1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #include <linux/init.h> 14 #include <linux/types.h> 15 #include <linux/input.h> 16 #include <linux/module.h> 17 #include <linux/random.h> 18 #include <linux/major.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/poll.h> 23 #include <linux/device.h> 24 #include <linux/mutex.h> 25 #include <linux/rcupdate.h> 26 #include <linux/smp_lock.h> 27 28 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 29 MODULE_DESCRIPTION("Input core"); 30 MODULE_LICENSE("GPL"); 31 32 #define INPUT_DEVICES 256 33 34 /* 35 * EV_ABS events which should not be cached are listed here. 36 */ 37 static unsigned int input_abs_bypass_init_data[] __initdata = { 38 ABS_MT_TOUCH_MAJOR, 39 ABS_MT_TOUCH_MINOR, 40 ABS_MT_WIDTH_MAJOR, 41 ABS_MT_WIDTH_MINOR, 42 ABS_MT_ORIENTATION, 43 ABS_MT_POSITION_X, 44 ABS_MT_POSITION_Y, 45 ABS_MT_TOOL_TYPE, 46 ABS_MT_BLOB_ID, 47 ABS_MT_TRACKING_ID, 48 0 49 }; 50 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)]; 51 52 static LIST_HEAD(input_dev_list); 53 static LIST_HEAD(input_handler_list); 54 55 /* 56 * input_mutex protects access to both input_dev_list and input_handler_list. 57 * This also causes input_[un]register_device and input_[un]register_handler 58 * be mutually exclusive which simplifies locking in drivers implementing 59 * input handlers. 60 */ 61 static DEFINE_MUTEX(input_mutex); 62 63 static struct input_handler *input_table[8]; 64 65 static inline int is_event_supported(unsigned int code, 66 unsigned long *bm, unsigned int max) 67 { 68 return code <= max && test_bit(code, bm); 69 } 70 71 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 72 { 73 if (fuzz) { 74 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 75 return old_val; 76 77 if (value > old_val - fuzz && value < old_val + fuzz) 78 return (old_val * 3 + value) / 4; 79 80 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 81 return (old_val + value) / 2; 82 } 83 84 return value; 85 } 86 87 /* 88 * Pass event through all open handles. This function is called with 89 * dev->event_lock held and interrupts disabled. 90 */ 91 static void input_pass_event(struct input_dev *dev, 92 unsigned int type, unsigned int code, int value) 93 { 94 struct input_handle *handle; 95 96 rcu_read_lock(); 97 98 handle = rcu_dereference(dev->grab); 99 if (handle) 100 handle->handler->event(handle, type, code, value); 101 else 102 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 103 if (handle->open) 104 handle->handler->event(handle, 105 type, code, value); 106 rcu_read_unlock(); 107 } 108 109 /* 110 * Generate software autorepeat event. Note that we take 111 * dev->event_lock here to avoid racing with input_event 112 * which may cause keys get "stuck". 113 */ 114 static void input_repeat_key(unsigned long data) 115 { 116 struct input_dev *dev = (void *) data; 117 unsigned long flags; 118 119 spin_lock_irqsave(&dev->event_lock, flags); 120 121 if (test_bit(dev->repeat_key, dev->key) && 122 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 123 124 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 125 126 if (dev->sync) { 127 /* 128 * Only send SYN_REPORT if we are not in a middle 129 * of driver parsing a new hardware packet. 130 * Otherwise assume that the driver will send 131 * SYN_REPORT once it's done. 132 */ 133 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 134 } 135 136 if (dev->rep[REP_PERIOD]) 137 mod_timer(&dev->timer, jiffies + 138 msecs_to_jiffies(dev->rep[REP_PERIOD])); 139 } 140 141 spin_unlock_irqrestore(&dev->event_lock, flags); 142 } 143 144 static void input_start_autorepeat(struct input_dev *dev, int code) 145 { 146 if (test_bit(EV_REP, dev->evbit) && 147 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 148 dev->timer.data) { 149 dev->repeat_key = code; 150 mod_timer(&dev->timer, 151 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 152 } 153 } 154 155 static void input_stop_autorepeat(struct input_dev *dev) 156 { 157 del_timer(&dev->timer); 158 } 159 160 #define INPUT_IGNORE_EVENT 0 161 #define INPUT_PASS_TO_HANDLERS 1 162 #define INPUT_PASS_TO_DEVICE 2 163 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 164 165 static void input_handle_event(struct input_dev *dev, 166 unsigned int type, unsigned int code, int value) 167 { 168 int disposition = INPUT_IGNORE_EVENT; 169 170 switch (type) { 171 172 case EV_SYN: 173 switch (code) { 174 case SYN_CONFIG: 175 disposition = INPUT_PASS_TO_ALL; 176 break; 177 178 case SYN_REPORT: 179 if (!dev->sync) { 180 dev->sync = 1; 181 disposition = INPUT_PASS_TO_HANDLERS; 182 } 183 break; 184 case SYN_MT_REPORT: 185 dev->sync = 0; 186 disposition = INPUT_PASS_TO_HANDLERS; 187 break; 188 } 189 break; 190 191 case EV_KEY: 192 if (is_event_supported(code, dev->keybit, KEY_MAX) && 193 !!test_bit(code, dev->key) != value) { 194 195 if (value != 2) { 196 __change_bit(code, dev->key); 197 if (value) 198 input_start_autorepeat(dev, code); 199 else 200 input_stop_autorepeat(dev); 201 } 202 203 disposition = INPUT_PASS_TO_HANDLERS; 204 } 205 break; 206 207 case EV_SW: 208 if (is_event_supported(code, dev->swbit, SW_MAX) && 209 !!test_bit(code, dev->sw) != value) { 210 211 __change_bit(code, dev->sw); 212 disposition = INPUT_PASS_TO_HANDLERS; 213 } 214 break; 215 216 case EV_ABS: 217 if (is_event_supported(code, dev->absbit, ABS_MAX)) { 218 219 if (test_bit(code, input_abs_bypass)) { 220 disposition = INPUT_PASS_TO_HANDLERS; 221 break; 222 } 223 224 value = input_defuzz_abs_event(value, 225 dev->abs[code], dev->absfuzz[code]); 226 227 if (dev->abs[code] != value) { 228 dev->abs[code] = value; 229 disposition = INPUT_PASS_TO_HANDLERS; 230 } 231 } 232 break; 233 234 case EV_REL: 235 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 236 disposition = INPUT_PASS_TO_HANDLERS; 237 238 break; 239 240 case EV_MSC: 241 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 242 disposition = INPUT_PASS_TO_ALL; 243 244 break; 245 246 case EV_LED: 247 if (is_event_supported(code, dev->ledbit, LED_MAX) && 248 !!test_bit(code, dev->led) != value) { 249 250 __change_bit(code, dev->led); 251 disposition = INPUT_PASS_TO_ALL; 252 } 253 break; 254 255 case EV_SND: 256 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 257 258 if (!!test_bit(code, dev->snd) != !!value) 259 __change_bit(code, dev->snd); 260 disposition = INPUT_PASS_TO_ALL; 261 } 262 break; 263 264 case EV_REP: 265 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 266 dev->rep[code] = value; 267 disposition = INPUT_PASS_TO_ALL; 268 } 269 break; 270 271 case EV_FF: 272 if (value >= 0) 273 disposition = INPUT_PASS_TO_ALL; 274 break; 275 276 case EV_PWR: 277 disposition = INPUT_PASS_TO_ALL; 278 break; 279 } 280 281 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 282 dev->sync = 0; 283 284 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 285 dev->event(dev, type, code, value); 286 287 if (disposition & INPUT_PASS_TO_HANDLERS) 288 input_pass_event(dev, type, code, value); 289 } 290 291 /** 292 * input_event() - report new input event 293 * @dev: device that generated the event 294 * @type: type of the event 295 * @code: event code 296 * @value: value of the event 297 * 298 * This function should be used by drivers implementing various input 299 * devices. See also input_inject_event(). 300 */ 301 302 void input_event(struct input_dev *dev, 303 unsigned int type, unsigned int code, int value) 304 { 305 unsigned long flags; 306 307 if (is_event_supported(type, dev->evbit, EV_MAX)) { 308 309 spin_lock_irqsave(&dev->event_lock, flags); 310 add_input_randomness(type, code, value); 311 input_handle_event(dev, type, code, value); 312 spin_unlock_irqrestore(&dev->event_lock, flags); 313 } 314 } 315 EXPORT_SYMBOL(input_event); 316 317 /** 318 * input_inject_event() - send input event from input handler 319 * @handle: input handle to send event through 320 * @type: type of the event 321 * @code: event code 322 * @value: value of the event 323 * 324 * Similar to input_event() but will ignore event if device is 325 * "grabbed" and handle injecting event is not the one that owns 326 * the device. 327 */ 328 void input_inject_event(struct input_handle *handle, 329 unsigned int type, unsigned int code, int value) 330 { 331 struct input_dev *dev = handle->dev; 332 struct input_handle *grab; 333 unsigned long flags; 334 335 if (is_event_supported(type, dev->evbit, EV_MAX)) { 336 spin_lock_irqsave(&dev->event_lock, flags); 337 338 rcu_read_lock(); 339 grab = rcu_dereference(dev->grab); 340 if (!grab || grab == handle) 341 input_handle_event(dev, type, code, value); 342 rcu_read_unlock(); 343 344 spin_unlock_irqrestore(&dev->event_lock, flags); 345 } 346 } 347 EXPORT_SYMBOL(input_inject_event); 348 349 /** 350 * input_grab_device - grabs device for exclusive use 351 * @handle: input handle that wants to own the device 352 * 353 * When a device is grabbed by an input handle all events generated by 354 * the device are delivered only to this handle. Also events injected 355 * by other input handles are ignored while device is grabbed. 356 */ 357 int input_grab_device(struct input_handle *handle) 358 { 359 struct input_dev *dev = handle->dev; 360 int retval; 361 362 retval = mutex_lock_interruptible(&dev->mutex); 363 if (retval) 364 return retval; 365 366 if (dev->grab) { 367 retval = -EBUSY; 368 goto out; 369 } 370 371 rcu_assign_pointer(dev->grab, handle); 372 synchronize_rcu(); 373 374 out: 375 mutex_unlock(&dev->mutex); 376 return retval; 377 } 378 EXPORT_SYMBOL(input_grab_device); 379 380 static void __input_release_device(struct input_handle *handle) 381 { 382 struct input_dev *dev = handle->dev; 383 384 if (dev->grab == handle) { 385 rcu_assign_pointer(dev->grab, NULL); 386 /* Make sure input_pass_event() notices that grab is gone */ 387 synchronize_rcu(); 388 389 list_for_each_entry(handle, &dev->h_list, d_node) 390 if (handle->open && handle->handler->start) 391 handle->handler->start(handle); 392 } 393 } 394 395 /** 396 * input_release_device - release previously grabbed device 397 * @handle: input handle that owns the device 398 * 399 * Releases previously grabbed device so that other input handles can 400 * start receiving input events. Upon release all handlers attached 401 * to the device have their start() method called so they have a change 402 * to synchronize device state with the rest of the system. 403 */ 404 void input_release_device(struct input_handle *handle) 405 { 406 struct input_dev *dev = handle->dev; 407 408 mutex_lock(&dev->mutex); 409 __input_release_device(handle); 410 mutex_unlock(&dev->mutex); 411 } 412 EXPORT_SYMBOL(input_release_device); 413 414 /** 415 * input_open_device - open input device 416 * @handle: handle through which device is being accessed 417 * 418 * This function should be called by input handlers when they 419 * want to start receive events from given input device. 420 */ 421 int input_open_device(struct input_handle *handle) 422 { 423 struct input_dev *dev = handle->dev; 424 int retval; 425 426 retval = mutex_lock_interruptible(&dev->mutex); 427 if (retval) 428 return retval; 429 430 if (dev->going_away) { 431 retval = -ENODEV; 432 goto out; 433 } 434 435 handle->open++; 436 437 if (!dev->users++ && dev->open) 438 retval = dev->open(dev); 439 440 if (retval) { 441 dev->users--; 442 if (!--handle->open) { 443 /* 444 * Make sure we are not delivering any more events 445 * through this handle 446 */ 447 synchronize_rcu(); 448 } 449 } 450 451 out: 452 mutex_unlock(&dev->mutex); 453 return retval; 454 } 455 EXPORT_SYMBOL(input_open_device); 456 457 int input_flush_device(struct input_handle *handle, struct file *file) 458 { 459 struct input_dev *dev = handle->dev; 460 int retval; 461 462 retval = mutex_lock_interruptible(&dev->mutex); 463 if (retval) 464 return retval; 465 466 if (dev->flush) 467 retval = dev->flush(dev, file); 468 469 mutex_unlock(&dev->mutex); 470 return retval; 471 } 472 EXPORT_SYMBOL(input_flush_device); 473 474 /** 475 * input_close_device - close input device 476 * @handle: handle through which device is being accessed 477 * 478 * This function should be called by input handlers when they 479 * want to stop receive events from given input device. 480 */ 481 void input_close_device(struct input_handle *handle) 482 { 483 struct input_dev *dev = handle->dev; 484 485 mutex_lock(&dev->mutex); 486 487 __input_release_device(handle); 488 489 if (!--dev->users && dev->close) 490 dev->close(dev); 491 492 if (!