1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * The input core 4 * 5 * Copyright (c) 1999-2002 Vojtech Pavlik 6 */ 7 8 9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/idr.h> 14 #include <linux/input/mt.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/major.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/pm.h> 23 #include <linux/poll.h> 24 #include <linux/device.h> 25 #include <linux/kstrtox.h> 26 #include <linux/mutex.h> 27 #include <linux/rcupdate.h> 28 #include "input-compat.h" 29 #include "input-core-private.h" 30 #include "input-poller.h" 31 32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 33 MODULE_DESCRIPTION("Input core"); 34 MODULE_LICENSE("GPL"); 35 36 #define INPUT_MAX_CHAR_DEVICES 1024 37 #define INPUT_FIRST_DYNAMIC_DEV 256 38 static DEFINE_IDA(input_ida); 39 40 static LIST_HEAD(input_dev_list); 41 static LIST_HEAD(input_handler_list); 42 43 /* 44 * input_mutex protects access to both input_dev_list and input_handler_list. 45 * This also causes input_[un]register_device and input_[un]register_handler 46 * be mutually exclusive which simplifies locking in drivers implementing 47 * input handlers. 48 */ 49 static DEFINE_MUTEX(input_mutex); 50 51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 52 53 static const unsigned int input_max_code[EV_CNT] = { 54 [EV_KEY] = KEY_MAX, 55 [EV_REL] = REL_MAX, 56 [EV_ABS] = ABS_MAX, 57 [EV_MSC] = MSC_MAX, 58 [EV_SW] = SW_MAX, 59 [EV_LED] = LED_MAX, 60 [EV_SND] = SND_MAX, 61 [EV_FF] = FF_MAX, 62 }; 63 64 static inline int is_event_supported(unsigned int code, 65 unsigned long *bm, unsigned int max) 66 { 67 return code <= max && test_bit(code, bm); 68 } 69 70 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 71 { 72 if (fuzz) { 73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 74 return old_val; 75 76 if (value > old_val - fuzz && value < old_val + fuzz) 77 return (old_val * 3 + value) / 4; 78 79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 80 return (old_val + value) / 2; 81 } 82 83 return value; 84 } 85 86 static void input_start_autorepeat(struct input_dev *dev, int code) 87 { 88 if (test_bit(EV_REP, dev->evbit) && 89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 90 dev->timer.function) { 91 dev->repeat_key = code; 92 mod_timer(&dev->timer, 93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 94 } 95 } 96 97 static void input_stop_autorepeat(struct input_dev *dev) 98 { 99 del_timer(&dev->timer); 100 } 101 102 /* 103 * Pass values first through all filters and then, if event has not been 104 * filtered out, through all open handles. This order is achieved by placing 105 * filters at the head of the list of handles attached to the device, and 106 * placing regular handles at the tail of the list. 107 * 108 * This function is called with dev->event_lock held and interrupts disabled. 109 */ 110 static void input_pass_values(struct input_dev *dev, 111 struct input_value *vals, unsigned int count) 112 { 113 struct input_handle *handle; 114 struct input_value *v; 115 116 lockdep_assert_held(&dev->event_lock); 117 118 rcu_read_lock(); 119 120 handle = rcu_dereference(dev->grab); 121 if (handle) { 122 count = handle->handle_events(handle, vals, count); 123 } else { 124 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 125 if (handle->open) { 126 count = handle->handle_events(handle, vals, 127 count); 128 if (!count) 129 break; 130 } 131 } 132 133 rcu_read_unlock(); 134 135 /* trigger auto repeat for key events */ 136 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { 137 for (v = vals; v != vals + count; v++) { 138 if (v->type == EV_KEY && v->value != 2) { 139 if (v->value) 140 input_start_autorepeat(dev, v->code); 141 else 142 input_stop_autorepeat(dev); 143 } 144 } 145 } 146 } 147 148 #define INPUT_IGNORE_EVENT 0 149 #define INPUT_PASS_TO_HANDLERS 1 150 #define INPUT_PASS_TO_DEVICE 2 151 #define INPUT_SLOT 4 152 #define INPUT_FLUSH 8 153 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 154 155 static int input_handle_abs_event(struct input_dev *dev, 156 unsigned int code, int *pval) 157 { 158 struct input_mt *mt = dev->mt; 159 bool is_new_slot = false; 160 bool is_mt_event; 161 int *pold; 162 163 if (code == ABS_MT_SLOT) { 164 /* 165 * "Stage" the event; we'll flush it later, when we 166 * get actual touch data. 167 */ 168 if (mt && *pval >= 0 && *pval < mt->num_slots) 169 mt->slot = *pval; 170 171 return INPUT_IGNORE_EVENT; 172 } 173 174 is_mt_event = input_is_mt_value(code); 175 176 if (!is_mt_event) { 177 pold = &dev->absinfo[code].value; 178 } else if (mt) { 179 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 180 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value; 181 } else { 182 /* 183 * Bypass filtering for multi-touch events when 184 * not employing slots. 185 */ 186 pold = NULL; 187 } 188 189 if (pold) { 190 *pval = input_defuzz_abs_event(*pval, *pold, 191 dev->absinfo[code].fuzz); 192 if (*pold == *pval) 193 return INPUT_IGNORE_EVENT; 194 195 *pold = *pval; 196 } 197 198 /* Flush pending "slot" event */ 199 if (is_new_slot) { 200 dev->absinfo[ABS_MT_SLOT].value = mt->slot; 201 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 202 } 203 204 return INPUT_PASS_TO_HANDLERS; 205 } 206 207 static int input_get_disposition(struct input_dev *dev, 208 unsigned int type, unsigned int code, int *pval) 209 { 210 int disposition = INPUT_IGNORE_EVENT; 211 int value = *pval; 212 213 /* filter-out events from inhibited devices */ 214 if (dev->inhibited) 215 return INPUT_IGNORE_EVENT; 216 217 switch (type) { 218 219 case EV_SYN: 220 switch (code) { 221 case SYN_CONFIG: 222 disposition = INPUT_PASS_TO_ALL; 223 break; 224 225 case SYN_REPORT: 226 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 227 break; 228 case SYN_MT_REPORT: 229 disposition = INPUT_PASS_TO_HANDLERS; 230 break; 231 } 232 break; 233 234 case EV_KEY: 235 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 236 237 /* auto-repeat bypasses state updates */ 238 if (value == 2) { 239 disposition = INPUT_PASS_TO_HANDLERS; 240 break; 241 } 242 243 if (!!test_bit(code, dev->key) != !!value) { 244 245 __change_bit(code, dev->key); 246 disposition = INPUT_PASS_TO_HANDLERS; 247 } 248 } 249 break; 250 251 case EV_SW: 252 if (is_event_supported(code, dev->swbit, SW_MAX) && 253 !!test_bit(code, dev->sw) != !!value) { 254 255 __change_bit(code, dev->sw); 256 disposition = INPUT_PASS_TO_HANDLERS; 257 } 258 break; 259 260 case EV_ABS: 261 if (is_event_supported(code, dev->absbit, ABS_MAX)) 262 disposition = input_handle_abs_event(dev, code, &value); 263 264 break; 265 266 case EV_REL: 267 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 268 disposition = INPUT_PASS_TO_HANDLERS; 269 270 break; 271 272 case EV_MSC: 273 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 274 disposition = INPUT_PASS_TO_ALL; 275 276 break; 277 278 case EV_LED: 279 if (is_event_supported(code, dev->ledbit, LED_MAX) && 280 !!test_bit(code, dev->led) != !!value) { 281 282 __change_bit(code, dev->led); 283 disposition = INPUT_PASS_TO_ALL; 284 } 285 break; 286 287 case EV_SND: 288 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 289 290 if (!!test_bit(code, dev->snd) != !!value) 291 __change_bit(code, dev->snd); 292 disposition = INPUT_PASS_TO_ALL; 293 } 294 break; 295 296 case EV_REP: 297 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 298 dev->rep[code] = value; 299 disposition = INPUT_PASS_TO_ALL; 300 } 301 break; 302 303 case EV_FF: 304 if (value >= 0) 305 disposition = INPUT_PASS_TO_ALL; 306 break; 307 308 case EV_PWR: 309 disposition = INPUT_PASS_TO_ALL; 310 break; 311 } 312 313 *pval = value; 314 return disposition; 315 } 316 317 static void input_event_dispose(struct input_dev *dev, int disposition, 318 unsigned int type, unsigned int code, int value) 319 { 320 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 321 dev->event(dev, type, code, value); 322 323 if (disposition & INPUT_PASS_TO_HANDLERS) { 324 struct input_value *v; 325 326 if (disposition & INPUT_SLOT) { 327 v = &dev->vals[dev->num_vals++]; 328 v->type = EV_ABS; 329 v->code = ABS_MT_SLOT; 330 v->value = dev->mt->slot; 331 } 332 333 v = &dev->vals[dev->num_vals++]; 334 v->type = type; 335 v->code = code; 336 v->value = value; 337 } 338 339 if (disposition & INPUT_FLUSH) { 340 if (dev->num_vals >= 2) 341 input_pass_values(dev, dev->vals, dev->num_vals); 342 dev->num_vals = 0; 343 /* 344 * Reset the timestamp on flush so we won't end up 345 * with a stale one. Note we only need to reset the 346 * monolithic one as we use its presence when deciding 347 * whether to generate a synthetic timestamp. 348 */ 349 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0); 350 } else if (dev->num_vals >= dev->max_vals - 2) { 351 dev->vals[dev->num_vals++] = input_value_sync; 352 input_pass_values(dev, dev->vals, dev->num_vals); 353 dev->num_vals = 0; 354 } 355 } 356 357 void input_handle_event(struct input_dev *dev, 358 unsigned int type, unsigned int code, int value) 359 { 360 int disposition; 361 362 lockdep_assert_held(&dev->event_lock); 363 364 disposition = input_get_disposition(dev, type, code, &value); 365 if (disposition != INPUT_IGNORE_EVENT) { 366 if (type != EV_SYN) 367 add_input_randomness(type, code, value); 368 369 input_event_dispose(dev, disposition, type, code, value); 370 } 371 } 372 373 /** 374 * input_event() - report new input event 375 * @dev: device that generated the event 376 * @type: type of the event 377 * @code: event code 378 * @value: value of the event 379 * 380 * This function should be used by drivers implementing various input 381 * devices to report input events. See also input_inject_event(). 