xref: /linux/drivers/input/input.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 
28 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
29 MODULE_DESCRIPTION("Input core");
30 MODULE_LICENSE("GPL");
31 
32 #define INPUT_DEVICES	256
33 
34 /*
35  * EV_ABS events which should not be cached are listed here.
36  */
37 static unsigned int input_abs_bypass_init_data[] __initdata = {
38 	ABS_MT_TOUCH_MAJOR,
39 	ABS_MT_TOUCH_MINOR,
40 	ABS_MT_WIDTH_MAJOR,
41 	ABS_MT_WIDTH_MINOR,
42 	ABS_MT_ORIENTATION,
43 	ABS_MT_POSITION_X,
44 	ABS_MT_POSITION_Y,
45 	ABS_MT_TOOL_TYPE,
46 	ABS_MT_BLOB_ID,
47 	ABS_MT_TRACKING_ID,
48 	0
49 };
50 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
51 
52 static LIST_HEAD(input_dev_list);
53 static LIST_HEAD(input_handler_list);
54 
55 /*
56  * input_mutex protects access to both input_dev_list and input_handler_list.
57  * This also causes input_[un]register_device and input_[un]register_handler
58  * be mutually exclusive which simplifies locking in drivers implementing
59  * input handlers.
60  */
61 static DEFINE_MUTEX(input_mutex);
62 
63 static struct input_handler *input_table[8];
64 
65 static inline int is_event_supported(unsigned int code,
66 				     unsigned long *bm, unsigned int max)
67 {
68 	return code <= max && test_bit(code, bm);
69 }
70 
71 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
72 {
73 	if (fuzz) {
74 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
75 			return old_val;
76 
77 		if (value > old_val - fuzz && value < old_val + fuzz)
78 			return (old_val * 3 + value) / 4;
79 
80 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
81 			return (old_val + value) / 2;
82 	}
83 
84 	return value;
85 }
86 
87 /*
88  * Pass event through all open handles. This function is called with
89  * dev->event_lock held and interrupts disabled.
90  */
91 static void input_pass_event(struct input_dev *dev,
92 			     unsigned int type, unsigned int code, int value)
93 {
94 	struct input_handle *handle;
95 
96 	rcu_read_lock();
97 
98 	handle = rcu_dereference(dev->grab);
99 	if (handle)
100 		handle->handler->event(handle, type, code, value);
101 	else
102 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
103 			if (handle->open)
104 				handle->handler->event(handle,
105 							type, code, value);
106 	rcu_read_unlock();
107 }
108 
109 /*
110  * Generate software autorepeat event. Note that we take
111  * dev->event_lock here to avoid racing with input_event
112  * which may cause keys get "stuck".
113  */
114 static void input_repeat_key(unsigned long data)
115 {
116 	struct input_dev *dev = (void *) data;
117 	unsigned long flags;
118 
119 	spin_lock_irqsave(&dev->event_lock, flags);
120 
121 	if (test_bit(dev->repeat_key, dev->key) &&
122 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
123 
124 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
125 
126 		if (dev->sync) {
127 			/*
128 			 * Only send SYN_REPORT if we are not in a middle
129 			 * of driver parsing a new hardware packet.
130 			 * Otherwise assume that the driver will send
131 			 * SYN_REPORT once it's done.
132 			 */
133 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
134 		}
135 
136 		if (dev->rep[REP_PERIOD])
137 			mod_timer(&dev->timer, jiffies +
138 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
139 	}
140 
141 	spin_unlock_irqrestore(&dev->event_lock, flags);
142 }
143 
144 static void input_start_autorepeat(struct input_dev *dev, int code)
145 {
146 	if (test_bit(EV_REP, dev->evbit) &&
147 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
148 	    dev->timer.data) {
149 		dev->repeat_key = code;
150 		mod_timer(&dev->timer,
151 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
152 	}
153 }
154 
155 static void input_stop_autorepeat(struct input_dev *dev)
156 {
157 	del_timer(&dev->timer);
158 }
159 
160 #define INPUT_IGNORE_EVENT	0
161 #define INPUT_PASS_TO_HANDLERS	1
162 #define INPUT_PASS_TO_DEVICE	2
163 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
164 
165 static void input_handle_event(struct input_dev *dev,
166 			       unsigned int type, unsigned int code, int value)
167 {
168 	int disposition = INPUT_IGNORE_EVENT;
169 
170 	switch (type) {
171 
172 	case EV_SYN:
173 		switch (code) {
174 		case SYN_CONFIG:
175 			disposition = INPUT_PASS_TO_ALL;
176 			break;
177 
178 		case SYN_REPORT:
179 			if (!dev->sync) {
180 				dev->sync = 1;
181 				disposition = INPUT_PASS_TO_HANDLERS;
182 			}
183 			break;
184 		case SYN_MT_REPORT:
185 			dev->sync = 0;
186 			disposition = INPUT_PASS_TO_HANDLERS;
187 			break;
188 		}
189 		break;
190 
191 	case EV_KEY:
192 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
193 		    !!test_bit(code, dev->key) != value) {
194 
195 			if (value != 2) {
196 				__change_bit(code, dev->key);
197 				if (value)
198 					input_start_autorepeat(dev, code);
199 				else
200 					input_stop_autorepeat(dev);
201 			}
202 
203 			disposition = INPUT_PASS_TO_HANDLERS;
204 		}
205 		break;
206 
207 	case EV_SW:
208 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
209 		    !!test_bit(code, dev->sw) != value) {
210 
211 			__change_bit(code, dev->sw);
212 			disposition = INPUT_PASS_TO_HANDLERS;
213 		}
214 		break;
215 
216 	case EV_ABS:
217 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
218 
219 			if (test_bit(code, input_abs_bypass)) {
220 				disposition = INPUT_PASS_TO_HANDLERS;
221 				break;
222 			}
223 
224 			value = input_defuzz_abs_event(value,
225 					dev->abs[code], dev->absfuzz[code]);
226 
227 			if (dev->abs[code] != value) {
228 				dev->abs[code] = value;
229 				disposition = INPUT_PASS_TO_HANDLERS;
230 			}
231 		}
232 		break;
233 
234 	case EV_REL:
235 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
236 			disposition = INPUT_PASS_TO_HANDLERS;
237 
238 		break;
239 
240 	case EV_MSC:
241 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
242 			disposition = INPUT_PASS_TO_ALL;
243 
244 		break;
245 
246 	case EV_LED:
247 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
248 		    !!test_bit(code, dev->led) != value) {
249 
250 			__change_bit(code, dev->led);
251 			disposition = INPUT_PASS_TO_ALL;
252 		}
253 		break;
254 
255 	case EV_SND:
256 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
257 
258 			if (!!test_bit(code, dev->snd) != !!value)
259 				__change_bit(code, dev->snd);
260 			disposition = INPUT_PASS_TO_ALL;
261 		}
262 		break;
263 
264 	case EV_REP:
265 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
266 			dev->rep[code] = value;
267 			disposition = INPUT_PASS_TO_ALL;
268 		}
269 		break;
270 
271 	case EV_FF:
272 		if (value >= 0)
273 			disposition = INPUT_PASS_TO_ALL;
274 		break;
275 
276 	case EV_PWR:
277 		disposition = INPUT_PASS_TO_ALL;
278 		break;
279 	}
280 
281 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
282 		dev->sync = 0;
283 
284 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
285 		dev->event(dev, type, code, value);
286 
287 	if (disposition & INPUT_PASS_TO_HANDLERS)
288 		input_pass_event(dev, type, code, value);
289 }
290 
291 /**
292  * input_event() - report new input event
293  * @dev: device that generated the event
294  * @type: type of the event
295  * @code: event code
296  * @value: value of the event
297  *
298  * This function should be used by drivers implementing various input
299  * devices. See also input_inject_event().