--handle->open) { 493 /* 494 * synchronize_rcu() makes sure that input_pass_event() 495 * completed and that no more input events are delivered 496 * through this handle 497 */ 498 synchronize_rcu(); 499 } 500 501 mutex_unlock(&dev->mutex); 502 } 503 EXPORT_SYMBOL(input_close_device); 504 505 /* 506 * Prepare device for unregistering 507 */ 508 static void input_disconnect_device(struct input_dev *dev) 509 { 510 struct input_handle *handle; 511 int code; 512 513 /* 514 * Mark device as going away. Note that we take dev->mutex here 515 * not to protect access to dev->going_away but rather to ensure 516 * that there are no threads in the middle of input_open_device() 517 */ 518 mutex_lock(&dev->mutex); 519 dev->going_away = true; 520 mutex_unlock(&dev->mutex); 521 522 spin_lock_irq(&dev->event_lock); 523 524 /* 525 * Simulate keyup events for all pressed keys so that handlers 526 * are not left with "stuck" keys. The driver may continue 527 * generate events even after we done here but they will not 528 * reach any handlers. 529 */ 530 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 531 for (code = 0; code <= KEY_MAX; code++) { 532 if (is_event_supported(code, dev->keybit, KEY_MAX) && 533 __test_and_clear_bit(code, dev->key)) { 534 input_pass_event(dev, EV_KEY, code, 0); 535 } 536 } 537 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 538 } 539 540 list_for_each_entry(handle, &dev->h_list, d_node) 541 handle->open = 0; 542 543 spin_unlock_irq(&dev->event_lock); 544 } 545 546 static int input_fetch_keycode(struct input_dev *dev, int scancode) 547 { 548 switch (dev->keycodesize) { 549 case 1: 550 return ((u8 *)dev->keycode)[scancode]; 551 552 case 2: 553 return ((u16 *)dev->keycode)[scancode]; 554 555 default: 556 return ((u32 *)dev->keycode)[scancode]; 557 } 558 } 559 560 static int input_default_getkeycode(struct input_dev *dev, 561 int scancode, int *keycode) 562 { 563 if (!dev->keycodesize) 564 return -EINVAL; 565 566 if (scancode >= dev->keycodemax) 567 return -EINVAL; 568 569 *keycode = input_fetch_keycode(dev, scancode); 570 571 return 0; 572 } 573 574 static int input_default_setkeycode(struct input_dev *dev, 575 int scancode, int keycode) 576 { 577 int old_keycode; 578 int i; 579 580 if (scancode >= dev->keycodemax) 581 return -EINVAL; 582 583 if (!dev->keycodesize) 584 return -EINVAL; 585 586 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 587 return -EINVAL; 588 589 switch (dev->keycodesize) { 590 case 1: { 591 u8 *k = (u8 *)dev->keycode; 592 old_keycode = k[scancode]; 593 k[scancode] = keycode; 594 break; 595 } 596 case 2: { 597 u16 *k = (u16 *)dev->keycode; 598 old_keycode = k[scancode]; 599 k[scancode] = keycode; 600 break; 601 } 602 default: { 603 u32 *k = (u32 *)dev->keycode; 604 old_keycode = k[scancode]; 605 k[scancode] = keycode; 606 break; 607 } 608 } 609 610 clear_bit(old_keycode, dev->keybit); 611 set_bit(keycode, dev->keybit); 612 613 for (i = 0; i < dev->keycodemax; i++) { 614 if (input_fetch_keycode(dev, i) == old_keycode) { 615 set_bit(old_keycode, dev->keybit); 616 break; /* Setting the bit twice is useless, so break */ 617 } 618 } 619 620 return 0; 621 } 622 623 /** 624 * input_get_keycode - retrieve keycode currently mapped to a given scancode 625 * @dev: input device which keymap is being queried 626 * @scancode: scancode (or its equivalent for device in question) for which 627 * keycode is needed 628 * @keycode: result 629 * 630 * This function should be called by anyone interested in retrieving current 631 * keymap. Presently keyboard and evdev handlers use it. 632 */ 633 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode) 634 { 635 if (scancode < 0) 636 return -EINVAL; 637 638 return dev->getkeycode(dev, scancode, keycode); 639 } 640 EXPORT_SYMBOL(input_get_keycode); 641 642 /** 643 * input_get_keycode - assign new keycode to a given scancode 644 * @dev: input device which keymap is being updated 645 * @scancode: scancode (or its equivalent for device in question) 646 * @keycode: new keycode to be assigned to the scancode 647 * 648 * This function should be called by anyone needing to update current 649 * keymap. Presently keyboard and evdev handlers use it. 650 */ 651 int input_set_keycode(struct input_dev *dev, int scancode, int keycode) 652 { 653 unsigned long flags; 654 int old_keycode; 655 int retval; 656 657 if (scancode < 0) 658 return -EINVAL; 659 660 if (keycode < 0 || keycode > KEY_MAX) 661 return -EINVAL; 662 663 spin_lock_irqsave(&dev->event_lock, flags); 664 665 retval = dev->getkeycode(dev, scancode, &old_keycode); 666 if (retval) 667 goto out; 668 669 retval = dev->setkeycode(dev, scancode, keycode); 670 if (retval) 671 goto out; 672 673 /* 674 * Simulate keyup event if keycode is not present 675 * in the keymap anymore 676 */ 677 if (test_bit(EV_KEY, dev->evbit) && 678 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 679 __test_and_clear_bit(old_keycode, dev->key)) { 680 681 input_pass_event(dev, EV_KEY, old_keycode, 0); 682 if (dev->sync) 683 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 684 } 685 686 out: 687 spin_unlock_irqrestore(&dev->event_lock, flags); 688 689 return retval; 690 } 691 EXPORT_SYMBOL(input_set_keycode); 692 693 #define MATCH_BIT(bit, max) \ 694 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 695 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 696 break; \ 697 if (i != BITS_TO_LONGS(max)) \ 698 continue; 699 700 static const struct input_device_id *input_match_device(const struct input_device_id *id, 701 struct input_dev *dev) 702 { 703 int i; 704 705 for (; id->flags || id->driver_info; id++) { 706 707 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 708 if (id->bustype != dev->id.bustype) 709 continue; 710 711 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 712 if (id->vendor != dev->id.vendor) 713 continue; 714 715 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 716 if (id->product != dev->id.product) 717 continue; 718 719 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 720 if (id->version != dev->id.version) 721 continue; 722 723 MATCH_BIT(evbit, EV_MAX); 724 MATCH_BIT(keybit, KEY_MAX); 725 MATCH_BIT(relbit, REL_MAX); 726 MATCH_BIT(absbit, ABS_MAX); 727 MATCH_BIT(mscbit, MSC_MAX); 728 MATCH_BIT(ledbit, LED_MAX); 729 MATCH_BIT(sndbit, SND_MAX); 730 MATCH_BIT(ffbit, FF_MAX); 731 MATCH_BIT(swbit, SW_MAX); 732 733 return id; 734 } 735 736 return