1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #include <linux/init.h> 14 #include <linux/types.h> 15 #include <linux/input.h> 16 #include <linux/module.h> 17 #include <linux/random.h> 18 #include <linux/major.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/poll.h> 23 #include <linux/device.h> 24 #include <linux/mutex.h> 25 #include <linux/rcupdate.h> 26 #include <linux/smp_lock.h> 27 28 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 29 MODULE_DESCRIPTION("Input core"); 30 MODULE_LICENSE("GPL"); 31 32 #define INPUT_DEVICES 256 33 34 /* 35 * EV_ABS events which should not be cached are listed here. 36 */ 37 static unsigned int input_abs_bypass_init_data[] __initdata = { 38 ABS_MT_TOUCH_MAJOR, 39 ABS_MT_TOUCH_MINOR, 40 ABS_MT_WIDTH_MAJOR, 41 ABS_MT_WIDTH_MINOR, 42 ABS_MT_ORIENTATION, 43 ABS_MT_POSITION_X, 44 ABS_MT_POSITION_Y, 45 ABS_MT_TOOL_TYPE, 46 ABS_MT_BLOB_ID, 47 ABS_MT_TRACKING_ID, 48 0 49 }; 50 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)]; 51 52 static LIST_HEAD(input_dev_list); 53 static LIST_HEAD(input_handler_list); 54 55 /* 56 * input_mutex protects access to both input_dev_list and input_handler_list. 57 * This also causes input_[un]register_device and input_[un]register_handler 58 * be mutually exclusive which simplifies locking in drivers implementing 59 * input handlers. 60 */ 61 static DEFINE_MUTEX(input_mutex); 62 63 static struct input_handler *input_table[8]; 64 65 static inline int is_event_supported(unsigned int code, 66 unsigned long *bm, unsigned int max) 67 { 68 return code <= max && test_bit(code, bm); 69 } 70 71 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 72 { 73 if (fuzz) { 74 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 75 return old_val; 76 77 if (value > old_val - fuzz && value < old_val + fuzz) 78 return (old_val * 3 + value) / 4; 79 80 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 81 return (old_val + value) / 2; 82 } 83 84 return value; 85 } 86 87 /* 88 * Pass event through all open handles. This function is called with 89 * dev->event_lock held and interrupts disabled. 90 */ 91 static void input_pass_event(struct input_dev *dev, 92 unsigned int type, unsigned int code, int value) 93 { 94 struct input_handle *handle; 95 96 rcu_read_lock(); 97 98 handle = rcu_dereference(dev->grab); 99 if (handle) 100 handle->handler->event(handle, type, code, value); 101 else 102 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 103 if (handle->open) 104 handle->handler->event(handle, 105 type, code, value); 106 rcu_read_unlock(); 107 } 108 109 /* 110 * Generate software autorepeat event. Note that we take 111 * dev->event_lock here to avoid racing with input_event 112 * which may cause keys get "stuck". 113 */ 114 static void input_repeat_key(unsigned long data) 115 { 116 struct input_dev *dev = (void *) data; 117 unsigned long flags; 118 119 spin_lock_irqsave(&dev->event_lock, flags); 120 121 if (test_bit(dev->repeat_key, dev->key) && 122 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 123 124 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 125 126 if (dev->sync) { 127 /* 128 * Only send SYN_REPORT if we are not in a middle 129 * of driver parsing a new hardware packet. 130 * Otherwise assume that the driver will send 131 * SYN_REPORT once it's done. 132 */ 133 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 134 } 135 136 if (dev->rep[REP_PERIOD]) 137 mod_timer(&dev->timer, jiffies + 138 msecs_to_jiffies(dev->rep[REP_PERIOD])); 139 } 140 141 spin_unlock_irqrestore(&dev->event_lock, flags); 142 } 143 144 static void input_start_autorepeat(struct input_dev *dev, int code) 145 { 146 if (test_bit(EV_REP, dev->evbit) && 147 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 148 dev->timer.data) { 149 dev->repeat_key = code; 150 mod_timer(&dev->timer, 151 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 152 } 153 } 154 155 static void input_stop_autorepeat(struct input_dev *dev) 156 { 157 del_timer(&dev->timer); 158 } 159 160 #define INPUT_IGNORE_EVENT 0 161 #define INPUT_PASS_TO_HANDLERS 1 162 #define INPUT_PASS_TO_DEVICE 2 163 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 164 165 static void input_handle_event(struct input_dev *dev, 166 unsigned int type, unsigned int code, int value) 167 { 168 int disposition = INPUT_IGNORE_EVENT; 169 170 switch (type) { 171 172 case EV_SYN: 173 switch (code) { 174 case SYN_CONFIG: 175 disposition = INPUT_PASS_TO_ALL; 176 break; 177 178 case SYN_REPORT: 179 if (!dev->sync) { 180 dev->sync = 1; 181 disposition = INPUT_PASS_TO_HANDLERS; 182 } 183 break; 184 case SYN_MT_REPORT: 185 dev->sync = 0; 186 disposition = INPUT_PASS_TO_HANDLERS; 187 break; 188 } 189 break; 190 191 case EV_KEY: 192 if (is_event_supported(code, dev->keybit, KEY_MAX) && 193 !!test_bit(code, dev->key) != value) { 194 195 if (value != 2) { 196 __change_bit(code, dev->key); 197 if (value) 198 input_start_autorepeat(dev, code); 199 else 200 input_stop_autorepeat(dev); 201 } 202 203 disposition = INPUT_PASS_TO_HANDLERS; 204 } 205 break; 206 207 case EV_SW: 208 if (is_event_supported(code, dev->swbit, SW_MAX) && 209 !!test_bit(code, dev->sw) != value) { 210 211 __change_bit(code, dev->sw); 212 disposition = INPUT_PASS_TO_HANDLERS; 213 } 214 break; 215 216 case EV_ABS: 217 if (is_event_supported(code, dev->absbit, ABS_MAX)) { 218 219 if (test_bit(code, input_abs_bypass)) { 220 disposition = INPUT_PASS_TO_HANDLERS; 221 break; 222 } 223 224 value = input_defuzz_abs_event(value, 225 dev->abs[code], dev->absfuzz[code]); 226 227 if (dev->abs[code] != value) { 228 dev->abs[code] = value; 229 disposition = INPUT_PASS_TO_HANDLERS; 230 } 231 } 232 break; 233 234 case EV_REL: 235 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 236 disposition = INPUT_PASS_TO_HANDLERS; 237 238 break; 239 240 case EV_MSC: 241 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 242 disposition = INPUT_PASS_TO_ALL; 243 244 break; 245 246 case EV_LED: 247 if (is_event_supported(code, dev->ledbit, LED_MAX) && 248 !!test_bit(code, dev->led) != value) { 