xref: /linux/drivers/input/input.c (revision 98b8788ae91694499d1995035625bea16a4db0c4)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 
28 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
29 MODULE_DESCRIPTION("Input core");
30 MODULE_LICENSE("GPL");
31 
32 #define INPUT_DEVICES	256
33 
34 /*
35  * EV_ABS events which should not be cached are listed here.
36  */
37 static unsigned int input_abs_bypass_init_data[] __initdata = {
38 	ABS_MT_TOUCH_MAJOR,
39 	ABS_MT_TOUCH_MINOR,
40 	ABS_MT_WIDTH_MAJOR,
41 	ABS_MT_WIDTH_MINOR,
42 	ABS_MT_ORIENTATION,
43 	ABS_MT_POSITION_X,
44 	ABS_MT_POSITION_Y,
45 	ABS_MT_TOOL_TYPE,
46 	ABS_MT_BLOB_ID,
47 	ABS_MT_TRACKING_ID,
48 	0
49 };
50 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
51 
52 static LIST_HEAD(input_dev_list);
53 static LIST_HEAD(input_handler_list);
54 
55 /*
56  * input_mutex protects access to both input_dev_list and input_handler_list.
57  * This also causes input_[un]register_device and input_[un]register_handler
58  * be mutually exclusive which simplifies locking in drivers implementing
59  * input handlers.
60  */
61 static DEFINE_MUTEX(input_mutex);
62 
63 static struct input_handler *input_table[8];
64 
65 static inline int is_event_supported(unsigned int code,
66 				     unsigned long *bm, unsigned int max)
67 {
68 	return code <= max && test_bit(code, bm);
69 }
70 
71 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
72 {
73 	if (fuzz) {
74 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
75 			return old_val;
76 
77 		if (value > old_val - fuzz && value < old_val + fuzz)
78 			return (old_val * 3 + value) / 4;
79 
80 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
81 			return (old_val + value) / 2;
82 	}
83 
84 	return value;
85 }
86 
87 /*
88  * Pass event through all open handles. This function is called with
89  * dev->event_lock held and interrupts disabled.
90  */
91 static void input_pass_event(struct input_dev *dev,
92 			     unsigned int type, unsigned int code, int value)
93 {
94 	struct input_handle *handle;
95 
96 	rcu_read_lock();
97 
98 	handle = rcu_dereference(dev->grab);
99 	if (handle)
100 		handle->handler->event(handle, type, code, value);
101 	else
102 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
103 			if (handle->open)
104 				handle->handler->event(handle,
105 							type, code, value);
106 	rcu_read_unlock();
107 }
108 
109 /*
110  * Generate software autorepeat event. Note that we take
111  * dev->event_lock here to avoid racing with input_event
112  * which may cause keys get "stuck".
113  */
114 static void input_repeat_key(unsigned long data)
115 {
116 	struct input_dev *dev = (void *) data;
117 	unsigned long flags;
118 
119 	spin_lock_irqsave(&dev->event_lock, flags);
120 
121 	if (test_bit(dev->repeat_key, dev->key) &&
122 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
123 
124 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
125 
126 		if (dev->sync) {
127 			/*
128 			 * Only send SYN_REPORT if we are not in a middle
129 			 * of driver parsing a new hardware packet.
130 			 * Otherwise assume that the driver will send
131 			 * SYN_REPORT once it's done.
132 			 */
133 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
134 		}
135 
136 		if (dev->rep[REP_PERIOD])
137 			mod_timer(&dev->timer, jiffies +
138 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
139 	}
140 
141 	spin_unlock_irqrestore(&dev->event_lock, flags);
142 }
143 
144 static void input_start_autorepeat(struct input_dev *dev, int code)
145 {
146 	if (test_bit(EV_REP, dev->evbit) &&
147 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
148 	    dev->timer.data) {
149 		dev->repeat_key = code;
150 		mod_timer(&dev->timer,
151 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
152 	}
153 }
154 
155 static void input_stop_autorepeat(struct input_dev *dev)
156 {
157 	del_timer(&dev->timer);
158 }
159 
160 #define INPUT_IGNORE_EVENT	0
161 #define INPUT_PASS_TO_HANDLERS	1
162 #define INPUT_PASS_TO_DEVICE	2
163 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
164 
165 static void input_handle_event(struct input_dev *dev,
166 			       unsigned int type, unsigned int code, int value)
167 {
168 	int disposition = INPUT_IGNORE_EVENT;
169 
170 	switch (type) {
171 
172 	case EV_SYN:
173 		switch (code) {
174 		case SYN_CONFIG:
175 			disposition = INPUT_PASS_TO_ALL;
176 			break;
177 
178 		case SYN_REPORT:
179 			if (!dev->sync) {
180 				dev->sync = 1;
181 				disposition = INPUT_PASS_TO_HANDLERS;
182 			}
183 			break;
184 		case SYN_MT_REPORT:
185 			dev->sync = 0;
186 			disposition = INPUT_PASS_TO_HANDLERS;
187 			break;
188 		}
189 		break;
190 
191 	case EV_KEY:
192 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
193 		    !!test_bit(code, dev->key) != value) {
194 
195 			if (value != 2) {
196 				__change_bit(code, dev->key);
197 				if (value)
198 					input_start_autorepeat(dev, code);
199 				else
200 					input_stop_autorepeat(dev);
201 			}
202 
203 			disposition = INPUT_PASS_TO_HANDLERS;
204 		}
205 		break;
206 
207 	case EV_SW:
208 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
209 		    !!test_bit(code, dev->sw) != value) {
210 
211 			__change_bit(code, dev->sw);
212 			disposition = INPUT_PASS_TO_HANDLERS;
213 		}
214 		break;
215 
216 	case EV_ABS:
217 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
218 
219 			if (test_bit(code, input_abs_bypass)) {
220 				disposition = INPUT_PASS_TO_HANDLERS;
221 				break;
222 			}
223 
224 			value = input_defuzz_abs_event(value,
225 					dev->abs[code], dev->absfuzz[code]);
226 
227 			if (dev->abs[code] != value) {
228 				dev->abs[code] = value;
229 				disposition = INPUT_PASS_TO_HANDLERS;
230 			}
231 		}
232 		break;
233 
234 	case EV_REL:
235 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
236 			disposition = INPUT_PASS_TO_HANDLERS;
237 
238 		break;
239 
240 	case EV_MSC:
241 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
242 			disposition = INPUT_PASS_TO_ALL;
243 
244 		break;
245 
246 	case EV_LED:
247 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
248 		    !!test_bit(code, dev->led) != value) {
249 
250 			__change_bit(code, dev->led);
251 			disposition = INPUT_PASS_TO_ALL;
252 		}
253 		break;
254 
255 	case EV_SND:
256 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
257 
258 			if (!!test_bit(code, dev->snd) != !!value)
259 				__change_bit(code, dev->snd);
260 			disposition = INPUT_PASS_TO_ALL;
261 		}
262 		break;
263 
264 	case EV_REP:
265 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
266 			dev->rep[code] = value;
267 			disposition = INPUT_PASS_TO_ALL;
268 		}
269 		break;
270 
271 	case EV_FF:
272 		if (value >= 0)
273 			disposition = INPUT_PASS_TO_ALL;
274 		break;
275 
276 	case EV_PWR:
277 		disposition = INPUT_PASS_TO_ALL;
278 		break;
279 	}
280 
281 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
282 		dev->sync = 0;
283 
284 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
285 		dev->event(dev, type, code, value);
286 
287 	if (disposition & INPUT_PASS_TO_HANDLERS)
288 		input_pass_event(dev, type, code, value);
289 }
290 
291 /**
292  * input_event() - report new input event
293  * @dev: device that generated the event
294  * @type: type of the event
295  * @code: event code
296  * @value: value of the event
297  *
298  * This function should be used by drivers implementing various input
299  * devices. See also input_inject_event().