382 * 383 * NOTE: input_event() may be safely used right after input device was 384 * allocated with input_allocate_device(), even before it is registered 385 * with input_register_device(), but the event will not reach any of the 386 * input handlers. Such early invocation of input_event() may be used 387 * to 'seed' initial state of a switch or initial position of absolute 388 * axis, etc. 389 */ 390 void input_event(struct input_dev *dev, 391 unsigned int type, unsigned int code, int value) 392 { 393 unsigned long flags; 394 395 if (is_event_supported(type, dev->evbit, EV_MAX)) { 396 397 spin_lock_irqsave(&dev->event_lock, flags); 398 input_handle_event(dev, type, code, value); 399 spin_unlock_irqrestore(&dev->event_lock, flags); 400 } 401 } 402 EXPORT_SYMBOL(input_event); 403 404 /** 405 * input_inject_event() - send input event from input handler 406 * @handle: input handle to send event through 407 * @type: type of the event 408 * @code: event code 409 * @value: value of the event 410 * 411 * Similar to input_event() but will ignore event if device is 412 * "grabbed" and handle injecting event is not the one that owns 413 * the device. 414 */ 415 void input_inject_event(struct input_handle *handle, 416 unsigned int type, unsigned int code, int value) 417 { 418 struct input_dev *dev = handle->dev; 419 struct input_handle *grab; 420 unsigned long flags; 421 422 if (is_event_supported(type, dev->evbit, EV_MAX)) { 423 spin_lock_irqsave(&dev->event_lock, flags); 424 425 rcu_read_lock(); 426 grab = rcu_dereference(dev->grab); 427 if (!grab || grab == handle) 428 input_handle_event(dev, type, code, value); 429 rcu_read_unlock(); 430 431 spin_unlock_irqrestore(&dev->event_lock, flags); 432 } 433 } 434 EXPORT_SYMBOL(input_inject_event); 435 436 /** 437 * input_alloc_absinfo - allocates array of input_absinfo structs 438 * @dev: the input device emitting absolute events 439 * 440 * If the absinfo struct the caller asked for is already allocated, this 441 * functions will not do anything. 442 */ 443 void input_alloc_absinfo(struct input_dev *dev) 444 { 445 if (dev->absinfo) 446 return; 447 448 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); 449 if (!dev->absinfo) { 450 dev_err(dev->dev.parent ?: &dev->dev, 451 "%s: unable to allocate memory\n", __func__); 452 /* 453 * We will handle this allocation failure in 454 * input_register_device() when we refuse to register input 455 * device with ABS bits but without absinfo. 456 */ 457 } 458 } 459 EXPORT_SYMBOL(input_alloc_absinfo); 460 461 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 462 int min, int max, int fuzz, int flat) 463 { 464 struct input_absinfo *absinfo; 465 466 __set_bit(EV_ABS, dev->evbit); 467 __set_bit(axis, dev->absbit); 468 469 input_alloc_absinfo(dev); 470 if (!dev->absinfo) 471 return; 472 473 absinfo = &dev->absinfo[axis]; 474 absinfo->minimum = min; 475 absinfo->maximum = max; 476 absinfo->fuzz = fuzz; 477 absinfo->flat = flat; 478 } 479 EXPORT_SYMBOL(input_set_abs_params); 480 481 /** 482 * input_copy_abs - Copy absinfo from one input_dev to another 483 * @dst: Destination input device to copy the abs settings to 484 * @dst_axis: ABS_* value selecting the destination axis 485 * @src: Source input device to copy the abs settings from 486 * @src_axis: ABS_* value selecting the source axis 487 * 488 * Set absinfo for the selected destination axis by copying it from 489 * the specified source input device's source axis. 490 * This is useful to e.g. setup a pen/stylus input-device for combined 491 * touchscreen/pen hardware where the pen uses the same coordinates as 492 * the touchscreen. 493 */ 494 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis, 495 const struct input_dev *src, unsigned int src_axis) 496 { 497 /* src must have EV_ABS and src_axis set */ 498 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) && 499 test_bit(src_axis, src->absbit)))) 500 return; 501 502 /* 503 * input_alloc_absinfo() may have failed for the source. Our caller is 504 * expected to catch this when registering the input devices, which may 505 * happen after the input_copy_abs() call. 506 */ 507 if (!src->absinfo) 508 return; 509 510 input_set_capability(dst, EV_ABS, dst_axis); 511 if (!dst->absinfo) 512 return; 513 514 dst->absinfo[dst_axis] = src->absinfo[src_axis]; 515 } 516 EXPORT_SYMBOL(input_copy_abs); 517 518 /** 519 * input_grab_device - grabs device for exclusive use 520 * @handle: input handle that wants to own the device 521 * 522 * When a device is grabbed by an input handle all events generated by 523 * the device are delivered only to this handle. Also events injected 524 * by other input handles are ignored while device is grabbed. 525 */ 526 int input_grab_device(struct input_handle *handle) 527 { 528 struct input_dev *dev = handle->dev; 529 int retval; 530 531 retval = mutex_lock_interruptible(&dev->mutex); 532 if (retval) 533 return retval; 534 535 if (dev->grab) { 536 retval = -EBUSY; 537 goto out; 538 } 539 540 rcu_assign_pointer(dev->grab, handle); 541 542 out: 543 mutex_unlock(&dev->mutex); 544 return retval; 545 } 546 EXPORT_SYMBOL(input_grab_device); 547 548 static void __input_release_device(struct input_handle *handle) 549 { 550 struct input_dev *dev = handle->dev; 551 struct input_handle *grabber; 552 553 grabber = rcu_dereference_protected(dev->grab, 554 lockdep_is_held(&dev->mutex)); 555 if (grabber == handle) { 556 rcu_assign_pointer(dev->grab, NULL); 557 /* Make sure input_pass_values() notices that grab is gone */ 558 synchronize_rcu(); 559 560 list_for_each_entry(handle, &dev->h_list, d_node) 561 if (handle->open && handle->handler->start) 562 handle->handler->start(handle); 563 } 564 } 565 566 /** 567 * input_release_device - release previously grabbed device 568 * @handle: input handle that owns the device 569 * 570 * Releases previously grabbed device so that other input handles can 571 * start receiving input events. Upon release all handlers attached 572 * to the device have their start() method called so they have a change 573 * to synchronize device state with the rest of the system. 574 */ 575 void input_release_device(struct input_handle *handle) 576 { 577 struct input_dev *dev = handle->dev; 578 579 mutex_lock(&dev->mutex); 580 __input_release_device(handle); 581 mutex_unlock(&dev->mutex); 582 } 583 EXPORT_SYMBOL(input_release_device); 584 585 /** 586 * input_open_device - open input device 587 * @handle: handle through which device is being accessed 588 * 589 * This function should be called by input handlers when they 590 * want to start receive events from given input device. 591 */ 592 int input_open_device(struct input_handle *handle) 593 { 594 struct input_dev *dev = handle->dev; 595 int retval; 596 597 retval = mutex_lock_interruptible(&dev->mutex); 598 if (retval) 599 return retval; 600 601 if (dev->going_away) { 602 retval = -ENODEV; 603 goto out; 604 } 605 606 handle->open++; 607 608 if (handle->handler->passive_observer) 609 goto out; 610 611 if (dev->users++ || dev->inhibited) { 612 /* 613 * Device is already opened and/or inhibited, 614 * so we can exit immediately and report success. 615 */ 616 goto out; 617 } 618 619 if (dev->open) { 620 retval = dev->open(dev); 621 if (retval) { 622 dev->users--; 623 handle->open--; 624 /* 625 * Make sure we are not delivering any more events 626 * through this handle 627 */ 628 synchronize_rcu(); 629 goto out; 630 } 631 } 632 633 if (dev->poller) 634 input_dev_poller_start(dev->poller); 635 636 out: 637 mutex_unlock(&dev->mutex); 638 return retval; 639 } 640 EXPORT_SYMBOL(input_open_device); 641 642 int input_flush_device(struct input_handle *handle, struct file *file) 643 { 644 struct input_dev *dev = handle->dev; 645 int retval; 646 647 retval = mutex_lock_interruptible(&dev->mutex); 648 if (retval) 649 return retval; 650 651 if (dev->flush) 652 retval = dev->flush(dev, file); 653 654 mutex_unlock(&dev->mutex); 655 return retval; 656 } 657 EXPORT_SYMBOL(input_flush_device); 658 659 /** 660 * input_close_device - close input device 661 * @handle: handle through which device is being accessed 662 * 663 * This function should be called by input handlers when they 664 * want to stop receive events from given input device. 665 */ 666 void input_close_device(struct input_handle *handle) 667 { 668 struct input_dev *dev = handle->dev; 669 670 mutex_lock(&dev->mutex); 671 672 __input_release_device(handle); 673 674 if (!handle->handler->passive_observer) { 675 if (!--dev->users && !dev->inhibited) { 676 if (dev->poller) 677 input_dev_poller_stop(dev->poller); 678 if (dev->close) 679 dev->close(dev); 680 } 681 } 682 683 if (!--handle->open) { 684 /* 685 * synchronize_rcu() makes sure that input_pass_values() 686 * completed and that no more input events are delivered 687 * through this handle 688 */ 689 synchronize_rcu(); 690 } 691 692 mutex_unlock(&dev->mutex); 693 } 694 EXPORT_SYMBOL(input_close_device); 695 696 /* 697 * Simulate keyup events for all keys that are marked as pressed. 698 * The function must be called with dev->event_lock held. 699 */ 700 static bool input_dev_release_keys(struct input_dev *dev) 701 { 702 bool need_sync = false; 703 int code; 704 705 lockdep_assert_held(&dev->event_lock); 706 707 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 708 for_each_set_bit(code, dev->key, KEY_CNT) { 709 input_handle_event(dev, EV_KEY, code, 0); 710 need_sync = true; 711 } 712 } 713 714 return need_sync; 715 } 716 717 /* 718 * Prepare device for unregistering 719 */ 720 static void input_disconnect_device(struct input_dev *dev) 721 { 722 struct input_handle *handle; 723 724 /* 725 * Mark device as going away. Note that we take dev->mutex here 726 * not to protect access to dev->going_away but rather to ensure 727 * that there are no threads in the middle of input_open_device() 728 */ 729 mutex_lock(&dev->mutex); 730 dev->going_away = true; 731 mutex_unlock(&dev->mutex); 732 733 spin_lock_irq(&dev->event_lock); 734 735 /* 736 * Simulate keyup events for all pressed keys so that handlers 737 * are not left with "stuck" keys. The driver may continue 738 * generate events even after we done here but they will not 739 * reach any handlers. 740 */ 741 if (input_dev_release_keys(dev)) 742 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 743 744 list_for_each_entry(handle, &dev->h_list, d_node) 745 handle->open = 0; 746 747 spin_unlock_irq(&dev->event_lock); 748 } 749 750 /** 751 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 752 * @ke: keymap entry containing scancode to be converted. 