249 250 __change_bit(code, dev->led); 251 disposition = INPUT_PASS_TO_ALL; 252 } 253 break; 254 255 case EV_SND: 256 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 257 258 if (!!test_bit(code, dev->snd) != !!value) 259 __change_bit(code, dev->snd); 260 disposition = INPUT_PASS_TO_ALL; 261 } 262 break; 263 264 case EV_REP: 265 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 266 dev->rep[code] = value; 267 disposition = INPUT_PASS_TO_ALL; 268 } 269 break; 270 271 case EV_FF: 272 if (value >= 0) 273 disposition = INPUT_PASS_TO_ALL; 274 break; 275 276 case EV_PWR: 277 disposition = INPUT_PASS_TO_ALL; 278 break; 279 } 280 281 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 282 dev->sync = 0; 283 284 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 285 dev->event(dev, type, code, value); 286 287 if (disposition & INPUT_PASS_TO_HANDLERS) 288 input_pass_event(dev, type, code, value); 289 } 290 291 /** 292 * input_event() - report new input event 293 * @dev: device that generated the event 294 * @type: type of the event 295 * @code: event code 296 * @value: value of the event 297 * 298 * This function should be used by drivers implementing various input 299 * devices. See also input_inject_event(). 300 */ 301 302 void input_event(struct input_dev *dev, 303 unsigned int type, unsigned int code, int value) 304 { 305 unsigned long flags; 306 307 if (is_event_supported(type, dev->evbit, EV_MAX)) { 308 309 spin_lock_irqsave(&dev->event_lock, flags); 310 add_input_randomness(type, code, value); 311 input_handle_event(dev, type, code, value); 312 spin_unlock_irqrestore(&dev->event_lock, flags); 313 } 314 } 315 EXPORT_SYMBOL(input_event); 316 317 /** 318 * input_inject_event() - send input event from input handler 319 * @handle: input handle to send event through 320 * @type: type of the event 321 * @code: event code 322 * @value: value of the event 323 * 324 * Similar to input_event() but will ignore event if device is 325 * "grabbed" and handle injecting event is not the one that owns 326 * the device. 327 */ 328 void input_inject_event(struct input_handle *handle, 329 unsigned int type, unsigned int code, int value) 330 { 331 struct input_dev *dev = handle->dev; 332 struct input_handle *grab; 333 unsigned long flags; 334 335 if (is_event_supported(type, dev->evbit, EV_MAX)) { 336 spin_lock_irqsave(&dev->event_lock, flags); 337 338 rcu_read_lock(); 339 grab = rcu_dereference(dev->grab); 340 if (!grab || grab == handle) 341 input_handle_event(dev, type, code, value); 342 rcu_read_unlock(); 343 344 spin_unlock_irqrestore(&dev->event_lock, flags); 345 } 346 } 347 EXPORT_SYMBOL(input_inject_event); 348 349 /** 350 * input_grab_device - grabs device for exclusive use 351 * @handle: input handle that wants to own the device 352 * 353 * When a device is grabbed by an input handle all events generated by 354 * the device are delivered only to this handle. Also events injected 355 * by other input handles are ignored while device is grabbed. 356 */ 357 int input_grab_device(struct input_handle *handle) 358 { 359 struct input_dev *dev = handle->dev; 360 int retval; 361 362 retval = mutex_lock_interruptible(&dev->mutex); 363 if (retval) 364 return retval; 365 366 if (dev->grab) { 367 retval = -EBUSY; 368 goto out; 369 } 370 371 rcu_assign_pointer(dev->grab, handle); 372 synchronize_rcu(); 373 374 out: 375 mutex_unlock(&dev->mutex); 376 return retval; 377 } 378 EXPORT_SYMBOL(input_grab_device); 379 380 static void __input_release_device(struct input_handle *handle) 381 { 382 struct input_dev *dev = handle->dev; 383 384 if (dev->grab == handle) { 385 rcu_assign_pointer(dev->grab, NULL); 386 /* Make sure input_pass_event() notices that grab is gone */ 387 synchronize_rcu(); 388 389 list_for_each_entry(handle, &dev->h_list, d_node) 390 if (handle->open && handle->handler->start) 391 handle->handler->start(handle); 392 } 393 } 394 395 /** 396 * input_release_device - release previously grabbed device 397 * @handle: input handle that owns the device 398 * 399 * Releases previously grabbed device so that other input handles can 400 * start receiving input events. Upon release all handlers attached 401 * to the device have their start() method called so they have a change 402 * to synchronize device state with the rest of the system. 403 */ 404 void input_release_device(struct input_handle *handle) 405 { 406 struct input_dev *dev = handle->dev; 407 408 mutex_lock(&dev->mutex); 409 __input_release_device(handle); 410 mutex_unlock(&dev->mutex); 411 } 412 EXPORT_SYMBOL(input_release_device); 413 414 /** 415 * input_open_device - open input device 416 * @handle: handle through which device is being accessed 417 * 418 * This function should be called by input handlers when they 419 * want to start receive events from given input device. 420 */ 421 int input_open_device(struct input_handle *handle) 422 { 423 struct input_dev *dev = handle->dev; 424 int retval; 425 426 retval = mutex_lock_interruptible(&dev->mutex); 427 if (retval) 428 return retval; 429 430 if (dev->going_away) { 431 retval = -ENODEV; 432 goto out; 433 } 434 435 handle->open++; 436 437 if (!dev->users++ && dev->open) 438 retval = dev->open(dev); 439 440 if (retval) { 441 dev->users--; 442 if (!--handle->open) { 443 /* 444 * Make sure we are not delivering any more events 445 * through this handle 446 */ 447 synchronize_rcu(); 448 } 449 } 450 451 out: 452 mutex_unlock(&dev->mutex); 453 return retval; 454 } 455 EXPORT_SYMBOL(input_open_device); 456 457 int input_flush_device(struct input_handle *handle, struct file *file) 458 { 459 struct input_dev *dev = handle->dev; 460 int retval; 461 462 retval = mutex_lock_interruptible(&dev->mutex); 463 if (retval) 464 return retval; 465 466 if (dev->flush) 467 retval = dev->flush(dev, file); 468 469 mutex_unlock(&dev->mutex); 470 return retval; 471 } 472 EXPORT_SYMBOL(input_flush_device); 473 474 /** 475 * input_close_device - close input device 476 * @handle: handle through which device is being accessed 477 * 478 * This function should be called by input handlers when they 479 * want to stop receive events from given input device. 