NULL; 737 } 738 739 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 740 { 741 const struct input_device_id *id; 742 int error; 743 744 if (handler->blacklist && input_match_device(handler->blacklist, dev)) 745 return -ENODEV; 746 747 id = input_match_device(handler->id_table, dev); 748 if (!id) 749 return -ENODEV; 750 751 error = handler->connect(handler, dev, id); 752 if (error && error != -ENODEV) 753 printk(KERN_ERR 754 "input: failed to attach handler %s to device %s, " 755 "error: %d\n", 756 handler->name, kobject_name(&dev->dev.kobj), error); 757 758 return error; 759 } 760 761 762 #ifdef CONFIG_PROC_FS 763 764 static struct proc_dir_entry *proc_bus_input_dir; 765 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 766 static int input_devices_state; 767 768 static inline void input_wakeup_procfs_readers(void) 769 { 770 input_devices_state++; 771 wake_up(&input_devices_poll_wait); 772 } 773 774 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 775 { 776 poll_wait(file, &input_devices_poll_wait, wait); 777 if (file->f_version != input_devices_state) { 778 file->f_version = input_devices_state; 779 return POLLIN | POLLRDNORM; 780 } 781 782 return 0; 783 } 784 785 union input_seq_state { 786 struct { 787 unsigned short pos; 788 bool mutex_acquired; 789 }; 790 void *p; 791 }; 792 793 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 794 { 795 union input_seq_state *state = (union input_seq_state *)&seq->private; 796 int error; 797 798 /* We need to fit into seq->private pointer */ 799 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 800 801 error = mutex_lock_interruptible(&input_mutex); 802 if (error) { 803 state->mutex_acquired = false; 804 return ERR_PTR(error); 805 } 806 807 state->mutex_acquired = true; 808 809 return seq_list_start(&input_dev_list, *pos); 810 } 811 812 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 813 { 814 return seq_list_next(v, &input_dev_list, pos); 815 } 816 817 static void input_seq_stop(struct seq_file *seq, void *v) 818 { 819 union input_seq_state *state = (union input_seq_state *)&seq->private; 820 821 if (state->mutex_acquired) 822 mutex_unlock(&input_mutex); 823 } 824 825 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 826 unsigned long *bitmap, int max) 827 { 828 int i; 829 830 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--) 831 if (bitmap[i]) 832 break; 833 834 seq_printf(seq, "B: %s=", name); 835 for (; i >= 0; i--) 836 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : ""); 837 seq_putc(seq, '\n'); 838 } 839 840 static int input_devices_seq_show(struct seq_file *seq, void *v) 841 { 842 struct input_dev *dev = container_of(v, struct input_dev, node); 843 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 844 struct input_handle *handle; 845 846 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 847 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 848 849 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 850 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 851 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 852 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 853 seq_printf(seq, "H: Handlers="); 854 855 list_for_each_entry(handle, &dev->h_list, d_node) 856 seq_printf(seq, "%s ", handle->name); 857 seq_putc(seq, '\n'); 858 859 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 860 if (test_bit(EV_KEY, dev->evbit)) 861 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 862 if (test_bit(EV_REL, dev->evbit)) 863 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 864 if (test_bit(EV_ABS, dev->evbit)) 865 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 866 if (test_bit(EV_MSC, dev->evbit)) 867 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 868 if (test_bit(EV_LED, dev->evbit)) 869 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 870 if (test_bit(EV_SND, dev->evbit)) 871 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 872 if (test_bit(EV_FF, dev->evbit)) 873 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 874 if (test_bit(EV_SW, dev->evbit)) 875 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 876 877 seq_putc(seq, '\n'); 878 879 kfree(path); 880 return 0; 881 } 882 883 static const struct seq_operations input_devices_seq_ops = { 884 .start = input_devices_seq_start, 885 .next = input_devices_seq_next, 886 .stop = input_seq_stop, 887 .show = input_devices_seq_show, 888 }; 889 890 static int input_proc_devices_open(struct inode *inode, struct file *file) 891 { 892 return seq_open(file, &input_devices_seq_ops); 893 } 894 895 static const struct file_operations input_devices_fileops = { 896 .owner = THIS_MODULE, 897 .open = input_proc_devices_open, 898 .poll = input_proc_devices_poll, 899 .read = seq_read, 900 .llseek = seq_lseek, 901 .release = seq_release, 902 }; 903 904 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 905 { 906 union input_seq_state *state = (union input_seq_state *)&seq->private; 907 int error; 908 909 /* We need to fit into seq->private pointer */ 910 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 911 912 error = mutex_lock_interruptible(&input_mutex); 913 if (error) { 914 state->mutex_acquired = false; 915 return ERR_PTR(error); 916 } 917 918 state->mutex_acquired = true; 919 state->pos = *pos; 920 921 return seq_list_start(&input_handler_list, *pos); 922 } 923 924 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 925 { 926 union input_seq_state *state = (union input_seq_state *)&seq->private; 927 928 state->pos = *pos + 1; 929 return seq_list_next(v, &input_handler_list, pos); 930 } 931 932 static int input_handlers_seq_show(struct seq_file *seq, void *v) 933 { 934 struct input_handler *handler = container_of(v, struct input_handler, node); 935 union input_seq_state *state = (union input_seq_state *)&seq->private; 936 937 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 938 if (handler->fops) 939 seq_printf(seq, " Minor=%d", handler->minor); 940 seq_putc(seq, '\n'); 941 942 return 0; 943 } 944 945 static const struct seq_operations input_handlers_seq_ops = { 946 .start = input_handlers_seq_start, 947 .next = input_handlers_seq_next, 948 .stop = input_seq_stop, 949 .show = input_handlers_seq_show, 950 }; 951 952 static int input_proc_handlers_open(struct inode *inode, struct