xref: /linux/drivers/input/input.c (revision 834f0c353ae430c1a6ce023c9b77bbd3ff9241a7)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
30 
31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
34 
35 #define INPUT_DEVICES	256
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static struct input_handler *input_table[8];
49 
50 static inline int is_event_supported(unsigned int code,
51 				     unsigned long *bm, unsigned int max)
52 {
53 	return code <= max && test_bit(code, bm);
54 }
55 
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 	if (fuzz) {
59 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 			return old_val;
61 
62 		if (value > old_val - fuzz && value < old_val + fuzz)
63 			return (old_val * 3 + value) / 4;
64 
65 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 			return (old_val + value) / 2;
67 	}
68 
69 	return value;
70 }
71 
72 /*
73  * Pass event first through all filters and then, if event has not been
74  * filtered out, through all open handles. This function is called with
75  * dev->event_lock held and interrupts disabled.
76  */
77 static void input_pass_event(struct input_dev *dev,
78 			     unsigned int type, unsigned int code, int value)
79 {
80 	struct input_handler *handler;
81 	struct input_handle *handle;
82 
83 	rcu_read_lock();
84 
85 	handle = rcu_dereference(dev->grab);
86 	if (handle)
87 		handle->handler->event(handle, type, code, value);
88 	else {
89 		bool filtered = false;
90 
91 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
92 			if (!handle->open)
93 				continue;
94 
95 			handler = handle->handler;
96 			if (!handler->filter) {
97 				if (filtered)
98 					break;
99 
100 				handler->event(handle, type, code, value);
101 
102 			} else if (handler->filter(handle, type, code, value))
103 				filtered = true;
104 		}
105 	}
106 
107 	rcu_read_unlock();
108 }
109 
110 /*
111  * Generate software autorepeat event. Note that we take
112  * dev->event_lock here to avoid racing with input_event
113  * which may cause keys get "stuck".
114  */
115 static void input_repeat_key(unsigned long data)
116 {
117 	struct input_dev *dev = (void *) data;
118 	unsigned long flags;
119 
120 	spin_lock_irqsave(&dev->event_lock, flags);
121 
122 	if (test_bit(dev->repeat_key, dev->key) &&
123 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
124 
125 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
126 
127 		if (dev->sync) {
128 			/*
129 			 * Only send SYN_REPORT if we are not in a middle
130 			 * of driver parsing a new hardware packet.
131 			 * Otherwise assume that the driver will send
132 			 * SYN_REPORT once it's done.
133 			 */
134 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
135 		}
136 
137 		if (dev->rep[REP_PERIOD])
138 			mod_timer(&dev->timer, jiffies +
139 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
140 	}
141 
142 	spin_unlock_irqrestore(&dev->event_lock, flags);
143 }
144 
145 static void input_start_autorepeat(struct input_dev *dev, int code)
146 {
147 	if (test_bit(EV_REP, dev->evbit) &&
148 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
149 	    dev->timer.data) {
150 		dev->repeat_key = code;
151 		mod_timer(&dev->timer,
152 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
153 	}
154 }
155 
156 static void input_stop_autorepeat(struct input_dev *dev)
157 {
158 	del_timer(&dev->timer);
159 }
160 
161 #define INPUT_IGNORE_EVENT	0
162 #define INPUT_PASS_TO_HANDLERS	1
163 #define INPUT_PASS_TO_DEVICE	2
164 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
165 
166 static int input_handle_abs_event(struct input_dev *dev,
167 				  unsigned int code, int *pval)
168 {
169 	bool is_mt_event;
170 	int *pold;
171 
172 	if (code == ABS_MT_SLOT) {
173 		/*
174 		 * "Stage" the event; we'll flush it later, when we
175 		 * get actual touch data.
176 		 */
177 		if (*pval >= 0 && *pval < dev->mtsize)
178 			dev->slot = *pval;
179 
180 		return INPUT_IGNORE_EVENT;
181 	}
182 
183 	is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
184 
185 	if (!is_mt_event) {
186 		pold = &dev->absinfo[code].value;
187 	} else if (dev->mt) {
188 		struct input_mt_slot *mtslot = &dev->mt[dev->slot];
189 		pold = &mtslot->abs[code - ABS_MT_FIRST];
190 	} else {
191 		/*
192 		 * Bypass filtering for multi-touch events when
193 		 * not employing slots.
194 		 */
195 		pold = NULL;
196 	}
197 
198 	if (pold) {
199 		*pval = input_defuzz_abs_event(*pval, *pold,
200 						dev->absinfo[code].fuzz);
201 		if (*pold == *pval)
202 			return INPUT_IGNORE_EVENT;
203 
204 		*pold = *pval;
205 	}
206 
207 	/* Flush pending "slot" event */
208 	if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
209 		input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
210 		input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
211 	}
212 
213 	return INPUT_PASS_TO_HANDLERS;
214 }
215 
216 static void input_handle_event(struct input_dev *dev,
217 			       unsigned int type, unsigned int code, int value)
218 {
219 	int disposition = INPUT_IGNORE_EVENT;
220 
221 	switch (type) {
222 
223 	case EV_SYN:
224 		switch (code) {
225 		case SYN_CONFIG:
226 			disposition = INPUT_PASS_TO_ALL;
227 			break;
228 
229 		case SYN_REPORT:
230 			if (!dev->sync) {
231 				dev->sync = true;
232 				disposition = INPUT_PASS_TO_HANDLERS;
233 			}
234 			break;
235 		case SYN_MT_REPORT:
236 			dev->sync = false;
237 			disposition = INPUT_PASS_TO_HANDLERS;
238 			break;
239 		}
240 		break;
241 
242 	case EV_KEY:
243 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
244 		    !!test_bit(code, dev->key) != value) {
245 
246 			if (value != 2) {
247 				__change_bit(code, dev->key);
248 				if (value)
249 					input_start_autorepeat(dev, code);
250 				else
251 					input_stop_autorepeat(dev);
252 			}
253 
254 			disposition = INPUT_PASS_TO_HANDLERS;
255 		}
256 		break;
257 
258 	case EV_SW:
259 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
260 		    !!test_bit(code, dev->sw) != value) {
261 
262 			__change_bit(code, dev->sw);
263 			disposition = INPUT_PASS_TO_HANDLERS;
264 		}
265 		break;
266 
267 	case EV_ABS:
268 		if (is_event_supported(code, dev->absbit, ABS_MAX))
269 			disposition = input_handle_abs_event(dev, code, &value);
270 
271 		break;
272 
273 	case EV_REL:
274 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
275 			disposition = INPUT_PASS_TO_HANDLERS;
276 
277 		break;
278 
279 	case EV_MSC:
280 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
281 			disposition = INPUT_PASS_TO_ALL;
282 
283 		break;
284 
285 	case EV_LED:
286 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
287 		    !!test_bit(code, dev->led) != value) {
288 
289 			__change_bit(code, dev->led);
290 			disposition = INPUT_PASS_TO_ALL;
291 		}
292 		break;
293 
294 	case EV_SND:
295 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
296 
297 			if (!!test_bit(code, dev->snd) != !!value)
298 				__change_bit(code, dev->snd);
299 			disposition = INPUT_PASS_TO_ALL;
300 		}
301 		break;
302 
303 	case EV_REP:
304 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
305 			dev->rep[code] = value;
306 			disposition = INPUT_PASS_TO_ALL;
307 		}
308 		break;
309 
310 	case EV_FF:
311 		if (value >= 0)
312 			disposition = INPUT_PASS_TO_ALL;
313 		break;
314 
315 	case EV_PWR:
316 		disposition = INPUT_PASS_TO_ALL;
317 		break;
318 	}
319 
320 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
321 		dev->sync = false;
322 
323 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
324 		dev->event(dev, type, code, value);
325 
326 	if (disposition & INPUT_PASS_TO_HANDLERS)
327 		input_pass_event(dev, type, code, value);
328 }
329 
330 /**
331  * input_event() - report new input event
332  * @dev: device that generated the event
333  * @type: type of the event
334  * @code: event code
335  * @value: value of the event
336  *
337  * This function should be used by drivers implementing various input
338  * devices to report input events. See also input_inject_event().