480 */ 481 void input_close_device(struct input_handle *handle) 482 { 483 struct input_dev *dev = handle->dev; 484 485 mutex_lock(&dev->mutex); 486 487 __input_release_device(handle); 488 489 if (!--dev->users && dev->close) 490 dev->close(dev); 491 492 if (!--handle->open) { 493 /* 494 * synchronize_rcu() makes sure that input_pass_event() 495 * completed and that no more input events are delivered 496 * through this handle 497 */ 498 synchronize_rcu(); 499 } 500 501 mutex_unlock(&dev->mutex); 502 } 503 EXPORT_SYMBOL(input_close_device); 504 505 /* 506 * Prepare device for unregistering 507 */ 508 static void input_disconnect_device(struct input_dev *dev) 509 { 510 struct input_handle *handle; 511 int code; 512 513 /* 514 * Mark device as going away. Note that we take dev->mutex here 515 * not to protect access to dev->going_away but rather to ensure 516 * that there are no threads in the middle of input_open_device() 517 */ 518 mutex_lock(&dev->mutex); 519 dev->going_away = true; 520 mutex_unlock(&dev->mutex); 521 522 spin_lock_irq(&dev->event_lock); 523 524 /* 525 * Simulate keyup events for all pressed keys so that handlers 526 * are not left with "stuck" keys. The driver may continue 527 * generate events even after we done here but they will not 528 * reach any handlers. 529 */ 530 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 531 for (code = 0; code <= KEY_MAX; code++) { 532 if (is_event_supported(code, dev->keybit, KEY_MAX) && 533 __test_and_clear_bit(code, dev->key)) { 534 input_pass_event(dev, EV_KEY, code, 0); 535 } 536 } 537 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 538 } 539 540 list_for_each_entry(handle, &dev->h_list, d_node) 541 handle->open = 0; 542 543 spin_unlock_irq(&dev->event_lock); 544 } 545 546 static int input_fetch_keycode(struct input_dev *dev, int scancode) 547 { 548 switch (dev->keycodesize) { 549 case 1: 550 return ((u8 *)dev->keycode)[scancode]; 551 552 case 2: 553 return ((u16 *)dev->keycode)[scancode]; 554 555 default: 556 return ((u32 *)dev->keycode)[scancode]; 557 } 558 } 559 560 static int input_default_getkeycode(struct input_dev *dev, 561 int scancode, int *keycode) 562 { 563 if (!dev->keycodesize) 564 return -EINVAL; 565 566 if (scancode >= dev->keycodemax) 567 return -EINVAL; 568 569 *keycode = input_fetch_keycode(dev, scancode); 570 571 return 0; 572 } 573 574 static int input_default_setkeycode(struct input_dev *dev, 575 int scancode, int keycode) 576 { 577 int old_keycode; 578 int i; 579 580 if (scancode >= dev->keycodemax) 581 return -EINVAL; 582 583 if (!dev->keycodesize) 584 return -EINVAL; 585 586 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 587 return -EINVAL; 588 589 switch (dev->keycodesize) { 590 case 1: { 591 u8 *k = (u8 *)dev->keycode; 592 old_keycode = k[scancode]; 593 k[scancode] = keycode; 594 break; 595 } 596 case 2: { 597 u16 *k = (u16 *)dev->keycode; 598 old_keycode = k[scancode]; 599 k[scancode] = keycode; 600 break; 601 } 602 default: { 603 u32 *k = (u32 *)dev->keycode; 604 old_keycode = k[scancode]; 605 k[scancode] = keycode; 606 break; 607 } 608 } 609 610 clear_bit(old_keycode, dev->keybit); 611 set_bit(keycode, dev->keybit); 612 613 for (i = 0; i < dev->keycodemax; i++) { 614 if (input_fetch_keycode(dev, i) == old_keycode) { 615 set_bit(old_keycode, dev->keybit); 616 break; /* Setting the bit twice is useless, so break */ 617 } 618 } 619 620 return 0; 621 } 622 623 /** 624 * input_get_keycode - retrieve keycode currently mapped to a given scancode 625 * @dev: input device which keymap is being queried 626 * @scancode: scancode (or its equivalent for device in question) for which 627 * keycode is needed 628 * @keycode: result 629 * 630 * This function should be called by anyone interested in retrieving current 631 * keymap. Presently keyboard and evdev handlers use it. 632 */ 633 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode) 634 { 635 if (scancode < 0) 636 return -EINVAL; 637 638 return dev->getkeycode(dev, scancode, keycode); 639 } 640 EXPORT_SYMBOL(input_get_keycode); 641 642 /** 643 * input_get_keycode - assign new keycode to a given scancode 644 * @dev: input device which keymap is being updated 645 * @scancode: scancode (or its equivalent for device in question) 646 * @keycode: new keycode to be assigned to the scancode 647 * 648 * This function should be called by anyone needing to update current 649 * keymap. Presently keyboard and evdev handlers use it. 650 */ 651 int input_set_keycode(struct input_dev *dev, int scancode, int keycode) 652 { 653 unsigned long flags; 654 int old_keycode; 655 int retval; 656 657 if (scancode < 0) 658 return -EINVAL; 659 660 if (keycode < 0 || keycode > KEY_MAX) 661 return -EINVAL; 662 663 spin_lock_irqsave(&dev->event_lock, flags); 664 665 retval = dev->getkeycode(dev, scancode, &old_keycode); 666 if (retval) 667 goto out; 668 669 retval = dev->setkeycode(dev, scancode, keycode); 670 if (retval) 671 goto out; 672 673 /* 674 * Simulate keyup event if keycode is not present 675 * in the keymap anymore 676 */ 677 if (test_bit(EV_KEY, dev->evbit) && 678 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 679 __test_and_clear_bit(old_keycode, dev->key)) { 680 681 input_pass_event(dev, EV_KEY, old_keycode, 0); 682 if (dev->sync) 683 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 684 } 685 686 out: 687 spin_unlock_irqrestore(&dev->event_lock, flags); 688 689 return retval; 690 } 691 EXPORT_SYMBOL(input_set_keycode); 692 693 #define MATCH_BIT(bit, max) \ 694 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 695 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 696 break; \ 697 if (i != BITS_TO_LONGS(max)) \ 698 continue; 699 700 static const struct input_device_id *input_match_device(const struct input_device_id *id, 701 struct input_dev *dev) 702 { 703 int i; 704 705 for (; id->flags || id->driver_info; id++) { 706 707 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 