300  */
301 
302 void input_event(struct input_dev *dev,
303 		 unsigned int type, unsigned int code, int value)
304 {
305 	unsigned long flags;
306 
307 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
308 
309 		spin_lock_irqsave(&dev->event_lock, flags);
310 		add_input_randomness(type, code, value);
311 		input_handle_event(dev, type, code, value);
312 		spin_unlock_irqrestore(&dev->event_lock, flags);
313 	}
314 }
315 EXPORT_SYMBOL(input_event);
316 
317 /**
318  * input_inject_event() - send input event from input handler
319  * @handle: input handle to send event through
320  * @type: type of the event
321  * @code: event code
322  * @value: value of the event
323  *
324  * Similar to input_event() but will ignore event if device is
325  * "grabbed" and handle injecting event is not the one that owns
326  * the device.
327  */
328 void input_inject_event(struct input_handle *handle,
329 			unsigned int type, unsigned int code, int value)
330 {
331 	struct input_dev *dev = handle->dev;
332 	struct input_handle *grab;
333 	unsigned long flags;
334 
335 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
336 		spin_lock_irqsave(&dev->event_lock, flags);
337 
338 		rcu_read_lock();
339 		grab = rcu_dereference(dev->grab);
340 		if (!grab || grab == handle)
341 			input_handle_event(dev, type, code, value);
342 		rcu_read_unlock();
343 
344 		spin_unlock_irqrestore(&dev->event_lock, flags);
345 	}
346 }
347 EXPORT_SYMBOL(input_inject_event);
348 
349 /**
350  * input_grab_device - grabs device for exclusive use
351  * @handle: input handle that wants to own the device
352  *
353  * When a device is grabbed by an input handle all events generated by
354  * the device are delivered only to this handle. Also events injected
355  * by other input handles are ignored while device is grabbed.
356  */
357 int input_grab_device(struct input_handle *handle)
358 {
359 	struct input_dev *dev = handle->dev;
360 	int retval;
361 
362 	retval = mutex_lock_interruptible(&dev->mutex);
363 	if (retval)
364 		return retval;
365 
366 	if (dev->grab) {
367 		retval = -EBUSY;
368 		goto out;
369 	}
370 
371 	rcu_assign_pointer(dev->grab, handle);
372 	synchronize_rcu();
373 
374  out:
375 	mutex_unlock(&dev->mutex);
376 	return retval;
377 }
378 EXPORT_SYMBOL(input_grab_device);
379 
380 static void __input_release_device(struct input_handle *handle)
381 {
382 	struct input_dev *dev = handle->dev;
383 
384 	if (dev->grab == handle) {
385 		rcu_assign_pointer(dev->grab, NULL);
386 		/* Make sure input_pass_event() notices that grab is gone */
387 		synchronize_rcu();
388 
389 		list_for_each_entry(handle, &dev->h_list, d_node)
390 			if (handle->open && handle->handler->start)
391 				handle->handler->start(handle);
392 	}
393 }
394 
395 /**
396  * input_release_device - release previously grabbed device
397  * @handle: input handle that owns the device
398  *
399  * Releases previously grabbed device so that other input handles can
400  * start receiving input events. Upon release all handlers attached
401  * to the device have their start() method called so they have a change
402  * to synchronize device state with the rest of the system.
403  */
404 void input_release_device(struct input_handle *handle)
405 {
406 	struct input_dev *dev = handle->dev;
407 
408 	mutex_lock(&dev->mutex);
409 	__input_release_device(handle);
410 	mutex_unlock(&dev->mutex);
411 }
412 EXPORT_SYMBOL(input_release_device);
413 
414 /**
415  * input_open_device - open input device
416  * @handle: handle through which device is being accessed
417  *
418  * This function should be called by input handlers when they
419  * want to start receive events from given input device.
420  */
421 int input_open_device(struct input_handle *handle)
422 {
423 	struct input_dev *dev = handle->dev;
424 	int retval;
425 
426 	retval = mutex_lock_interruptible(&dev->mutex);
427 	if (retval)
428 		return retval;
429 
430 	if (dev->going_away) {
431 		retval = -ENODEV;
432 		goto out;
433 	}
434 
435 	handle->open++;
436 
437 	if (!dev->users++ && dev->open)
438 		retval = dev->open(dev);
439 
440 	if (retval) {
441 		dev->users--;
442 		if (!--handle->open) {
443 			/*
444 			 * Make sure we are not delivering any more events
445 			 * through this handle
446 			 */
447 			synchronize_rcu();
448 		}
449 	}
450 
451  out:
452 	mutex_unlock(&dev->mutex);
453 	return retval;
454 }
455 EXPORT_SYMBOL(input_open_device);
456 
457 int input_flush_device(struct input_handle *handle, struct file *file)
458 {
459 	struct input_dev *dev = handle->dev;
460 	int retval;
461 
462 	retval = mutex_lock_interruptible(&dev->mutex);
463 	if (retval)
464 		return retval;
465 
466 	if (dev->flush)
467 		retval = dev->flush(dev, file);
468 
469 	mutex_unlock(&dev->mutex);
470 	return retval;
471 }
472 EXPORT_SYMBOL(input_flush_device);
473 
474 /**
475  * input_close_device - close input device
476  * @handle: handle through which device is being accessed
477  *
478  * This function should be called by input handlers when they
479  * want to stop receive events from given input device.