753 * @scancode: pointer to the location where converted scancode should 754 * be stored. 755 * 756 * This function is used to convert scancode stored in &struct keymap_entry 757 * into scalar form understood by legacy keymap handling methods. These 758 * methods expect scancodes to be represented as 'unsigned int'. 759 */ 760 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 761 unsigned int *scancode) 762 { 763 switch (ke->len) { 764 case 1: 765 *scancode = *((u8 *)ke->scancode); 766 break; 767 768 case 2: 769 *scancode = *((u16 *)ke->scancode); 770 break; 771 772 case 4: 773 *scancode = *((u32 *)ke->scancode); 774 break; 775 776 default: 777 return -EINVAL; 778 } 779 780 return 0; 781 } 782 EXPORT_SYMBOL(input_scancode_to_scalar); 783 784 /* 785 * Those routines handle the default case where no [gs]etkeycode() is 786 * defined. In this case, an array indexed by the scancode is used. 787 */ 788 789 static unsigned int input_fetch_keycode(struct input_dev *dev, 790 unsigned int index) 791 { 792 switch (dev->keycodesize) { 793 case 1: 794 return ((u8 *)dev->keycode)[index]; 795 796 case 2: 797 return ((u16 *)dev->keycode)[index]; 798 799 default: 800 return ((u32 *)dev->keycode)[index]; 801 } 802 } 803 804 static int input_default_getkeycode(struct input_dev *dev, 805 struct input_keymap_entry *ke) 806 { 807 unsigned int index; 808 int error; 809 810 if (!dev->keycodesize) 811 return -EINVAL; 812 813 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 814 index = ke->index; 815 else { 816 error = input_scancode_to_scalar(ke, &index); 817 if (error) 818 return error; 819 } 820 821 if (index >= dev->keycodemax) 822 return -EINVAL; 823 824 ke->keycode = input_fetch_keycode(dev, index); 825 ke->index = index; 826 ke->len = sizeof(index); 827 memcpy(ke->scancode, &index, sizeof(index)); 828 829 return 0; 830 } 831 832 static int input_default_setkeycode(struct input_dev *dev, 833 const struct input_keymap_entry *ke, 834 unsigned int *old_keycode) 835 { 836 unsigned int index; 837 int error; 838 int i; 839 840 if (!dev->keycodesize) 841 return -EINVAL; 842 843 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 844 index = ke->index; 845 } else { 846 error = input_scancode_to_scalar(ke, &index); 847 if (error) 848 return error; 849 } 850 851 if (index >= dev->keycodemax) 852 return -EINVAL; 853 854 if (dev->keycodesize < sizeof(ke->keycode) && 855 (ke->keycode >> (dev->keycodesize * 8))) 856 return -EINVAL; 857 858 switch (dev->keycodesize) { 859 case 1: { 860 u8 *k = (u8 *)dev->keycode; 861 *old_keycode = k[index]; 862 k[index] = ke->keycode; 863 break; 864 } 865 case 2: { 866 u16 *k = (u16 *)dev->keycode; 867 *old_keycode = k[index]; 868 k[index] = ke->keycode; 869 break; 870 } 871 default: { 872 u32 *k = (u32 *)dev->keycode; 873 *old_keycode = k[index]; 874 k[index] = ke->keycode; 875 break; 876 } 877 } 878 879 if (*old_keycode <= KEY_MAX) { 880 __clear_bit(*old_keycode, dev->keybit); 881 for (i = 0; i < dev->keycodemax; i++) { 882 if (input_fetch_keycode(dev, i) == *old_keycode) { 883 __set_bit(*old_keycode, dev->keybit); 884 /* Setting the bit twice is useless, so break */ 885 break; 886 } 887 } 888 } 889 890 __set_bit(ke->keycode, dev->keybit); 891 return 0; 892 } 893 894 /** 895 * input_get_keycode - retrieve keycode currently mapped to a given scancode 896 * @dev: input device which keymap is being queried 897 * @ke: keymap entry 898 * 899 * This function should be called by anyone interested in retrieving current 900 * keymap. Presently evdev handlers use it. 901 */ 902 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 903 { 904 unsigned long flags; 905 int retval; 906 907 spin_lock_irqsave(&dev->event_lock, flags); 908 retval = dev->getkeycode(dev, ke); 909 spin_unlock_irqrestore(&dev->event_lock, flags); 910 911 return retval; 912 } 913 EXPORT_SYMBOL(input_get_keycode); 914 915 /** 916 * input_set_keycode - attribute a keycode to a given scancode 917 * @dev: input device which keymap is being updated 918 * @ke: new keymap entry 919 * 920 * This function should be called by anyone needing to update current 921 * keymap. Presently keyboard and evdev handlers use it. 922 */ 923 int input_set_keycode(struct input_dev *dev, 924 const struct input_keymap_entry *ke) 925 { 926 unsigned long flags; 927 unsigned int old_keycode; 928 int retval; 929 930 if (ke->keycode > KEY_MAX) 931 return -EINVAL; 932 933 spin_lock_irqsave(&dev->event_lock, flags); 934 935 retval = dev->setkeycode(dev, ke, &old_keycode); 936 if (retval) 937 goto out; 938 939 /* Make sure KEY_RESERVED did not get enabled. */ 940 __clear_bit(KEY_RESERVED, dev->keybit); 941 942 /* 943 * Simulate keyup event if keycode is not present 944 * in the keymap anymore 945 */ 946 if (old_keycode > KEY_MAX) { 947 dev_warn(dev->dev.parent ?: &dev->dev, 948 "%s: got too big old keycode %#x\n", 949 __func__, old_keycode); 950 } else if (test_bit(EV_KEY, dev->evbit) && 951 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 952 __test_and_clear_bit(old_keycode, dev->key)) { 953 /* 954 * We have to use input_event_dispose() here directly instead 955 * of input_handle_event() because the key we want to release 956 * here is considered no longer supported by the device and 957 * input_handle_event() will ignore it. 958 */ 959 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS, 960 EV_KEY, old_keycode, 0); 961 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH, 962 EV_SYN, SYN_REPORT, 1); 963 } 964 965 out: 966 spin_unlock_irqrestore(&dev->event_lock, flags); 967 968 return retval; 969 } 970 EXPORT_SYMBOL(input_set_keycode); 971 972 bool input_match_device_id(const struct input_dev *dev, 973 const struct input_device_id *id) 974 { 975 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 976 if (id->bustype != dev->id.bustype) 977 return false; 978 979 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 980 if (id->vendor != dev->id.vendor) 981 return false; 982 983 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 984 if (id->product != dev->id.product) 985 return false; 986 987 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 988 if (id->version != dev->id.version) 989 return false; 990 991 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || 992 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || 993 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || 994 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || 995 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || 996 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || 997 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || 998 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || 999 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || 1000 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { 1001 return false; 1002 } 1003 1004 return true; 1005 } 1006 EXPORT_SYMBOL(input_match_device_id); 1007 1008 static const struct input_device_id *input_match_device(struct input_handler *handler, 1009 struct input_dev *dev) 1010 { 1011 const struct input_device_id *id; 1012 1013 for (id = handler->id_table; id->flags || id->driver_info; id++) { 1014 if (input_match_device_id(dev, id) && 1015 (!handler->match || handler->match(handler, dev))) { 1016 return id; 1017 } 1018 } 1019 1020 return NULL; 1021 } 1022 1023 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 1024 { 1025 const struct input_device_id *id; 1026 int error; 1027 1028 id = input_match_device(handler, dev); 1029 if (!id) 1030 return -ENODEV; 1031 1032 error = handler->connect(handler, dev, id); 1033 if (error && error != -ENODEV) 1034 pr_err("failed to attach handler %s to device %s, error: %d\n", 1035 handler->name, kobject_name(&dev->dev.kobj), error); 1036 1037 return error; 1038 } 1039 1040 #ifdef CONFIG_COMPAT 1041 1042 static int input_bits_to_string(char *buf, int buf_size, 1043 unsigned long bits, bool skip_empty) 1044 { 1045 int len = 0; 1046 1047 if (in_compat_syscall()) { 1048 u32 dword = bits >> 32; 1049 if (dword || !skip_empty) 1050 len += snprintf(buf, buf_size, "%x ", dword); 1051 1052 dword = bits & 0xffffffffUL; 1053 if (dword || !skip_empty || len) 1054 len += snprintf(buf + len, max(buf_size - len, 0), 1055 "%x", dword); 1056 } else { 1057 if (bits || !skip_empty) 1058 len += snprintf(buf, buf_size, "%lx", bits); 1059 } 1060 1061 return len; 1062 } 1063 1064 #else /* !CONFIG_COMPAT */ 1065 1066 static int input_bits_to_string(char *buf, int buf_size, 1067 unsigned long bits, bool skip_empty) 1068 { 1069 return bits || !skip_empty ? 1070 snprintf(buf, buf_size, "%lx", bits) : 0; 1071 } 1072 1073 #endif 1074 1075 #ifdef CONFIG_PROC_FS 1076 1077 static struct proc_dir_entry *proc_bus_input_dir; 1078 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1079 static int input_devices_state; 1080 1081 static inline void input_wakeup_procfs_readers(void) 1082 { 1083 input_devices_state++; 1084 wake_up(&input_devices_poll_wait); 1085 } 1086 1087 struct input_seq_state { 1088 unsigned short pos; 1089 bool mutex_acquired; 1090 int input_devices_state; 1091 }; 1092 1093 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) 1094 { 1095 struct seq_file *seq = file->private_data; 1096 struct input_seq_state *state = seq->private; 1097 1098 poll_wait(file, &input_devices_poll_wait, wait); 1099 if (state->input_devices_state != input_devices_state) { 1100 state->input_devices_state = input_devices_state; 1101 return EPOLLIN | EPOLLRDNORM; 1102 } 1103 1104 return 0; 1105 } 1106 1107 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1108 { 1109 struct input_seq_state *state = seq->private; 1110 int error; 1111 1112 error = mutex_lock_interruptible(&input_mutex); 1113 if (error) { 1114 state->mutex_acquired = false; 1115 return ERR_PTR(error); 1116 } 1117 1118 state->mutex_acquired = true; 1119 1120 return seq_list_start(&input_dev_list, *pos); 1121 } 1122 1123 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1124 { 1125 return seq_list_next(v, &input_dev_list, pos); 1126 } 1127 1128 static void input_seq_stop(struct seq_file *seq, void *v) 1129 { 1130 struct input_seq_state *state = seq->private; 1131 1132 if (state->mutex_acquired) 1133 mutex_unlock(&input_mutex); 1134 } 1135 1136 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1137 unsigned long *bitmap, int max) 1138 { 1139 int i; 1140 bool skip_empty = true; 1141 char buf[18]; 1142 1143 seq_printf(seq, "B: %s=", name); 1144 1145 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1146 if (input_bits_to_string(buf, sizeof(buf), 1147 bitmap[i], skip_empty)) { 1148 skip_empty = false; 1149 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1150 } 1151 } 1152 1153 /* 1154 * If no output was produced print a single 0. 