708 if (id->bustype != dev->id.bustype) 709 continue; 710 711 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 712 if (id->vendor != dev->id.vendor) 713 continue; 714 715 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 716 if (id->product != dev->id.product) 717 continue; 718 719 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 720 if (id->version != dev->id.version) 721 continue; 722 723 MATCH_BIT(evbit, EV_MAX); 724 MATCH_BIT(keybit, KEY_MAX); 725 MATCH_BIT(relbit, REL_MAX); 726 MATCH_BIT(absbit, ABS_MAX); 727 MATCH_BIT(mscbit, MSC_MAX); 728 MATCH_BIT(ledbit, LED_MAX); 729 MATCH_BIT(sndbit, SND_MAX); 730 MATCH_BIT(ffbit, FF_MAX); 731 MATCH_BIT(swbit, SW_MAX); 732 733 return id; 734 } 735 736 return NULL; 737 } 738 739 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 740 { 741 const struct input_device_id *id; 742 int error; 743 744 if (handler->blacklist && input_match_device(handler->blacklist, dev)) 745 return -ENODEV; 746 747 id = input_match_device(handler->id_table, dev); 748 if (!id) 749 return -ENODEV; 750 751 error = handler->connect(handler, dev, id); 752 if (error && error != -ENODEV) 753 printk(KERN_ERR 754 "input: failed to attach handler %s to device %s, " 755 "error: %d\n", 756 handler->name, kobject_name(&dev->dev.kobj), error); 757 758 return error; 759 } 760 761 762 #ifdef CONFIG_PROC_FS 763 764 static struct proc_dir_entry *proc_bus_input_dir; 765 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 766 static int input_devices_state; 767 768 static inline void input_wakeup_procfs_readers(void) 769 { 770 input_devices_state++; 771 wake_up(&input_devices_poll_wait); 772 } 773 774 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 775 { 776 poll_wait(file, &input_devices_poll_wait, wait); 777 if (file->f_version != input_devices_state) { 778 file->f_version = input_devices_state; 779 return POLLIN | POLLRDNORM; 780 } 781 782 return 0; 783 } 784 785 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 786 { 787 if (mutex_lock_interruptible(&input_mutex)) 788 return NULL; 789 790 return seq_list_start(&input_dev_list, *pos); 791 } 792 793 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 794 { 795 return seq_list_next(v, &input_dev_list, pos); 796 } 797 798 static void input_devices_seq_stop(struct seq_file *seq, void *v) 799 { 800 mutex_unlock(&input_mutex); 801 } 802 803 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 804 unsigned long *bitmap, int max) 805 { 806 int i; 807 808 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--) 809 if (bitmap[i]) 810 break; 811 812 seq_printf(seq, "B: %s=", name); 813 for (; i >= 0; i--) 814 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : ""); 815 seq_putc(seq, '\n'); 816 } 817 818 static int input_devices_seq_show(struct seq_file *seq, void *v) 819 { 820 struct input_dev *dev = container_of(v, struct input_dev, node); 821 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 822 struct input_handle *handle; 823 824 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 825 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 826 827 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 828 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 829 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 830 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 831 seq_printf(seq, "H: Handlers="); 832 833 list_for_each_entry(handle, &dev->h_list, d_node) 834 seq_printf(seq, "%s ", handle->name); 835 seq_putc(seq, '\n'); 836 837 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 838 if (test_bit(EV_KEY, dev->evbit)) 839 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 840 if (test_bit(EV_REL, dev->evbit)) 841 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 842 if (test_bit(EV_ABS, dev->evbit)) 843 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 844 if (test_bit(EV_MSC, dev->evbit)) 845 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 846 if (test_bit(EV_LED, dev->evbit)) 847 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 848 if (test_bit(EV_SND, dev->evbit)) 849 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 850 if (test_bit(EV_FF, dev->evbit)) 851 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 852 if (test_bit(EV_SW, dev->evbit)) 853 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 854 855 seq_putc(seq, '\n'); 856 857 kfree(path); 858 return 0; 859 } 860 861 static const struct seq_operations input_devices_seq_ops = { 862 .start = input_devices_seq_start, 863 .next = input_devices_seq_next, 864 .stop = input_devices_seq_stop, 865 .show = input_devices_seq_show, 866 }; 867 868 static int input_proc_devices_open(struct inode *inode, struct file *file) 869 { 870 return seq_open(file, &input_devices_seq_ops); 871 } 872 873 static const struct file_operations input_devices_fileops = { 874 .owner = THIS_MODULE, 875 .open = input_proc_devices_open, 876 .poll = input_proc_devices_poll, 877 .read = seq_read, 878 .llseek = seq_lseek, 879 .release = seq_release, 880 }; 881 882 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 883 { 884 if (mutex_lock_interruptible(&input_mutex)) 885 return NULL; 886 887 seq->private = (void *)(unsigned long)*pos; 888 return seq_list_start(&input_handler_list, *pos); 889 } 890 891 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 892 { 893 seq->private = (void *)(unsigned long)(*pos + 1); 894 return seq_list_next(v, &input_handler_list, pos); 895 } 896 897 static void input_handlers_seq_stop(struct seq_file *seq, void *v) 898 { 899 mutex_unlock(&input_mutex); 900 } 901 902 static int input_handlers_seq_show(struct seq_file *seq, void *v) 903 { 904 struct input_handler *handler = container_of(v, struct input_handler, node); 905 906 seq_printf(seq, "N: Number=%ld Name=%s", 907 (unsigned long)seq->private, handler->name); 908 if (handler->fops) 909 seq_printf(seq, " Minor=%d", handler->minor); 910 seq_putc(seq, '\n'); 911 912 return 0; 913 } 914 static const struct seq_operations input_handlers_seq_ops = { 915 .start = input_handlers_seq_start, 