480  */
481 void input_close_device(struct input_handle *handle)
482 {
483 	struct input_dev *dev = handle->dev;
484 
485 	mutex_lock(&dev->mutex);
486 
487 	__input_release_device(handle);
488 
489 	if (!--dev->users && dev->close)
490 		dev->close(dev);
491 
492 	if (!--handle->open) {
493 		/*
494 		 * synchronize_rcu() makes sure that input_pass_event()
495 		 * completed and that no more input events are delivered
496 		 * through this handle
497 		 */
498 		synchronize_rcu();
499 	}
500 
501 	mutex_unlock(&dev->mutex);
502 }
503 EXPORT_SYMBOL(input_close_device);
504 
505 /*
506  * Prepare device for unregistering
507  */
508 static void input_disconnect_device(struct input_dev *dev)
509 {
510 	struct input_handle *handle;
511 	int code;
512 
513 	/*
514 	 * Mark device as going away. Note that we take dev->mutex here
515 	 * not to protect access to dev->going_away but rather to ensure
516 	 * that there are no threads in the middle of input_open_device()
517 	 */
518 	mutex_lock(&dev->mutex);
519 	dev->going_away = true;
520 	mutex_unlock(&dev->mutex);
521 
522 	spin_lock_irq(&dev->event_lock);
523 
524 	/*
525 	 * Simulate keyup events for all pressed keys so that handlers
526 	 * are not left with "stuck" keys. The driver may continue
527 	 * generate events even after we done here but they will not
528 	 * reach any handlers.
529 	 */
530 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
531 		for (code = 0; code <= KEY_MAX; code++) {
532 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
533 			    __test_and_clear_bit(code, dev->key)) {
534 				input_pass_event(dev, EV_KEY, code, 0);
535 			}
536 		}
537 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
538 	}
539 
540 	list_for_each_entry(handle, &dev->h_list, d_node)
541 		handle->open = 0;
542 
543 	spin_unlock_irq(&dev->event_lock);
544 }
545 
546 static int input_fetch_keycode(struct input_dev *dev, int scancode)
547 {
548 	switch (dev->keycodesize) {
549 		case 1:
550 			return ((u8 *)dev->keycode)[scancode];
551 
552 		case 2:
553 			return ((u16 *)dev->keycode)[scancode];
554 
555 		default:
556 			return ((u32 *)dev->keycode)[scancode];
557 	}
558 }
559 
560 static int input_default_getkeycode(struct input_dev *dev,
561 				    int scancode, int *keycode)
562 {
563 	if (!dev->keycodesize)
564 		return -EINVAL;
565 
566 	if (scancode >= dev->keycodemax)
567 		return -EINVAL;
568 
569 	*keycode = input_fetch_keycode(dev, scancode);
570 
571 	return 0;
572 }
573 
574 static int input_default_setkeycode(struct input_dev *dev,
575 				    int scancode, int keycode)
576 {
577 	int old_keycode;
578 	int i;
579 
580 	if (scancode >= dev->keycodemax)
581 		return -EINVAL;
582 
583 	if (!dev->keycodesize)
584 		return -EINVAL;
585 
586 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
587 		return -EINVAL;
588 
589 	switch (dev->keycodesize) {
590 		case 1: {
591 			u8 *k = (u8 *)dev->keycode;
592 			old_keycode = k[scancode];
593 			k[scancode] = keycode;
594 			break;
595 		}
596 		case 2: {
597 			u16 *k = (u16 *)dev->keycode;
598 			old_keycode = k[scancode];
599 			k[scancode] = keycode;
600 			break;
601 		}
602 		default: {
603 			u32 *k = (u32 *)dev->keycode;
604 			old_keycode = k[scancode];
605 			k[scancode] = keycode;
606 			break;
607 		}
608 	}
609 
610 	clear_bit(old_keycode, dev->keybit);
611 	set_bit(keycode, dev->keybit);
612 
613 	for (i = 0; i < dev->keycodemax; i++) {
614 		if (input_fetch_keycode(dev, i) == old_keycode) {
615 			set_bit(old_keycode, dev->keybit);
616 			break; /* Setting the bit twice is useless, so break */
617 		}
618 	}
619 
620 	return 0;
621 }
622 
623 /**
624  * input_get_keycode - retrieve keycode currently mapped to a given scancode
625  * @dev: input device which keymap is being queried
626  * @scancode: scancode (or its equivalent for device in question) for which
627  *	keycode is needed
628  * @keycode: result
629  *
630  * This function should be called by anyone interested in retrieving current
631  * keymap. Presently keyboard and evdev handlers use it.
632  */
633 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
634 {
635 	if (scancode < 0)
636 		return -EINVAL;
637 
638 	return dev->getkeycode(dev, scancode, keycode);
639 }
640 EXPORT_SYMBOL(input_get_keycode);
641 
642 /**
643  * input_get_keycode - assign new keycode to a given scancode
644  * @dev: input device which keymap is being updated
645  * @scancode: scancode (or its equivalent for device in question)
646  * @keycode: new keycode to be assigned to the scancode
647  *
648  * This function should be called by anyone needing to update current
649  * keymap. Presently keyboard and evdev handlers use it.