339  *
340  * NOTE: input_event() may be safely used right after input device was
341  * allocated with input_allocate_device(), even before it is registered
342  * with input_register_device(), but the event will not reach any of the
343  * input handlers. Such early invocation of input_event() may be used
344  * to 'seed' initial state of a switch or initial position of absolute
345  * axis, etc.
346  */
347 void input_event(struct input_dev *dev,
348 		 unsigned int type, unsigned int code, int value)
349 {
350 	unsigned long flags;
351 
352 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
353 
354 		spin_lock_irqsave(&dev->event_lock, flags);
355 		add_input_randomness(type, code, value);
356 		input_handle_event(dev, type, code, value);
357 		spin_unlock_irqrestore(&dev->event_lock, flags);
358 	}
359 }
360 EXPORT_SYMBOL(input_event);
361 
362 /**
363  * input_inject_event() - send input event from input handler
364  * @handle: input handle to send event through
365  * @type: type of the event
366  * @code: event code
367  * @value: value of the event
368  *
369  * Similar to input_event() but will ignore event if device is
370  * "grabbed" and handle injecting event is not the one that owns
371  * the device.
372  */
373 void input_inject_event(struct input_handle *handle,
374 			unsigned int type, unsigned int code, int value)
375 {
376 	struct input_dev *dev = handle->dev;
377 	struct input_handle *grab;
378 	unsigned long flags;
379 
380 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
381 		spin_lock_irqsave(&dev->event_lock, flags);
382 
383 		rcu_read_lock();
384 		grab = rcu_dereference(dev->grab);
385 		if (!grab || grab == handle)
386 			input_handle_event(dev, type, code, value);
387 		rcu_read_unlock();
388 
389 		spin_unlock_irqrestore(&dev->event_lock, flags);
390 	}
391 }
392 EXPORT_SYMBOL(input_inject_event);
393 
394 /**
395  * input_alloc_absinfo - allocates array of input_absinfo structs
396  * @dev: the input device emitting absolute events
397  *
398  * If the absinfo struct the caller asked for is already allocated, this
399  * functions will not do anything.
400  */
401 void input_alloc_absinfo(struct input_dev *dev)
402 {
403 	if (!dev->absinfo)
404 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
405 					GFP_KERNEL);
406 
407 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
408 }
409 EXPORT_SYMBOL(input_alloc_absinfo);
410 
411 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
412 			  int min, int max, int fuzz, int flat)
413 {
414 	struct input_absinfo *absinfo;
415 
416 	input_alloc_absinfo(dev);
417 	if (!dev->absinfo)
418 		return;
419 
420 	absinfo = &dev->absinfo[axis];
421 	absinfo->minimum = min;
422 	absinfo->maximum = max;
423 	absinfo->fuzz = fuzz;
424 	absinfo->flat = flat;
425 
426 	dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
427 }
428 EXPORT_SYMBOL(input_set_abs_params);
429 
430 
431 /**
432  * input_grab_device - grabs device for exclusive use
433  * @handle: input handle that wants to own the device
434  *
435  * When a device is grabbed by an input handle all events generated by
436  * the device are delivered only to this handle. Also events injected
437  * by other input handles are ignored while device is grabbed.
438  */
439 int input_grab_device(struct input_handle *handle)
440 {
441 	struct input_dev *dev = handle->dev;
442 	int retval;
443 
444 	retval = mutex_lock_interruptible(&dev->mutex);
445 	if (retval)
446 		return retval;
447 
448 	if (dev->grab) {
449 		retval = -EBUSY;
450 		goto out;
451 	}
452 
453 	rcu_assign_pointer(dev->grab, handle);
454 	synchronize_rcu();
455 
456  out:
457 	mutex_unlock(&dev->mutex);
458 	return retval;
459 }
460 EXPORT_SYMBOL(input_grab_device);
461 
462 static void __input_release_device(struct input_handle *handle)
463 {
464 	struct input_dev *dev = handle->dev;
465 
466 	if (dev->grab == handle) {
467 		rcu_assign_pointer(dev->grab, NULL);
468 		/* Make sure input_pass_event() notices that grab is gone */
469 		synchronize_rcu();
470 
471 		list_for_each_entry(handle, &dev->h_list, d_node)
472 			if (handle->open && handle->handler->start)
473 				handle->handler->start(handle);
474 	}
475 }
476 
477 /**
478  * input_release_device - release previously grabbed device
479  * @handle: input handle that owns the device
480  *
481  * Releases previously grabbed device so that other input handles can
482  * start receiving input events. Upon release all handlers attached
483  * to the device have their start() method called so they have a change
484  * to synchronize device state with the rest of the system.
485  */
486 void input_release_device(struct input_handle *handle)
487 {
488 	struct input_dev *dev = handle->dev;
489 
490 	mutex_lock(&dev->mutex);
491 	__input_release_device(handle);
492 	mutex_unlock(&dev->mutex);
493 }
494 EXPORT_SYMBOL(input_release_device);
495 
496 /**
497  * input_open_device - open input device
498  * @handle: handle through which device is being accessed
499  *
500  * This function should be called by input handlers when they
501  * want to start receive events from given input device.
502  */
503 int input_open_device(struct input_handle *handle)
504 {
505 	struct input_dev *dev = handle->dev;
506 	int retval;
507 
508 	retval = mutex_lock_interruptible(&dev->mutex);
509 	if (retval)
510 		return retval;
511 
512 	if (dev->going_away) {
513 		retval = -ENODEV;
514 		goto out;
515 	}
516 
517 	handle->open++;
518 
519 	if (!dev->users++ && dev->open)
520 		retval = dev->open(dev);
521 
522 	if (retval) {
523 		dev->users--;
524 		if (!--handle->open) {
525 			/*
526 			 * Make sure we are not delivering any more events
527 			 * through this handle
528 			 */
529 			synchronize_rcu();
530 		}
531 	}
532 
533  out:
534 	mutex_unlock(&dev->mutex);
535 	return retval;
536 }
537 EXPORT_SYMBOL(input_open_device);
538 
539 int input_flush_device(struct input_handle *handle, struct file *file)
540 {
541 	struct input_dev *dev = handle->dev;
542 	int retval;
543 
544 	retval = mutex_lock_interruptible(&dev->mutex);
545 	if (retval)
546 		return retval;
547 
548 	if (dev->flush)
549 		retval = dev->flush(dev, file);
550 
551 	mutex_unlock(&dev->mutex);
552 	return retval;
553 }
554 EXPORT_SYMBOL(input_flush_device);
555 
556 /**
557  * input_close_device - close input device
558  * @handle: handle through which device is being accessed
559  *
560  * This function should be called by input handlers when they
561  * want to stop receive events from given input device.
562  */
563 void input_close_device(struct input_handle *handle)
564 {
565 	struct input_dev *dev = handle->dev;
566 
567 	mutex_lock(&dev->mutex);
568 
569 	__input_release_device(handle);
570 
571 	if (!--dev->users && dev->close)
572 		dev->close(dev);
573 
574 	if (!--handle->open) {
575 		/*
576 		 * synchronize_rcu() makes sure that input_pass_event()
577 		 * completed and that no more input events are delivered
578 		 * through this handle
579 		 */
580 		synchronize_rcu();
581 	}
582 
583 	mutex_unlock(&dev->mutex);
584 }
585 EXPORT_SYMBOL(input_close_device);
586 
587 /*
588  * Simulate keyup events for all keys that are marked as pressed.
589  * The function must be called with dev->event_lock held.