file *file) 953 { 954 return seq_open(file, &input_handlers_seq_ops); 955 } 956 957 static const struct file_operations input_handlers_fileops = { 958 .owner = THIS_MODULE, 959 .open = input_proc_handlers_open, 960 .read = seq_read, 961 .llseek = seq_lseek, 962 .release = seq_release, 963 }; 964 965 static int __init input_proc_init(void) 966 { 967 struct proc_dir_entry *entry; 968 969 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 970 if (!proc_bus_input_dir) 971 return -ENOMEM; 972 973 entry = proc_create("devices", 0, proc_bus_input_dir, 974 &input_devices_fileops); 975 if (!entry) 976 goto fail1; 977 978 entry = proc_create("handlers", 0, proc_bus_input_dir, 979 &input_handlers_fileops); 980 if (!entry) 981 goto fail2; 982 983 return 0; 984 985 fail2: remove_proc_entry("devices", proc_bus_input_dir); 986 fail1: remove_proc_entry("bus/input", NULL); 987 return -ENOMEM; 988 } 989 990 static void input_proc_exit(void) 991 { 992 remove_proc_entry("devices", proc_bus_input_dir); 993 remove_proc_entry("handlers", proc_bus_input_dir); 994 remove_proc_entry("bus/input", NULL); 995 } 996 997 #else /* !CONFIG_PROC_FS */ 998 static inline void input_wakeup_procfs_readers(void) { } 999 static inline int input_proc_init(void) { return 0; } 1000 static inline void input_proc_exit(void) { } 1001 #endif 1002 1003 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1004 static ssize_t input_dev_show_##name(struct device *dev, \ 1005 struct device_attribute *attr, \ 1006 char *buf) \ 1007 { \ 1008 struct input_dev *input_dev = to_input_dev(dev); \ 1009 \ 1010 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1011 input_dev->name ? input_dev->name : ""); \ 1012 } \ 1013 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1014 1015 INPUT_DEV_STRING_ATTR_SHOW(name); 1016 INPUT_DEV_STRING_ATTR_SHOW(phys); 1017 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1018 1019 static int input_print_modalias_bits(char *buf, int size, 1020 char name, unsigned long *bm, 1021 unsigned int min_bit, unsigned int max_bit) 1022 { 1023 int len = 0, i; 1024 1025 len += snprintf(buf, max(size, 0), "%c", name); 1026 for (i = min_bit; i < max_bit; i++) 1027 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1028 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1029 return len; 1030 } 1031 1032 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1033 int add_cr) 1034 { 1035 int len; 1036 1037 len = snprintf(buf, max(size, 0), 1038 "input:b%04Xv%04Xp%04Xe%04X-", 1039 id->id.bustype, id->id.vendor, 1040 id->id.product, id->id.version); 1041 1042 len += input_print_modalias_bits(buf + len, size - len, 1043 'e', id->evbit, 0, EV_MAX); 1044 len += input_print_modalias_bits(buf + len, size - len, 1045 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1046 len += input_print_modalias_bits(buf + len, size - len, 1047 'r', id->relbit, 0, REL_MAX); 1048 len += input_print_modalias_bits(buf + len, size - len, 1049 'a', id->absbit, 0, ABS_MAX); 1050 len += input_print_modalias_bits(buf + len, size - len, 1051 'm', id->mscbit, 0, MSC_MAX); 1052 len += input_print_modalias_bits(buf + len, size - len, 1053 'l', id->ledbit, 0, LED_MAX); 1054 len += input_print_modalias_bits(buf + len, size - len, 1055 's', id->sndbit, 0, SND_MAX); 1056 len += input_print_modalias_bits(buf + len, size - len, 1057 'f', id->ffbit, 0, FF_MAX); 1058 len += input_print_modalias_bits(buf + len, size - len, 1059 'w', id->swbit, 0, SW_MAX); 1060 1061 if (add_cr) 1062 len += snprintf(buf + len, max(size - len, 0), "\n"); 1063 1064 return len; 1065 } 1066 1067 static ssize_t input_dev_show_modalias(struct device *dev, 1068 struct device_attribute *attr, 1069 char *buf) 1070 { 1071 struct input_dev *id = to_input_dev(dev); 1072 ssize_t len; 1073 1074 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1075 1076 return min_t(int, len, PAGE_SIZE); 1077 } 1078 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1079 1080 static struct attribute *input_dev_attrs[] = { 1081 &dev_attr_name.attr, 1082 &dev_attr_phys.attr, 1083 &dev_attr_uniq.attr, 1084 &dev_attr_modalias.attr, 1085 NULL 1086 }; 1087 1088 static struct attribute_group input_dev_attr_group = { 1089 .attrs = input_dev_attrs, 1090 }; 1091 1092 #define INPUT_DEV_ID_ATTR(name) \ 1093 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1094 struct device_attribute *attr, \ 1095 char *buf) \ 1096 { \ 1097 struct input_dev *input_dev = to_input_dev(dev); \ 1098 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1099 } \ 1100 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1101 1102 INPUT_DEV_ID_ATTR(bustype); 1103 INPUT_DEV_ID_ATTR(vendor); 1104 INPUT_DEV_ID_ATTR(product); 1105 INPUT_DEV_ID_ATTR(version); 1106 1107 static struct attribute *input_dev_id_attrs[] = { 1108 &dev_attr_bustype.attr, 1109 &dev_attr_vendor.attr, 1110 &dev_attr_product.attr, 1111 &dev_attr_version.attr, 1112 NULL 1113 }; 1114 1115 static struct attribute_group input_dev_id_attr_group = { 1116 .name = "id", 1117 .attrs = input_dev_id_attrs, 1118 }; 1119 1120 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1121 int max, int add_cr) 1122 { 1123 int i; 1124 int len = 0; 1125 1126 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--) 1127 if (bitmap[i]) 1128 break; 1129 1130 for (; i >= 0; i--) 1131 len += snprintf(buf + len, max(buf_size - len, 0), 1132 "%lx%s", bitmap[i], i > 0 ? " " : ""); 1133 1134 if (add_cr) 1135 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1136 1137 return len; 1138 } 1139 1140 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1141 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1142 struct device_attribute *attr, \ 1143 char *buf) \ 1144 { \ 1145 struct input_dev *input_dev = to_input_dev(dev); \ 1146 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1147 input_dev->bm##bit, ev##_MAX, 1); \ 1148 return min_t(int, len, PAGE_SIZE); \ 1149 } \ 1150 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1151 1152 INPUT_DEV_CAP_ATTR(EV, ev); 1153 INPUT_DEV_CAP_ATTR(KEY, key); 1154 INPUT_DEV_CAP_ATTR(REL, rel); 1155 INPUT_DEV_CAP_ATTR(ABS, abs); 1156 INPUT_DEV_CAP_ATTR(MSC, msc); 1157 INPUT_DEV_CAP_ATTR(LED, led); 1158 INPUT_DEV_CAP_ATTR(SND, snd); 1159 INPUT_DEV_CAP_ATTR(FF, ff); 1160 INPUT_DEV_CAP_ATTR(SW, sw); 1161 1162 static struct attribute *input_dev_caps_attrs[] = { 1163 &dev_attr_ev.attr, 1164 &dev_attr_key.attr, 1165 &dev_attr_rel.attr, 1166 &dev_attr_abs.attr, 1167 &dev_attr_msc.attr, 1168 &dev_attr_led.attr, 1169 &dev_attr_snd.attr, 1170 &dev_attr_ff.attr, 1171 &dev_attr_sw.attr, 1172 NULL 1173 }; 1174 1175 static struct attribute_group input_dev_caps_attr_group = { 1176 .name = "capabilities", 1177 .attrs = input_dev_caps_attrs, 1178 }; 1179 1180 static const struct attribute_group *input_dev_attr_groups[] = { 1181 &input_dev_attr_group, 1182 &input_dev_id_attr_group, 1183 &input_dev_caps_attr_group, 1184 NULL 1185 }; 1186 1187 static void input_dev_release(struct device *device) 1188 { 1189 struct input_dev *dev = to_input_dev(device); 1190 1191 input_ff_destroy(dev); 1192 kfree(dev); 1193 1194 module_put(THIS_MODULE); 1195 } 1196 1197 /* 1198 * Input uevent interface - loading event handlers based on 1199 * device bitfields. 