650  */
651 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
652 {
653 	unsigned long flags;
654 	int old_keycode;
655 	int retval;
656 
657 	if (scancode < 0)
658 		return -EINVAL;
659 
660 	if (keycode < 0 || keycode > KEY_MAX)
661 		return -EINVAL;
662 
663 	spin_lock_irqsave(&dev->event_lock, flags);
664 
665 	retval = dev->getkeycode(dev, scancode, &old_keycode);
666 	if (retval)
667 		goto out;
668 
669 	retval = dev->setkeycode(dev, scancode, keycode);
670 	if (retval)
671 		goto out;
672 
673 	/*
674 	 * Simulate keyup event if keycode is not present
675 	 * in the keymap anymore
676 	 */
677 	if (test_bit(EV_KEY, dev->evbit) &&
678 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
679 	    __test_and_clear_bit(old_keycode, dev->key)) {
680 
681 		input_pass_event(dev, EV_KEY, old_keycode, 0);
682 		if (dev->sync)
683 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
684 	}
685 
686  out:
687 	spin_unlock_irqrestore(&dev->event_lock, flags);
688 
689 	return retval;
690 }
691 EXPORT_SYMBOL(input_set_keycode);
692 
693 #define MATCH_BIT(bit, max) \
694 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
695 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
696 				break; \
697 		if (i != BITS_TO_LONGS(max)) \
698 			continue;
699 
700 static const struct input_device_id *input_match_device(const struct input_device_id *id,
701 							struct input_dev *dev)
702 {
703 	int i;
704 
705 	for (; id->flags || id->driver_info; id++) {
706 
707 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
708 			if (id->bustype != dev->id.bustype)
709 				continue;
710 
711 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
712 			if (id->vendor != dev->id.vendor)
713 				continue;
714 
715 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
716 			if (id->product != dev->id.product)
717 				continue;
718 
719 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
720 			if (id->version != dev->id.version)
721 				continue;
722 
723 		MATCH_BIT(evbit,  EV_MAX);
724 		MATCH_BIT(keybit, KEY_MAX);
725 		MATCH_BIT(relbit, REL_MAX);
726 		MATCH_BIT(absbit, ABS_MAX);
727 		MATCH_BIT(mscbit, MSC_MAX);
728 		MATCH_BIT(ledbit, LED_MAX);
729 		MATCH_BIT(sndbit, SND_MAX);
730 		MATCH_BIT(ffbit,  FF_MAX);
731 		MATCH_BIT(swbit,  SW_MAX);
732 
733 		return id;
734 	}
735 
736 	return NULL;
737 }
738 
739 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
740 {
741 	const struct input_device_id *id;
742 	int error;
743 
744 	if (handler->blacklist && input_match_device(handler->blacklist, dev))
745 		return -ENODEV;
746 
747 	id = input_match_device(handler->id_table, dev);
748 	if (!id)
749 		return -ENODEV;
750 
751 	error = handler->connect(handler, dev, id);
752 	if (error && error != -ENODEV)
753 		printk(KERN_ERR
754 			"input: failed to attach handler %s to device %s, "
755 			"error: %d\n",
756 			handler->name, kobject_name(&dev->dev.kobj), error);
757 
758 	return error;
759 }
760 
761 
762 #ifdef CONFIG_PROC_FS
763 
764 static struct proc_dir_entry *proc_bus_input_dir;
765 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
766 static int input_devices_state;
767 
768 static inline void input_wakeup_procfs_readers(void)
769 {
770 	input_devices_state++;
771 	wake_up(&input_devices_poll_wait);
772 }
773 
774 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
775 {
776 	poll_wait(file, &input_devices_poll_wait, wait);
777 	if (file->f_version != input_devices_state) {
778 		file->f_version = input_devices_state;
779 		return POLLIN | POLLRDNORM;
780 	}
781 
782 	return 0;
783 }
784 
785 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
786 {
787 	if (mutex_lock_interruptible(&input_mutex))
788 		return NULL;
789 
790 	return seq_list_start(&input_dev_list, *pos);
791 }
792 
793 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
794 {
795 	return seq_list_next(v, &input_dev_list, pos);
796 }
797 
798 static void input_devices_seq_stop(struct seq_file *seq, void *v)
799 {
800 	mutex_unlock(&input_mutex);
801 }
802 
803 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
804 				   unsigned long *bitmap, int max)
805 {
806 	int i;
807 
808 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
809 		if (bitmap[i])
810 			break;
811 
812 	seq_printf(seq, "B: %s=", name);
813 	for (; i >= 0; i--)
814 		seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
815 	seq_putc(seq, '\n');
816 }
817 
818 static int input_devices_seq_show(struct seq_file *seq, void *v)
819 {
820 	struct input_dev *dev = container_of(v, struct input_dev, node);
821 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
822 	struct input_handle *handle;
823 
824 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
825 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
826 
827 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
828 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
829 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
830 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
831 	seq_printf(seq, "H: Handlers=");
832 
833 	list_for_each_entry(handle, &dev->h_list, d_node)
834 		seq_printf(seq, "%s ", handle->name);
835 	seq_putc(seq, '\n');
836 
837 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
838 	if (test_bit(EV_KEY, dev->evbit))
839 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
840 	if (test_bit(EV_REL, dev->evbit))
841 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
842 	if (test_bit(EV_ABS, dev->evbit))
843 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
844 	if (test_bit(EV_MSC, dev->evbit))
845 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
846 	if (test_bit(EV_LED, dev->evbit))
847 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
848 	if (test_bit(EV_SND, dev->evbit))
849 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
850 	if (test_bit(EV_FF, dev->evbit))
851 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
852 	if (test_bit(EV_SW, dev->evbit))
853 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
854 
855 	seq_putc(seq, '\n');
856 
857 	kfree(path);
858 	return 0;
859 }
860 
861 static const struct seq_operations input_devices_seq_ops = {
862 	.start	= input_devices_seq_start,
863 	.next	= input_devices_seq_next,
864 	.stop	= input_devices_seq_stop,
865 	.show	= input_devices_seq_show,
866 };
867 
868 static int input_proc_devices_open(struct inode *inode, struct file *file)
869 {
870 	return seq_open(file, &input_devices_seq_ops);
871 }
872 
873 static const struct file_operations input_devices_fileops = {
874 	.owner		= THIS_MODULE,
875 	.open		= input_proc_devices_open,
876 	.poll		= input_proc_devices_poll,
877 	.read		= seq_read,
878 	.llseek		= seq_lseek,
879 	.release	= seq_release,
880 };
881 
882 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
883 {
884 	if (mutex_lock_interruptible(&input_mutex))
885 		return NULL;
886 
887 	seq->private = (void *)(unsigned long)*pos;
888 	return seq_list_start(&input_handler_list, *pos);
889 }
890 
891 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
892 {
893 	seq->private = (void *)(unsigned long)(*pos + 1);
894 	return seq_list_next(v, &input_handler_list, pos);
895 }
896 
897 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
898 {
899 	mutex_unlock(&input_mutex);
900 }
901 
902 static int input_handlers_seq_show(struct seq_file *seq, void *v)
903 {
904 	struct input_handler *handler = container_of(v, struct input_handler, node);
905 
906 	seq_printf(seq, "N: Number=%ld Name=%s",
907 		   (unsigned long)seq->private, handler->name);
908 	if (handler->fops)
909 		seq_printf(seq, " Minor=%d", handler->minor);
910 	seq_putc(seq, '\n');
911 
912 	return 0;
913 }
914 static const struct seq_operations input_handlers_seq_ops = {
915 	.start	= input_handlers_seq_start,