590  */
591 static void input_dev_release_keys(struct input_dev *dev)
592 {
593 	int code;
594 
595 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
596 		for (code = 0; code <= KEY_MAX; code++) {
597 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
598 			    __test_and_clear_bit(code, dev->key)) {
599 				input_pass_event(dev, EV_KEY, code, 0);
600 			}
601 		}
602 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
603 	}
604 }
605 
606 /*
607  * Prepare device for unregistering
608  */
609 static void input_disconnect_device(struct input_dev *dev)
610 {
611 	struct input_handle *handle;
612 
613 	/*
614 	 * Mark device as going away. Note that we take dev->mutex here
615 	 * not to protect access to dev->going_away but rather to ensure
616 	 * that there are no threads in the middle of input_open_device()
617 	 */
618 	mutex_lock(&dev->mutex);
619 	dev->going_away = true;
620 	mutex_unlock(&dev->mutex);
621 
622 	spin_lock_irq(&dev->event_lock);
623 
624 	/*
625 	 * Simulate keyup events for all pressed keys so that handlers
626 	 * are not left with "stuck" keys. The driver may continue
627 	 * generate events even after we done here but they will not
628 	 * reach any handlers.
629 	 */
630 	input_dev_release_keys(dev);
631 
632 	list_for_each_entry(handle, &dev->h_list, d_node)
633 		handle->open = 0;
634 
635 	spin_unlock_irq(&dev->event_lock);
636 }
637 
638 /**
639  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
640  * @ke: keymap entry containing scancode to be converted.
641  * @scancode: pointer to the location where converted scancode should
642  *	be stored.
643  *
644  * This function is used to convert scancode stored in &struct keymap_entry
645  * into scalar form understood by legacy keymap handling methods. These
646  * methods expect scancodes to be represented as 'unsigned int'.
647  */
648 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
649 			     unsigned int *scancode)
650 {
651 	switch (ke->len) {
652 	case 1:
653 		*scancode = *((u8 *)ke->scancode);
654 		break;
655 
656 	case 2:
657 		*scancode = *((u16 *)ke->scancode);
658 		break;
659 
660 	case 4:
661 		*scancode = *((u32 *)ke->scancode);
662 		break;
663 
664 	default:
665 		return -EINVAL;
666 	}
667 
668 	return 0;
669 }
670 EXPORT_SYMBOL(input_scancode_to_scalar);
671 
672 /*
673  * Those routines handle the default case where no [gs]etkeycode() is
674  * defined. In this case, an array indexed by the scancode is used.
675  */
676 
677 static unsigned int input_fetch_keycode(struct input_dev *dev,
678 					unsigned int index)
679 {
680 	switch (dev->keycodesize) {
681 	case 1:
682 		return ((u8 *)dev->keycode)[index];
683 
684 	case 2:
685 		return ((u16 *)dev->keycode)[index];
686 
687 	default:
688 		return ((u32 *)dev->keycode)[index];
689 	}
690 }
691 
692 static int input_default_getkeycode(struct input_dev *dev,
693 				    struct input_keymap_entry *ke)
694 {
695 	unsigned int index;
696 	int error;
697 
698 	if (!dev->keycodesize)
699 		return -EINVAL;
700 
701 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
702 		index = ke->index;
703 	else {
704 		error = input_scancode_to_scalar(ke, &index);
705 		if (error)
706 			return error;
707 	}
708 
709 	if (index >= dev->keycodemax)
710 		return -EINVAL;
711 
712 	ke->keycode = input_fetch_keycode(dev, index);
713 	ke->index = index;
714 	ke->len = sizeof(index);
715 	memcpy(ke->scancode, &index, sizeof(index));
716 
717 	return 0;
718 }
719 
720 static int input_default_setkeycode(struct input_dev *dev,
721 				    const struct input_keymap_entry *ke,
722 				    unsigned int *old_keycode)
723 {
724 	unsigned int index;
725 	int error;
726 	int i;
727 
728 	if (!dev->keycodesize)
729 		return -EINVAL;
730 
731 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
732 		index = ke->index;
733 	} else {
734 		error = input_scancode_to_scalar(ke, &index);
735 		if (error)
736 			return error;
737 	}
738 
739 	if (index >= dev->keycodemax)
740 		return -EINVAL;
741 
742 	if (dev->keycodesize < sizeof(ke->keycode) &&
743 			(ke->keycode >> (dev->keycodesize * 8)))
744 		return -EINVAL;
745 
746 	switch (dev->keycodesize) {
747 		case 1: {
748 			u8 *k = (u8 *)dev->keycode;
749 			*old_keycode = k[index];
750 			k[index] = ke->keycode;
751 			break;
752 		}
753 		case 2: {
754 			u16 *k = (u16 *)dev->keycode;
755 			*old_keycode = k[index];
756 			k[index] = ke->keycode;
757 			break;
758 		}
759 		default: {
760 			u32 *k = (u32 *)dev->keycode;
761 			*old_keycode = k[index];
762 			k[index] = ke->keycode;
763 			break;
764 		}
765 	}
766 
767 	__clear_bit(*old_keycode, dev->keybit);
768 	__set_bit(ke->keycode, dev->keybit);
769 
770 	for (i = 0; i < dev->keycodemax; i++) {
771 		if (input_fetch_keycode(dev, i) == *old_keycode) {
772 			__set_bit(*old_keycode, dev->keybit);
773 			break; /* Setting the bit twice is useless, so break */
774 		}
775 	}
776 
777 	return 0;
778 }
779 
780 /**
781  * input_get_keycode - retrieve keycode currently mapped to a given scancode
782  * @dev: input device which keymap is being queried
783  * @ke: keymap entry
784  *
785  * This function should be called by anyone interested in retrieving current
786  * keymap. Presently evdev handlers use it.
787  */
788 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
789 {
790 	unsigned long flags;
791 	int retval;
792 
793 	spin_lock_irqsave(&dev->event_lock, flags);
794 	retval = dev->getkeycode(dev, ke);
795 	spin_unlock_irqrestore(&dev->event_lock, flags);
796 
797 	return retval;
798 }
799 EXPORT_SYMBOL(input_get_keycode);
800 
801 /**
802  * input_set_keycode - attribute a keycode to a given scancode
803  * @dev: input device which keymap is being updated
804  * @ke: new keymap entry
805  *
806  * This function should be called by anyone needing to update current
807  * keymap. Presently keyboard and evdev handlers use it.