916 .next = input_handlers_seq_next, 917 .stop = input_handlers_seq_stop, 918 .show = input_handlers_seq_show, 919 }; 920 921 static int input_proc_handlers_open(struct inode *inode, struct file *file) 922 { 923 return seq_open(file, &input_handlers_seq_ops); 924 } 925 926 static const struct file_operations input_handlers_fileops = { 927 .owner = THIS_MODULE, 928 .open = input_proc_handlers_open, 929 .read = seq_read, 930 .llseek = seq_lseek, 931 .release = seq_release, 932 }; 933 934 static int __init input_proc_init(void) 935 { 936 struct proc_dir_entry *entry; 937 938 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 939 if (!proc_bus_input_dir) 940 return -ENOMEM; 941 942 entry = proc_create("devices", 0, proc_bus_input_dir, 943 &input_devices_fileops); 944 if (!entry) 945 goto fail1; 946 947 entry = proc_create("handlers", 0, proc_bus_input_dir, 948 &input_handlers_fileops); 949 if (!entry) 950 goto fail2; 951 952 return 0; 953 954 fail2: remove_proc_entry("devices", proc_bus_input_dir); 955 fail1: remove_proc_entry("bus/input", NULL); 956 return -ENOMEM; 957 } 958 959 static void input_proc_exit(void) 960 { 961 remove_proc_entry("devices", proc_bus_input_dir); 962 remove_proc_entry("handlers", proc_bus_input_dir); 963 remove_proc_entry("bus/input", NULL); 964 } 965 966 #else /* !CONFIG_PROC_FS */ 967 static inline void input_wakeup_procfs_readers(void) { } 968 static inline int input_proc_init(void) { return 0; } 969 static inline void input_proc_exit(void) { } 970 #endif 971 972 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 973 static ssize_t input_dev_show_##name(struct device *dev, \ 974 struct device_attribute *attr, \ 975 char *buf) \ 976 { \ 977 struct input_dev *input_dev = to_input_dev(dev); \ 978 \ 979 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 980 input_dev->name ? input_dev->name : ""); \ 981 } \ 982 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 983 984 INPUT_DEV_STRING_ATTR_SHOW(name); 985 INPUT_DEV_STRING_ATTR_SHOW(phys); 986 INPUT_DEV_STRING_ATTR_SHOW(uniq); 987 988 static int input_print_modalias_bits(char *buf, int size, 989 char name, unsigned long *bm, 990 unsigned int min_bit, unsigned int max_bit) 991 { 992 int len = 0, i; 993 994 len += snprintf(buf, max(size, 0), "%c", name); 995 for (i = min_bit; i < max_bit; i++) 996 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 997 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 998 return len; 999 } 1000 1001 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1002 int add_cr) 1003 { 1004 int len; 1005 1006 len = snprintf(buf, max(size, 0), 1007 "input:b%04Xv%04Xp%04Xe%04X-", 1008 id->id.bustype, id->id.vendor, 1009 id->id.product, id->id.version); 1010 1011 len += input_print_modalias_bits(buf + len, size - len, 1012 'e', id->evbit, 0, EV_MAX); 1013 len += input_print_modalias_bits(buf + len, size - len, 1014 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1015 len += input_print_modalias_bits(buf + len, size - len, 1016 'r', id->relbit, 0, REL_MAX); 1017 len += input_print_modalias_bits(buf + len, size - len, 1018 'a', id->absbit, 0, ABS_MAX); 1019 len += input_print_modalias_bits(buf + len, size - len, 1020 'm', id->mscbit, 0, MSC_MAX); 1021 len += input_print_modalias_bits(buf + len, size - len, 1022 'l', id->ledbit, 0, LED_MAX); 1023 len += input_print_modalias_bits(buf + len, size - len, 1024 's', id->sndbit, 0, SND_MAX); 1025 len += input_print_modalias_bits(buf + len, size - len, 1026 'f', id->ffbit, 0, FF_MAX); 1027 len += input_print_modalias_bits(buf + len, size - len, 1028 'w', id->swbit, 0, SW_MAX); 1029 1030 if (add_cr) 1031 len += snprintf(buf + len, max(size - len, 0), "\n"); 1032 1033 return len; 1034 } 1035 1036 static ssize_t input_dev_show_modalias(struct device *dev, 1037 struct device_attribute *attr, 1038 char *buf) 1039 { 1040 struct input_dev *id = to_input_dev(dev); 1041 ssize_t len; 1042 1043 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1044 1045 return min_t(int, len, PAGE_SIZE); 1046 } 1047 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1048 1049 static struct attribute *input_dev_attrs[] = { 1050 &dev_attr_name.attr, 1051 &dev_attr_phys.attr, 1052 &dev_attr_uniq.attr, 1053 &dev_attr_modalias.attr, 1054 NULL 1055 }; 1056 1057 static struct attribute_group input_dev_attr_group = { 1058 .attrs = input_dev_attrs, 1059 }; 1060 1061 #define INPUT_DEV_ID_ATTR(name) \ 1062 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1063 struct device_attribute *attr, \ 1064 char *buf) \ 1065 { \ 1066 struct input_dev *input_dev = to_input_dev(dev); \ 1067 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1068 } \ 1069 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1070 1071 INPUT_DEV_ID_ATTR(bustype); 1072 INPUT_DEV_ID_ATTR(vendor); 1073 INPUT_DEV_ID_ATTR(product); 1074 INPUT_DEV_ID_ATTR(version); 1075 1076 static struct attribute *input_dev_id_attrs[] = { 1077 &dev_attr_bustype.attr, 1078 &dev_attr_vendor.attr, 1079 &dev_attr_product.attr, 1080 &dev_attr_version.attr, 1081 NULL 1082 }; 1083 1084 static struct attribute_group input_dev_id_attr_group = { 1085 .name = "id", 1086 .attrs = input_dev_id_attrs, 1087 }; 1088 1089 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1090 int max, int add_cr) 1091 { 1092 int i; 1093 int len = 0; 1094 1095 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--) 1096 if (bitmap[i]) 1097 break; 1098 1099 for (; i >= 0; i--) 1100 len += snprintf(buf + len, max(buf_size - len, 0), 1101 "%lx%s", bitmap[i], i > 0 ? " " : ""); 1102 1103 if (add_cr) 1104 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1105 1106 return len; 1107 } 1108 1109 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1110 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1111 struct device_attribute *attr, \ 1112 char *buf) \ 1113 { \ 1114 struct input_dev *input_dev = to_input_dev(dev); \ 1115 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1116 input_dev->bm##bit, ev##_MAX, 1); \ 1117 return min_t(int, len, PAGE_SIZE); \ 1118 } \ 1119 