300  */
301 
302 void input_event(struct input_dev *dev,
303 		 unsigned int type, unsigned int code, int value)
304 {
305 	unsigned long flags;
306 
307 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
308 
309 		spin_lock_irqsave(&dev->event_lock, flags);
310 		add_input_randomness(type, code, value);
311 		input_handle_event(dev, type, code, value);
312 		spin_unlock_irqrestore(&dev->event_lock, flags);
313 	}
314 }
315 EXPORT_SYMBOL(input_event);
316 
317 /**
318  * input_inject_event() - send input event from input handler
319  * @handle: input handle to send event through
320  * @type: type of the event
321  * @code: event code
322  * @value: value of the event
323  *
324  * Similar to input_event() but will ignore event if device is
325  * "grabbed" and handle injecting event is not the one that owns
326  * the device.
327  */
328 void input_inject_event(struct input_handle *handle,
329 			unsigned int type, unsigned int code, int value)
330 {
331 	struct input_dev *dev = handle->dev;
332 	struct input_handle *grab;
333 	unsigned long flags;
334 
335 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
336 		spin_lock_irqsave(&dev->event_lock, flags);
337 
338 		rcu_read_lock();
339 		grab = rcu_dereference(dev->grab);
340 		if (!grab || grab == handle)
341 			input_handle_event(dev, type, code, value);
342 		rcu_read_unlock();
343 
344 		spin_unlock_irqrestore(&dev->event_lock, flags);
345 	}
346 }
347 EXPORT_SYMBOL(input_inject_event);
348 
349 /**
350  * input_grab_device - grabs device for exclusive use
351  * @handle: input handle that wants to own the device
352  *
353  * When a device is grabbed by an input handle all events generated by
354  * the device are delivered only to this handle. Also events injected
355  * by other input handles are ignored while device is grabbed.
356  */
357 int input_grab_device(struct input_handle *handle)
358 {
359 	struct input_dev *dev = handle->dev;
360 	int retval;
361 
362 	retval = mutex_lock_interruptible(&dev->mutex);
363 	if (retval)
364 		return retval;
365 
366 	if (dev->grab) {
367 		retval = -EBUSY;
368 		goto out;
369 	}
370 
371 	rcu_assign_pointer(dev->grab, handle);
372 	synchronize_rcu();
373 
374  out:
375 	mutex_unlock(&dev->mutex);
376 	return retval;
377 }
378 EXPORT_SYMBOL(input_grab_device);
379 
380 static void __input_release_device(struct input_handle *handle)
381 {
382 	struct input_dev *dev = handle->dev;
383 
384 	if (dev->grab == handle) {
385 		rcu_assign_pointer(dev->grab, NULL);
386 		/* Make sure input_pass_event() notices that grab is gone */
387 		synchronize_rcu();
388 
389 		list_for_each_entry(handle, &dev->h_list, d_node)
390 			if (handle->open && handle->handler->start)
391 				handle->handler->start(handle);
392 	}
393 }
394 
395 /**
396  * input_release_device - release previously grabbed device
397  * @handle: input handle that owns the device
398  *
399  * Releases previously grabbed device so that other input handles can
400  * start receiving input events. Upon release all handlers attached
401  * to the device have their start() method called so they have a change
402  * to synchronize device state with the rest of the system.
403  */
404 void input_release_device(struct input_handle *handle)
405 {
406 	struct input_dev *dev = handle->dev;
407 
408 	mutex_lock(&dev->mutex);
409 	__input_release_device(handle);
410 	mutex_unlock(&dev->mutex);
411 }
412 EXPORT_SYMBOL(input_release_device);
413 
414 /**
415  * input_open_device - open input device
416  * @handle: handle through which device is being accessed
417  *
418  * This function should be called by input handlers when they
419  * want to start receive events from given input device.
420  */
421 int input_open_device(struct input_handle *handle)
422 {
423 	struct input_dev *dev = handle->dev;
424 	int retval;
425 
426 	retval = mutex_lock_interruptible(&dev->mutex);
427 	if (retval)
428 		return retval;
429 
430 	if (dev->going_away) {
431 		retval = -ENODEV;
432 		goto out;
433 	}
434 
435 	handle->open++;
436 
437 	if (!dev->users++ && dev->open)
438 		retval = dev->open(dev);
439 
440 	if (retval) {
441 		dev->users--;
442 		if (!--handle->open) {
443 			/*
444 			 * Make sure we are not delivering any more events
445 			 * through this handle
446 			 */
447 			synchronize_rcu();
448 		}
449 	}
450 
451  out:
452 	mutex_unlock(&dev->mutex);
453 	return retval;
454 }
455 EXPORT_SYMBOL(input_open_device);
456 
457 int input_flush_device(struct input_handle *handle, struct file *file)
458 {
459 	struct input_dev *dev = handle->dev;
460 	int retval;
461 
462 	retval = mutex_lock_interruptible(&dev->mutex);
463 	if (retval)
464 		return retval;
465 
466 	if (dev->flush)
467 		retval = dev->flush(dev, file);
468 
469 	mutex_unlock(&dev->mutex);
470 	return retval;
471 }
472 EXPORT_SYMBOL(input_flush_device);
473 
474 /**
475  * input_close_device - close input device
476  * @handle: handle through which device is being accessed
477  *
478  * This function should be called by input handlers when they
479  * want to stop receive events from given input device.