808  */
809 int input_set_keycode(struct input_dev *dev,
810 		      const struct input_keymap_entry *ke)
811 {
812 	unsigned long flags;
813 	unsigned int old_keycode;
814 	int retval;
815 
816 	if (ke->keycode > KEY_MAX)
817 		return -EINVAL;
818 
819 	spin_lock_irqsave(&dev->event_lock, flags);
820 
821 	retval = dev->setkeycode(dev, ke, &old_keycode);
822 	if (retval)
823 		goto out;
824 
825 	/* Make sure KEY_RESERVED did not get enabled. */
826 	__clear_bit(KEY_RESERVED, dev->keybit);
827 
828 	/*
829 	 * Simulate keyup event if keycode is not present
830 	 * in the keymap anymore
831 	 */
832 	if (test_bit(EV_KEY, dev->evbit) &&
833 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
834 	    __test_and_clear_bit(old_keycode, dev->key)) {
835 
836 		input_pass_event(dev, EV_KEY, old_keycode, 0);
837 		if (dev->sync)
838 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
839 	}
840 
841  out:
842 	spin_unlock_irqrestore(&dev->event_lock, flags);
843 
844 	return retval;
845 }
846 EXPORT_SYMBOL(input_set_keycode);
847 
848 #define MATCH_BIT(bit, max) \
849 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
850 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
851 				break; \
852 		if (i != BITS_TO_LONGS(max)) \
853 			continue;
854 
855 static const struct input_device_id *input_match_device(struct input_handler *handler,
856 							struct input_dev *dev)
857 {
858 	const struct input_device_id *id;
859 	int i;
860 
861 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
862 
863 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
864 			if (id->bustype != dev->id.bustype)
865 				continue;
866 
867 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
868 			if (id->vendor != dev->id.vendor)
869 				continue;
870 
871 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
872 			if (id->product != dev->id.product)
873 				continue;
874 
875 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
876 			if (id->version != dev->id.version)
877 				continue;
878 
879 		MATCH_BIT(evbit,  EV_MAX);
880 		MATCH_BIT(keybit, KEY_MAX);
881 		MATCH_BIT(relbit, REL_MAX);
882 		MATCH_BIT(absbit, ABS_MAX);
883 		MATCH_BIT(mscbit, MSC_MAX);
884 		MATCH_BIT(ledbit, LED_MAX);
885 		MATCH_BIT(sndbit, SND_MAX);
886 		MATCH_BIT(ffbit,  FF_MAX);
887 		MATCH_BIT(swbit,  SW_MAX);
888 
889 		if (!handler->match || handler->match(handler, dev))
890 			return id;
891 	}
892 
893 	return NULL;
894 }
895 
896 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
897 {
898 	const struct input_device_id *id;
899 	int error;
900 
901 	id = input_match_device(handler, dev);
902 	if (!id)
903 		return -ENODEV;
904 
905 	error = handler->connect(handler, dev, id);
906 	if (error && error != -ENODEV)
907 		pr_err("failed to attach handler %s to device %s, error: %d\n",
908 		       handler->name, kobject_name(&dev->dev.kobj), error);
909 
910 	return error;
911 }
912 
913 #ifdef CONFIG_COMPAT
914 
915 static int input_bits_to_string(char *buf, int buf_size,
916 				unsigned long bits, bool skip_empty)
917 {
918 	int len = 0;
919 
920 	if (INPUT_COMPAT_TEST) {
921 		u32 dword = bits >> 32;
922 		if (dword || !skip_empty)
923 			len += snprintf(buf, buf_size, "%x ", dword);
924 
925 		dword = bits & 0xffffffffUL;
926 		if (dword || !skip_empty || len)
927 			len += snprintf(buf + len, max(buf_size - len, 0),
928 					"%x", dword);
929 	} else {
930 		if (bits || !skip_empty)
931 			len += snprintf(buf, buf_size, "%lx", bits);
932 	}
933 
934 	return len;
935 }
936 
937 #else /* !CONFIG_COMPAT */
938 
939 static int input_bits_to_string(char *buf, int buf_size,
940 				unsigned long bits, bool skip_empty)
941 {
942 	return bits || !skip_empty ?
943 		snprintf(buf, buf_size, "%lx", bits) : 0;
944 }
945 
946 #endif
947 
948 #ifdef CONFIG_PROC_FS
949 
950 static struct proc_dir_entry *proc_bus_input_dir;
951 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
952 static int input_devices_state;
953 
954 static inline void input_wakeup_procfs_readers(void)
955 {
956 	input_devices_state++;
957 	wake_up(&input_devices_poll_wait);
958 }
959 
960 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
961 {
962 	poll_wait(file, &input_devices_poll_wait, wait);
963 	if (file->f_version != input_devices_state) {
964 		file->f_version = input_devices_state;
965 		return POLLIN | POLLRDNORM;
966 	}
967 
968 	return 0;
969 }
970 
971 union input_seq_state {
972 	struct {
973 		unsigned short pos;
974 		bool mutex_acquired;
975 	};
976 	void *p;
977 };
978 
979 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
980 {
981 	union input_seq_state *state = (union input_seq_state *)&seq->private;
982 	int error;
983 
984 	/* We need to fit into seq->private pointer */
985 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
986 
987 	error = mutex_lock_interruptible(&input_mutex);
988 	if (error) {
989 		state->mutex_acquired = false;
990 		return ERR_PTR(error);
991 	}
992 
993 	state->mutex_acquired = true;
994 
995 	return seq_list_start(&input_dev_list, *pos);
996 }
997 
998 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
999 {
1000 	return seq_list_next(v, &input_dev_list, pos);
1001 }
1002 
1003 static void input_seq_stop(struct seq_file *seq, void *v)
1004 {
1005 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1006 
1007 	if (state->mutex_acquired)
1008 		mutex_unlock(&input_mutex);
1009 }
1010 
1011 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1012 				   unsigned long *bitmap, int max)
1013 {
1014 	int i;
1015 	bool skip_empty = true;
1016 	char buf[18];
1017 
1018 	seq_printf(seq, "B: %s=", name);
1019 
1020 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1021 		if (input_bits_to_string(buf, sizeof(buf),
1022 					 bitmap[i], skip_empty)) {
1023 			skip_empty = false;
1024 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * If no output was produced print a single 0.
1030 	 */
1031 	if (skip_empty)
1032 		seq_puts(seq, "0");
1033 
1034 	seq_putc(seq, '\n');
1035 }
1036 
1037 static int input_devices_seq_show(struct seq_file *seq, void *v)
1038 {
1039 	struct input_dev *dev = container_of(v, struct input_dev, node);
1040 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1041 	struct input_handle *handle;
1042 
1043 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1044 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1045 
1046 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1047 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1048 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1049 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1050 	seq_printf(seq, "H: Handlers=");
1051 
1052 	list_for_each_entry(handle, &dev->h_list, d_node)
1053 		seq_printf(seq, "%s ", handle->name);
1054 	seq_putc(seq, '\n');
1055 
1056 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1057 
1058 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1059 	if (test_bit(EV_KEY, dev->evbit))
1060 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1061 	if (test_bit(EV_REL, dev->evbit))
1062 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1063 	if (test_bit(EV_ABS, dev->evbit))
1064 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1065 	if (test_bit(EV_MSC, dev->evbit))
1066 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1067 	if (test_bit(EV_LED, dev->evbit))
1068 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1069 	if (test_bit(EV_SND, dev->evbit))
1070 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1071 	if (test_bit(EV_FF, dev->evbit))
1072 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1073 	if (test_bit(EV_SW, dev->evbit))
1074 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1075 
1076 	seq_putc(seq, '\n');
1077 
1078 	kfree(path);
1079 	return 0;
1080 }
1081 
1082 static const struct seq_operations input_devices_seq_ops = {
1083 	.start	= input_devices_seq_start,
1084 	.next	= input_devices_seq_next,
1085 	.stop	= input_seq_stop,
1086 	.show	= input_devices_seq_show,
1087 };
1088 
1089 static int input_proc_devices_open(struct inode *inode, struct file *file)
1090 {
1091 	return seq_open(file, &input_devices_seq_ops);
1092 }
1093 
