simply
2539  * invokes handler->event() method for each event one by one.
2540  */
2541 static unsigned int input_handler_events_default(struct input_handle *handle,
2542 						 struct input_value *vals,
2543 						 unsigned int count)
2544 {
2545 	struct input_handler *handler = handle->handler;
2546 	struct input_value *v;
2547 
2548 	for (v = vals; v != vals + count; v++)
2549 		handler->event(handle, v->type, v->code, v->value);
2550 
2551 	return count;
2552 }
2553 
2554 /*
2555  * An implementation of input_handler's events() method that invokes
2556  * handler->filter() method for each event one by one and removes events
2557  * that were filtered out from the "vals" array.
2558  */
2559 static unsigned int input_handler_events_filter(struct input_handle *handle,
2560 						struct input_value *vals,
2561 						unsigned int count)
2562 {
2563 	struct input_handler *handler = handle->handler;
2564 	struct input_value *end = vals;
2565 	struct input_value *v;
2566 
2567 	for (v = vals; v != vals + count; v++) {
2568 		if (handler->filter(handle, v->type, v->code, v->value))
2569 			continue;
2570 		if (end != v)
2571 			*end = *v;
2572 		end++;
2573 	}
2574 
2575 	return end - vals;
2576 }
2577 
2578 /*
2579  * An implementation of input_handler's events() method that does nothing.
2580  */
2581 static unsigned int input_handler_events_null(struct input_handle *handle,
2582 					      struct input_value *vals,
2583 					      unsigned int count)
2584 {
2585 	return count;
2586 }
2587 
2588 /**
2589  * input_register_handler - register a new input handler
2590  * @handler: handler to be registered
2591  *
2592  * This function registers a new input handler (interface) for input
2593  * devices in the system and attaches it to all input devices that
2594  * are compatible with the handler.
2595  */
2596 int input_register_handler(struct input_handler *handler)
2597 {
2598 	struct input_dev *dev;
2599 	int error;
2600 
2601 	error = input_handler_check_methods(handler);
2602 	if (error)
2603 		return error;
2604 
2605 	INIT_LIST_HEAD(&handler->h_list);
2606 
2607 	if (handler->filter)
2608 		handler->events = input_handler_events_filter;
2609 	else if (handler->event)
2610 		handler->events = input_handler_events_default;
2611 	else if (!handler->events)
2612 		handler->events = input_handler_events_null;
2613 
2614 	error = mutex_lock_interruptible(&input_mutex);
2615 	if (error)
2616 		return error;
2617 
2618 	list_add_tail(&handler->node, &input_handler_list);
2619 
2620 	list_for_each_entry(dev, &input_dev_list, node)
2621 		input_attach_handler(dev, handler);
2622 
2623 	input_wakeup_procfs_readers();
2624 
2625 	mutex_unlock(&input_mutex);
2626 	return 0;
2627 }
2628 EXPORT_SYMBOL(input_register_handler);
2629 
2630 /**
2631  * input_unregister_handler - unregisters an input handler
2632  * @handler: handler to be unregistered
2633  *
2634  * This function disconnects a handler from its input devices and
2635  * removes it from lists of known handlers.
2636  */
2637 void input_unregister_handler(struct input_handler *handler)
2638 {
2639 	struct input_handle *handle, *next;
2640 
2641 	mutex_lock(&input_mutex);
2642 
2643 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2644 		handler->disconnect(handle);
2645 	WARN_ON(!list_empty(&handler->h_list));
2646 
2647 	list_del_init(&handler->node);
2648 
2649 	input_wakeup_procfs_readers();
2650 
2651 	mutex_unlock(&input_mutex);
2652 }
2653 EXPORT_SYMBOL(input_unregister_handler);
2654 
2655 /**
2656  * input_handler_for_each_handle - handle iterator
2657  * @handler: input handler to iterate
2658  * @data: data for the callback
2659  * @fn: function to be called for each handle
2660  *
2661  * Iterate over @bus's list of devices, and call @fn for each, passing
2662  * it @data and stop when @fn returns a non-zero value. The function is
2663  * using RCU to traverse the list and therefore may be using in atomic
2664  * contexts. The @fn callback is invoked from RCU critical section and
2665  * thus must not sleep.
2666  */
2667 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2668 				  int (*fn)(struct input_handle *, void *))
2669 {
2670 	struct input_handle *handle;
2671 	int retval = 0;
2672 
2673 	rcu_read_lock();
2674 
2675 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2676 		retval = fn(handle, data);
2677 		if (retval)
2678 			break;
2679 	}
2680 
2681 	rcu_read_unlock();
2682 
2683 	return retval;
2684 }
2685 EXPORT_SYMBOL(input_handler_for_each_handle);
2686 
2687 /**
2688  * input_register_handle - register a new input handle
2689  * @handle: handle to register
2690  *
2691  * This function puts a new input handle onto device's
2692  * and handler's lists so that events can flow through
2693  * it once it is opened using input_open_device().