1155 */ 1156 if (skip_empty) 1157 seq_putc(seq, '0'); 1158 1159 seq_putc(seq, '\n'); 1160 } 1161 1162 static int input_devices_seq_show(struct seq_file *seq, void *v) 1163 { 1164 struct input_dev *dev = container_of(v, struct input_dev, node); 1165 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1166 struct input_handle *handle; 1167 1168 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1169 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1170 1171 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1172 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1173 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1174 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1175 seq_puts(seq, "H: Handlers="); 1176 1177 list_for_each_entry(handle, &dev->h_list, d_node) 1178 seq_printf(seq, "%s ", handle->name); 1179 seq_putc(seq, '\n'); 1180 1181 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1182 1183 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1184 if (test_bit(EV_KEY, dev->evbit)) 1185 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1186 if (test_bit(EV_REL, dev->evbit)) 1187 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1188 if (test_bit(EV_ABS, dev->evbit)) 1189 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1190 if (test_bit(EV_MSC, dev->evbit)) 1191 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1192 if (test_bit(EV_LED, dev->evbit)) 1193 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1194 if (test_bit(EV_SND, dev->evbit)) 1195 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1196 if (test_bit(EV_FF, dev->evbit)) 1197 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1198 if (test_bit(EV_SW, dev->evbit)) 1199 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1200 1201 seq_putc(seq, '\n'); 1202 1203 kfree(path); 1204 return 0; 1205 } 1206 1207 static const struct seq_operations input_devices_seq_ops = { 1208 .start = input_devices_seq_start, 1209 .next = input_devices_seq_next, 1210 .stop = input_seq_stop, 1211 .show = input_devices_seq_show, 1212 }; 1213 1214 static int input_proc_devices_open(struct inode *inode, struct file *file) 1215 { 1216 return seq_open_private(file, &input_devices_seq_ops, 1217 sizeof(struct input_seq_state)); 1218 } 1219 1220 static const struct proc_ops input_devices_proc_ops = { 1221 .proc_open = input_proc_devices_open, 1222 .proc_poll = input_proc_devices_poll, 1223 .proc_read = seq_read, 1224 .proc_lseek = seq_lseek, 1225 .proc_release = seq_release_private, 1226 }; 1227 1228 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1229 { 1230 struct input_seq_state *state = seq->private; 1231 int error; 1232 1233 error = mutex_lock_interruptible(&input_mutex); 1234 if (error) { 1235 state->mutex_acquired = false; 1236 return ERR_PTR(error); 1237 } 1238 1239 state->mutex_acquired = true; 1240 state->pos = *pos; 1241 1242 return seq_list_start(&input_handler_list, *pos); 1243 } 1244 1245 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1246 { 1247 struct input_seq_state *state = seq->private; 1248 1249 state->pos = *pos + 1; 1250 return seq_list_next(v, &input_handler_list, pos); 1251 } 1252 1253 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1254 { 1255 struct input_handler *handler = container_of(v, struct input_handler, node); 1256 struct input_seq_state *state = seq->private; 1257 1258 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1259 if (handler->filter) 1260 seq_puts(seq, " (filter)"); 1261 if (handler->legacy_minors) 1262 seq_printf(seq, " Minor=%d", handler->minor); 1263 seq_putc(seq, '\n'); 1264 1265 return 0; 1266 } 1267 1268 static const struct seq_operations input_handlers_seq_ops = { 1269 .start = input_handlers_seq_start, 1270 .next = input_handlers_seq_next, 1271 .stop = input_seq_stop, 1272 .show = input_handlers_seq_show, 1273 }; 1274 1275 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1276 { 1277 return seq_open_private(file, &input_handlers_seq_ops, 1278 sizeof(struct input_seq_state)); 1279 } 1280 1281 static const struct proc_ops input_handlers_proc_ops = { 1282 .proc_open = input_proc_handlers_open, 1283 .proc_read = seq_read, 1284 .proc_lseek = seq_lseek, 1285 .proc_release = seq_release_private, 1286 }; 1287 1288 static int __init input_proc_init(void) 1289 { 1290 struct proc_dir_entry *entry; 1291 1292 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1293 if (!proc_bus_input_dir) 1294 return -ENOMEM; 1295 1296 entry = proc_create("devices", 0, proc_bus_input_dir, 1297 &input_devices_proc_ops); 1298 if (!entry) 1299 goto fail1; 1300 1301 entry = proc_create("handlers", 0, proc_bus_input_dir, 1302 &input_handlers_proc_ops); 1303 if (!entry) 1304 goto fail2; 1305 1306 return 0; 1307 1308 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1309 fail1: remove_proc_entry("bus/input", NULL); 1310 return -ENOMEM; 1311 } 1312 1313 static void input_proc_exit(void) 1314 { 1315 remove_proc_entry("devices", proc_bus_input_dir); 1316 remove_proc_entry("handlers", proc_bus_input_dir); 1317 remove_proc_entry("bus/input", NULL); 1318 } 1319 1320 #else /* !CONFIG_PROC_FS */ 1321 static inline void input_wakeup_procfs_readers(void) { } 1322 static inline int input_proc_init(void) { return 0; } 1323 static inline void input_proc_exit(void) { } 1324 #endif 1325 1326 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1327 static ssize_t input_dev_show_##name(struct device *dev, \ 1328 struct device_attribute *attr, \ 1329 char *buf) \ 1330 { \ 1331 struct input_dev *input_dev = to_input_dev(dev); \ 1332 \ 1333 return sysfs_emit(buf, "%s\n", \ 1334 input_dev->name ? input_dev->name : ""); \ 1335 } \ 1336 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1337 1338 INPUT_DEV_STRING_ATTR_SHOW(name); 1339 INPUT_DEV_STRING_ATTR_SHOW(phys); 1340 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1341 1342 static int input_print_modalias_bits(char *buf, int size, 1343 char name, const unsigned long *bm, 1344 unsigned int min_bit, unsigned int max_bit) 1345 { 1346 int bit = min_bit; 1347 int len = 0; 1348 1349 len += snprintf(buf, max(size, 0), "%c", name); 1350 for_each_set_bit_from(bit, bm, max_bit) 1351 len += snprintf(buf + len, max(size - len, 0), "%X,", bit); 1352 return len; 1353 } 1354 1355 static int input_print_modalias_parts(char *buf, int size, int full_len, 1356 const struct input_dev *id) 1357 { 1358 int len, klen, remainder, space; 1359 1360 len = snprintf(buf, max(size, 0), 1361 "input:b%04Xv%04Xp%04Xe%04X-", 1362 id->id.bustype, id->id.vendor, 1363 id->id.product, id->id.version); 1364 1365 len += input_print_modalias_bits(buf + len, size - len, 1366 'e', id->evbit, 0, EV_MAX); 1367 1368 /* 1369 * Calculate the remaining space in the buffer making sure we 1370 * have place for the terminating 0. 1371 */ 1372 space = max(size - (len + 1), 0); 1373 1374 klen = input_print_modalias_bits(buf + len, size - len, 1375 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1376 len += klen; 1377 1378 /* 1379 * If we have more data than we can fit in the buffer, check 1380 * if we can trim key data to fit in the rest. We will indicate 1381 * that key data is incomplete by adding "+" sign at the end, like 1382 * this: * "k1,2,3,45,+,". 1383 * 1384 * Note that we shortest key info (if present) is "k+," so we 1385 * can only try to trim if key data is longer than that. 1386 */ 1387 if (full_len && size < full_len + 1 && klen > 3) { 1388 remainder = full_len - len; 1389 /* 1390 * We can only trim if we have space for the remainder 1391 * and also for at least "k+," which is 3 more characters. 1392 */ 1393 if (remainder <= space - 3) { 1394 /* 1395 * We are guaranteed to have 'k' in the buffer, so 1396 * we need at least 3 additional bytes for storing 1397 * "+," in addition to the remainder. 1398 */ 1399 for (int i = size - 1 - remainder - 3; i >= 0; i--) { 1400 if (buf[i] == 'k' || buf[i] == ',') { 1401 strcpy(buf + i + 1, "+,"); 1402 len = i + 3; /* Not counting '\0' */ 1403 break; 1404 } 1405 } 1406 } 1407 } 1408 1409 len += input_print_modalias_bits(buf + len, size - len, 1410 'r', id->relbit, 0, REL_MAX); 1411 len += input_print_modalias_bits(buf + len, size - len, 1412 'a', id->absbit, 0, ABS_MAX); 1413 len += input_print_modalias_bits(buf + len, size - len, 1414 'm', id->mscbit, 0, MSC_MAX); 1415 len += input_print_modalias_bits(buf + len, size - len, 1416 'l', id->ledbit, 0, LED_MAX); 1417 len += input_print_modalias_bits(buf + len, size - len, 1418 's', id->sndbit, 0, SND_MAX); 1419 len += input_print_modalias_bits(buf + len, size - len, 1420 'f', id->ffbit, 0, FF_MAX); 1421 len += input_print_modalias_bits(buf + len, size - len, 1422 'w', id->swbit, 0, SW_MAX); 1423 1424 return len; 1425 } 1426 1427 static int input_print_modalias(char *buf, int size, const struct input_dev *id) 1428 { 1429 int full_len; 1430 1431 /* 1432 * Printing is done in 2 passes: first one figures out total length 1433 * needed for the modalias string, second one will try to trim key 1434 * data in case when buffer is too small for the entire modalias. 1435 * If the buffer is too small regardless, it will fill as much as it 1436 * can (without trimming key data) into the buffer and leave it to 1437 * the caller to figure out what to do with the result. 