480  */
481 void input_close_device(struct input_handle *handle)
482 {
483 	struct input_dev *dev = handle->dev;
484 
485 	mutex_lock(&dev->mutex);
486 
487 	__input_release_device(handle);
488 
489 	if (!--dev->users && dev->close)
490 		dev->close(dev);
491 
492 	if (!--handle->open) {
493 		/*
494 		 * synchronize_rcu() makes sure that input_pass_event()
495 		 * completed and that no more input events are delivered
496 		 * through this handle
497 		 */
498 		synchronize_rcu();
499 	}
500 
501 	mutex_unlock(&dev->mutex);
502 }
503 EXPORT_SYMBOL(input_close_device);
504 
505 /*
506  * Prepare device for unregistering
507  */
508 static void input_disconnect_device(struct input_dev *dev)
509 {
510 	struct input_handle *handle;
511 	int code;
512 
513 	/*
514 	 * Mark device as going away. Note that we take dev->mutex here
515 	 * not to protect access to dev->going_away but rather to ensure
516 	 * that there are no threads in the middle of input_open_device()
517 	 */
518 	mutex_lock(&dev->mutex);
519 	dev->going_away = true;
520 	mutex_unlock(&dev->mutex);
521 
522 	spin_lock_irq(&dev->event_lock);
523 
524 	/*
525 	 * Simulate keyup events for all pressed keys so that handlers
526 	 * are not left with "stuck" keys. The driver may continue
527 	 * generate events even after we done here but they will not
528 	 * reach any handlers.
529 	 */
530 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
531 		for (code = 0; code <= KEY_MAX; code++) {
532 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
533 			    __test_and_clear_bit(code, dev->key)) {
534 				input_pass_event(dev, EV_KEY, code, 0);
535 			}
536 		}
537 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
538 	}
539 
540 	list_for_each_entry(handle, &dev->h_list, d_node)
541 		handle->open = 0;
542 
543 	spin_unlock_irq(&dev->event_lock);
544 }
545 
546 static int input_fetch_keycode(struct input_dev *dev, int scancode)
547 {
548 	switch (dev->keycodesize) {
549 		case 1:
550 			return ((u8 *)dev->keycode)[scancode];
551 
552 		case 2:
553 			return ((u16 *)dev->keycode)[scancode];
554 
555 		default:
556 			return ((u32 *)dev->keycode)[scancode];
557 	}
558 }
559 
560 static int input_default_getkeycode(struct input_dev *dev,
561 				    int scancode, int *keycode)
562 {
563 	if (!dev->keycodesize)
564 		return -EINVAL;
565 
566 	if (scancode >= dev->keycodemax)
567 		return -EINVAL;
568 
569 	*keycode = input_fetch_keycode(dev, scancode);
570 
571 	return 0;
572 }
573 
574 static int input_default_setkeycode(struct input_dev *dev,
575 				    int scancode, int keycode)
576 {
577 	int old_keycode;
578 	int i;
579 
580 	if (scancode >= dev->keycodemax)
581 		return -EINVAL;
582 
583 	if (!dev->keycodesize)
584 		return -EINVAL;
585 
586 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
587 		return -EINVAL;
588 
589 	switch (dev->keycodesize) {
590 		case 1: {
591 			u8 *k = (u8 *)dev->keycode;
592 			old_keycode = k[scancode];
593 			k[scancode] = keycode;
594 			break;
595 		}
596 		case 2: {
597 			u16 *k = (u16 *)dev->keycode;
598 			old_keycode = k[scancode];
599 			k[scancode] = keycode;
600 			break;
601 		}
602 		default: {
603 			u32 *k = (u32 *)dev->keycode;
604 			old_keycode = k[scancode];
605 			k[scancode] = keycode;
606 			break;
607 		}
608 	}
609 
610 	clear_bit(old_keycode, dev->keybit);
611 	set_bit(keycode, dev->keybit);
612 
613 	for (i = 0; i < dev->keycodemax; i++) {
614 		if (input_fetch_keycode(dev, i) == old_keycode) {
615 			set_bit(old_keycode, dev->keybit);
616 			break; /* Setting the bit twice is useless, so break */
617 		}
618 	}
619 
620 	return 0;
621 }
622 
623 /**
624  * input_get_keycode - retrieve keycode currently mapped to a given scancode
625  * @dev: input device which keymap is being queried
626  * @scancode: scancode (or its equivalent for device in question) for which
627  *	keycode is needed
628  * @keycode: result
629  *
630  * This function should be called by anyone interested in retrieving current
631  * keymap. Presently keyboard and evdev handlers use it.
632  */
633 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
634 {
635 	if (scancode < 0)
636 		return -EINVAL;
637 
638 	return dev->getkeycode(dev, scancode, keycode);
639 }
640 EXPORT_SYMBOL(input_get_keycode);
641 
642 /**
643  * input_get_keycode - assign new keycode to a given scancode
644  * @dev: input device which keymap is being updated
645  * @scancode: scancode (or its equivalent for device in question)
646  * @keycode: new keycode to be assigned to the scancode
647  *
648  * This function should be called by anyone needing to update current
649  * keymap. Presently keyboard and evdev handlers use it.
650  */
651 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
652 {
653 	unsigned long flags;
654 	int old_keycode;
655 	int retval;
656 
657 	if (scancode < 0)
658 		return -EINVAL;
659 
660 	if (keycode < 0 || keycode > KEY_MAX)
661 		return -EINVAL;
662 
663 	spin_lock_irqsave(&dev->event_lock, flags);
664 
665 	retval = dev->getkeycode(dev, scancode, &old_keycode);
666 	if (retval)
667 		goto out;
668 
669 	retval = dev->setkeycode(dev, scancode, keycode);
670 	if (retval)
671 		goto out;
672 
673 	/*
674 	 * Simulate keyup event if keycode is not present
675 	 * in the keymap anymore
676 	 */
677 	if (test_bit(EV_KEY, dev->evbit) &&
678 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
679 	    __test_and_clear_bit(old_keycode, dev->key)) {
680 
681 		input_pass_event(dev, EV_KEY, old_keycode, 0);
682 		if (dev->sync)
683 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
684 	}
685 
686  out:
687 	spin_unlock_irqrestore(&dev->event_lock, flags);
688 
689 	return retval;
690 }
691 EXPORT_SYMBOL(input_set_keycode);
692 
693 #define MATCH_BIT(bit, max) \
694 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
695 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
696 				break; \
697 		if (i != BITS_TO_LONGS(max)) \
698 			continue;
699 
700 static const struct input_device_id *input_match_device(const struct input_device_id *id,
701 							struct input_dev *dev)
702 {
703 	int i;
704 
705 	for (; id->flags || id->driver_info; id++) {
706 
707 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
708 			if (id->bustype != dev->id.bustype)
709 				continue;
710 
711 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
712 			if (id->vendor != dev->id.vendor)
713 				continue;
714 
715 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
716 			if (id->product != dev->id.product)
717 				continue;
718 
719 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
720 			if (id->version != dev->id.version)
721 				continue;
722 
723 		MATCH_BIT(evbit,  EV_MAX);
724 		MATCH_BIT(keybit, KEY_MAX);
725 		MATCH_BIT(relbit, REL_MAX);
726 		MATCH_BIT(absbit, ABS_MAX);
727 		MATCH_BIT(mscbit, MSC_MAX);
728 		MATCH_BIT(ledbit, LED_MAX);
729 		MATCH_BIT(sndbit, SND_MAX);
730 		MATCH_BIT(ffbit,  FF_MAX);
731 		MATCH_BIT(swbit,  SW_MAX);
732 
733 		return id;
734 	}
735 
736 	return NULL;
737 }