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1120 1121 INPUT_DEV_CAP_ATTR(EV, ev); 1122 INPUT_DEV_CAP_ATTR(KEY, key); 1123 INPUT_DEV_CAP_ATTR(REL, rel); 1124 INPUT_DEV_CAP_ATTR(ABS, abs); 1125 INPUT_DEV_CAP_ATTR(MSC, msc); 1126 INPUT_DEV_CAP_ATTR(LED, led); 1127 INPUT_DEV_CAP_ATTR(SND, snd); 1128 INPUT_DEV_CAP_ATTR(FF, ff); 1129 INPUT_DEV_CAP_ATTR(SW, sw); 1130 1131 static struct attribute *input_dev_caps_attrs[] = { 1132 &dev_attr_ev.attr, 1133 &dev_attr_key.attr, 1134 &dev_attr_rel.attr, 1135 &dev_attr_abs.attr, 1136 &dev_attr_msc.attr, 1137 &dev_attr_led.attr, 1138 &dev_attr_snd.attr, 1139 &dev_attr_ff.attr, 1140 &dev_attr_sw.attr, 1141 NULL 1142 }; 1143 1144 static struct attribute_group input_dev_caps_attr_group = { 1145 .name = "capabilities", 1146 .attrs = input_dev_caps_attrs, 1147 }; 1148 1149 static const struct attribute_group *input_dev_attr_groups[] = { 1150 &input_dev_attr_group, 1151 &input_dev_id_attr_group, 1152 &input_dev_caps_attr_group, 1153 NULL 1154 }; 1155 1156 static void input_dev_release(struct device *device) 1157 { 1158 struct input_dev *dev = to_input_dev(device); 1159 1160 input_ff_destroy(dev); 1161 kfree(dev); 1162 1163 module_put(THIS_MODULE); 1164 } 1165 1166 /* 1167 * Input uevent interface - loading event handlers based on 1168 * device bitfields. 1169 */ 1170 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1171 const char *name, unsigned long *bitmap, int max) 1172 { 1173 int len; 1174 1175 if (add_uevent_var(env, "%s=", name)) 1176 return -ENOMEM; 1177 1178 len = input_print_bitmap(&env->buf[env->buflen - 1], 1179 sizeof(env->buf) - env->buflen, 1180 bitmap, max, 0); 1181 if (len >= (sizeof(env->buf) - env->buflen)) 1182 return -ENOMEM; 1183 1184 env->buflen += len; 1185 return 0; 1186 } 1187 1188 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1189 struct input_dev *dev) 1190 { 1191 int len; 1192 1193 if (add_uevent_var(env, "MODALIAS=")) 1194 return -ENOMEM; 1195 1196 len = input_print_modalias(&env->buf[env->buflen - 1], 1197 sizeof(env->buf) - env->buflen, 1198 dev, 0); 1199 if (len >= (sizeof(env->buf) - env->buflen)) 1200 return -ENOMEM; 1201 1202 env->buflen += len; 1203 return 0; 1204 } 1205 1206 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1207 do { \ 1208 int err = add_uevent_var(env, fmt, val); \ 1209 if (err) \ 1210 return err; \ 1211 } while (0) 1212 1213 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1214 do { \ 1215 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1216 if (err) \ 1217 return err; \ 1218 } while (0) 1219 1220 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1221 do { \ 1222 int err = input_add_uevent_modalias_var(env, dev); \ 1223 if (err) \ 1224 return err; \ 1225 } while (0) 1226 1227 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1228 { 1229 struct input_dev *dev = to_input_dev(device); 1230 1231 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1232 dev->id.bustype, dev->id.vendor, 1233 dev->id.product, dev->id.version); 1234 if (dev->name) 1235 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1236 if (dev->phys) 1237 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1238 if (dev->uniq) 1239 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1240 1241 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1242 if (test_bit(EV_KEY, dev->evbit)) 1243 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1244 if (test_bit(EV_REL, dev->evbit)) 1245 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1246 if (test_bit(EV_ABS, dev->evbit)) 1247 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1248 if (test_bit(EV_MSC, dev->evbit)) 1249 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1250 if (test_bit(EV_LED, dev->evbit)) 1251 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1252 if (test_bit(EV_SND, dev->evbit)) 1253 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1254 if (test_bit(EV_FF, dev->evbit)) 1255 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1256 if (test_bit(EV_SW, dev->evbit)) 1257 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1258 1259 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1260 1261 return 0; 1262 } 1263 1264 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1265 do { \ 1266 int i; \ 1267 if (!test_bit(EV_##type, dev->evbit)) \ 1268 break; \ 1269 for (i = 0; i < type##_MAX; i++) { \ 1270 if (!test_bit(i, dev->bits##bit) || \ 1271 !test_bit(i, dev->bits)) \ 1272 continue; \ 1273 dev->event(dev, EV_##type, i, on); \ 1274 } \ 1275 } while (0) 1276 1277 #ifdef CONFIG_PM 1278 static void input_dev_reset(struct input_dev *dev, bool activate) 1279 { 1280 if (!dev->event) 1281 return; 1282 1283 INPUT_DO_TOGGLE(dev, LED, led, activate); 1284 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1285 1286 if (activate && test_bit(EV_REP, dev->evbit)) { 1287 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1288 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1289 } 1290 } 1291 1292 static int input_dev_suspend(struct device *dev) 1293 { 1294 struct input_dev *input_dev = to_input_dev(dev); 1295 1296 mutex_lock(&input_dev->mutex); 1297 input_dev_reset(input_dev, false); 1298 mutex_unlock(&input_dev->mutex); 1299 1300 return 0; 1301 } 1302 1303 static int input_dev_resume(struct device *dev) 1304 { 1305 struct input_dev *input_dev = to_input_dev(dev); 1306 1307 mutex_lock(&input_dev->mutex); 1308 input_dev_reset(input_dev, true); 1309 mutex_unlock(&input_dev->mutex); 1310 1311 return 0; 1312 } 1313 1314 static const struct dev_pm_ops input_dev_pm_ops = { 1315 .suspend = input_dev_suspend, 1316 .resume = input_dev_resume, 1317 .poweroff = input_dev_suspend, 1318 .restore = input_dev_resume, 1319 }; 1320 #endif /* CONFIG_PM */ 1321 1322 static struct device_type input_dev_type = { 1323 .groups = input_dev_attr_groups, 1324 .release = input_dev_release, 1325 .uevent = input_dev_uevent, 1326 #ifdef CONFIG_PM 1327 .pm = &input_dev_pm_ops, 1328 #endif 1329 }; 1330 1331 static char *input_devnode(struct device *dev, mode_t *mode) 1332 { 1333 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1334 } 1335 1336 struct class input_class = { 1337 .name = "input", 1338 .devnode = input_devnode, 1339 }; 1340 EXPORT_SYMBOL_GPL(input_class); 1341 1342 /** 1343 * input_allocate_device - allocate memory for new input device 1344 * 1345 * Returns prepared struct input_dev or NULL. 1346 * 1347 * NOTE: Use input_free_device() to free devices that have not been 1348 * registered; input_unregister_device() should be used for already 1349 * registered devices. 