1438 */ 1439 full_len = input_print_modalias_parts(NULL, 0, 0, id); 1440 return input_print_modalias_parts(buf, size, full_len, id); 1441 } 1442 1443 static ssize_t input_dev_show_modalias(struct device *dev, 1444 struct device_attribute *attr, 1445 char *buf) 1446 { 1447 struct input_dev *id = to_input_dev(dev); 1448 ssize_t len; 1449 1450 len = input_print_modalias(buf, PAGE_SIZE, id); 1451 if (len < PAGE_SIZE - 2) 1452 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1453 1454 return min_t(int, len, PAGE_SIZE); 1455 } 1456 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1457 1458 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, 1459 int max, int add_cr); 1460 1461 static ssize_t input_dev_show_properties(struct device *dev, 1462 struct device_attribute *attr, 1463 char *buf) 1464 { 1465 struct input_dev *input_dev = to_input_dev(dev); 1466 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1467 INPUT_PROP_MAX, true); 1468 return min_t(int, len, PAGE_SIZE); 1469 } 1470 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1471 1472 static int input_inhibit_device(struct input_dev *dev); 1473 static int input_uninhibit_device(struct input_dev *dev); 1474 1475 static ssize_t inhibited_show(struct device *dev, 1476 struct device_attribute *attr, 1477 char *buf) 1478 { 1479 struct input_dev *input_dev = to_input_dev(dev); 1480 1481 return sysfs_emit(buf, "%d\n", input_dev->inhibited); 1482 } 1483 1484 static ssize_t inhibited_store(struct device *dev, 1485 struct device_attribute *attr, const char *buf, 1486 size_t len) 1487 { 1488 struct input_dev *input_dev = to_input_dev(dev); 1489 ssize_t rv; 1490 bool inhibited; 1491 1492 if (kstrtobool(buf, &inhibited)) 1493 return -EINVAL; 1494 1495 if (inhibited) 1496 rv = input_inhibit_device(input_dev); 1497 else 1498 rv = input_uninhibit_device(input_dev); 1499 1500 if (rv != 0) 1501 return rv; 1502 1503 return len; 1504 } 1505 1506 static DEVICE_ATTR_RW(inhibited); 1507 1508 static struct attribute *input_dev_attrs[] = { 1509 &dev_attr_name.attr, 1510 &dev_attr_phys.attr, 1511 &dev_attr_uniq.attr, 1512 &dev_attr_modalias.attr, 1513 &dev_attr_properties.attr, 1514 &dev_attr_inhibited.attr, 1515 NULL 1516 }; 1517 1518 static const struct attribute_group input_dev_attr_group = { 1519 .attrs = input_dev_attrs, 1520 }; 1521 1522 #define INPUT_DEV_ID_ATTR(name) \ 1523 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1524 struct device_attribute *attr, \ 1525 char *buf) \ 1526 { \ 1527 struct input_dev *input_dev = to_input_dev(dev); \ 1528 return sysfs_emit(buf, "%04x\n", input_dev->id.name); \ 1529 } \ 1530 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1531 1532 INPUT_DEV_ID_ATTR(bustype); 1533 INPUT_DEV_ID_ATTR(vendor); 1534 INPUT_DEV_ID_ATTR(product); 1535 INPUT_DEV_ID_ATTR(version); 1536 1537 static struct attribute *input_dev_id_attrs[] = { 1538 &dev_attr_bustype.attr, 1539 &dev_attr_vendor.attr, 1540 &dev_attr_product.attr, 1541 &dev_attr_version.attr, 1542 NULL 1543 }; 1544 1545 static const struct attribute_group input_dev_id_attr_group = { 1546 .name = "id", 1547 .attrs = input_dev_id_attrs, 1548 }; 1549 1550 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, 1551 int max, int add_cr) 1552 { 1553 int i; 1554 int len = 0; 1555 bool skip_empty = true; 1556 1557 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1558 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1559 bitmap[i], skip_empty); 1560 if (len) { 1561 skip_empty = false; 1562 if (i > 0) 1563 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1564 } 1565 } 1566 1567 /* 1568 * If no output was produced print a single 0. 1569 */ 1570 if (len == 0) 1571 len = snprintf(buf, buf_size, "%d", 0); 1572 1573 if (add_cr) 1574 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1575 1576 return len; 1577 } 1578 1579 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1580 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1581 struct device_attribute *attr, \ 1582 char *buf) \ 1583 { \ 1584 struct input_dev *input_dev = to_input_dev(dev); \ 1585 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1586 input_dev->bm##bit, ev##_MAX, \ 1587 true); \ 1588 return min_t(int, len, PAGE_SIZE); \ 1589 } \ 1590 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1591 1592 INPUT_DEV_CAP_ATTR(EV, ev); 1593 INPUT_DEV_CAP_ATTR(KEY, key); 1594 INPUT_DEV_CAP_ATTR(REL, rel); 1595 INPUT_DEV_CAP_ATTR(ABS, abs); 1596 INPUT_DEV_CAP_ATTR(MSC, msc); 1597 INPUT_DEV_CAP_ATTR(LED, led); 1598 INPUT_DEV_CAP_ATTR(SND, snd); 1599 INPUT_DEV_CAP_ATTR(FF, ff); 1600 INPUT_DEV_CAP_ATTR(SW, sw); 1601 1602 static struct attribute *input_dev_caps_attrs[] = { 1603 &dev_attr_ev.attr, 1604 &dev_attr_key.attr, 1605 &dev_attr_rel.attr, 1606 &dev_attr_abs.attr, 1607 &dev_attr_msc.attr, 1608 &dev_attr_led.attr, 1609 &dev_attr_snd.attr, 1610 &dev_attr_ff.attr, 1611 &dev_attr_sw.attr, 1612 NULL 1613 }; 1614 1615 static const struct attribute_group input_dev_caps_attr_group = { 1616 .name = "capabilities", 1617 .attrs = input_dev_caps_attrs, 1618 }; 1619 1620 static const struct attribute_group *input_dev_attr_groups[] = { 1621 &input_dev_attr_group, 1622 &input_dev_id_attr_group, 1623 &input_dev_caps_attr_group, 1624 &input_poller_attribute_group, 1625 NULL 1626 }; 1627 1628 static void input_dev_release(struct device *device) 1629 { 1630 struct input_dev *dev = to_input_dev(device); 1631 1632 input_ff_destroy(dev); 1633 input_mt_destroy_slots(dev); 1634 kfree(dev->poller); 1635 kfree(dev->absinfo); 1636 kfree(dev->vals); 1637 kfree(dev); 1638 1639 module_put(THIS_MODULE); 1640 } 1641 1642 /* 1643 * Input uevent interface - loading event handlers based on 1644 * device bitfields. 1645 */ 1646 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1647 const char *name, const unsigned long *bitmap, int max) 1648 { 1649 int len; 1650 1651 if (add_uevent_var(env, "%s", name)) 1652 return -ENOMEM; 1653 1654 len = input_print_bitmap(&env->buf[env->buflen - 1], 1655 sizeof(env->buf) - env->buflen, 1656 bitmap, max, false); 1657 if (len >= (sizeof(env->buf) - env->buflen)) 1658 return -ENOMEM; 1659 1660 env->buflen += len; 1661 return 0; 1662 } 1663 1664 /* 1665 * This is a pretty gross hack. When building uevent data the driver core 1666 * may try adding more environment variables to kobj_uevent_env without 1667 * telling us, so we have no idea how much of the buffer we can use to 1668 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially 1669 * reduce amount of memory we will use for the modalias environment variable. 1670 * 1671 * The potential additions are: 1672 * 1673 * SEQNUM=18446744073709551615 - (%llu - 28 bytes) 1674 * HOME=/ (6 bytes) 1675 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes) 1676 * 1677 * 68 bytes total. Allow extra buffer - 96 bytes 1678 */ 1679 #define UEVENT_ENV_EXTRA_LEN 96 1680 1681 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1682 const struct input_dev *dev) 1683 { 1684 int len; 1685 1686 if (add_uevent_var(env, "MODALIAS=")) 1687 return -ENOMEM; 1688 1689 len = input_print_modalias(&env->buf[env->buflen - 1], 1690 (int)sizeof(env->buf) - env->buflen - 1691 UEVENT_ENV_EXTRA_LEN, 1692 dev); 1693 if (len >= ((int)sizeof(env->buf) - env->buflen - 1694 UEVENT_ENV_EXTRA_LEN)) 1695 return -ENOMEM; 1696 1697 env->buflen += len; 1698 return 0; 1699 } 1700 1701 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1702 do { \ 1703 int err = add_uevent_var(env, fmt, val); \ 1704 if (err) \ 1705 return err; \ 1706 } while (0) 1707 1708 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1709 do { \ 1710 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1711 if (err) \ 1712 return err; \ 1713 } while (0) 1714 1715 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1716 do { \ 1717 int err = input_add_uevent_modalias_var(env, dev); \ 1718 if (err) \ 1719 return err; \ 1720 } while (0) 1721 1722 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env) 1723 { 1724 const struct input_dev *dev = to_input_dev(device); 1725 1726 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1727 dev->id.bustype, dev->id.vendor, 1728 dev->id.product, dev->id.version); 1729 if (dev->name) 1730 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1731 if (dev->phys) 1732 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1733 if (dev->uniq) 1734 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1735 1736 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1737 1738 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1739 if (test_bit(EV_KEY, dev->evbit)) 1740 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1741 if (test_bit(EV_REL, dev->evbit)) 1742 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1743 if (test_bit(EV_ABS, dev->evbit)) 1744 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1745 if (test_bit(EV_MSC, dev->evbit)) 1746 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1747 if (test_bit(EV_LED, dev->evbit)) 1748 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1749 if (test_bit(EV_SND, dev->evbit)) 1750 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1751 if (test_bit(EV_FF, dev->evbit)) 1752 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1753 if (test_bit(EV_SW, dev->evbit)) 1754 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1755 1756 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1757 1758 return 0; 1759 } 1760 1761 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1762 do { \ 1763 int i; \ 1764 bool active; \ 1765 \ 1766 if (!test_bit(EV_##type, dev->evbit)) \ 1767 break; \ 1768 \ 1769 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ 1770 active = test_bit(i, dev->bits); \ 1771 if (!active && !on) \ 1772 continue; \ 1773 \ 1774 dev->event(dev, EV_##type, i, on ? active : 0); \ 1775 } \ 1776 } while (0) 1777 1778 static void input_dev_toggle(struct input_dev *dev, bool activate) 1779 { 1780 if (!dev->event) 1781 return; 1782 1783 INPUT_DO_TOGGLE(dev, LED, led, activate); 1784 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1785 1786 if (activate && test_bit(EV_REP, dev->evbit)) { 1787 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1788 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1789 } 1790 } 1791 1792 /** 1793 * input_reset_device() - reset/restore the state of input device 1794 * @dev: input device whose state needs to be reset 1795 * 1796 * This function tries to reset the state of an opened input device and 1797 * bring internal state and state if the hardware in sync with each other. 