1094 static const struct file_operations input_devices_fileops = {
1095 	.owner		= THIS_MODULE,
1096 	.open		= input_proc_devices_open,
1097 	.poll		= input_proc_devices_poll,
1098 	.read		= seq_read,
1099 	.llseek		= seq_lseek,
1100 	.release	= seq_release,
1101 };
1102 
1103 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1104 {
1105 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1106 	int error;
1107 
1108 	/* We need to fit into seq->private pointer */
1109 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1110 
1111 	error = mutex_lock_interruptible(&input_mutex);
1112 	if (error) {
1113 		state->mutex_acquired = false;
1114 		return ERR_PTR(error);
1115 	}
1116 
1117 	state->mutex_acquired = true;
1118 	state->pos = *pos;
1119 
1120 	return seq_list_start(&input_handler_list, *pos);
1121 }
1122 
1123 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1124 {
1125 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1126 
1127 	state->pos = *pos + 1;
1128 	return seq_list_next(v, &input_handler_list, pos);
1129 }
1130 
1131 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1132 {
1133 	struct input_handler *handler = container_of(v, struct input_handler, node);
1134 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1135 
1136 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1137 	if (handler->filter)
1138 		seq_puts(seq, " (filter)");
1139 	if (handler->fops)
1140 		seq_printf(seq, " Minor=%d", handler->minor);
1141 	seq_putc(seq, '\n');
1142 
1143 	return 0;
1144 }
1145 
1146 static const struct seq_operations input_handlers_seq_ops = {
1147 	.start	= input_handlers_seq_start,
1148 	.next	= input_handlers_seq_next,
1149 	.stop	= input_seq_stop,
1150 	.show	= input_handlers_seq_show,
1151 };
1152 
1153 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1154 {
1155 	return seq_open(file, &input_handlers_seq_ops);
1156 }
1157 
1158 static const struct file_operations input_handlers_fileops = {
1159 	.owner		= THIS_MODULE,
1160 	.open		= input_proc_handlers_open,
1161 	.read		= seq_read,
1162 	.llseek		= seq_lseek,
1163 	.release	= seq_release,
1164 };
1165 
1166 static int __init input_proc_init(void)
1167 {
1168 	struct proc_dir_entry *entry;
1169 
1170 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1171 	if (!proc_bus_input_dir)
1172 		return -ENOMEM;
1173 
1174 	entry = proc_create("devices", 0, proc_bus_input_dir,
1175 			    &input_devices_fileops);
1176 	if (!entry)
1177 		goto fail1;
1178 
1179 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1180 			    &input_handlers_fileops);
1181 	if (!entry)
1182 		goto fail2;
1183 
1184 	return 0;
1185 
1186  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1187  fail1: remove_proc_entry("bus/input", NULL);
1188 	return -ENOMEM;
1189 }
1190 
1191 static void input_proc_exit(void)
1192 {
1193 	remove_proc_entry("devices", proc_bus_input_dir);
1194 	remove_proc_entry("handlers", proc_bus_input_dir);
1195 	remove_proc_entry("bus/input", NULL);
1196 }
1197 
1198 #else /* !CONFIG_PROC_FS */
1199 static inline void input_wakeup_procfs_readers(void) { }
1200 static inline int input_proc_init(void) { return 0; }
1201 static inline void input_proc_exit(void) { }
1202 #endif
1203 
1204 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1205 static ssize_t input_dev_show_##name(struct device *dev,		\
1206 				     struct device_attribute *attr,	\
1207 				     char *buf)				\
1208 {									\
1209 	struct input_dev *input_dev = to_input_dev(dev);		\
1210 									\
1211 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1212 			 input_dev->name ? input_dev->name : "");	\
1213 }									\
1214 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1215 
1216 INPUT_DEV_STRING_ATTR_SHOW(name);
1217 INPUT_DEV_STRING_ATTR_SHOW(phys);
1218 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1219 
1220 static int input_print_modalias_bits(char *buf, int size,
1221 				     char name, unsigned long *bm,
1222 				     unsigned int min_bit, unsigned int max_bit)
1223 {
1224 	int len = 0, i;
1225 
1226 	len += snprintf(buf, max(size, 0), "%c", name);
1227 	for (i = min_bit; i < max_bit; i++)
1228 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1229 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1230 	return len;
1231 }
1232 
1233 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1234 				int add_cr)
1235 {
1236 	int len;
1237 
1238 	len = snprintf(buf, max(size, 0),
1239 		       "input:b%04Xv%04Xp%04Xe%04X-",
1240 		       id->id.bustype, id->id.vendor,
1241 		       id->id.product, id->id.version);
1242 
1243 	len += input_print_modalias_bits(buf + len, size - len,
1244 				'e', id->evbit, 0, EV_MAX);
1245 	len += input_print_modalias_bits(buf + len, size - len,
1246 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1247 	len += input_print_modalias_bits(buf + len, size - len,
1248 				'r', id->relbit, 0, REL_MAX);
1249 	len += input_print_modalias_bits(buf + len, size - len,
1250 				'a', id->absbit, 0, ABS_MAX);
1251 	len += input_print_modalias_bits(buf + len, size - len,
1252 				'm', id->mscbit, 0, MSC_MAX);
1253 	len += input_print_modalias_bits(buf + len, size - len,
1254 				'l', id->ledbit, 0, LED_MAX);
1255 	len += input_print_modalias_bits(buf + len, size - len,
1256 				's', id->sndbit, 0, SND_MAX);
1257 	len += input_print_modalias_bits(buf + len, size - len,
1258 				'f', id->ffbit, 0, FF_MAX);
1259 	len += input_print_modalias_bits(buf + len, size - len,
1260 				'w', id->swbit, 0, SW_MAX);
1261 
1262 	if (add_cr)
1263 		len += snprintf(buf + len, max(size - len, 0), "\n");
1264 
1265 	return len;
1266 }
1267 
1268 static ssize_t input_dev_show_modalias(struct device *dev,
1269 				       struct device_attribute *attr,
1270 				       char *buf)
1271 {
1272 	struct input_dev *id = to_input_dev(dev);
1273 	ssize_t len;
1274 
1275 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1276 
1277 	return min_t(int, len, PAGE_SIZE);
1278 }
1279 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1280 
1281 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1282 			      int max, int add_cr);
1283 
1284 static ssize_t input_dev_show_properties(struct device *dev,
1285 					 struct device_attribute *attr,
1286 					 char *buf)
1287 {
1288 	struct input_dev *input_dev = to_input_dev(dev);
1289 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1290 				     INPUT_PROP_MAX, true);
1291 	return min_t(int, len, PAGE_SIZE);
1292 }
1293 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1294 
1295 static struct attribute *input_dev_attrs[] = {
1296 	&dev_attr_name.attr,
1297 	&dev_attr_phys.attr,
1298 	&dev_attr_uniq.attr,
1299 	&dev_attr_modalias.attr,
1300 	&dev_attr_properties.attr,
1301 	NULL
1302 };
1303 
1304 static struct attribute_group input_dev_attr_group = {
1305 	.attrs	= input_dev_attrs,
1306 };
1307 
1308 #define INPUT_DEV_ID_ATTR(name)						\
1309 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1310 					struct device_attribute *attr,	\
1311 					char *buf)			\
1312 {									\
1313 	struct input_dev *input_dev = to_input_dev(dev);		\
1314 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1315 }									\
1316 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1317 
1318 INPUT_DEV_ID_ATTR(bustype);
1319 INPUT_DEV_ID_ATTR(vendor);
1320 INPUT_DEV_ID_ATTR(product);
1321 INPUT_DEV_ID_ATTR(version);
1322 
1323 static struct attribute *input_dev_id_attrs[] = {
1324 	&dev_attr_bustype.attr,
1325 	&dev_attr_vendor.attr,
1326 	&dev_attr_product.attr,
1327 	&dev_attr_version.attr,
1328 	NULL
1329 };
1330 
1331 static struct attribute_group input_dev_id_attr_group = {
1332 	.name	= "id",
1333 	.attrs	= input_dev_id_attrs,
1334 };
1335 
1336 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1337 			      int max, int add_cr)
1338 {
1339 	int i;
1340 	int len = 0;
1341 	bool skip_empty = true;
1342 
1343 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1344 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1345 					    bitmap[i], skip_empty);
1346 		if (len) {
1347 			skip_empty = false;
1348 			if (i > 0)
1349 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * If no output was produced print a single 0.