1200 */ 1201 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1202 const char *name, unsigned long *bitmap, int max) 1203 { 1204 int len; 1205 1206 if (add_uevent_var(env, "%s=", name)) 1207 return -ENOMEM; 1208 1209 len = input_print_bitmap(&env->buf[env->buflen - 1], 1210 sizeof(env->buf) - env->buflen, 1211 bitmap, max, 0); 1212 if (len >= (sizeof(env->buf) - env->buflen)) 1213 return -ENOMEM; 1214 1215 env->buflen += len; 1216 return 0; 1217 } 1218 1219 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1220 struct input_dev *dev) 1221 { 1222 int len; 1223 1224 if (add_uevent_var(env, "MODALIAS=")) 1225 return -ENOMEM; 1226 1227 len = input_print_modalias(&env->buf[env->buflen - 1], 1228 sizeof(env->buf) - env->buflen, 1229 dev, 0); 1230 if (len >= (sizeof(env->buf) - env->buflen)) 1231 return -ENOMEM; 1232 1233 env->buflen += len; 1234 return 0; 1235 } 1236 1237 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1238 do { \ 1239 int err = add_uevent_var(env, fmt, val); \ 1240 if (err) \ 1241 return err; \ 1242 } while (0) 1243 1244 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1245 do { \ 1246 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1247 if (err) \ 1248 return err; \ 1249 } while (0) 1250 1251 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1252 do { \ 1253 int err = input_add_uevent_modalias_var(env, dev); \ 1254 if (err) \ 1255 return err; \ 1256 } while (0) 1257 1258 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1259 { 1260 struct input_dev *dev = to_input_dev(device); 1261 1262 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1263 dev->id.bustype, dev->id.vendor, 1264 dev->id.product, dev->id.version); 1265 if (dev->name) 1266 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1267 if (dev->phys) 1268 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1269 if (dev->uniq) 1270 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1271 1272 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1273 if (test_bit(EV_KEY, dev->evbit)) 1274 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1275 if (test_bit(EV_REL, dev->evbit)) 1276 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1277 if (test_bit(EV_ABS, dev->evbit)) 1278 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1279 if (test_bit(EV_MSC, dev->evbit)) 1280 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1281 if (test_bit(EV_LED, dev->evbit)) 1282 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1283 if (test_bit(EV_SND, dev->evbit)) 1284 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1285 if (test_bit(EV_FF, dev->evbit)) 1286 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1287 if (test_bit(EV_SW, dev->evbit)) 1288 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1289 1290 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1291 1292 return 0; 1293 } 1294 1295 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1296 do { \ 1297 int i; \ 1298 bool active; \ 1299 \ 1300 if (!test_bit(EV_##type, dev->evbit)) \ 1301 break; \ 1302 \ 1303 for (i = 0; i < type##_MAX; i++) { \ 1304 if (!test_bit(i, dev->bits##bit)) \ 1305 continue; \ 1306 \ 1307 active = test_bit(i, dev->bits); \ 1308 if (!active && !on) \ 1309 continue; \ 1310 \ 1311 dev->event(dev, EV_##type, i, on ? active : 0); \ 1312 } \ 1313 } while (0) 1314 1315 #ifdef CONFIG_PM 1316 static void input_dev_reset(struct input_dev *dev, bool activate) 1317 { 1318 if (!dev->event) 1319 return; 1320 1321 INPUT_DO_TOGGLE(dev, LED, led, activate); 1322 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1323 1324 if (activate && test_bit(EV_REP, dev->evbit)) { 1325 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1326 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1327 } 1328 } 1329 1330 static int input_dev_suspend(struct device *dev) 1331 { 1332 struct input_dev *input_dev = to_input_dev(dev); 1333 1334 mutex_lock(&input_dev->mutex); 1335 input_dev_reset(input_dev, false); 1336 mutex_unlock(&input_dev->mutex); 1337 1338 return 0; 1339 } 1340 1341 static int input_dev_resume(struct device *dev) 1342 { 1343 struct input_dev *input_dev = to_input_dev(dev); 1344 1345 mutex_lock(&input_dev->mutex); 1346 input_dev_reset(input_dev, true); 1347 mutex_unlock(&input_dev->mutex); 1348 1349 return 0; 1350 } 1351 1352 static const struct dev_pm_ops input_dev_pm_ops = { 1353 .suspend = input_dev_suspend, 1354 .resume = input_dev_resume, 1355 .poweroff = input_dev_suspend, 1356 .restore = input_dev_resume, 1357 }; 1358 #endif /* CONFIG_PM */ 1359 1360 static struct device_type input_dev_type = { 1361 .groups = input_dev_attr_groups, 1362 .release = input_dev_release, 1363 .uevent = input_dev_uevent, 1364 #ifdef CONFIG_PM 1365 .pm = &input_dev_pm_ops, 1366 #endif 1367 }; 1368 1369 static char *input_devnode(struct device *dev, mode_t *mode) 1370 { 1371 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1372 } 1373 1374 struct class input_class = { 1375 .name = "input", 1376 .devnode = input_devnode, 1377 }; 1378 EXPORT_SYMBOL_GPL(input_class); 1379 1380 /** 1381 * input_allocate_device - allocate memory for new input device 1382 * 1383 * Returns prepared struct input_dev or NULL. 1384 * 1385 * NOTE: Use input_free_device() to free devices that have not been 1386 * registered; input_unregister_device() should be used for already 1387 * registered devices. 