1798 * We mark all keys as released, restore LED state, repeat rate, etc. 1799 */ 1800 void input_reset_device(struct input_dev *dev) 1801 { 1802 unsigned long flags; 1803 1804 mutex_lock(&dev->mutex); 1805 spin_lock_irqsave(&dev->event_lock, flags); 1806 1807 input_dev_toggle(dev, true); 1808 if (input_dev_release_keys(dev)) 1809 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 1810 1811 spin_unlock_irqrestore(&dev->event_lock, flags); 1812 mutex_unlock(&dev->mutex); 1813 } 1814 EXPORT_SYMBOL(input_reset_device); 1815 1816 static int input_inhibit_device(struct input_dev *dev) 1817 { 1818 mutex_lock(&dev->mutex); 1819 1820 if (dev->inhibited) 1821 goto out; 1822 1823 if (dev->users) { 1824 if (dev->close) 1825 dev->close(dev); 1826 if (dev->poller) 1827 input_dev_poller_stop(dev->poller); 1828 } 1829 1830 spin_lock_irq(&dev->event_lock); 1831 input_mt_release_slots(dev); 1832 input_dev_release_keys(dev); 1833 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 1834 input_dev_toggle(dev, false); 1835 spin_unlock_irq(&dev->event_lock); 1836 1837 dev->inhibited = true; 1838 1839 out: 1840 mutex_unlock(&dev->mutex); 1841 return 0; 1842 } 1843 1844 static int input_uninhibit_device(struct input_dev *dev) 1845 { 1846 int ret = 0; 1847 1848 mutex_lock(&dev->mutex); 1849 1850 if (!dev->inhibited) 1851 goto out; 1852 1853 if (dev->users) { 1854 if (dev->open) { 1855 ret = dev->open(dev); 1856 if (ret) 1857 goto out; 1858 } 1859 if (dev->poller) 1860 input_dev_poller_start(dev->poller); 1861 } 1862 1863 dev->inhibited = false; 1864 spin_lock_irq(&dev->event_lock); 1865 input_dev_toggle(dev, true); 1866 spin_unlock_irq(&dev->event_lock); 1867 1868 out: 1869 mutex_unlock(&dev->mutex); 1870 return ret; 1871 } 1872 1873 static int input_dev_suspend(struct device *dev) 1874 { 1875 struct input_dev *input_dev = to_input_dev(dev); 1876 1877 spin_lock_irq(&input_dev->event_lock); 1878 1879 /* 1880 * Keys that are pressed now are unlikely to be 1881 * still pressed when we resume. 1882 */ 1883 if (input_dev_release_keys(input_dev)) 1884 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); 1885 1886 /* Turn off LEDs and sounds, if any are active. */ 1887 input_dev_toggle(input_dev, false); 1888 1889 spin_unlock_irq(&input_dev->event_lock); 1890 1891 return 0; 1892 } 1893 1894 static int input_dev_resume(struct device *dev) 1895 { 1896 struct input_dev *input_dev = to_input_dev(dev); 1897 1898 spin_lock_irq(&input_dev->event_lock); 1899 1900 /* Restore state of LEDs and sounds, if any were active. */ 1901 input_dev_toggle(input_dev, true); 1902 1903 spin_unlock_irq(&input_dev->event_lock); 1904 1905 return 0; 1906 } 1907 1908 static int input_dev_freeze(struct device *dev) 1909 { 1910 struct input_dev *input_dev = to_input_dev(dev); 1911 1912 spin_lock_irq(&input_dev->event_lock); 1913 1914 /* 1915 * Keys that are pressed now are unlikely to be 1916 * still pressed when we resume. 1917 */ 1918 if (input_dev_release_keys(input_dev)) 1919 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); 1920 1921 spin_unlock_irq(&input_dev->event_lock); 1922 1923 return 0; 1924 } 1925 1926 static int input_dev_poweroff(struct device *dev) 1927 { 1928 struct input_dev *input_dev = to_input_dev(dev); 1929 1930 spin_lock_irq(&input_dev->event_lock); 1931 1932 /* Turn off LEDs and sounds, if any are active. */ 1933 input_dev_toggle(input_dev, false); 1934 1935 spin_unlock_irq(&input_dev->event_lock); 1936 1937 return 0; 1938 } 1939 1940 static const struct dev_pm_ops input_dev_pm_ops = { 1941 .suspend = input_dev_suspend, 1942 .resume = input_dev_resume, 1943 .freeze = input_dev_freeze, 1944 .poweroff = input_dev_poweroff, 1945 .restore = input_dev_resume, 1946 }; 1947 1948 static const struct device_type input_dev_type = { 1949 .groups = input_dev_attr_groups, 1950 .release = input_dev_release, 1951 .uevent = input_dev_uevent, 1952 .pm = pm_sleep_ptr(&input_dev_pm_ops), 1953 }; 1954 1955 static char *input_devnode(const struct device *dev, umode_t *mode) 1956 { 1957 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1958 } 1959 1960 const struct class input_class = { 1961 .name = "input", 1962 .devnode = input_devnode, 1963 }; 1964 EXPORT_SYMBOL_GPL(input_class); 1965 1966 /** 1967 * input_allocate_device - allocate memory for new input device 1968 * 1969 * Returns prepared struct input_dev or %NULL. 1970 * 1971 * NOTE: Use input_free_device() to free devices that have not been 1972 * registered; input_unregister_device() should be used for already 1973 * registered devices. 1974 */ 1975 struct input_dev *input_allocate_device(void) 1976 { 1977 static atomic_t input_no = ATOMIC_INIT(-1); 1978 struct input_dev *dev; 1979 1980 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1981 if (!dev) 1982 return NULL; 1983 1984 /* 1985 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare, 1986 * see input_estimate_events_per_packet(). We will tune the number 1987 * when we register the device. 1988 */ 1989 dev->max_vals = 10; 1990 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 1991 if (!dev->vals) { 1992 kfree(dev); 1993 return NULL; 1994 } 1995 1996 mutex_init(&dev->mutex); 1997 spin_lock_init(&dev->event_lock); 1998 timer_setup(&dev->timer, NULL, 0); 1999 INIT_LIST_HEAD(&dev->h_list); 2000 INIT_LIST_HEAD(&dev->node); 2001 2002 dev->dev.type = &input_dev_type; 2003 dev->dev.class = &input_class; 2004 device_initialize(&dev->dev); 2005 /* 2006 * From this point on we can no longer simply "kfree(dev)", we need 2007 * to use input_free_device() so that device core properly frees its 2008 * resources associated with the input device. 2009 */ 2010 2011 dev_set_name(&dev->dev, "input%lu", 2012 (unsigned long)atomic_inc_return(&input_no)); 2013 2014 __module_get(THIS_MODULE); 2015 2016 return dev; 2017 } 2018 EXPORT_SYMBOL(input_allocate_device); 2019 2020 struct input_devres { 2021 struct input_dev *input; 2022 }; 2023 2024 static int devm_input_device_match(struct device *dev, void *res, void *data) 2025 { 2026 struct input_devres *devres = res; 2027 2028 return devres->input == data; 2029 } 2030 2031 static void devm_input_device_release(struct device *dev, void *res) 2032 { 2033 struct input_devres *devres = res; 2034 struct input_dev *input = devres->input; 2035 2036 dev_dbg(dev, "%s: dropping reference to %s\n", 2037 __func__, dev_name(&input->dev)); 2038 input_put_device(input); 2039 } 2040 2041 /** 2042 * devm_input_allocate_device - allocate managed input device 2043 * @dev: device owning the input device being created 2044 * 2045 * Returns prepared struct input_dev or %NULL. 2046 * 2047 * Managed input devices do not need to be explicitly unregistered or 2048 * freed as it will be done automatically when owner device unbinds from 2049 * its driver (or binding fails). Once managed input device is allocated, 2050 * it is ready to be set up and registered in the same fashion as regular 2051 * input device. There are no special devm_input_device_[un]register() 2052 * variants, regular ones work with both managed and unmanaged devices, 2053 * should you need them. In most cases however, managed input device need 2054 * not be explicitly unregistered or freed. 2055 * 2056 * NOTE: the owner device is set up as parent of input device and users 2057 * should not override it. 2058 */ 2059 struct input_dev *devm_input_allocate_device(struct device *dev) 2060 { 2061 struct input_dev *input; 2062 struct input_devres *devres; 2063 2064 devres = devres_alloc(devm_input_device_release, 2065 sizeof(*devres), GFP_KERNEL); 2066 if (!devres) 2067 return NULL; 2068 2069 input = input_allocate_device(); 2070 if (!input) { 2071 devres_free(devres); 2072 return NULL; 2073 } 2074 2075 input->dev.parent = dev; 2076 input->devres_managed = true; 2077 2078 devres->input = input; 2079 devres_add(dev, devres); 2080 2081 return input; 2082 } 2083 EXPORT_SYMBOL(devm_input_allocate_device); 2084 2085 /** 2086 * input_free_device - free memory occupied by input_dev structure 2087 * @dev: input device to free 2088 * 2089 * This function should only be used if input_register_device() 2090 * was not called yet or if it failed. Once device was registered 2091 * use input_unregister_device() and memory will be freed once last 2092 * reference to the device is dropped. 2093 * 2094 * Device should be allocated by input_allocate_device(). 2095 * 2096 * NOTE: If there are references to the input device then memory 2097 * will not be freed until last reference is dropped. 2098 */ 2099 void input_free_device(struct input_dev *dev) 2100 { 2101 if (dev) { 2102 if (dev->devres_managed) 2103 WARN_ON(devres_destroy(dev->dev.parent, 2104 devm_input_device_release, 2105 devm_input_device_match, 2106 dev)); 2107 input_put_device(dev); 2108 } 2109 } 2110 EXPORT_SYMBOL(input_free_device); 2111 2112 /** 2113 * input_set_timestamp - set timestamp for input events 2114 * @dev: input device to set timestamp for 2115 * @timestamp: the time at which the event has occurred 2116 * in CLOCK_MONOTONIC 2117 * 2118 * This function is intended to provide to the input system a more 2119 * accurate time of when an event actually occurred. The driver should 2120 * call this function as soon as a timestamp is acquired ensuring 2121 * clock conversions in input_set_timestamp are done correctly. 2122 * 2123 * The system entering suspend state between timestamp acquisition and 2124 * calling input_set_timestamp can result in inaccurate conversions. 2125 */ 2126 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) 2127 { 2128 dev->timestamp[INPUT_CLK_MONO] = timestamp; 2129 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp); 2130 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp, 2131 TK_OFFS_BOOT); 2132 } 2133 EXPORT_SYMBOL(input_set_timestamp); 2134 2135 /** 2136 * input_get_timestamp - get timestamp for input events 2137 * @dev: input device to get timestamp from 2138 * 2139 * A valid timestamp is a timestamp of non-zero value. 