1355 	 */
1356 	if (len == 0)
1357 		len = snprintf(buf, buf_size, "%d", 0);
1358 
1359 	if (add_cr)
1360 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1361 
1362 	return len;
1363 }
1364 
1365 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1366 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1367 				       struct device_attribute *attr,	\
1368 				       char *buf)			\
1369 {									\
1370 	struct input_dev *input_dev = to_input_dev(dev);		\
1371 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1372 				     input_dev->bm##bit, ev##_MAX,	\
1373 				     true);				\
1374 	return min_t(int, len, PAGE_SIZE);				\
1375 }									\
1376 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1377 
1378 INPUT_DEV_CAP_ATTR(EV, ev);
1379 INPUT_DEV_CAP_ATTR(KEY, key);
1380 INPUT_DEV_CAP_ATTR(REL, rel);
1381 INPUT_DEV_CAP_ATTR(ABS, abs);
1382 INPUT_DEV_CAP_ATTR(MSC, msc);
1383 INPUT_DEV_CAP_ATTR(LED, led);
1384 INPUT_DEV_CAP_ATTR(SND, snd);
1385 INPUT_DEV_CAP_ATTR(FF, ff);
1386 INPUT_DEV_CAP_ATTR(SW, sw);
1387 
1388 static struct attribute *input_dev_caps_attrs[] = {
1389 	&dev_attr_ev.attr,
1390 	&dev_attr_key.attr,
1391 	&dev_attr_rel.attr,
1392 	&dev_attr_abs.attr,
1393 	&dev_attr_msc.attr,
1394 	&dev_attr_led.attr,
1395 	&dev_attr_snd.attr,
1396 	&dev_attr_ff.attr,
1397 	&dev_attr_sw.attr,
1398 	NULL
1399 };
1400 
1401 static struct attribute_group input_dev_caps_attr_group = {
1402 	.name	= "capabilities",
1403 	.attrs	= input_dev_caps_attrs,
1404 };
1405 
1406 static const struct attribute_group *input_dev_attr_groups[] = {
1407 	&input_dev_attr_group,
1408 	&input_dev_id_attr_group,
1409 	&input_dev_caps_attr_group,
1410 	NULL
1411 };
1412 
1413 static void input_dev_release(struct device *device)
1414 {
1415 	struct input_dev *dev = to_input_dev(device);
1416 
1417 	input_ff_destroy(dev);
1418 	input_mt_destroy_slots(dev);
1419 	kfree(dev->absinfo);
1420 	kfree(dev);
1421 
1422 	module_put(THIS_MODULE);
1423 }
1424 
1425 /*
1426  * Input uevent interface - loading event handlers based on
1427  * device bitfields.
1428  */
1429 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1430 				   const char *name, unsigned long *bitmap, int max)
1431 {
1432 	int len;
1433 
1434 	if (add_uevent_var(env, "%s", name))
1435 		return -ENOMEM;
1436 
1437 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1438 				 sizeof(env->buf) - env->buflen,
1439 				 bitmap, max, false);
1440 	if (len >= (sizeof(env->buf) - env->buflen))
1441 		return -ENOMEM;
1442 
1443 	env->buflen += len;
1444 	return 0;
1445 }
1446 
1447 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1448 					 struct input_dev *dev)
1449 {
1450 	int len;
1451 
1452 	if (add_uevent_var(env, "MODALIAS="))
1453 		return -ENOMEM;
1454 
1455 	len = input_print_modalias(&env->buf[env->buflen - 1],
1456 				   sizeof(env->buf) - env->buflen,
1457 				   dev, 0);
1458 	if (len >= (sizeof(env->buf) - env->buflen))
1459 		return -ENOMEM;
1460 
1461 	env->buflen += len;
1462 	return 0;
1463 }
1464 
1465 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1466 	do {								\
1467 		int err = add_uevent_var(env, fmt, val);		\
1468 		if (err)						\
1469 			return err;					\
1470 	} while (0)
1471 
1472 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1473 	do {								\
1474 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1475 		if (err)						\
1476 			return err;					\
1477 	} while (0)
1478 
1479 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1480 	do {								\
1481 		int err = input_add_uevent_modalias_var(env, dev);	\
1482 		if (err)						\
1483 			return err;					\
1484 	} while (0)
1485 
1486 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1487 {
1488 	struct input_dev *dev = to_input_dev(device);
1489 
1490 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1491 				dev->id.bustype, dev->id.vendor,
1492 				dev->id.product, dev->id.version);
1493 	if (dev->name)
1494 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1495 	if (dev->phys)
1496 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1497 	if (dev->uniq)
1498 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1499 
1500 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1501 
1502 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1503 	if (test_bit(EV_KEY, dev->evbit))
1504 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1505 	if (test_bit(EV_REL, dev->evbit))
1506 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1507 	if (test_bit(EV_ABS, dev->evbit))
1508 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1509 	if (test_bit(EV_MSC, dev->evbit))
1510 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1511 	if (test_bit(EV_LED, dev->evbit))
1512 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1513 	if (test_bit(EV_SND, dev->evbit))
1514 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1515 	if (test_bit(EV_FF, dev->evbit))
1516 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1517 	if (test_bit(EV_SW, dev->evbit))
1518 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1519 
1520 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1521 
1522 	return 0;
1523 }
1524 
1525 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1526 	do {								\
1527 		int i;							\
1528 		bool active;						\
1529 									\
1530 		if (!test_bit(EV_##type, dev->evbit))			\
1531 			break;						\
1532 									\
1533 		for (i = 0; i < type##_MAX; i++) {			\
1534 			if (!test_bit(i, dev->bits##bit))		\
1535 				continue;				\
1536 									\
1537 			active = test_bit(i, dev->bits);		\
1538 			if (!active && !on)				\
1539 				continue;				\
1540 									\
1541 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1542 		}							\
1543 	} while (0)
1544 
1545 static void input_dev_toggle(struct input_dev *dev, bool activate)
1546 {
1547 	if (!dev->event)
1548 		return;
1549 
1550 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1551 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1552 
1553 	if (activate && test_bit(EV_REP, dev->evbit)) {
1554 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1555 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1556 	}
1557 }
1558 
1559 /**
1560  * input_reset_device() - reset/restore the state of input device
1561  * @dev: input device whose state needs to be reset
1562  *
1563  * This function tries to reset the state of an opened input device and
1564  * bring internal state and state if the hardware in sync with each other.
1565  * We mark all keys as released, restore LED state, repeat rate, etc.
1566  */
1567 void input_reset_device(struct input_dev *dev)
1568 {
1569 	mutex_lock(&dev->mutex);
1570 
1571 	if (dev->users) {
1572 		input_dev_toggle(dev, true);
1573 
1574 		/*
1575 		 * Keys that have been pressed at suspend time are unlikely
1576 		 * to be still pressed when we resume.
1577 		 */
1578 		spin_lock_irq(&dev->event_lock);
1579 		input_dev_release_keys(dev);
1580 		spin_unlock_irq(&dev->event_lock);
1581 	}
1582 
1583 	mutex_unlock(&dev->mutex);
1584 }
1585 EXPORT_SYMBOL(input_reset_device);
1586 
1587 #ifdef CONFIG_PM
1588 static int input_dev_suspend(struct device *dev)
1589 {
1590 	struct input_dev *input_dev = to_input_dev(dev);
1591 
1592 	mutex_lock(&input_dev->mutex);
1593 
1594 	if (input_dev->users)
1595 		input_dev_toggle(input_dev, false);
1596 
1597 	mutex_unlock(&input_dev->mutex);
1598 
1599 	return 0;
1600 }
1601 
1602 static int input_dev_resume(struct device *dev)
1603 {
1604 	struct input_dev *input_dev = to_input_dev(dev);
1605 
1606 	input_reset_device(input_dev);
1607 
1608 	return 0;
1609 }
1610 
1611 static const struct dev_pm_ops input_dev_pm_ops = {
1612 	.suspend	= input_dev_suspend,
1613 	.resume		= input_dev_resume,
1614 	.poweroff	= input_dev_suspend,
1615 	.restore	= input_dev_resume,
1616 };
1617 #endif /* CONFIG_PM */
1618 
1619 static struct device_type input_dev_type = {
1620 	.groups		= input_dev_attr_groups,
1621 	.release	= input_dev_release,
1622 	.uevent		= input_dev_uevent,
1623 #ifdef CONFIG_PM
1624 	.pm		= &input_dev_pm_ops,
1625 #endif
1626 };
1627 
1628 static char *input_devnode(struct device *dev, mode_t *mode)
1629 {
1630 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1631 }
1632 
1633 struct class input_class = {
1634 	.name		= "input",
1635 	.devnode	= input_devnode,
1636 };
1637 EXPORT_SYMBOL_GPL(input_class);
1638 
1639 /**
1640  * input_allocate_device - allocate memory for new input device
1641  *
1642  * Returns prepared struct input_dev or NULL.
1643  *
1644  * NOTE: Use input_free_device() to free devices that have not been
1645  * registered; input_unregister_device() should be used for already
1646  * registered devices.