738 
739 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
740 {
741 	const struct input_device_id *id;
742 	int error;
743 
744 	if (handler->blacklist && input_match_device(handler->blacklist, dev))
745 		return -ENODEV;
746 
747 	id = input_match_device(handler->id_table, dev);
748 	if (!id)
749 		return -ENODEV;
750 
751 	error = handler->connect(handler, dev, id);
752 	if (error && error != -ENODEV)
753 		printk(KERN_ERR
754 			"input: failed to attach handler %s to device %s, "
755 			"error: %d\n",
756 			handler->name, kobject_name(&dev->dev.kobj), error);
757 
758 	return error;
759 }
760 
761 
762 #ifdef CONFIG_PROC_FS
763 
764 static struct proc_dir_entry *proc_bus_input_dir;
765 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
766 static int input_devices_state;
767 
768 static inline void input_wakeup_procfs_readers(void)
769 {
770 	input_devices_state++;
771 	wake_up(&input_devices_poll_wait);
772 }
773 
774 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
775 {
776 	poll_wait(file, &input_devices_poll_wait, wait);
777 	if (file->f_version != input_devices_state) {
778 		file->f_version = input_devices_state;
779 		return POLLIN | POLLRDNORM;
780 	}
781 
782 	return 0;
783 }
784 
785 union input_seq_state {
786 	struct {
787 		unsigned short pos;
788 		bool mutex_acquired;
789 	};
790 	void *p;
791 };
792 
793 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
794 {
795 	union input_seq_state *state = (union input_seq_state *)&seq->private;
796 	int error;
797 
798 	/* We need to fit into seq->private pointer */
799 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
800 
801 	error = mutex_lock_interruptible(&input_mutex);
802 	if (error) {
803 		state->mutex_acquired = false;
804 		return ERR_PTR(error);
805 	}
806 
807 	state->mutex_acquired = true;
808 
809 	return seq_list_start(&input_dev_list, *pos);
810 }
811 
812 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
813 {
814 	return seq_list_next(v, &input_dev_list, pos);
815 }
816 
817 static void input_seq_stop(struct seq_file *seq, void *v)
818 {
819 	union input_seq_state *state = (union input_seq_state *)&seq->private;
820 
821 	if (state->mutex_acquired)
822 		mutex_unlock(&input_mutex);
823 }
824 
825 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
826 				   unsigned long *bitmap, int max)
827 {
828 	int i;
829 
830 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
831 		if (bitmap[i])
832 			break;
833 
834 	seq_printf(seq, "B: %s=", name);
835 	for (; i >= 0; i--)
836 		seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
837 	seq_putc(seq, '\n');
838 }
839 
840 static int input_devices_seq_show(struct seq_file *seq, void *v)
841 {
842 	struct input_dev *dev = container_of(v, struct input_dev, node);
843 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
844 	struct input_handle *handle;
845 
846 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
847 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
848 
849 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
850 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
851 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
852 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
853 	seq_printf(seq, "H: Handlers=");
854 
855 	list_for_each_entry(handle, &dev->h_list, d_node)
856 		seq_printf(seq, "%s ", handle->name);
857 	seq_putc(seq, '\n');
858 
859 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
860 	if (test_bit(EV_KEY, dev->evbit))
861 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
862 	if (test_bit(EV_REL, dev->evbit))
863 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
864 	if (test_bit(EV_ABS, dev->evbit))
865 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
866 	if (test_bit(EV_MSC, dev->evbit))
867 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
868 	if (test_bit(EV_LED, dev->evbit))
869 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
870 	if (test_bit(EV_SND, dev->evbit))
871 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
872 	if (test_bit(EV_FF, dev->evbit))
873 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
874 	if (test_bit(EV_SW, dev->evbit))
875 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
876 
877 	seq_putc(seq, '\n');
878 
879 	kfree(path);
880 	return 0;
881 }
882 
883 static const struct seq_operations input_devices_seq_ops = {
884 	.start	= input_devices_seq_start,
885 	.next	= input_devices_seq_next,
886 	.stop	= input_seq_stop,
887 	.show	= input_devices_seq_show,
888 };
889 
890 static int input_proc_devices_open(struct inode *inode, struct file *file)
891 {
892 	return seq_open(file, &input_devices_seq_ops);
893 }
894 
895 static const struct file_operations input_devices_fileops = {
896 	.owner		= THIS_MODULE,
897 	.open		= input_proc_devices_open,
898 	.poll		= input_proc_devices_poll,
899 	.read		= seq_read,
900 	.llseek		= seq_lseek,
901 	.release	= seq_release,
902 };
903 
904 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
905 {
906 	union input_seq_state *state = (union input_seq_state *)&seq->private;
907 	int error;
908 
909 	/* We need to fit into seq->private pointer */
910 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
911 
912 	error = mutex_lock_interruptible(&input_mutex);
913 	if (error) {
914 		state->mutex_acquired = false;
915 		return ERR_PTR(error);
916 	}
917 
918 	state->mutex_acquired = true;
919 	state->pos = *pos;
920 
921 	return seq_list_start(&input_handler_list, *pos);
922 }
923 
924 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
925 {
926 	union input_seq_state *state = (union input_seq_state *)&seq->private;
927 
928 	state->pos = *pos + 1;
929 	return seq_list_next(v, &input_handler_list, pos);
930 }
931 
932 static int input_handlers_seq_show(struct seq_file *seq, void *v)
933 {
934 	struct input_handler *handler = container_of(v, struct input_handler, node);
935 	union input_seq_state *state = (union input_seq_state *)&seq->private;
936 
937 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
938 	if (handler->fops)
939 		seq_printf(seq, " Minor=%d", handler->minor);
940 	seq_putc(seq, '\n');
941 
942 	return 0;
943 }
944 
945 static const struct seq_operations input_handlers_seq_ops = {
946 	.start	= input_handlers_seq_start,
947 	.next	= input_handlers_seq_next,
948 	.stop	= input_seq_stop,
949 	.show	= input_handlers_seq_show,
950 };
951 
952 static int input_proc_handlers_open(struct inode *inode, struct file *file)
953 {
954 	return seq_open(file, &input_handlers_seq_ops);
955 }
956 
957 static const struct file_operations input_handlers_fileops = {
958 	.owner		= THIS_MODULE,
959 	.open		= input_proc_handlers_open,
960 	.read		= seq_read,
961 	.llseek		= seq_lseek,
962 	.release	= seq_release,
963 };
964 
965 static int __init input_proc_init(void)
966 {
967 	struct proc_dir_entry *entry;
968 
969 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
970 	if (!proc_bus_input_dir)
971 		return -ENOMEM;
972 
973 	entry = proc_create("devices", 0, proc_bus_input_dir,