1388 */ 1389 struct input_dev *input_allocate_device(void) 1390 { 1391 struct input_dev *dev; 1392 1393 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1394 if (dev) { 1395 dev->dev.type = &input_dev_type; 1396 dev->dev.class = &input_class; 1397 device_initialize(&dev->dev); 1398 mutex_init(&dev->mutex); 1399 spin_lock_init(&dev->event_lock); 1400 INIT_LIST_HEAD(&dev->h_list); 1401 INIT_LIST_HEAD(&dev->node); 1402 1403 __module_get(THIS_MODULE); 1404 } 1405 1406 return dev; 1407 } 1408 EXPORT_SYMBOL(input_allocate_device); 1409 1410 /** 1411 * input_free_device - free memory occupied by input_dev structure 1412 * @dev: input device to free 1413 * 1414 * This function should only be used if input_register_device() 1415 * was not called yet or if it failed. Once device was registered 1416 * use input_unregister_device() and memory will be freed once last 1417 * reference to the device is dropped. 1418 * 1419 * Device should be allocated by input_allocate_device(). 1420 * 1421 * NOTE: If there are references to the input device then memory 1422 * will not be freed until last reference is dropped. 1423 */ 1424 void input_free_device(struct input_dev *dev) 1425 { 1426 if (dev) 1427 input_put_device(dev); 1428 } 1429 EXPORT_SYMBOL(input_free_device); 1430 1431 /** 1432 * input_set_capability - mark device as capable of a certain event 1433 * @dev: device that is capable of emitting or accepting event 1434 * @type: type of the event (EV_KEY, EV_REL, etc...) 1435 * @code: event code 1436 * 1437 * In addition to setting up corresponding bit in appropriate capability 1438 * bitmap the function also adjusts dev->evbit. 1439 */ 1440 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1441 { 1442 switch (type) { 1443 case EV_KEY: 1444 __set_bit(code, dev->keybit); 1445 break; 1446 1447 case EV_REL: 1448 __set_bit(code, dev->relbit); 1449 break; 1450 1451 case EV_ABS: 1452 __set_bit(code, dev->absbit); 1453 break; 1454 1455 case EV_MSC: 1456 __set_bit(code, dev->mscbit); 1457 break; 1458 1459 case EV_SW: 1460 __set_bit(code, dev->swbit); 1461 break; 1462 1463 case EV_LED: 1464 __set_bit(code, dev->ledbit); 1465 break; 1466 1467 case EV_SND: 1468 __set_bit(code, dev->sndbit); 1469 break; 1470 1471 case EV_FF: 1472 __set_bit(code, dev->ffbit); 1473 break; 1474 1475 case EV_PWR: 1476 /* do nothing */ 1477 break; 1478 1479 default: 1480 printk(KERN_ERR 1481 "input_set_capability: unknown type %u (code %u)\n", 1482 type, code); 1483 dump_stack(); 1484 return; 1485 } 1486 1487 __set_bit(type, dev->evbit); 1488 } 1489 EXPORT_SYMBOL(input_set_capability); 1490 1491 /** 1492 * input_register_device - register device with input core 1493 * @dev: device to be registered 1494 * 1495 * This function registers device with input core. The device must be 1496 * allocated with input_allocate_device() and all it's capabilities 1497 * set up before registering. 1498 * If function fails the device must be freed with input_free_device(). 1499 * Once device has been successfully registered it can be unregistered 1500 * with input_unregister_device(); input_free_device() should not be 1501 * called in this case. 1502 */ 1503 int input_register_device(struct input_dev *dev) 1504 { 1505 static atomic_t input_no = ATOMIC_INIT(0); 1506 struct input_handler *handler; 1507 const char *path; 1508 int error; 1509 1510 __set_bit(EV_SYN, dev->evbit); 1511 1512 /* 1513 * If delay and period are pre-set by the driver, then autorepeating 1514 * is handled by the driver itself and we don't do it in input.c. 1515 */ 1516 1517 init_timer(&dev->timer); 1518 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1519 dev->timer.data = (long) dev; 1520 dev->timer.function = input_repeat_key; 1521 dev->rep[REP_DELAY] = 250; 1522 dev->rep[REP_PERIOD] = 33; 1523 } 1524 1525 if (!dev->getkeycode) 1526 dev->getkeycode = input_default_getkeycode; 1527 1528 if (!dev->setkeycode) 1529 dev->setkeycode = input_default_setkeycode; 1530 1531 dev_set_name(&dev->dev, "input%ld", 1532 (unsigned long) atomic_inc_return(&input_no) - 1); 1533 1534 error = device_add(&dev->dev); 1535 if (error) 1536 return error; 1537 1538 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1539 printk(KERN_INFO "input: %s as %s\n", 1540 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1541 kfree(path); 1542 1543 error = mutex_lock_interruptible(&input_mutex); 1544 if (error) { 1545 device_del(&dev->dev); 1546 return error; 1547 } 1548 1549 list_add_tail(&dev->node, &input_dev_list); 1550 1551 list_for_each_entry(handler, &input_handler_list, node) 1552 input_attach_handler(dev, handler); 1553 1554 input_wakeup_procfs_readers(); 1555 1556 mutex_unlock(&input_mutex); 1557 1558 return 0; 1559 } 1560 EXPORT_SYMBOL(input_register_device); 1561 1562 /** 1563 * input_unregister_device - unregister previously registered device 1564 * @dev: device to be unregistered 1565 * 1566 * This function unregisters an input device. Once device is unregistered 1567 * the caller should not try to access it as it may get freed at any moment. 1568 */ 1569 void input_unregister_device(struct input_dev *dev) 1570 { 1571 struct input_handle *handle, *next; 1572 1573 input_disconnect_device(dev); 1574 1575 mutex_lock(&input_mutex); 1576 1577 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1578 handle->handler->disconnect(handle); 1579 WARN_ON(!list_empty(&dev->h_list)); 1580 1581 del_timer_sync(&dev->timer); 1582 list_del_init(&dev->node); 1583 1584 input_wakeup_procfs_readers(); 1585 1586 mutex_unlock(&input_mutex); 1587 1588 device_unregister(&dev->dev); 1589 } 1590 EXPORT_SYMBOL(input_unregister_device); 1591 1592 /** 1593 * input_register_handler - register a new input handler 1594 * @handler: handler to be registered 1595 * 1596 * This function registers a new input handler (interface) for input 1597 * devices in the system and attaches it to all input devices that 1598 * are compatible with the handler. 