916 	.next	= input_handlers_seq_next,
917 	.stop	= input_handlers_seq_stop,
918 	.show	= input_handlers_seq_show,
919 };
920 
921 static int input_proc_handlers_open(struct inode *inode, struct file *file)
922 {
923 	return seq_open(file, &input_handlers_seq_ops);
924 }
925 
926 static const struct file_operations input_handlers_fileops = {
927 	.owner		= THIS_MODULE,
928 	.open		= input_proc_handlers_open,
929 	.read		= seq_read,
930 	.llseek		= seq_lseek,
931 	.release	= seq_release,
932 };
933 
934 static int __init input_proc_init(void)
935 {
936 	struct proc_dir_entry *entry;
937 
938 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
939 	if (!proc_bus_input_dir)
940 		return -ENOMEM;
941 
942 	entry = proc_create("devices", 0, proc_bus_input_dir,
943 			    &input_devices_fileops);
944 	if (!entry)
945 		goto fail1;
946 
947 	entry = proc_create("handlers", 0, proc_bus_input_dir,
948 			    &input_handlers_fileops);
949 	if (!entry)
950 		goto fail2;
951 
952 	return 0;
953 
954  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
955  fail1: remove_proc_entry("bus/input", NULL);
956 	return -ENOMEM;
957 }
958 
959 static void input_proc_exit(void)
960 {
961 	remove_proc_entry("devices", proc_bus_input_dir);
962 	remove_proc_entry("handlers", proc_bus_input_dir);
963 	remove_proc_entry("bus/input", NULL);
964 }
965 
966 #else /* !CONFIG_PROC_FS */
967 static inline void input_wakeup_procfs_readers(void) { }
968 static inline int input_proc_init(void) { return 0; }
969 static inline void input_proc_exit(void) { }
970 #endif
971 
972 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
973 static ssize_t input_dev_show_##name(struct device *dev,		\
974 				     struct device_attribute *attr,	\
975 				     char *buf)				\
976 {									\
977 	struct input_dev *input_dev = to_input_dev(dev);		\
978 									\
979 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
980 			 input_dev->name ? input_dev->name : "");	\
981 }									\
982 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
983 
984 INPUT_DEV_STRING_ATTR_SHOW(name);
985 INPUT_DEV_STRING_ATTR_SHOW(phys);
986 INPUT_DEV_STRING_ATTR_SHOW(uniq);
987 
988 static int input_print_modalias_bits(char *buf, int size,
989 				     char name, unsigned long *bm,
990 				     unsigned int min_bit, unsigned int max_bit)
991 {
992 	int len = 0, i;
993 
994 	len += snprintf(buf, max(size, 0), "%c", name);
995 	for (i = min_bit; i < max_bit; i++)
996 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
997 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
998 	return len;
999 }
1000 
1001 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1002 				int add_cr)
1003 {
1004 	int len;
1005 
1006 	len = snprintf(buf, max(size, 0),
1007 		       "input:b%04Xv%04Xp%04Xe%04X-",
1008 		       id->id.bustype, id->id.vendor,
1009 		       id->id.product, id->id.version);
1010 
1011 	len += input_print_modalias_bits(buf + len, size - len,
1012 				'e', id->evbit, 0, EV_MAX);
1013 	len += input_print_modalias_bits(buf + len, size - len,
1014 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1015 	len += input_print_modalias_bits(buf + len, size - len,
1016 				'r', id->relbit, 0, REL_MAX);
1017 	len += input_print_modalias_bits(buf + len, size - len,
1018 				'a', id->absbit, 0, ABS_MAX);
1019 	len += input_print_modalias_bits(buf + len, size - len,
1020 				'm', id->mscbit, 0, MSC_MAX);
1021 	len += input_print_modalias_bits(buf + len, size - len,
1022 				'l', id->ledbit, 0, LED_MAX);
1023 	len += input_print_modalias_bits(buf + len, size - len,
1024 				's', id->sndbit, 0, SND_MAX);
1025 	len += input_print_modalias_bits(buf + len, size - len,
1026 				'f', id->ffbit, 0, FF_MAX);
1027 	len += input_print_modalias_bits(buf + len, size - len,
1028 				'w', id->swbit, 0, SW_MAX);
1029 
1030 	if (add_cr)
1031 		len += snprintf(buf + len, max(size - len, 0), "\n");
1032 
1033 	return len;
1034 }
1035 
1036 static ssize_t input_dev_show_modalias(struct device *dev,
1037 				       struct device_attribute *attr,
1038 				       char *buf)
1039 {
1040 	struct input_dev *id = to_input_dev(dev);
1041 	ssize_t len;
1042 
1043 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1044 
1045 	return min_t(int, len, PAGE_SIZE);
1046 }
1047 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1048 
1049 static struct attribute *input_dev_attrs[] = {
1050 	&dev_attr_name.attr,
1051 	&dev_attr_phys.attr,
1052 	&dev_attr_uniq.attr,
1053 	&dev_attr_modalias.attr,
1054 	NULL
1055 };
1056 
1057 static struct attribute_group input_dev_attr_group = {
1058 	.attrs	= input_dev_attrs,
1059 };
1060 
1061 #define INPUT_DEV_ID_ATTR(name)						\
1062 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1063 					struct device_attribute *attr,	\
1064 					char *buf)			\
1065 {									\
1066 	struct input_dev *input_dev = to_input_dev(dev);		\
1067 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1068 }									\
1069 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1070 
1071 INPUT_DEV_ID_ATTR(bustype);
1072 INPUT_DEV_ID_ATTR(vendor);
1073 INPUT_DEV_ID_ATTR(product);
1074 INPUT_DEV_ID_ATTR(version);
1075 
1076 static struct attribute *input_dev_id_attrs[] = {
1077 	&dev_attr_bustype.attr,
1078 	&dev_attr_vendor.attr,
1079 	&dev_attr_product.attr,
1080 	&dev_attr_version.attr,
1081 	NULL
1082 };
1083 
1084 static struct attribute_group input_dev_id_attr_group = {
1085 	.name	= "id",
1086 	.attrs	= input_dev_id_attrs,
1087 };
1088 
1089 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1090 			      int max, int add_cr)
1091 {
1092 	int i;
1093 	int len = 0;
1094 
1095 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1096 		if (bitmap[i])
1097 			break;
1098 
1099 	for (; i >= 0; i--)
1100 		len += snprintf(buf + len, max(buf_size - len, 0),
1101 				"%lx%s", bitmap[i], i > 0 ? " " : "");
1102 
1103 	if (add_cr)
1104 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1105 
1106 	return len;
1107 }
1108 
1109 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1110 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1111 				       struct device_attribute *attr,	\
1112 				       char *buf)			\
1113 {									\
1114 	struct input_dev *input_dev = to_input_dev(dev);		\
1115 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1116 				     input_dev->bm##bit, ev##_MAX, 1);	\
1117 	return min_t(int, len, PAGE_SIZE);				\
1118 }									\
1119 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1120 
1121 INPUT_DEV_CAP_ATTR(EV, ev);
1122 INPUT_DEV_CAP_ATTR(KEY, key);
1123 INPUT_DEV_CAP_ATTR(REL, rel);
1124 INPUT_DEV_CAP_ATTR(ABS, abs);
1125 INPUT_DEV_CAP_ATTR(MSC, msc);
1126 INPUT_DEV_CAP_ATTR(LED, led);
1127 INPUT_DEV_CAP_ATTR(SND, snd);
1128 INPUT_DEV_CAP_ATTR(FF, ff);
1129 INPUT_DEV_CAP_ATTR(SW, sw);
1130 
1131 static struct attribute *input_dev_caps_attrs[] = {
1132 	&dev_attr_ev.attr,
1133 	&dev_attr_key.attr,
1134 	&dev_attr_rel.attr,
1135 	&dev_attr_abs.attr,
1136 	&dev_attr_msc.attr,
1137 	&dev_attr_led.attr,
1138 	&dev_attr_snd.attr,
1139 	&dev_attr_ff.attr,
1140 	&dev_attr_sw.attr,
1141 	NULL
1142 };
1143 
1144 static struct attribute_group input_dev_caps_attr_group = {
1145 	.name	= "capabilities",
1146 	.attrs	= input_dev_caps_attrs,
1147 };
1148 
1149 static const struct attribute_group *input_dev_attr_groups[] = {
1150 	&input_dev_attr_group,
1151 	&input_dev_id_attr_group,
1152 	&input_dev_caps_attr_group,
1153 	NULL
1154 };
1155 
1156 static void input_dev_release(struct device *device)
1157 {
1158 	struct input_dev *dev = to_input_dev(device);
1159 
1160 	input_ff_destroy(dev);
1161 	kfree(dev);
1162 
1163 	module_put(THIS_MODULE);
1164 }
1165 
1166 /*
1167  * Input uevent interface - loading event handlers based on
1168  * device bitfields.