974 			    &input_devices_fileops);
975 	if (!entry)
976 		goto fail1;
977 
978 	entry = proc_create("handlers", 0, proc_bus_input_dir,
979 			    &input_handlers_fileops);
980 	if (!entry)
981 		goto fail2;
982 
983 	return 0;
984 
985  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
986  fail1: remove_proc_entry("bus/input", NULL);
987 	return -ENOMEM;
988 }
989 
990 static void input_proc_exit(void)
991 {
992 	remove_proc_entry("devices", proc_bus_input_dir);
993 	remove_proc_entry("handlers", proc_bus_input_dir);
994 	remove_proc_entry("bus/input", NULL);
995 }
996 
997 #else /* !CONFIG_PROC_FS */
998 static inline void input_wakeup_procfs_readers(void) { }
999 static inline int input_proc_init(void) { return 0; }
1000 static inline void input_proc_exit(void) { }
1001 #endif
1002 
1003 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1004 static ssize_t input_dev_show_##name(struct device *dev,		\
1005 				     struct device_attribute *attr,	\
1006 				     char *buf)				\
1007 {									\
1008 	struct input_dev *input_dev = to_input_dev(dev);		\
1009 									\
1010 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1011 			 input_dev->name ? input_dev->name : "");	\
1012 }									\
1013 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1014 
1015 INPUT_DEV_STRING_ATTR_SHOW(name);
1016 INPUT_DEV_STRING_ATTR_SHOW(phys);
1017 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1018 
1019 static int input_print_modalias_bits(char *buf, int size,
1020 				     char name, unsigned long *bm,
1021 				     unsigned int min_bit, unsigned int max_bit)
1022 {
1023 	int len = 0, i;
1024 
1025 	len += snprintf(buf, max(size, 0), "%c", name);
1026 	for (i = min_bit; i < max_bit; i++)
1027 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1028 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1029 	return len;
1030 }
1031 
1032 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1033 				int add_cr)
1034 {
1035 	int len;
1036 
1037 	len = snprintf(buf, max(size, 0),
1038 		       "input:b%04Xv%04Xp%04Xe%04X-",
1039 		       id->id.bustype, id->id.vendor,
1040 		       id->id.product, id->id.version);
1041 
1042 	len += input_print_modalias_bits(buf + len, size - len,
1043 				'e', id->evbit, 0, EV_MAX);
1044 	len += input_print_modalias_bits(buf + len, size - len,
1045 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1046 	len += input_print_modalias_bits(buf + len, size - len,
1047 				'r', id->relbit, 0, REL_MAX);
1048 	len += input_print_modalias_bits(buf + len, size - len,
1049 				'a', id->absbit, 0, ABS_MAX);
1050 	len += input_print_modalias_bits(buf + len, size - len,
1051 				'm', id->mscbit, 0, MSC_MAX);
1052 	len += input_print_modalias_bits(buf + len, size - len,
1053 				'l', id->ledbit, 0, LED_MAX);
1054 	len += input_print_modalias_bits(buf + len, size - len,
1055 				's', id->sndbit, 0, SND_MAX);
1056 	len += input_print_modalias_bits(buf + len, size - len,
1057 				'f', id->ffbit, 0, FF_MAX);
1058 	len += input_print_modalias_bits(buf + len, size - len,
1059 				'w', id->swbit, 0, SW_MAX);
1060 
1061 	if (add_cr)
1062 		len += snprintf(buf + len, max(size - len, 0), "\n");
1063 
1064 	return len;
1065 }
1066 
1067 static ssize_t input_dev_show_modalias(struct device *dev,
1068 				       struct device_attribute *attr,
1069 				       char *buf)
1070 {
1071 	struct input_dev *id = to_input_dev(dev);
1072 	ssize_t len;
1073 
1074 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1075 
1076 	return min_t(int, len, PAGE_SIZE);
1077 }
1078 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1079 
1080 static struct attribute *input_dev_attrs[] = {
1081 	&dev_attr_name.attr,
1082 	&dev_attr_phys.attr,
1083 	&dev_attr_uniq.attr,
1084 	&dev_attr_modalias.attr,
1085 	NULL
1086 };
1087 
1088 static struct attribute_group input_dev_attr_group = {
1089 	.attrs	= input_dev_attrs,
1090 };
1091 
1092 #define INPUT_DEV_ID_ATTR(name)						\
1093 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1094 					struct device_attribute *attr,	\
1095 					char *buf)			\
1096 {									\
1097 	struct input_dev *input_dev = to_input_dev(dev);		\
1098 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1099 }									\
1100 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1101 
1102 INPUT_DEV_ID_ATTR(bustype);
1103 INPUT_DEV_ID_ATTR(vendor);
1104 INPUT_DEV_ID_ATTR(product);
1105 INPUT_DEV_ID_ATTR(version);
1106 
1107 static struct attribute *input_dev_id_attrs[] = {
1108 	&dev_attr_bustype.attr,
1109 	&dev_attr_vendor.attr,
1110 	&dev_attr_product.attr,
1111 	&dev_attr_version.attr,
1112 	NULL
1113 };
1114 
1115 static struct attribute_group input_dev_id_attr_group = {
1116 	.name	= "id",
1117 	.attrs	= input_dev_id_attrs,
1118 };
1119 
1120 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1121 			      int max, int add_cr)
1122 {
1123 	int i;
1124 	int len = 0;
1125 
1126 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1127 		if (bitmap[i])
1128 			break;
1129 
1130 	for (; i >= 0; i--)
1131 		len += snprintf(buf + len, max(buf_size - len, 0),
1132 				"%lx%s", bitmap[i], i > 0 ? " " : "");
1133 
1134 	if (add_cr)
1135 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1136 
1137 	return len;
1138 }
1139 
1140 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1141 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1142 				       struct device_attribute *attr,	\
1143 				       char *buf)			\
1144 {									\
1145 	struct input_dev *input_dev = to_input_dev(dev);		\
1146 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1147 				     input_dev->bm##bit, ev##_MAX, 1);	\
1148 	return min_t(int, len, PAGE_SIZE);				\
1149 }									\
1150 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1151 
1152 INPUT_DEV_CAP_ATTR(EV, ev);
1153 INPUT_DEV_CAP_ATTR(KEY, key);
1154 INPUT_DEV_CAP_ATTR(REL, rel);
1155 INPUT_DEV_CAP_ATTR(ABS, abs);
1156 INPUT_DEV_CAP_ATTR(MSC, msc);
1157 INPUT_DEV_CAP_ATTR(LED, led);
1158 INPUT_DEV_CAP_ATTR(SND, snd);
1159 INPUT_DEV_CAP_ATTR(FF, ff);
1160 INPUT_DEV_CAP_ATTR(SW, sw);
1161 
1162 static struct attribute *input_dev_caps_attrs[] = {
1163 	&dev_attr_ev.attr,
1164 	&dev_attr_key.attr,
1165 	&dev_attr_rel.attr,
1166 	&dev_attr_abs.attr,
1167 	&dev_attr_msc.attr,
1168 	&dev_attr_led.attr,
1169 	&dev_attr_snd.attr,
1170 	&dev_attr_ff.attr,
1171 	&dev_attr_sw.attr,
1172 	NULL
1173 };
1174 
1175 static struct attribute_group input_dev_caps_attr_group = {
1176 	.name	= "capabilities",
1177 	.attrs	= input_dev_caps_attrs,
1178 };
1179 
1180 static const struct attribute_group *input_dev_attr_groups[] = {
1181 	&input_dev_attr_group,
1182 	&input_dev_id_attr_group,
1183 	&input_dev_caps_attr_group,
1184 	NULL
1185 };
1186 
1187 static void input_dev_release(struct device *device)
1188 {
1189 	struct input_dev *dev = to_input_dev(device);
1190 
1191 	input_ff_destroy(dev);
1192 	kfree(dev);
1193 
1194 	module_put(THIS_MODULE);
1195 }
1196 
1197 /*
1198  * Input uevent interface - loading event handlers based on
1199  * device bitfields.