1647  */
1648 struct input_dev *input_allocate_device(void)
1649 {
1650 	struct input_dev *dev;
1651 
1652 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1653 	if (dev) {
1654 		dev->dev.type = &input_dev_type;
1655 		dev->dev.class = &input_class;
1656 		device_initialize(&dev->dev);
1657 		mutex_init(&dev->mutex);
1658 		spin_lock_init(&dev->event_lock);
1659 		INIT_LIST_HEAD(&dev->h_list);
1660 		INIT_LIST_HEAD(&dev->node);
1661 
1662 		__module_get(THIS_MODULE);
1663 	}
1664 
1665 	return dev;
1666 }
1667 EXPORT_SYMBOL(input_allocate_device);
1668 
1669 /**
1670  * input_free_device - free memory occupied by input_dev structure
1671  * @dev: input device to free
1672  *
1673  * This function should only be used if input_register_device()
1674  * was not called yet or if it failed. Once device was registered
1675  * use input_unregister_device() and memory will be freed once last
1676  * reference to the device is dropped.
1677  *
1678  * Device should be allocated by input_allocate_device().
1679  *
1680  * NOTE: If there are references to the input device then memory
1681  * will not be freed until last reference is dropped.
1682  */
1683 void input_free_device(struct input_dev *dev)
1684 {
1685 	if (dev)
1686 		input_put_device(dev);
1687 }
1688 EXPORT_SYMBOL(input_free_device);
1689 
1690 /**
1691  * input_set_capability - mark device as capable of a certain event
1692  * @dev: device that is capable of emitting or accepting event
1693  * @type: type of the event (EV_KEY, EV_REL, etc...)
1694  * @code: event code
1695  *
1696  * In addition to setting up corresponding bit in appropriate capability
1697  * bitmap the function also adjusts dev->evbit.
1698  */
1699 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1700 {
1701 	switch (type) {
1702 	case EV_KEY:
1703 		__set_bit(code, dev->keybit);
1704 		break;
1705 
1706 	case EV_REL:
1707 		__set_bit(code, dev->relbit);
1708 		break;
1709 
1710 	case EV_ABS:
1711 		__set_bit(code, dev->absbit);
1712 		break;
1713 
1714 	case EV_MSC:
1715 		__set_bit(code, dev->mscbit);
1716 		break;
1717 
1718 	case EV_SW:
1719 		__set_bit(code, dev->swbit);
1720 		break;
1721 
1722 	case EV_LED:
1723 		__set_bit(code, dev->ledbit);
1724 		break;
1725 
1726 	case EV_SND:
1727 		__set_bit(code, dev->sndbit);
1728 		break;
1729 
1730 	case EV_FF:
1731 		__set_bit(code, dev->ffbit);
1732 		break;
1733 
1734 	case EV_PWR:
1735 		/* do nothing */
1736 		break;
1737 
1738 	default:
1739 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1740 		       type, code);
1741 		dump_stack();
1742 		return;
1743 	}
1744 
1745 	__set_bit(type, dev->evbit);
1746 }
1747 EXPORT_SYMBOL(input_set_capability);
1748 
1749 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1750 {
1751 	int mt_slots;
1752 	int i;
1753 	unsigned int events;
1754 
1755 	if (dev->mtsize) {
1756 		mt_slots = dev->mtsize;
1757 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1758 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1759 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1760 		clamp(mt_slots, 2, 32);
1761 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1762 		mt_slots = 2;
1763 	} else {
1764 		mt_slots = 0;
1765 	}
1766 
1767 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1768 
1769 	for (i = 0; i < ABS_CNT; i++) {
1770 		if (test_bit(i, dev->absbit)) {
1771 			if (input_is_mt_axis(i))
1772 				events += mt_slots;
1773 			else
1774 				events++;
1775 		}
1776 	}
1777 
1778 	for (i = 0; i < REL_CNT; i++)
1779 		if (test_bit(i, dev->relbit))
1780 			events++;
1781 
1782 	return events;
1783 }
1784 
1785 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1786 	do {								\
1787 		if (!test_bit(EV_##type, dev->evbit))			\
1788 			memset(dev->bits##bit, 0,			\
1789 				sizeof(dev->bits##bit));		\
1790 	} while (0)
1791 
1792 static void input_cleanse_bitmasks(struct input_dev *dev)
1793 {
1794 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1795 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1796 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1797 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1798 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1799 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1800 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1801 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1802 }
1803 
1804 /**
1805  * input_register_device - register device with input core
1806  * @dev: device to be registered
1807  *
1808  * This function registers device with input core. The device must be
1809  * allocated with input_allocate_device() and all it's capabilities
1810  * set up before registering.
1811  * If function fails the device must be freed with input_free_device().
1812  * Once device has been successfully registered it can be unregistered
1813  * with input_unregister_device(); input_free_device() should not be
1814  * called in this case.
1815  */
1816 int input_register_device(struct input_dev *dev)
1817 {
1818 	static atomic_t input_no = ATOMIC_INIT(0);
1819 	struct input_handler *handler;
1820 	const char *path;
1821 	int error;
1822 
1823 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1824 	__set_bit(EV_SYN, dev->evbit);
1825 
1826 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1827 	__clear_bit(KEY_RESERVED, dev->keybit);
1828 
1829 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1830 	input_cleanse_bitmasks(dev);
1831 
1832 	if (!dev->hint_events_per_packet)
1833 		dev->hint_events_per_packet =
1834 				input_estimate_events_per_packet(dev);
1835 
1836 	/*
1837 	 * If delay and period are pre-set by the driver, then autorepeating
1838 	 * is handled by the driver itself and we don't do it in input.c.
1839 	 */
1840 	init_timer(&dev->timer);
1841 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1842 		dev->timer.data = (long) dev;
1843 		dev->timer.function = input_repeat_key;
1844 		dev->rep[REP_DELAY] = 250;
1845 		dev->rep[REP_PERIOD] = 33;
1846 	}
1847 
1848 	if (!dev->getkeycode)
1849 		dev->getkeycode = input_default_getkeycode;
1850 
1851 	if (!dev->setkeycode)
1852 		dev->setkeycode = input_default_setkeycode;
1853 
1854 	dev_set_name(&dev->dev, "input%ld",
1855 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1856 
1857 	error = device_add(&dev->dev);
1858 	if (error)
1859 		return error;
1860 
1861 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1862 	pr_info("%s as %s\n",
1863 		dev->name ? dev->name : "Unspecified device",
1864 		path ? path : "N/A");
1865 	kfree(path);
1866 
1867 	error = mutex_lock_interruptible(&input_mutex);
1868 	if (error) {
1869 		device_del(&dev->dev);
1870 		return error;
1871 	}
1872 
1873 	list_add_tail(&dev->node, &input_dev_list);
1874 
1875 	list_for_each_entry(handler, &input_handler_list, node)
1876 		input_attach_handler(dev, handler);
1877 
1878 	input_wakeup_procfs_readers();
1879 
1880 	mutex_unlock(&input_mutex);
1881 
1882 	return 0;
1883 }
1884 EXPORT_SYMBOL(input_register_device);
1885 
1886 /**
1887  * input_unregister_device - unregister previously registered device
1888  * @dev: device to be unregistered
1889  *
1890  * This function unregisters an input device. Once device is unregistered
1891  * the caller should not try to access it as it may get freed at any moment.
1892  */
1893 void input_unregister_device(struct input_dev *dev)
1894 {
1895 	struct input_handle *handle, *next;
1896 
1897 	input_disconnect_device(dev);
1898 
1899 	mutex_lock(&input_mutex);
1900 
1901 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1902 		handle->handler->disconnect(handle);
1903 	WARN_ON(!list_empty(&dev->h_list));
1904 
1905 	del_timer_sync(&dev->timer);
1906 	list_del_init(&dev->node);
1907 
1908 	input_wakeup_procfs_readers();
1909 
1910 	mutex_unlock(&input_mutex);
1911 
1912 	device_unregister(&dev->dev);
1913 }
1914 EXPORT_SYMBOL(input_unregister_device);
1915 
1916 /**
1917  * input_register_handler - register a new input handler
1918  * @handler: handler to be registered
1919  *
1920  * This function registers a new input handler (interface) for input
1921  * devices in the system and attaches it to all input devices that
1922  * are compatible with the handler.