1169  */
1170 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1171 				   const char *name, unsigned long *bitmap, int max)
1172 {
1173 	int len;
1174 
1175 	if (add_uevent_var(env, "%s=", name))
1176 		return -ENOMEM;
1177 
1178 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1179 				 sizeof(env->buf) - env->buflen,
1180 				 bitmap, max, 0);
1181 	if (len >= (sizeof(env->buf) - env->buflen))
1182 		return -ENOMEM;
1183 
1184 	env->buflen += len;
1185 	return 0;
1186 }
1187 
1188 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1189 					 struct input_dev *dev)
1190 {
1191 	int len;
1192 
1193 	if (add_uevent_var(env, "MODALIAS="))
1194 		return -ENOMEM;
1195 
1196 	len = input_print_modalias(&env->buf[env->buflen - 1],
1197 				   sizeof(env->buf) - env->buflen,
1198 				   dev, 0);
1199 	if (len >= (sizeof(env->buf) - env->buflen))
1200 		return -ENOMEM;
1201 
1202 	env->buflen += len;
1203 	return 0;
1204 }
1205 
1206 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1207 	do {								\
1208 		int err = add_uevent_var(env, fmt, val);		\
1209 		if (err)						\
1210 			return err;					\
1211 	} while (0)
1212 
1213 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1214 	do {								\
1215 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1216 		if (err)						\
1217 			return err;					\
1218 	} while (0)
1219 
1220 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1221 	do {								\
1222 		int err = input_add_uevent_modalias_var(env, dev);	\
1223 		if (err)						\
1224 			return err;					\
1225 	} while (0)
1226 
1227 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1228 {
1229 	struct input_dev *dev = to_input_dev(device);
1230 
1231 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1232 				dev->id.bustype, dev->id.vendor,
1233 				dev->id.product, dev->id.version);
1234 	if (dev->name)
1235 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1236 	if (dev->phys)
1237 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1238 	if (dev->uniq)
1239 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1240 
1241 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1242 	if (test_bit(EV_KEY, dev->evbit))
1243 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1244 	if (test_bit(EV_REL, dev->evbit))
1245 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1246 	if (test_bit(EV_ABS, dev->evbit))
1247 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1248 	if (test_bit(EV_MSC, dev->evbit))
1249 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1250 	if (test_bit(EV_LED, dev->evbit))
1251 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1252 	if (test_bit(EV_SND, dev->evbit))
1253 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1254 	if (test_bit(EV_FF, dev->evbit))
1255 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1256 	if (test_bit(EV_SW, dev->evbit))
1257 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1258 
1259 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1260 
1261 	return 0;
1262 }
1263 
1264 #define INPUT_DO_TOGGLE(dev, type, bits, on)			\
1265 	do {							\
1266 		int i;						\
1267 		if (!test_bit(EV_##type, dev->evbit))		\
1268 			break;					\
1269 		for (i = 0; i < type##_MAX; i++) {		\
1270 			if (!test_bit(i, dev->bits##bit) ||	\
1271 			    !test_bit(i, dev->bits))		\
1272 				continue;			\
1273 			dev->event(dev, EV_##type, i, on);	\
1274 		}						\
1275 	} while (0)
1276 
1277 #ifdef CONFIG_PM
1278 static void input_dev_reset(struct input_dev *dev, bool activate)
1279 {
1280 	if (!dev->event)
1281 		return;
1282 
1283 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1284 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1285 
1286 	if (activate && test_bit(EV_REP, dev->evbit)) {
1287 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1288 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1289 	}
1290 }
1291 
1292 static int input_dev_suspend(struct device *dev)
1293 {
1294 	struct input_dev *input_dev = to_input_dev(dev);
1295 
1296 	mutex_lock(&input_dev->mutex);
1297 	input_dev_reset(input_dev, false);
1298 	mutex_unlock(&input_dev->mutex);
1299 
1300 	return 0;
1301 }
1302 
1303 static int input_dev_resume(struct device *dev)
1304 {
1305 	struct input_dev *input_dev = to_input_dev(dev);
1306 
1307 	mutex_lock(&input_dev->mutex);
1308 	input_dev_reset(input_dev, true);
1309 	mutex_unlock(&input_dev->mutex);
1310 
1311 	return 0;
1312 }
1313 
1314 static const struct dev_pm_ops input_dev_pm_ops = {
1315 	.suspend	= input_dev_suspend,
1316 	.resume		= input_dev_resume,
1317 	.poweroff	= input_dev_suspend,
1318 	.restore	= input_dev_resume,
1319 };
1320 #endif /* CONFIG_PM */
1321 
1322 static struct device_type input_dev_type = {
1323 	.groups		= input_dev_attr_groups,
1324 	.release	= input_dev_release,
1325 	.uevent		= input_dev_uevent,
1326 #ifdef CONFIG_PM
1327 	.pm		= &input_dev_pm_ops,
1328 #endif
1329 };
1330 
1331 static char *input_devnode(struct device *dev, mode_t *mode)
1332 {
1333 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1334 }
1335 
1336 struct class input_class = {
1337 	.name		= "input",
1338 	.devnode	= input_devnode,
1339 };
1340 EXPORT_SYMBOL_GPL(input_class);
1341 
1342 /**
1343  * input_allocate_device - allocate memory for new input device
1344  *
1345  * Returns prepared struct input_dev or NULL.
1346  *
1347  * NOTE: Use input_free_device() to free devices that have not been
1348  * registered; input_unregister_device() should be used for already
1349  * registered devices.