1350 */ 1351 struct input_dev *input_allocate_device(void) 1352 { 1353 struct input_dev *dev; 1354 1355 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1356 if (dev) { 1357 dev->dev.type = &input_dev_type; 1358 dev->dev.class = &input_class; 1359 device_initialize(&dev->dev); 1360 mutex_init(&dev->mutex); 1361 spin_lock_init(&dev->event_lock); 1362 INIT_LIST_HEAD(&dev->h_list); 1363 INIT_LIST_HEAD(&dev->node); 1364 1365 __module_get(THIS_MODULE); 1366 } 1367 1368 return dev; 1369 } 1370 EXPORT_SYMBOL(input_allocate_device); 1371 1372 /** 1373 * input_free_device - free memory occupied by input_dev structure 1374 * @dev: input device to free 1375 * 1376 * This function should only be used if input_register_device() 1377 * was not called yet or if it failed. Once device was registered 1378 * use input_unregister_device() and memory will be freed once last 1379 * reference to the device is dropped. 1380 * 1381 * Device should be allocated by input_allocate_device(). 1382 * 1383 * NOTE: If there are references to the input device then memory 1384 * will not be freed until last reference is dropped. 1385 */ 1386 void input_free_device(struct input_dev *dev) 1387 { 1388 if (dev) 1389 input_put_device(dev); 1390 } 1391 EXPORT_SYMBOL(input_free_device); 1392 1393 /** 1394 * input_set_capability - mark device as capable of a certain event 1395 * @dev: device that is capable of emitting or accepting event 1396 * @type: type of the event (EV_KEY, EV_REL, etc...) 1397 * @code: event code 1398 * 1399 * In addition to setting up corresponding bit in appropriate capability 1400 * bitmap the function also adjusts dev->evbit. 1401 */ 1402 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1403 { 1404 switch (type) { 1405 case EV_KEY: 1406 __set_bit(code, dev->keybit); 1407 break; 1408 1409 case EV_REL: 1410 __set_bit(code, dev->relbit); 1411 break; 1412 1413 case EV_ABS: 1414 __set_bit(code, dev->absbit); 1415 break; 1416 1417 case EV_MSC: 1418 __set_bit(code, dev->mscbit); 1419 break; 1420 1421 case EV_SW: 1422 __set_bit(code, dev->swbit); 1423 break; 1424 1425 case EV_LED: 1426 __set_bit(code, dev->ledbit); 1427 break; 1428 1429 case EV_SND: 1430 __set_bit(code, dev->sndbit); 1431 break; 1432 1433 case EV_FF: 1434 __set_bit(code, dev->ffbit); 1435 break; 1436 1437 case EV_PWR: 1438 /* do nothing */ 1439 break; 1440 1441 default: 1442 printk(KERN_ERR 1443 "input_set_capability: unknown type %u (code %u)\n", 1444 type, code); 1445 dump_stack(); 1446 return; 1447 } 1448 1449 __set_bit(type, dev->evbit); 1450 } 1451 EXPORT_SYMBOL(input_set_capability); 1452 1453 /** 1454 * input_register_device - register device with input core 1455 * @dev: device to be registered 1456 * 1457 * This function registers device with input core. The device must be 1458 * allocated with input_allocate_device() and all it's capabilities 1459 * set up before registering. 1460 * If function fails the device must be freed with input_free_device(). 1461 * Once device has been successfully registered it can be unregistered 1462 * with input_unregister_device(); input_free_device() should not be 1463 * called in this case. 1464 */ 1465 int input_register_device(struct input_dev *dev) 1466 { 1467 static atomic_t input_no = ATOMIC_INIT(0); 1468 struct input_handler *handler; 1469 const char *path; 1470 int error; 1471 1472 __set_bit(EV_SYN, dev->evbit); 1473 1474 /* 1475 * If delay and period are pre-set by the driver, then autorepeating 1476 * is handled by the driver itself and we don't do it in input.c. 1477 */ 1478 1479 init_timer(&dev->timer); 1480 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1481 dev->timer.data = (long) dev; 1482 dev->timer.function = input_repeat_key; 1483 dev->rep[REP_DELAY] = 250; 1484 dev->rep[REP_PERIOD] = 33; 1485 } 1486 1487 if (!dev->getkeycode) 1488 dev->getkeycode = input_default_getkeycode; 1489 1490 if (!dev->setkeycode) 1491 dev->setkeycode = input_default_setkeycode; 1492 1493 dev_set_name(&dev->dev, "input%ld", 1494 (unsigned long) atomic_inc_return(&input_no) - 1); 1495 1496 error = device_add(&dev->dev); 1497 if (error) 1498 return error; 1499 1500 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1501 printk(KERN_INFO "input: %s as %s\n", 1502 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1503 kfree(path); 1504 1505 error = mutex_lock_interruptible(&input_mutex); 1506 if (error) { 1507 device_del(&dev->dev); 1508 return error; 1509 } 1510 1511 list_add_tail(&dev->node, &input_dev_list); 1512 1513 list_for_each_entry(handler, &input_handler_list, node) 1514 input_attach_handler(dev, handler); 1515 1516 input_wakeup_procfs_readers(); 1517 1518 mutex_unlock(&input_mutex); 1519 1520 return 0; 1521 } 1522 EXPORT_SYMBOL(input_register_device); 1523 1524 /** 1525 * input_unregister_device - unregister previously registered device 1526 * @dev: device to be unregistered 1527 * 1528 * This function unregisters an input device. Once device is unregistered 1529 * the caller should not try to access it as it may get freed at any moment. 1530 */ 1531 void input_unregister_device(struct input_dev *dev) 1532 { 1533 struct input_handle *handle, *next; 1534 1535 input_disconnect_device(dev); 1536 1537 mutex_lock(&input_mutex); 1538 1539 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1540 handle->handler->disconnect(handle); 1541 WARN_ON(!list_empty(&dev->h_list)); 1542 1543 del_timer_sync(&dev->timer); 1544 list_del_init(&dev->node); 1545 1546 input_wakeup_procfs_readers(); 1547 1548 mutex_unlock(&input_mutex); 1549 1550 device_unregister(&dev->dev); 1551 } 1552 EXPORT_SYMBOL(input_unregister_device); 1553 1554 /** 1555 * input_register_handler - register a new input handler 1556 * @handler: handler to be registered 1557 * 1558 * This function registers a new input handler (interface) for input 1559 * devices in the system and attaches it to all input devices that 1560 * are compatible with the handler. 