1200  */
1201 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1202 				   const char *name, unsigned long *bitmap, int max)
1203 {
1204 	int len;
1205 
1206 	if (add_uevent_var(env, "%s=", name))
1207 		return -ENOMEM;
1208 
1209 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1210 				 sizeof(env->buf) - env->buflen,
1211 				 bitmap, max, 0);
1212 	if (len >= (sizeof(env->buf) - env->buflen))
1213 		return -ENOMEM;
1214 
1215 	env->buflen += len;
1216 	return 0;
1217 }
1218 
1219 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1220 					 struct input_dev *dev)
1221 {
1222 	int len;
1223 
1224 	if (add_uevent_var(env, "MODALIAS="))
1225 		return -ENOMEM;
1226 
1227 	len = input_print_modalias(&env->buf[env->buflen - 1],
1228 				   sizeof(env->buf) - env->buflen,
1229 				   dev, 0);
1230 	if (len >= (sizeof(env->buf) - env->buflen))
1231 		return -ENOMEM;
1232 
1233 	env->buflen += len;
1234 	return 0;
1235 }
1236 
1237 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1238 	do {								\
1239 		int err = add_uevent_var(env, fmt, val);		\
1240 		if (err)						\
1241 			return err;					\
1242 	} while (0)
1243 
1244 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1245 	do {								\
1246 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1247 		if (err)						\
1248 			return err;					\
1249 	} while (0)
1250 
1251 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1252 	do {								\
1253 		int err = input_add_uevent_modalias_var(env, dev);	\
1254 		if (err)						\
1255 			return err;					\
1256 	} while (0)
1257 
1258 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1259 {
1260 	struct input_dev *dev = to_input_dev(device);
1261 
1262 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1263 				dev->id.bustype, dev->id.vendor,
1264 				dev->id.product, dev->id.version);
1265 	if (dev->name)
1266 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1267 	if (dev->phys)
1268 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1269 	if (dev->uniq)
1270 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1271 
1272 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1273 	if (test_bit(EV_KEY, dev->evbit))
1274 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1275 	if (test_bit(EV_REL, dev->evbit))
1276 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1277 	if (test_bit(EV_ABS, dev->evbit))
1278 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1279 	if (test_bit(EV_MSC, dev->evbit))
1280 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1281 	if (test_bit(EV_LED, dev->evbit))
1282 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1283 	if (test_bit(EV_SND, dev->evbit))
1284 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1285 	if (test_bit(EV_FF, dev->evbit))
1286 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1287 	if (test_bit(EV_SW, dev->evbit))
1288 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1289 
1290 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1291 
1292 	return 0;
1293 }
1294 
1295 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1296 	do {								\
1297 		int i;							\
1298 		bool active;						\
1299 									\
1300 		if (!test_bit(EV_##type, dev->evbit))			\
1301 			break;						\
1302 									\
1303 		for (i = 0; i < type##_MAX; i++) {			\
1304 			if (!test_bit(i, dev->bits##bit))		\
1305 				continue;				\
1306 									\
1307 			active = test_bit(i, dev->bits);		\
1308 			if (!active && !on)				\
1309 				continue;				\
1310 									\
1311 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1312 		}							\
1313 	} while (0)
1314 
1315 #ifdef CONFIG_PM
1316 static void input_dev_reset(struct input_dev *dev, bool activate)
1317 {
1318 	if (!dev->event)
1319 		return;
1320 
1321 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1322 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1323 
1324 	if (activate && test_bit(EV_REP, dev->evbit)) {
1325 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1326 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1327 	}
1328 }
1329 
1330 static int input_dev_suspend(struct device *dev)
1331 {
1332 	struct input_dev *input_dev = to_input_dev(dev);
1333 
1334 	mutex_lock(&input_dev->mutex);
1335 	input_dev_reset(input_dev, false);
1336 	mutex_unlock(&input_dev->mutex);
1337 
1338 	return 0;
1339 }
1340 
1341 static int input_dev_resume(struct device *dev)
1342 {
1343 	struct input_dev *input_dev = to_input_dev(dev);
1344 
1345 	mutex_lock(&input_dev->mutex);
1346 	input_dev_reset(input_dev, true);
1347 	mutex_unlock(&input_dev->mutex);
1348 
1349 	return 0;
1350 }
1351 
1352 static const struct dev_pm_ops input_dev_pm_ops = {
1353 	.suspend	= input_dev_suspend,
1354 	.resume		= input_dev_resume,
1355 	.poweroff	= input_dev_suspend,
1356 	.restore	= input_dev_resume,
1357 };
1358 #endif /* CONFIG_PM */
1359 
1360 static struct device_type input_dev_type = {
1361 	.groups		= input_dev_attr_groups,
1362 	.release	= input_dev_release,
1363 	.uevent		= input_dev_uevent,
1364 #ifdef CONFIG_PM
1365 	.pm		= &input_dev_pm_ops,
1366 #endif
1367 };
1368 
1369 static char *input_devnode(struct device *dev, mode_t *mode)
1370 {
1371 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1372 }
1373 
1374 struct class input_class = {
1375 	.name		= "input",
1376 	.devnode	= input_devnode,
1377 };
1378 EXPORT_SYMBOL_GPL(input_class);
1379 
1380 /**
1381  * input_allocate_device - allocate memory for new input device
1382  *
1383  * Returns prepared struct input_dev or NULL.
1384  *
1385  * NOTE: Use input_free_device() to free devices that have not been
1386  * registered; input_unregister_device() should be used for already
1387  * registered devices.