2140 */ 2141 ktime_t *input_get_timestamp(struct input_dev *dev) 2142 { 2143 const ktime_t invalid_timestamp = ktime_set(0, 0); 2144 2145 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp)) 2146 input_set_timestamp(dev, ktime_get()); 2147 2148 return dev->timestamp; 2149 } 2150 EXPORT_SYMBOL(input_get_timestamp); 2151 2152 /** 2153 * input_set_capability - mark device as capable of a certain event 2154 * @dev: device that is capable of emitting or accepting event 2155 * @type: type of the event (EV_KEY, EV_REL, etc...) 2156 * @code: event code 2157 * 2158 * In addition to setting up corresponding bit in appropriate capability 2159 * bitmap the function also adjusts dev->evbit. 2160 */ 2161 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 2162 { 2163 if (type < EV_CNT && input_max_code[type] && 2164 code > input_max_code[type]) { 2165 pr_err("%s: invalid code %u for type %u\n", __func__, code, 2166 type); 2167 dump_stack(); 2168 return; 2169 } 2170 2171 switch (type) { 2172 case EV_KEY: 2173 __set_bit(code, dev->keybit); 2174 break; 2175 2176 case EV_REL: 2177 __set_bit(code, dev->relbit); 2178 break; 2179 2180 case EV_ABS: 2181 input_alloc_absinfo(dev); 2182 __set_bit(code, dev->absbit); 2183 break; 2184 2185 case EV_MSC: 2186 __set_bit(code, dev->mscbit); 2187 break; 2188 2189 case EV_SW: 2190 __set_bit(code, dev->swbit); 2191 break; 2192 2193 case EV_LED: 2194 __set_bit(code, dev->ledbit); 2195 break; 2196 2197 case EV_SND: 2198 __set_bit(code, dev->sndbit); 2199 break; 2200 2201 case EV_FF: 2202 __set_bit(code, dev->ffbit); 2203 break; 2204 2205 case EV_PWR: 2206 /* do nothing */ 2207 break; 2208 2209 default: 2210 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); 2211 dump_stack(); 2212 return; 2213 } 2214 2215 __set_bit(type, dev->evbit); 2216 } 2217 EXPORT_SYMBOL(input_set_capability); 2218 2219 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 2220 { 2221 int mt_slots; 2222 int i; 2223 unsigned int events; 2224 2225 if (dev->mt) { 2226 mt_slots = dev->mt->num_slots; 2227 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 2228 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 2229 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1; 2230 mt_slots = clamp(mt_slots, 2, 32); 2231 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 2232 mt_slots = 2; 2233 } else { 2234 mt_slots = 0; 2235 } 2236 2237 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 2238 2239 if (test_bit(EV_ABS, dev->evbit)) 2240 for_each_set_bit(i, dev->absbit, ABS_CNT) 2241 events += input_is_mt_axis(i) ? mt_slots : 1; 2242 2243 if (test_bit(EV_REL, dev->evbit)) 2244 events += bitmap_weight(dev->relbit, REL_CNT); 2245 2246 /* Make room for KEY and MSC events */ 2247 events += 7; 2248 2249 return events; 2250 } 2251 2252 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 2253 do { \ 2254 if (!test_bit(EV_##type, dev->evbit)) \ 2255 memset(dev->bits##bit, 0, \ 2256 sizeof(dev->bits##bit)); \ 2257 } while (0) 2258 2259 static void input_cleanse_bitmasks(struct input_dev *dev) 2260 { 2261 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2262 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2263 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2264 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2265 INPUT_CLEANSE_BITMASK(dev, LED, led); 2266 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2267 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2268 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2269 } 2270 2271 static void __input_unregister_device(struct input_dev *dev) 2272 { 2273 struct input_handle *handle, *next; 2274 2275 input_disconnect_device(dev); 2276 2277 mutex_lock(&input_mutex); 2278 2279 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2280 handle->handler->disconnect(handle); 2281 WARN_ON(!list_empty(&dev->h_list)); 2282 2283 del_timer_sync(&dev->timer); 2284 list_del_init(&dev->node); 2285 2286 input_wakeup_procfs_readers(); 2287 2288 mutex_unlock(&input_mutex); 2289 2290 device_del(&dev->dev); 2291 } 2292 2293 static void devm_input_device_unregister(struct device *dev, void *res) 2294 { 2295 struct input_devres *devres = res; 2296 struct input_dev *input = devres->input; 2297 2298 dev_dbg(dev, "%s: unregistering device %s\n", 2299 __func__, dev_name(&input->dev)); 2300 __input_unregister_device(input); 2301 } 2302 2303 /* 2304 * Generate software autorepeat event. Note that we take 2305 * dev->event_lock here to avoid racing with input_event 2306 * which may cause keys get "stuck". 2307 */ 2308 static void input_repeat_key(struct timer_list *t) 2309 { 2310 struct input_dev *dev = from_timer(dev, t, timer); 2311 unsigned long flags; 2312 2313 spin_lock_irqsave(&dev->event_lock, flags); 2314 2315 if (!dev->inhibited && 2316 test_bit(dev->repeat_key, dev->key) && 2317 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 2318 2319 input_set_timestamp(dev, ktime_get()); 2320 input_handle_event(dev, EV_KEY, dev->repeat_key, 2); 2321 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 2322 2323 if (dev->rep[REP_PERIOD]) 2324 mod_timer(&dev->timer, jiffies + 2325 msecs_to_jiffies(dev->rep[REP_PERIOD])); 2326 } 2327 2328 spin_unlock_irqrestore(&dev->event_lock, flags); 2329 } 2330 2331 /** 2332 * input_enable_softrepeat - enable software autorepeat 2333 * @dev: input device 2334 * @delay: repeat delay 2335 * @period: repeat period 2336 * 2337 * Enable software autorepeat on the input device. 2338 */ 2339 void input_enable_softrepeat(struct input_dev *dev, int delay, int period) 2340 { 2341 dev->timer.function = input_repeat_key; 2342 dev->rep[REP_DELAY] = delay; 2343 dev->rep[REP_PERIOD] = period; 2344 } 2345 EXPORT_SYMBOL(input_enable_softrepeat); 2346 2347 bool input_device_enabled(struct input_dev *dev) 2348 { 2349 lockdep_assert_held(&dev->mutex); 2350 2351 return !dev->inhibited && dev->users > 0; 2352 } 2353 EXPORT_SYMBOL_GPL(input_device_enabled); 2354 2355 static int input_device_tune_vals(struct input_dev *dev) 2356 { 2357 struct input_value *vals; 2358 unsigned int packet_size; 2359 unsigned int max_vals; 2360 2361 packet_size = input_estimate_events_per_packet(dev); 2362 if (dev->hint_events_per_packet < packet_size) 2363 dev->hint_events_per_packet = packet_size; 2364 2365 max_vals = dev->hint_events_per_packet + 2; 2366 if (dev->max_vals >= max_vals) 2367 return 0; 2368 2369 vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL); 2370 if (!vals) 2371 return -ENOMEM; 2372 2373 spin_lock_irq(&dev->event_lock); 2374 dev->max_vals = max_vals; 2375 swap(dev->vals, vals); 2376 spin_unlock_irq(&dev->event_lock); 2377 2378 /* Because of swap() above, this frees the old vals memory */ 2379 kfree(vals); 2380 2381 return 0; 2382 } 2383 2384 /** 2385 * input_register_device - register device with input core 2386 * @dev: device to be registered 2387 * 2388 * This function registers device with input core. The device must be 2389 * allocated with input_allocate_device() and all it's capabilities 2390 * set up before registering. 2391 * If function fails the device must be freed with input_free_device(). 2392 * Once device has been successfully registered it can be unregistered 2393 * with input_unregister_device(); input_free_device() should not be 2394 * called in this case. 2395 * 2396 * Note that this function is also used to register managed input devices 2397 * (ones allocated with devm_input_allocate_device()). Such managed input 2398 * devices need not be explicitly unregistered or freed, their tear down 2399 * is controlled by the devres infrastructure. It is also worth noting 2400 * that tear down of managed input devices is internally a 2-step process: 2401 * registered managed input device is first unregistered, but stays in 2402 * memory and can still handle input_event() calls (although events will 2403 * not be delivered anywhere). The freeing of managed input device will 2404 * happen later, when devres stack is unwound to the point where device 2405 * allocation was made. 2406 */ 2407 int input_register_device(struct input_dev *dev) 2408 { 2409 struct input_devres *devres = NULL; 2410 struct input_handler *handler; 2411 const char *path; 2412 int error; 2413 2414 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { 2415 dev_err(&dev->dev, 2416 "Absolute device without dev->absinfo, refusing to register\n"); 2417 return -EINVAL; 2418 } 2419 2420 if (dev->devres_managed) { 2421 devres = devres_alloc(devm_input_device_unregister, 2422 sizeof(*devres), GFP_KERNEL); 2423 if (!devres) 2424 return -ENOMEM; 2425 2426 devres->input = dev; 2427 } 2428 2429 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2430 __set_bit(EV_SYN, dev->evbit); 2431 2432 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2433 __clear_bit(KEY_RESERVED, dev->keybit); 2434 2435 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2436 input_cleanse_bitmasks(dev); 2437 2438 error = input_device_tune_vals(dev); 2439 if (error) 2440 goto err_devres_free; 2441 2442 /* 2443 * If delay and period are pre-set by the driver, then autorepeating 2444 * is handled by the driver itself and we don't do it in input.c. 2445 */ 2446 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) 2447 input_enable_softrepeat(dev, 250, 33); 2448 2449 if (!dev->getkeycode) 2450 dev->getkeycode = input_default_getkeycode; 2451 2452 if (!dev->setkeycode) 2453 dev->setkeycode = input_default_setkeycode; 2454 2455 if (dev->poller) 2456 input_dev_poller_finalize(dev->poller); 2457 2458 error = device_add(&dev->dev); 2459 if (error) 2460 goto err_devres_free; 2461 2462 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2463 pr_info("%s as %s\n", 2464 dev->name ? dev->name : "Unspecified device", 2465 path ? path : "N/A"); 2466 kfree(path); 2467 2468 error = mutex_lock_interruptible(&input_mutex); 2469 if (error) 2470 goto err_device_del; 2471 2472 list_add_tail(&dev->node, &input_dev_list); 2473 2474 list_for_each_entry(handler, &input_handler_list, node) 2475 input_attach_handler(dev, handler); 2476 2477 input_wakeup_procfs_readers(); 2478 2479 mutex_unlock(&input_mutex); 2480 2481 if (dev->devres_managed) { 2482 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2483 __func__, dev_name(&dev->dev)); 2484 devres_add(dev->dev.parent, devres); 2485 } 2486 return 0; 2487 2488 err_device_del: 2489 device_del(&dev->dev); 2490 err_devres_free: 2491 devres_free(devres); 2492 return error; 2493 } 2494 EXPORT_SYMBOL(input_register_device); 2495 2496 /** 2497 * input_unregister_device - unregister previously registered device 2498 * @dev: device to be unregistered 2499 * 2500 * This function unregisters an input device. Once device is unregistered 2501 * the caller should not try to access it as it may get freed at any moment. 