1561 */ 1562 int input_register_handler(struct input_handler *handler) 1563 { 1564 struct input_dev *dev; 1565 int retval; 1566 1567 retval = mutex_lock_interruptible(&input_mutex); 1568 if (retval) 1569 return retval; 1570 1571 INIT_LIST_HEAD(&handler->h_list); 1572 1573 if (handler->fops != NULL) { 1574 if (input_table[handler->minor >> 5]) { 1575 retval = -EBUSY; 1576 goto out; 1577 } 1578 input_table[handler->minor >> 5] = handler; 1579 } 1580 1581 list_add_tail(&handler->node, &input_handler_list); 1582 1583 list_for_each_entry(dev, &input_dev_list, node) 1584 input_attach_handler(dev, handler); 1585 1586 input_wakeup_procfs_readers(); 1587 1588 out: 1589 mutex_unlock(&input_mutex); 1590 return retval; 1591 } 1592 EXPORT_SYMBOL(input_register_handler); 1593 1594 /** 1595 * input_unregister_handler - unregisters an input handler 1596 * @handler: handler to be unregistered 1597 * 1598 * This function disconnects a handler from its input devices and 1599 * removes it from lists of known handlers. 1600 */ 1601 void input_unregister_handler(struct input_handler *handler) 1602 { 1603 struct input_handle *handle, *next; 1604 1605 mutex_lock(&input_mutex); 1606 1607 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1608 handler->disconnect(handle); 1609 WARN_ON(!list_empty(&handler->h_list)); 1610 1611 list_del_init(&handler->node); 1612 1613 if (handler->fops != NULL) 1614 input_table[handler->minor >> 5] = NULL; 1615 1616 input_wakeup_procfs_readers(); 1617 1618 mutex_unlock(&input_mutex); 1619 } 1620 EXPORT_SYMBOL(input_unregister_handler); 1621 1622 /** 1623 * input_register_handle - register a new input handle 1624 * @handle: handle to register 1625 * 1626 * This function puts a new input handle onto device's 1627 * and handler's lists so that events can flow through 1628 * it once it is opened using input_open_device(). 1629 * 1630 * This function is supposed to be called from handler's 1631 * connect() method. 1632 */ 1633 int input_register_handle(struct input_handle *handle) 1634 { 1635 struct input_handler *handler = handle->handler; 1636 struct input_dev *dev = handle->dev; 1637 int error; 1638 1639 /* 1640 * We take dev->mutex here to prevent race with 1641 * input_release_device(). 1642 */ 1643 error = mutex_lock_interruptible(&dev->mutex); 1644 if (error) 1645 return error; 1646 list_add_tail_rcu(&handle->d_node, &dev->h_list); 1647 mutex_unlock(&dev->mutex); 1648 1649 /* 1650 * Since we are supposed to be called from ->connect() 1651 * which is mutually exclusive with ->disconnect() 1652 * we can't be racing with input_unregister_handle() 1653 * and so separate lock is not needed here. 1654 */ 1655 list_add_tail(&handle->h_node, &handler->h_list); 1656 1657 if (handler->start) 1658 handler->start(handle); 1659 1660 return 0; 1661 } 1662 EXPORT_SYMBOL(input_register_handle); 1663 1664 /** 1665 * input_unregister_handle - unregister an input handle 1666 * @handle: handle to unregister 1667 * 1668 * This function removes input handle from device's 1669 * and handler's lists. 1670 * 1671 * This function is supposed to be called from handler's 1672 * disconnect() method. 1673 */ 1674 void input_unregister_handle(struct input_handle *handle) 1675 { 1676 struct input_dev *dev = handle->dev; 1677 1678 list_del_init(&handle->h_node); 1679 1680 /* 1681 * Take dev->mutex to prevent race with input_release_device(). 1682 */ 1683 mutex_lock(&dev->mutex); 1684 list_del_rcu(&handle->d_node); 1685 mutex_unlock(&dev->mutex); 1686 synchronize_rcu(); 1687 } 1688 EXPORT_SYMBOL(input_unregister_handle); 1689 1690 static int input_open_file(struct inode *inode, struct file *file) 1691 { 1692 struct input_handler *handler; 1693 const struct file_operations *old_fops, *new_fops = NULL; 1694 int err; 1695 1696 lock_kernel(); 1697 /* No load-on-demand here? */ 1698 handler = input_table[iminor(inode) >> 5]; 1699 if (!handler || !(new_fops = fops_get(handler->fops))) { 1700 err = -ENODEV; 1701 goto out; 1702 } 1703 1704 /* 1705 * That's _really_ odd. Usually NULL ->open means "nothing special", 1706 * not "no device". Oh, well... 1707 */ 1708 if (!new_fops->open) { 1709 fops_put(new_fops); 1710 err = -ENODEV; 1711 goto out; 1712 } 1713 old_fops = file->f_op; 1714 file->f_op = new_fops; 1715 1716 err = new_fops->open(inode, file); 1717 1718 if (err) { 1719 fops_put(file->f_op); 1720 file->f_op = fops_get(old_fops); 1721 } 1722 fops_put(old_fops); 1723 out: 1724 unlock_kernel(); 1725 return err; 1726 } 1727 1728 static const struct file_operations input_fops = { 1729 .owner = THIS_MODULE, 1730 .open = input_open_file, 1731 }; 1732 1733 static void __init input_init_abs_bypass(void) 1734 { 1735 const unsigned int *p; 1736 1737 for (p = input_abs_bypass_init_data; *p; p++) 1738 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p); 1739 } 1740 1741 static int __init input_init(void) 1742 { 1743 int err; 1744 1745 input_init_abs_bypass(); 1746 1747 err = class_register(&input_class); 1748 if (err) { 1749 printk(KERN_ERR "input: unable to register input_dev class\n"); 1750 return err; 1751 } 1752 1753 err = input_proc_init(); 1754 if (err) 1755 goto fail1; 1756 1757 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 1758 if (err) { 1759 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 1760 goto fail2; 1761 } 1762 1763 return 0; 1764 1765 fail2: input_proc_exit(); 1766 fail1: class_unregister(&input_class); 1767 return err; 1768 } 1769 1770 static void __exit input_exit(void) 1771 { 1772 input_proc_exit(); 1773 unregister_chrdev(INPUT_MAJOR, "input"); 1774 class_unregister(&input_class); 1775 } 1776 1777 subsys_initcall(input_init); 1778 module_exit(input_exit); 1779