1350  */
1351 struct input_dev *input_allocate_device(void)
1352 {
1353 	struct input_dev *dev;
1354 
1355 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1356 	if (dev) {
1357 		dev->dev.type = &input_dev_type;
1358 		dev->dev.class = &input_class;
1359 		device_initialize(&dev->dev);
1360 		mutex_init(&dev->mutex);
1361 		spin_lock_init(&dev->event_lock);
1362 		INIT_LIST_HEAD(&dev->h_list);
1363 		INIT_LIST_HEAD(&dev->node);
1364 
1365 		__module_get(THIS_MODULE);
1366 	}
1367 
1368 	return dev;
1369 }
1370 EXPORT_SYMBOL(input_allocate_device);
1371 
1372 /**
1373  * input_free_device - free memory occupied by input_dev structure
1374  * @dev: input device to free
1375  *
1376  * This function should only be used if input_register_device()
1377  * was not called yet or if it failed. Once device was registered
1378  * use input_unregister_device() and memory will be freed once last
1379  * reference to the device is dropped.
1380  *
1381  * Device should be allocated by input_allocate_device().
1382  *
1383  * NOTE: If there are references to the input device then memory
1384  * will not be freed until last reference is dropped.
1385  */
1386 void input_free_device(struct input_dev *dev)
1387 {
1388 	if (dev)
1389 		input_put_device(dev);
1390 }
1391 EXPORT_SYMBOL(input_free_device);
1392 
1393 /**
1394  * input_set_capability - mark device as capable of a certain event
1395  * @dev: device that is capable of emitting or accepting event
1396  * @type: type of the event (EV_KEY, EV_REL, etc...)
1397  * @code: event code
1398  *
1399  * In addition to setting up corresponding bit in appropriate capability
1400  * bitmap the function also adjusts dev->evbit.
1401  */
1402 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1403 {
1404 	switch (type) {
1405 	case EV_KEY:
1406 		__set_bit(code, dev->keybit);
1407 		break;
1408 
1409 	case EV_REL:
1410 		__set_bit(code, dev->relbit);
1411 		break;
1412 
1413 	case EV_ABS:
1414 		__set_bit(code, dev->absbit);
1415 		break;
1416 
1417 	case EV_MSC:
1418 		__set_bit(code, dev->mscbit);
1419 		break;
1420 
1421 	case EV_SW:
1422 		__set_bit(code, dev->swbit);
1423 		break;
1424 
1425 	case EV_LED:
1426 		__set_bit(code, dev->ledbit);
1427 		break;
1428 
1429 	case EV_SND:
1430 		__set_bit(code, dev->sndbit);
1431 		break;
1432 
1433 	case EV_FF:
1434 		__set_bit(code, dev->ffbit);
1435 		break;
1436 
1437 	case EV_PWR:
1438 		/* do nothing */
1439 		break;
1440 
1441 	default:
1442 		printk(KERN_ERR
1443 			"input_set_capability: unknown type %u (code %u)\n",
1444 			type, code);
1445 		dump_stack();
1446 		return;
1447 	}
1448 
1449 	__set_bit(type, dev->evbit);
1450 }
1451 EXPORT_SYMBOL(input_set_capability);
1452 
1453 /**
1454  * input_register_device - register device with input core
1455  * @dev: device to be registered
1456  *
1457  * This function registers device with input core. The device must be
1458  * allocated with input_allocate_device() and all it's capabilities
1459  * set up before registering.
1460  * If function fails the device must be freed with input_free_device().
1461  * Once device has been successfully registered it can be unregistered
1462  * with input_unregister_device(); input_free_device() should not be
1463  * called in this case.
1464  */
1465 int input_register_device(struct input_dev *dev)
1466 {
1467 	static atomic_t input_no = ATOMIC_INIT(0);
1468 	struct input_handler *handler;
1469 	const char *path;
1470 	int error;
1471 
1472 	__set_bit(EV_SYN, dev->evbit);
1473 
1474 	/*
1475 	 * If delay and period are pre-set by the driver, then autorepeating
1476 	 * is handled by the driver itself and we don't do it in input.c.
1477 	 */
1478 
1479 	init_timer(&dev->timer);
1480 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1481 		dev->timer.data = (long) dev;
1482 		dev->timer.function = input_repeat_key;
1483 		dev->rep[REP_DELAY] = 250;
1484 		dev->rep[REP_PERIOD] = 33;
1485 	}
1486 
1487 	if (!dev->getkeycode)
1488 		dev->getkeycode = input_default_getkeycode;
1489 
1490 	if (!dev->setkeycode)
1491 		dev->setkeycode = input_default_setkeycode;
1492 
1493 	dev_set_name(&dev->dev, "input%ld",
1494 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1495 
1496 	error = device_add(&dev->dev);
1497 	if (error)
1498 		return error;
1499 
1500 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1501 	printk(KERN_INFO "input: %s as %s\n",
1502 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1503 	kfree(path);
1504 
1505 	error = mutex_lock_interruptible(&input_mutex);
1506 	if (error) {
1507 		device_del(&dev->dev);
1508 		return error;
1509 	}
1510 
1511 	list_add_tail(&dev->node, &input_dev_list);
1512 
1513 	list_for_each_entry(handler, &input_handler_list, node)
1514 		input_attach_handler(dev, handler);
1515 
1516 	input_wakeup_procfs_readers();
1517 
1518 	mutex_unlock(&input_mutex);
1519 
1520 	return 0;
1521 }
1522 EXPORT_SYMBOL(input_register_device);
1523 
1524 /**
1525  * input_unregister_device - unregister previously registered device
1526  * @dev: device to be unregistered
1527  *
1528  * This function unregisters an input device. Once device is unregistered
1529  * the caller should not try to access it as it may get freed at any moment.
1530  */
1531 void input_unregister_device(struct input_dev *dev)
1532 {
1533 	struct input_handle *handle, *next;
1534 
1535 	input_disconnect_device(dev);
1536 
1537 	mutex_lock(&input_mutex);
1538 
1539 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1540 		handle->handler->disconnect(handle);
1541 	WARN_ON(!list_empty(&dev->h_list));
1542 
1543 	del_timer_sync(&dev->timer);
1544 	list_del_init(&dev->node);
1545 
1546 	input_wakeup_procfs_readers();
1547 
1548 	mutex_unlock(&input_mutex);
1549 
1550 	device_unregister(&dev->dev);
1551 }
1552 EXPORT_SYMBOL(input_unregister_device);
1553 
1554 /**
1555  * input_register_handler - register a new input handler
1556  * @handler: handler to be registered
1557  *
1558  * This function registers a new input handler (interface) for input
1559  * devices in the system and attaches it to all input devices that
1560  * are compatible with the handler.