2694  *
2695  * This function is supposed to be called from handler's
2696  * connect() method.
2697  */
2698 int input_register_handle(struct input_handle *handle)
2699 {
2700 	struct input_handler *handler = handle->handler;
2701 	struct input_dev *dev = handle->dev;
2702 	int error;
2703 
2704 	/*
2705 	 * We take dev->mutex here to prevent race with
2706 	 * input_release_device().
2707 	 */
2708 	error = mutex_lock_interruptible(&dev->mutex);
2709 	if (error)
2710 		return error;
2711 
2712 	/*
2713 	 * Filters go to the head of the list, normal handlers
2714 	 * to the tail.
2715 	 */
2716 	if (handler->filter)
2717 		list_add_rcu(&handle->d_node, &dev->h_list);
2718 	else
2719 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2720 
2721 	mutex_unlock(&dev->mutex);
2722 
2723 	/*
2724 	 * Since we are supposed to be called from ->connect()
2725 	 * which is mutually exclusive with ->disconnect()
2726 	 * we can't be racing with input_unregister_handle()
2727 	 * and so separate lock is not needed here.
2728 	 */
2729 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2730 
2731 	if (handler->start)
2732 		handler->start(handle);
2733 
2734 	return 0;
2735 }
2736 EXPORT_SYMBOL(input_register_handle);
2737 
2738 /**
2739  * input_unregister_handle - unregister an input handle
2740  * @handle: handle to unregister
2741  *
2742  * This function removes input handle from device's
2743  * and handler's lists.
2744  *
2745  * This function is supposed to be called from handler's
2746  * disconnect() method.
2747  */
2748 void input_unregister_handle(struct input_handle *handle)
2749 {
2750 	struct input_dev *dev = handle->dev;
2751 
2752 	list_del_rcu(&handle->h_node);
2753 
2754 	/*
2755 	 * Take dev->mutex to prevent race with input_release_device().
2756 	 */
2757 	mutex_lock(&dev->mutex);
2758 	list_del_rcu(&handle->d_node);
2759 	mutex_unlock(&dev->mutex);
2760 
2761 	synchronize_rcu();
2762 }
2763 EXPORT_SYMBOL(input_unregister_handle);
2764 
2765 /**
2766  * input_get_new_minor - allocates a new input minor number
2767  * @legacy_base: beginning or the legacy range to be searched
2768  * @legacy_num: size of legacy range
2769  * @allow_dynamic: whether we can also take ID from the dynamic range
2770  *
2771  * This function allocates a new device minor for from input major namespace.
2772  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2773  * parameters and whether ID can be allocated from dynamic range if there are
2774  * no free IDs in legacy range.
2775  */
2776 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2777 			bool allow_dynamic)
2778 {
2779 	/*
2780 	 * This function should be called from input handler's ->connect()
2781 	 * methods, which are serialized with input_mutex, so no additional
2782 	 * locking is needed here.
2783 	 */
2784 	if (legacy_base >= 0) {
2785 		int minor = ida_alloc_range(&input_ida, legacy_base,
2786 					    legacy_base + legacy_num - 1,
2787 					    GFP_KERNEL);
2788 		if (minor >= 0 || !allow_dynamic)
2789 			return minor;
2790 	}
2791 
2792 	return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2793 			       INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2794 }
2795 EXPORT_SYMBOL(input_get_new_minor);
2796 
2797 /**
2798  * input_free_minor - release previously allocated minor
2799  * @minor: minor to be released
2800  *
2801  * This function releases previously allocated input minor so that it can be
2802  * reused later.
2803  */
2804 void input_free_minor(unsigned int minor)
2805 {
2806 	ida_free(&input_ida, minor);
2807 }
2808 EXPORT_SYMBOL(input_free_minor);
2809 
2810 static int __init input_init(void)
2811 {
2812 	int err;
2813 
2814 	err = class_register(&input_class);
2815 	if (err) {
2816 		pr_err("unable to register input_dev class\n");
2817 		return err;
2818 	}
2819 
2820 	err = input_proc_init();
2821 	if (err)
2822 		goto fail1;
2823 
2824 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2825 				     INPUT_MAX_CHAR_DEVICES, "input");
2826 	if (err) {
2827 		pr_err("unable to register char major %d", INPUT_MAJOR);
2828 		goto fail2;
2829 	}
2830 
2831 	return 0;
2832 
2833  fail2:	input_proc_exit();
2834  fail1:	class_unregister(&input_class);
2835 	return err;
2836 }
2837 
2838 static void __exit input_exit(void)
2839 {
2840 	input_proc_exit();
2841 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2842 				 INPUT_MAX_CHAR_DEVICES);
2843 	class_unregister(&input_class);
2844 }
2845 
2846 subsys_initcall(input_init);
2847 module_exit(input_exit);
2848