1388  */
1389 struct input_dev *input_allocate_device(void)
1390 {
1391 	struct input_dev *dev;
1392 
1393 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1394 	if (dev) {
1395 		dev->dev.type = &input_dev_type;
1396 		dev->dev.class = &input_class;
1397 		device_initialize(&dev->dev);
1398 		mutex_init(&dev->mutex);
1399 		spin_lock_init(&dev->event_lock);
1400 		INIT_LIST_HEAD(&dev->h_list);
1401 		INIT_LIST_HEAD(&dev->node);
1402 
1403 		__module_get(THIS_MODULE);
1404 	}
1405 
1406 	return dev;
1407 }
1408 EXPORT_SYMBOL(input_allocate_device);
1409 
1410 /**
1411  * input_free_device - free memory occupied by input_dev structure
1412  * @dev: input device to free
1413  *
1414  * This function should only be used if input_register_device()
1415  * was not called yet or if it failed. Once device was registered
1416  * use input_unregister_device() and memory will be freed once last
1417  * reference to the device is dropped.
1418  *
1419  * Device should be allocated by input_allocate_device().
1420  *
1421  * NOTE: If there are references to the input device then memory
1422  * will not be freed until last reference is dropped.
1423  */
1424 void input_free_device(struct input_dev *dev)
1425 {
1426 	if (dev)
1427 		input_put_device(dev);
1428 }
1429 EXPORT_SYMBOL(input_free_device);
1430 
1431 /**
1432  * input_set_capability - mark device as capable of a certain event
1433  * @dev: device that is capable of emitting or accepting event
1434  * @type: type of the event (EV_KEY, EV_REL, etc...)
1435  * @code: event code
1436  *
1437  * In addition to setting up corresponding bit in appropriate capability
1438  * bitmap the function also adjusts dev->evbit.
1439  */
1440 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1441 {
1442 	switch (type) {
1443 	case EV_KEY:
1444 		__set_bit(code, dev->keybit);
1445 		break;
1446 
1447 	case EV_REL:
1448 		__set_bit(code, dev->relbit);
1449 		break;
1450 
1451 	case EV_ABS:
1452 		__set_bit(code, dev->absbit);
1453 		break;
1454 
1455 	case EV_MSC:
1456 		__set_bit(code, dev->mscbit);
1457 		break;
1458 
1459 	case EV_SW:
1460 		__set_bit(code, dev->swbit);
1461 		break;
1462 
1463 	case EV_LED:
1464 		__set_bit(code, dev->ledbit);
1465 		break;
1466 
1467 	case EV_SND:
1468 		__set_bit(code, dev->sndbit);
1469 		break;
1470 
1471 	case EV_FF:
1472 		__set_bit(code, dev->ffbit);
1473 		break;
1474 
1475 	case EV_PWR:
1476 		/* do nothing */
1477 		break;
1478 
1479 	default:
1480 		printk(KERN_ERR
1481 			"input_set_capability: unknown type %u (code %u)\n",
1482 			type, code);
1483 		dump_stack();
1484 		return;
1485 	}
1486 
1487 	__set_bit(type, dev->evbit);
1488 }
1489 EXPORT_SYMBOL(input_set_capability);
1490 
1491 /**
1492  * input_register_device - register device with input core
1493  * @dev: device to be registered
1494  *
1495  * This function registers device with input core. The device must be
1496  * allocated with input_allocate_device() and all it's capabilities
1497  * set up before registering.
1498  * If function fails the device must be freed with input_free_device().
1499  * Once device has been successfully registered it can be unregistered
1500  * with input_unregister_device(); input_free_device() should not be
1501  * called in this case.
1502  */
1503 int input_register_device(struct input_dev *dev)
1504 {
1505 	static atomic_t input_no = ATOMIC_INIT(0);
1506 	struct input_handler *handler;
1507 	const char *path;
1508 	int error;
1509 
1510 	__set_bit(EV_SYN, dev->evbit);
1511 
1512 	/*
1513 	 * If delay and period are pre-set by the driver, then autorepeating
1514 	 * is handled by the driver itself and we don't do it in input.c.
1515 	 */
1516 
1517 	init_timer(&dev->timer);
1518 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1519 		dev->timer.data = (long) dev;
1520 		dev->timer.function = input_repeat_key;
1521 		dev->rep[REP_DELAY] = 250;
1522 		dev->rep[REP_PERIOD] = 33;
1523 	}
1524 
1525 	if (!dev->getkeycode)
1526 		dev->getkeycode = input_default_getkeycode;
1527 
1528 	if (!dev->setkeycode)
1529 		dev->setkeycode = input_default_setkeycode;
1530 
1531 	dev_set_name(&dev->dev, "input%ld",
1532 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1533 
1534 	error = device_add(&dev->dev);
1535 	if (error)
1536 		return error;
1537 
1538 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1539 	printk(KERN_INFO "input: %s as %s\n",
1540 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1541 	kfree(path);
1542 
1543 	error = mutex_lock_interruptible(&input_mutex);
1544 	if (error) {
1545 		device_del(&dev->dev);
1546 		return error;
1547 	}
1548 
1549 	list_add_tail(&dev->node, &input_dev_list);
1550 
1551 	list_for_each_entry(handler, &input_handler_list, node)
1552 		input_attach_handler(dev, handler);
1553 
1554 	input_wakeup_procfs_readers();
1555 
1556 	mutex_unlock(&input_mutex);
1557 
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL(input_register_device);
1561 
1562 /**
1563  * input_unregister_device - unregister previously registered device
1564  * @dev: device to be unregistered
1565  *
1566  * This function unregisters an input device. Once device is unregistered
1567  * the caller should not try to access it as it may get freed at any moment.
1568  */
1569 void input_unregister_device(struct input_dev *dev)
1570 {
1571 	struct input_handle *handle, *next;
1572 
1573 	input_disconnect_device(dev);
1574 
1575 	mutex_lock(&input_mutex);
1576 
1577 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1578 		handle->handler->disconnect(handle);
1579 	WARN_ON(!list_empty(&dev->h_list));
1580 
1581 	del_timer_sync(&dev->timer);
1582 	list_del_init(&dev->node);
1583 
1584 	input_wakeup_procfs_readers();
1585 
1586 	mutex_unlock(&input_mutex);
1587 
1588 	device_unregister(&dev->dev);
1589 }
1590 EXPORT_SYMBOL(input_unregister_device);
1591 
1592 /**
1593  * input_register_handler - register a new input handler
1594  * @handler: handler to be registered
1595  *
1596  * This function registers a new input handler (interface) for input
1597  * devices in the system and attaches it to all input devices that
1598  * are compatible with the handler.
1599  */
1600 int input_register_handler(struct input_handler *handler)
1601 {
1602 	struct input_dev *dev;
1603 	int retval;
1604 
1605 	retval = mutex_lock_interruptible(&input_mutex);
1606 	if (retval)
1607 		return retval;
1608 
1609 	INIT_LIST_HEAD(&handler->h_list);
1610 
1611 	if (handler->fops != NULL) {
1612 		if (input_table[handler->minor >> 5]) {
1613 			retval = -EBUSY;
1614 			goto out;
1615 		}
1616 		input_table[handler->minor >> 5] = handler;
1617 	}
1618 
1619 	list_add_tail(&handler->node, &input_handler_list);
1620 
1621 	list_for_each_entry(dev, &input_dev_list, node)
1622 		input_attach_handler(dev, handler);
1623 
1624 	input_wakeup_procfs_readers();
1625 
1626  out:
1627 	mutex_unlock(&input_mutex);
1628 	return retval;
1629 }
1630 EXPORT_SYMBOL(input_register_handler);
1631 
1632 /**
1633  * input_unregister_handler - unregisters an input handler
1634  * @handler: handler to be unregistered
1635  *
1636  * This function disconnects a handler from its input devices and
1637  * removes it from lists of known handlers.