1561  */
1562 int input_register_handler(struct input_handler *handler)
1563 {
1564 	struct input_dev *dev;
1565 	int retval;
1566 
1567 	retval = mutex_lock_interruptible(&input_mutex);
1568 	if (retval)
1569 		return retval;
1570 
1571 	INIT_LIST_HEAD(&handler->h_list);
1572 
1573 	if (handler->fops != NULL) {
1574 		if (input_table[handler->minor >> 5]) {
1575 			retval = -EBUSY;
1576 			goto out;
1577 		}
1578 		input_table[handler->minor >> 5] = handler;
1579 	}
1580 
1581 	list_add_tail(&handler->node, &input_handler_list);
1582 
1583 	list_for_each_entry(dev, &input_dev_list, node)
1584 		input_attach_handler(dev, handler);
1585 
1586 	input_wakeup_procfs_readers();
1587 
1588  out:
1589 	mutex_unlock(&input_mutex);
1590 	return retval;
1591 }
1592 EXPORT_SYMBOL(input_register_handler);
1593 
1594 /**
1595  * input_unregister_handler - unregisters an input handler
1596  * @handler: handler to be unregistered
1597  *
1598  * This function disconnects a handler from its input devices and
1599  * removes it from lists of known handlers.
1600  */
1601 void input_unregister_handler(struct input_handler *handler)
1602 {
1603 	struct input_handle *handle, *next;
1604 
1605 	mutex_lock(&input_mutex);
1606 
1607 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1608 		handler->disconnect(handle);
1609 	WARN_ON(!list_empty(&handler->h_list));
1610 
1611 	list_del_init(&handler->node);
1612 
1613 	if (handler->fops != NULL)
1614 		input_table[handler->minor >> 5] = NULL;
1615 
1616 	input_wakeup_procfs_readers();
1617 
1618 	mutex_unlock(&input_mutex);
1619 }
1620 EXPORT_SYMBOL(input_unregister_handler);
1621 
1622 /**
1623  * input_register_handle - register a new input handle
1624  * @handle: handle to register
1625  *
1626  * This function puts a new input handle onto device's
1627  * and handler's lists so that events can flow through
1628  * it once it is opened using input_open_device().
1629  *
1630  * This function is supposed to be called from handler's
1631  * connect() method.
1632  */
1633 int input_register_handle(struct input_handle *handle)
1634 {
1635 	struct input_handler *handler = handle->handler;
1636 	struct input_dev *dev = handle->dev;
1637 	int error;
1638 
1639 	/*
1640 	 * We take dev->mutex here to prevent race with
1641 	 * input_release_device().
1642 	 */
1643 	error = mutex_lock_interruptible(&dev->mutex);
1644 	if (error)
1645 		return error;
1646 	list_add_tail_rcu(&handle->d_node, &dev->h_list);
1647 	mutex_unlock(&dev->mutex);
1648 
1649 	/*
1650 	 * Since we are supposed to be called from ->connect()
1651 	 * which is mutually exclusive with ->disconnect()
1652 	 * we can't be racing with input_unregister_handle()
1653 	 * and so separate lock is not needed here.
1654 	 */
1655 	list_add_tail(&handle->h_node, &handler->h_list);
1656 
1657 	if (handler->start)
1658 		handler->start(handle);
1659 
1660 	return 0;
1661 }
1662 EXPORT_SYMBOL(input_register_handle);
1663 
1664 /**
1665  * input_unregister_handle - unregister an input handle
1666  * @handle: handle to unregister
1667  *
1668  * This function removes input handle from device's
1669  * and handler's lists.
1670  *
1671  * This function is supposed to be called from handler's
1672  * disconnect() method.
1673  */
1674 void input_unregister_handle(struct input_handle *handle)
1675 {
1676 	struct input_dev *dev = handle->dev;
1677 
1678 	list_del_init(&handle->h_node);
1679 
1680 	/*
1681 	 * Take dev->mutex to prevent race with input_release_device().
1682 	 */
1683 	mutex_lock(&dev->mutex);
1684 	list_del_rcu(&handle->d_node);
1685 	mutex_unlock(&dev->mutex);
1686 	synchronize_rcu();
1687 }
1688 EXPORT_SYMBOL(input_unregister_handle);
1689 
1690 static int input_open_file(struct inode *inode, struct file *file)
1691 {
1692 	struct input_handler *handler;
1693 	const struct file_operations *old_fops, *new_fops = NULL;
1694 	int err;
1695 
1696 	lock_kernel();
1697 	/* No load-on-demand here? */
1698 	handler = input_table[iminor(inode) >> 5];
1699 	if (!handler || !(new_fops = fops_get(handler->fops))) {
1700 		err = -ENODEV;
1701 		goto out;
1702 	}
1703 
1704 	/*
1705 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1706 	 * not "no device". Oh, well...
1707 	 */
1708 	if (!new_fops->open) {
1709 		fops_put(new_fops);
1710 		err = -ENODEV;
1711 		goto out;
1712 	}
1713 	old_fops = file->f_op;
1714 	file->f_op = new_fops;
1715 
1716 	err = new_fops->open(inode, file);
1717 
1718 	if (err) {
1719 		fops_put(file->f_op);
1720 		file->f_op = fops_get(old_fops);
1721 	}
1722 	fops_put(old_fops);
1723 out:
1724 	unlock_kernel();
1725 	return err;
1726 }
1727 
1728 static const struct file_operations input_fops = {
1729 	.owner = THIS_MODULE,
1730 	.open = input_open_file,
1731 };
1732 
1733 static void __init input_init_abs_bypass(void)
1734 {
1735 	const unsigned int *p;
1736 
1737 	for (p = input_abs_bypass_init_data; *p; p++)
1738 		input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1739 }
1740 
1741 static int __init input_init(void)
1742 {
1743 	int err;
1744 
1745 	input_init_abs_bypass();
1746 
1747 	err = class_register(&input_class);
1748 	if (err) {
1749 		printk(KERN_ERR "input: unable to register input_dev class\n");
1750 		return err;
1751 	}
1752 
1753 	err = input_proc_init();
1754 	if (err)
1755 		goto fail1;
1756 
1757 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1758 	if (err) {
1759 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1760 		goto fail2;
1761 	}
1762 
1763 	return 0;
1764 
1765  fail2:	input_proc_exit();
1766  fail1:	class_unregister(&input_class);
1767 	return err;
1768 }
1769 
1770 static void __exit input_exit(void)
1771 {
1772 	input_proc_exit();
1773 	unregister_chrdev(INPUT_MAJOR, "input");
1774 	class_unregister(&input_class);
1775 }
1776 
1777 subsys_initcall(input_init);
1778 module_exit(input_exit);
1779