1923  */
1924 int input_register_handler(struct input_handler *handler)
1925 {
1926 	struct input_dev *dev;
1927 	int retval;
1928 
1929 	retval = mutex_lock_interruptible(&input_mutex);
1930 	if (retval)
1931 		return retval;
1932 
1933 	INIT_LIST_HEAD(&handler->h_list);
1934 
1935 	if (handler->fops != NULL) {
1936 		if (input_table[handler->minor >> 5]) {
1937 			retval = -EBUSY;
1938 			goto out;
1939 		}
1940 		input_table[handler->minor >> 5] = handler;
1941 	}
1942 
1943 	list_add_tail(&handler->node, &input_handler_list);
1944 
1945 	list_for_each_entry(dev, &input_dev_list, node)
1946 		input_attach_handler(dev, handler);
1947 
1948 	input_wakeup_procfs_readers();
1949 
1950  out:
1951 	mutex_unlock(&input_mutex);
1952 	return retval;
1953 }
1954 EXPORT_SYMBOL(input_register_handler);
1955 
1956 /**
1957  * input_unregister_handler - unregisters an input handler
1958  * @handler: handler to be unregistered
1959  *
1960  * This function disconnects a handler from its input devices and
1961  * removes it from lists of known handlers.
1962  */
1963 void input_unregister_handler(struct input_handler *handler)
1964 {
1965 	struct input_handle *handle, *next;
1966 
1967 	mutex_lock(&input_mutex);
1968 
1969 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1970 		handler->disconnect(handle);
1971 	WARN_ON(!list_empty(&handler->h_list));
1972 
1973 	list_del_init(&handler->node);
1974 
1975 	if (handler->fops != NULL)
1976 		input_table[handler->minor >> 5] = NULL;
1977 
1978 	input_wakeup_procfs_readers();
1979 
1980 	mutex_unlock(&input_mutex);
1981 }
1982 EXPORT_SYMBOL(input_unregister_handler);
1983 
1984 /**
1985  * input_handler_for_each_handle - handle iterator
1986  * @handler: input handler to iterate
1987  * @data: data for the callback
1988  * @fn: function to be called for each handle
1989  *
1990  * Iterate over @bus's list of devices, and call @fn for each, passing
1991  * it @data and stop when @fn returns a non-zero value. The function is
1992  * using RCU to traverse the list and therefore may be usind in atonic
1993  * contexts. The @fn callback is invoked from RCU critical section and
1994  * thus must not sleep.
1995  */
1996 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1997 				  int (*fn)(struct input_handle *, void *))
1998 {
1999 	struct input_handle *handle;
2000 	int retval = 0;
2001 
2002 	rcu_read_lock();
2003 
2004 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2005 		retval = fn(handle, data);
2006 		if (retval)
2007 			break;
2008 	}
2009 
2010 	rcu_read_unlock();
2011 
2012 	return retval;
2013 }
2014 EXPORT_SYMBOL(input_handler_for_each_handle);
2015 
2016 /**
2017  * input_register_handle - register a new input handle
2018  * @handle: handle to register
2019  *
2020  * This function puts a new input handle onto device's
2021  * and handler's lists so that events can flow through
2022  * it once it is opened using input_open_device().
2023  *
2024  * This function is supposed to be called from handler's
2025  * connect() method.
2026  */
2027 int input_register_handle(struct input_handle *handle)
2028 {
2029 	struct input_handler *handler = handle->handler;
2030 	struct input_dev *dev = handle->dev;
2031 	int error;
2032 
2033 	/*
2034 	 * We take dev->mutex here to prevent race with
2035 	 * input_release_device().
2036 	 */
2037 	error = mutex_lock_interruptible(&dev->mutex);
2038 	if (error)
2039 		return error;
2040 
2041 	/*
2042 	 * Filters go to the head of the list, normal handlers
2043 	 * to the tail.
2044 	 */
2045 	if (handler->filter)
2046 		list_add_rcu(&handle->d_node, &dev->h_list);
2047 	else
2048 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2049 
2050 	mutex_unlock(&dev->mutex);
2051 
2052 	/*
2053 	 * Since we are supposed to be called from ->connect()
2054 	 * which is mutually exclusive with ->disconnect()
2055 	 * we can't be racing with input_unregister_handle()
2056 	 * and so separate lock is not needed here.
2057 	 */
2058 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2059 
2060 	if (handler->start)
2061 		handler->start(handle);
2062 
2063 	return 0;
2064 }
2065 EXPORT_SYMBOL(input_register_handle);
2066 
2067 /**
2068  * input_unregister_handle - unregister an input handle
2069  * @handle: handle to unregister
2070  *
2071  * This function removes input handle from device's
2072  * and handler's lists.
2073  *
2074  * This function is supposed to be called from handler's
2075  * disconnect() method.
2076  */
2077 void input_unregister_handle(struct input_handle *handle)
2078 {
2079 	struct input_dev *dev = handle->dev;
2080 
2081 	list_del_rcu(&handle->h_node);
2082 
2083 	/*
2084 	 * Take dev->mutex to prevent race with input_release_device().
2085 	 */
2086 	mutex_lock(&dev->mutex);
2087 	list_del_rcu(&handle->d_node);
2088 	mutex_unlock(&dev->mutex);
2089 
2090 	synchronize_rcu();
2091 }
2092 EXPORT_SYMBOL(input_unregister_handle);
2093 
2094 static int input_open_file(struct inode *inode, struct file *file)
2095 {
2096 	struct input_handler *handler;
2097 	const struct file_operations *old_fops, *new_fops = NULL;
2098 	int err;
2099 
2100 	err = mutex_lock_interruptible(&input_mutex);
2101 	if (err)
2102 		return err;
2103 
2104 	/* No load-on-demand here? */
2105 	handler = input_table[iminor(inode) >> 5];
2106 	if (handler)
2107 		new_fops = fops_get(handler->fops);
2108 
2109 	mutex_unlock(&input_mutex);
2110 
2111 	/*
2112 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
2113 	 * not "no device". Oh, well...
2114 	 */
2115 	if (!new_fops || !new_fops->open) {
2116 		fops_put(new_fops);
2117 		err = -ENODEV;
2118 		goto out;
2119 	}
2120 
2121 	old_fops = file->f_op;
2122 	file->f_op = new_fops;
2123 
2124 	err = new_fops->open(inode, file);
2125 	if (err) {
2126 		fops_put(file->f_op);
2127 		file->f_op = fops_get(old_fops);
2128 	}
2129 	fops_put(old_fops);
2130 out:
2131 	return err;
2132 }
2133 
2134 static const struct file_operations input_fops = {
2135 	.owner = THIS_MODULE,
2136 	.open = input_open_file,
2137 	.llseek = noop_llseek,
2138 };
2139 
2140 static int __init input_init(void)
2141 {
2142 	int err;
2143 
2144 	err = class_register(&input_class);
2145 	if (err) {
2146 		pr_err("unable to register input_dev class\n");
2147 		return err;
2148 	}
2149 
2150 	err = input_proc_init();
2151 	if (err)
2152 		goto fail1;
2153 
2154 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2155 	if (err) {
2156 		pr_err("unable to register char major %d", INPUT_MAJOR);
2157 		goto fail2;
2158 	}
2159 
2160 	return 0;
2161 
2162  fail2:	input_proc_exit();
2163  fail1:	class_unregister(&input_class);
2164 	return err;
2165 }
2166 
2167 static void __exit input_exit(void)
2168 {
2169 	input_proc_exit();
2170 	unregister_chrdev(INPUT_MAJOR, "input");
2171 	class_unregister(&input_class);
2172 }
2173 
2174 subsys_initcall(input_init);
2175 module_exit(input_exit);
2176