1638  */
1639 void input_unregister_handler(struct input_handler *handler)
1640 {
1641 	struct input_handle *handle, *next;
1642 
1643 	mutex_lock(&input_mutex);
1644 
1645 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1646 		handler->disconnect(handle);
1647 	WARN_ON(!list_empty(&handler->h_list));
1648 
1649 	list_del_init(&handler->node);
1650 
1651 	if (handler->fops != NULL)
1652 		input_table[handler->minor >> 5] = NULL;
1653 
1654 	input_wakeup_procfs_readers();
1655 
1656 	mutex_unlock(&input_mutex);
1657 }
1658 EXPORT_SYMBOL(input_unregister_handler);
1659 
1660 /**
1661  * input_handler_for_each_handle - handle iterator
1662  * @handler: input handler to iterate
1663  * @data: data for the callback
1664  * @fn: function to be called for each handle
1665  *
1666  * Iterate over @bus's list of devices, and call @fn for each, passing
1667  * it @data and stop when @fn returns a non-zero value. The function is
1668  * using RCU to traverse the list and therefore may be usind in atonic
1669  * contexts. The @fn callback is invoked from RCU critical section and
1670  * thus must not sleep.
1671  */
1672 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1673 				  int (*fn)(struct input_handle *, void *))
1674 {
1675 	struct input_handle *handle;
1676 	int retval = 0;
1677 
1678 	rcu_read_lock();
1679 
1680 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1681 		retval = fn(handle, data);
1682 		if (retval)
1683 			break;
1684 	}
1685 
1686 	rcu_read_unlock();
1687 
1688 	return retval;
1689 }
1690 EXPORT_SYMBOL(input_handler_for_each_handle);
1691 
1692 /**
1693  * input_register_handle - register a new input handle
1694  * @handle: handle to register
1695  *
1696  * This function puts a new input handle onto device's
1697  * and handler's lists so that events can flow through
1698  * it once it is opened using input_open_device().
1699  *
1700  * This function is supposed to be called from handler's
1701  * connect() method.
1702  */
1703 int input_register_handle(struct input_handle *handle)
1704 {
1705 	struct input_handler *handler = handle->handler;
1706 	struct input_dev *dev = handle->dev;
1707 	int error;
1708 
1709 	/*
1710 	 * We take dev->mutex here to prevent race with
1711 	 * input_release_device().
1712 	 */
1713 	error = mutex_lock_interruptible(&dev->mutex);
1714 	if (error)
1715 		return error;
1716 	list_add_tail_rcu(&handle->d_node, &dev->h_list);
1717 	mutex_unlock(&dev->mutex);
1718 
1719 	/*
1720 	 * Since we are supposed to be called from ->connect()
1721 	 * which is mutually exclusive with ->disconnect()
1722 	 * we can't be racing with input_unregister_handle()
1723 	 * and so separate lock is not needed here.
1724 	 */
1725 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
1726 
1727 	if (handler->start)
1728 		handler->start(handle);
1729 
1730 	return 0;
1731 }
1732 EXPORT_SYMBOL(input_register_handle);
1733 
1734 /**
1735  * input_unregister_handle - unregister an input handle
1736  * @handle: handle to unregister
1737  *
1738  * This function removes input handle from device's
1739  * and handler's lists.
1740  *
1741  * This function is supposed to be called from handler's
1742  * disconnect() method.
1743  */
1744 void input_unregister_handle(struct input_handle *handle)
1745 {
1746 	struct input_dev *dev = handle->dev;
1747 
1748 	list_del_rcu(&handle->h_node);
1749 
1750 	/*
1751 	 * Take dev->mutex to prevent race with input_release_device().
1752 	 */
1753 	mutex_lock(&dev->mutex);
1754 	list_del_rcu(&handle->d_node);
1755 	mutex_unlock(&dev->mutex);
1756 
1757 	synchronize_rcu();
1758 }
1759 EXPORT_SYMBOL(input_unregister_handle);
1760 
1761 static int input_open_file(struct inode *inode, struct file *file)
1762 {
1763 	struct input_handler *handler;
1764 	const struct file_operations *old_fops, *new_fops = NULL;
1765 	int err;
1766 
1767 	lock_kernel();
1768 	/* No load-on-demand here? */
1769 	handler = input_table[iminor(inode) >> 5];
1770 	if (!handler || !(new_fops = fops_get(handler->fops))) {
1771 		err = -ENODEV;
1772 		goto out;
1773 	}
1774 
1775 	/*
1776 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1777 	 * not "no device". Oh, well...
1778 	 */
1779 	if (!new_fops->open) {
1780 		fops_put(new_fops);
1781 		err = -ENODEV;
1782 		goto out;
1783 	}
1784 	old_fops = file->f_op;
1785 	file->f_op = new_fops;
1786 
1787 	err = new_fops->open(inode, file);
1788 
1789 	if (err) {
1790 		fops_put(file->f_op);
1791 		file->f_op = fops_get(old_fops);
1792 	}
1793 	fops_put(old_fops);
1794 out:
1795 	unlock_kernel();
1796 	return err;
1797 }
1798 
1799 static const struct file_operations input_fops = {
1800 	.owner = THIS_MODULE,
1801 	.open = input_open_file,
1802 };
1803 
1804 static void __init input_init_abs_bypass(void)
1805 {
1806 	const unsigned int *p;
1807 
1808 	for (p = input_abs_bypass_init_data; *p; p++)
1809 		input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1810 }
1811 
1812 static int __init input_init(void)
1813 {
1814 	int err;
1815 
1816 	input_init_abs_bypass();
1817 
1818 	err = class_register(&input_class);
1819 	if (err) {
1820 		printk(KERN_ERR "input: unable to register input_dev class\n");
1821 		return err;
1822 	}
1823 
1824 	err = input_proc_init();
1825 	if (err)
1826 		goto fail1;
1827 
1828 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1829 	if (err) {
1830 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1831 		goto fail2;
1832 	}
1833 
1834 	return 0;
1835 
1836  fail2:	input_proc_exit();
1837  fail1:	class_unregister(&input_class);
1838 	return err;
1839 }
1840 
1841 static void __exit input_exit(void)
1842 {
1843 	input_proc_exit();
1844 	unregister_chrdev(INPUT_MAJOR, "input");
1845 	class_unregister(&input_class);
1846 }
1847 
1848 subsys_initcall(input_init);
1849 module_exit(input_exit);
1850