1599 */ 1600 int input_register_handler(struct input_handler *handler) 1601 { 1602 struct input_dev *dev; 1603 int retval; 1604 1605 retval = mutex_lock_interruptible(&input_mutex); 1606 if (retval) 1607 return retval; 1608 1609 INIT_LIST_HEAD(&handler->h_list); 1610 1611 if (handler->fops != NULL) { 1612 if (input_table[handler->minor >> 5]) { 1613 retval = -EBUSY; 1614 goto out; 1615 } 1616 input_table[handler->minor >> 5] = handler; 1617 } 1618 1619 list_add_tail(&handler->node, &input_handler_list); 1620 1621 list_for_each_entry(dev, &input_dev_list, node) 1622 input_attach_handler(dev, handler); 1623 1624 input_wakeup_procfs_readers(); 1625 1626 out: 1627 mutex_unlock(&input_mutex); 1628 return retval; 1629 } 1630 EXPORT_SYMBOL(input_register_handler); 1631 1632 /** 1633 * input_unregister_handler - unregisters an input handler 1634 * @handler: handler to be unregistered 1635 * 1636 * This function disconnects a handler from its input devices and 1637 * removes it from lists of known handlers. 1638 */ 1639 void input_unregister_handler(struct input_handler *handler) 1640 { 1641 struct input_handle *handle, *next; 1642 1643 mutex_lock(&input_mutex); 1644 1645 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1646 handler->disconnect(handle); 1647 WARN_ON(!list_empty(&handler->h_list)); 1648 1649 list_del_init(&handler->node); 1650 1651 if (handler->fops != NULL) 1652 input_table[handler->minor >> 5] = NULL; 1653 1654 input_wakeup_procfs_readers(); 1655 1656 mutex_unlock(&input_mutex); 1657 } 1658 EXPORT_SYMBOL(input_unregister_handler); 1659 1660 /** 1661 * input_handler_for_each_handle - handle iterator 1662 * @handler: input handler to iterate 1663 * @data: data for the callback 1664 * @fn: function to be called for each handle 1665 * 1666 * Iterate over @bus's list of devices, and call @fn for each, passing 1667 * it @data and stop when @fn returns a non-zero value. The function is 1668 * using RCU to traverse the list and therefore may be usind in atonic 1669 * contexts. The @fn callback is invoked from RCU critical section and 1670 * thus must not sleep. 1671 */ 1672 int input_handler_for_each_handle(struct input_handler *handler, void *data, 1673 int (*fn)(struct input_handle *, void *)) 1674 { 1675 struct input_handle *handle; 1676 int retval = 0; 1677 1678 rcu_read_lock(); 1679 1680 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 1681 retval = fn(handle, data); 1682 if (retval) 1683 break; 1684 } 1685 1686 rcu_read_unlock(); 1687 1688 return retval; 1689 } 1690 EXPORT_SYMBOL(input_handler_for_each_handle); 1691 1692 /** 1693 * input_register_handle - register a new input handle 1694 * @handle: handle to register 1695 * 1696 * This function puts a new input handle onto device's 1697 * and handler's lists so that events can flow through 1698 * it once it is opened using input_open_device(). 1699 * 1700 * This function is supposed to be called from handler's 1701 * connect() method. 1702 */ 1703 int input_register_handle(struct input_handle *handle) 1704 { 1705 struct input_handler *handler = handle->handler; 1706 struct input_dev *dev = handle->dev; 1707 int error; 1708 1709 /* 1710 * We take dev->mutex here to prevent race with 1711 * input_release_device(). 1712 */ 1713 error = mutex_lock_interruptible(&dev->mutex); 1714 if (error) 1715 return error; 1716 list_add_tail_rcu(&handle->d_node, &dev->h_list); 1717 mutex_unlock(&dev->mutex); 1718 1719 /* 1720 * Since we are supposed to be called from ->connect() 1721 * which is mutually exclusive with ->disconnect() 1722 * we can't be racing with input_unregister_handle() 1723 * and so separate lock is not needed here. 1724 */ 1725 list_add_tail_rcu(&handle->h_node, &handler->h_list); 1726 1727 if (handler->start) 1728 handler->start(handle); 1729 1730 return 0; 1731 } 1732 EXPORT_SYMBOL(input_register_handle); 1733 1734 /** 1735 * input_unregister_handle - unregister an input handle 1736 * @handle: handle to unregister 1737 * 1738 * This function removes input handle from device's 1739 * and handler's lists. 1740 * 1741 * This function is supposed to be called from handler's 1742 * disconnect() method. 1743 */ 1744 void input_unregister_handle(struct input_handle *handle) 1745 { 1746 struct input_dev *dev = handle->dev; 1747 1748 list_del_rcu(&handle->h_node); 1749 1750 /* 1751 * Take dev->mutex to prevent race with input_release_device(). 1752 */ 1753 mutex_lock(&dev->mutex); 1754 list_del_rcu(&handle->d_node); 1755 mutex_unlock(&dev->mutex); 1756 1757 synchronize_rcu(); 1758 } 1759 EXPORT_SYMBOL(input_unregister_handle); 1760 1761 static int input_open_file(struct inode *inode, struct file *file) 1762 { 1763 struct input_handler *handler; 1764 const struct file_operations *old_fops, *new_fops = NULL; 1765 int err; 1766 1767 lock_kernel(); 1768 /* No load-on-demand here? */ 1769 handler = input_table[iminor(inode) >> 5]; 1770 if (!handler || !(new_fops = fops_get(handler->fops))) { 1771 err = -ENODEV; 1772 goto out; 1773 } 1774 1775 /* 1776 * That's _really_ odd. Usually NULL ->open means "nothing special", 1777 * not "no device". Oh, well... 1778 */ 1779 if (!new_fops->open) { 1780 fops_put(new_fops); 1781 err = -ENODEV; 1782 goto out; 1783 } 1784 old_fops = file->f_op; 1785 file->f_op = new_fops; 1786 1787 err = new_fops->open(inode, file); 1788 1789 if (err) { 1790 fops_put(file->f_op); 1791 file->f_op = fops_get(old_fops); 1792 } 1793 fops_put(old_fops); 1794 out: 1795 unlock_kernel(); 1796 return err; 1797 } 1798 1799 static const struct file_operations input_fops = { 1800 .owner = THIS_MODULE, 1801 .open = input_open_file, 1802 }; 1803 1804 static void __init input_init_abs_bypass(void) 1805 { 1806 const unsigned int *p; 1807 1808 for (p = input_abs_bypass_init_data; *p; p++) 1809 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p); 1810 } 1811 1812 static int __init input_init(void) 1813 { 1814 int err; 1815 1816 input_init_abs_bypass(); 1817 1818 err = class_register(&input_class); 1819 if (err) { 1820 printk(KERN_ERR "input: unable to register input_dev class\n"); 1821 return err; 1822 } 1823 1824 err = input_proc_init(); 1825 if (err) 1826 goto fail1; 1827 1828 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 1829 if (err) { 1830 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 1831 goto fail2; 1832 } 1833 1834 return 0; 1835 1836 fail2: input_proc_exit(); 1837 fail1: class_unregister(&input_class); 1838 return err; 1839 } 1840 1841 static void __exit input_exit(void) 1842 { 1843 input_proc_exit(); 1844 unregister_chrdev(INPUT_MAJOR, "input"); 1845 class_unregister(&input_class); 1846 } 1847 1848 subsys_initcall(input_init); 1849 module_exit(input_exit); 1850