2502 */ 2503 void input_unregister_device(struct input_dev *dev) 2504 { 2505 if (dev->devres_managed) { 2506 WARN_ON(devres_destroy(dev->dev.parent, 2507 devm_input_device_unregister, 2508 devm_input_device_match, 2509 dev)); 2510 __input_unregister_device(dev); 2511 /* 2512 * We do not do input_put_device() here because it will be done 2513 * when 2nd devres fires up. 2514 */ 2515 } else { 2516 __input_unregister_device(dev); 2517 input_put_device(dev); 2518 } 2519 } 2520 EXPORT_SYMBOL(input_unregister_device); 2521 2522 static int input_handler_check_methods(const struct input_handler *handler) 2523 { 2524 int count = 0; 2525 2526 if (handler->filter) 2527 count++; 2528 if (handler->events) 2529 count++; 2530 if (handler->event) 2531 count++; 2532 2533 if (count > 1) { 2534 pr_err("%s: only one event processing method can be defined (%s)\n", 2535 __func__, handler->name); 2536 return -EINVAL; 2537 } 2538 2539 return 0; 2540 } 2541 2542 /** 2543 * input_register_handler - register a new input handler 2544 * @handler: handler to be registered 2545 * 2546 * This function registers a new input handler (interface) for input 2547 * devices in the system and attaches it to all input devices that 2548 * are compatible with the handler. 2549 */ 2550 int input_register_handler(struct input_handler *handler) 2551 { 2552 struct input_dev *dev; 2553 int error; 2554 2555 error = input_handler_check_methods(handler); 2556 if (error) 2557 return error; 2558 2559 INIT_LIST_HEAD(&handler->h_list); 2560 2561 error = mutex_lock_interruptible(&input_mutex); 2562 if (error) 2563 return error; 2564 2565 list_add_tail(&handler->node, &input_handler_list); 2566 2567 list_for_each_entry(dev, &input_dev_list, node) 2568 input_attach_handler(dev, handler); 2569 2570 input_wakeup_procfs_readers(); 2571 2572 mutex_unlock(&input_mutex); 2573 return 0; 2574 } 2575 EXPORT_SYMBOL(input_register_handler); 2576 2577 /** 2578 * input_unregister_handler - unregisters an input handler 2579 * @handler: handler to be unregistered 2580 * 2581 * This function disconnects a handler from its input devices and 2582 * removes it from lists of known handlers. 2583 */ 2584 void input_unregister_handler(struct input_handler *handler) 2585 { 2586 struct input_handle *handle, *next; 2587 2588 mutex_lock(&input_mutex); 2589 2590 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2591 handler->disconnect(handle); 2592 WARN_ON(!list_empty(&handler->h_list)); 2593 2594 list_del_init(&handler->node); 2595 2596 input_wakeup_procfs_readers(); 2597 2598 mutex_unlock(&input_mutex); 2599 } 2600 EXPORT_SYMBOL(input_unregister_handler); 2601 2602 /** 2603 * input_handler_for_each_handle - handle iterator 2604 * @handler: input handler to iterate 2605 * @data: data for the callback 2606 * @fn: function to be called for each handle 2607 * 2608 * Iterate over @bus's list of devices, and call @fn for each, passing 2609 * it @data and stop when @fn returns a non-zero value. The function is 2610 * using RCU to traverse the list and therefore may be using in atomic 2611 * contexts. The @fn callback is invoked from RCU critical section and 2612 * thus must not sleep. 2613 */ 2614 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2615 int (*fn)(struct input_handle *, void *)) 2616 { 2617 struct input_handle *handle; 2618 int retval = 0; 2619 2620 rcu_read_lock(); 2621 2622 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2623 retval = fn(handle, data); 2624 if (retval) 2625 break; 2626 } 2627 2628 rcu_read_unlock(); 2629 2630 return retval; 2631 } 2632 EXPORT_SYMBOL(input_handler_for_each_handle); 2633 2634 /* 2635 * An implementation of input_handle's handle_events() method that simply 2636 * invokes handler->event() method for each event one by one. 2637 */ 2638 static unsigned int input_handle_events_default(struct input_handle *handle, 2639 struct input_value *vals, 2640 unsigned int count) 2641 { 2642 struct input_handler *handler = handle->handler; 2643 struct input_value *v; 2644 2645 for (v = vals; v != vals + count; v++) 2646 handler->event(handle, v->type, v->code, v->value); 2647 2648 return count; 2649 } 2650 2651 /* 2652 * An implementation of input_handle's handle_events() method that invokes 2653 * handler->filter() method for each event one by one and removes events 2654 * that were filtered out from the "vals" array. 2655 */ 2656 static unsigned int input_handle_events_filter(struct input_handle *handle, 2657 struct input_value *vals, 2658 unsigned int count) 2659 { 2660 struct input_handler *handler = handle->handler; 2661 struct input_value *end = vals; 2662 struct input_value *v; 2663 2664 for (v = vals; v != vals + count; v++) { 2665 if (handler->filter(handle, v->type, v->code, v->value)) 2666 continue; 2667 if (end != v) 2668 *end = *v; 2669 end++; 2670 } 2671 2672 return end - vals; 2673 } 2674 2675 /* 2676 * An implementation of input_handle's handle_events() method that does nothing. 2677 */ 2678 static unsigned int input_handle_events_null(struct input_handle *handle, 2679 struct input_value *vals, 2680 unsigned int count) 2681 { 2682 return count; 2683 } 2684 2685 /* 2686 * Sets up appropriate handle->event_handler based on the input_handler 2687 * associated with the handle. 2688 */ 2689 static void input_handle_setup_event_handler(struct input_handle *handle) 2690 { 2691 struct input_handler *handler = handle->handler; 2692 2693 if (handler->filter) 2694 handle->handle_events = input_handle_events_filter; 2695 else if (handler->event) 2696 handle->handle_events = input_handle_events_default; 2697 else if (handler->events) 2698 handle->handle_events = handler->events; 2699 else 2700 handle->handle_events = input_handle_events_null; 2701 } 2702 2703 /** 2704 * input_register_handle - register a new input handle 2705 * @handle: handle to register 2706 * 2707 * This function puts a new input handle onto device's 2708 * and handler's lists so that events can flow through 2709 * it once it is opened using input_open_device(). 2710 * 2711 * This function is supposed to be called from handler's 2712 * connect() method. 2713 */ 2714 int input_register_handle(struct input_handle *handle) 2715 { 2716 struct input_handler *handler = handle->handler; 2717 struct input_dev *dev = handle->dev; 2718 int error; 2719 2720 input_handle_setup_event_handler(handle); 2721 /* 2722 * We take dev->mutex here to prevent race with 2723 * input_release_device(). 2724 */ 2725 error = mutex_lock_interruptible(&dev->mutex); 2726 if (error) 2727 return error; 2728 2729 /* 2730 * Filters go to the head of the list, normal handlers 2731 * to the tail. 2732 */ 2733 if (handler->filter) 2734 list_add_rcu(&handle->d_node, &dev->h_list); 2735 else 2736 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2737 2738 mutex_unlock(&dev->mutex); 2739 2740 /* 2741 * Since we are supposed to be called from ->connect() 2742 * which is mutually exclusive with ->disconnect() 2743 * we can't be racing with input_unregister_handle() 2744 * and so separate lock is not needed here. 2745 */ 2746 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2747 2748 if (handler->start) 2749 handler->start(handle); 2750 2751 return 0; 2752 } 2753 EXPORT_SYMBOL(input_register_handle); 2754 2755 /** 2756 * input_unregister_handle - unregister an input handle 2757 * @handle: handle to unregister 2758 * 2759 * This function removes input handle from device's 2760 * and handler's lists. 2761 * 2762 * This function is supposed to be called from handler's 2763 * disconnect() method. 2764 */ 2765 void input_unregister_handle(struct input_handle *handle) 2766 { 2767 struct input_dev *dev = handle->dev; 2768 2769 list_del_rcu(&handle->h_node); 2770 2771 /* 2772 * Take dev->mutex to prevent race with input_release_device(). 2773 */ 2774 mutex_lock(&dev->mutex); 2775 list_del_rcu(&handle->d_node); 2776 mutex_unlock(&dev->mutex); 2777 2778 synchronize_rcu(); 2779 } 2780 EXPORT_SYMBOL(input_unregister_handle); 2781 2782 /** 2783 * input_get_new_minor - allocates a new input minor number 2784 * @legacy_base: beginning or the legacy range to be searched 2785 * @legacy_num: size of legacy range 2786 * @allow_dynamic: whether we can also take ID from the dynamic range 2787 * 2788 * This function allocates a new device minor for from input major namespace. 2789 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2790 * parameters and whether ID can be allocated from dynamic range if there are 2791 * no free IDs in legacy range. 2792 */ 2793 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2794 bool allow_dynamic) 2795 { 2796 /* 2797 * This function should be called from input handler's ->connect() 2798 * methods, which are serialized with input_mutex, so no additional 2799 * locking is needed here. 2800 */ 2801 if (legacy_base >= 0) { 2802 int minor = ida_alloc_range(&input_ida, legacy_base, 2803 legacy_base + legacy_num - 1, 2804 GFP_KERNEL); 2805 if (minor >= 0 || !allow_dynamic) 2806 return minor; 2807 } 2808 2809 return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV, 2810 INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL); 2811 } 2812 EXPORT_SYMBOL(input_get_new_minor); 2813 2814 /** 2815 * input_free_minor - release previously allocated minor 2816 * @minor: minor to be released 2817 * 2818 * This function releases previously allocated input minor so that it can be 2819 * reused later. 2820 */ 2821 void input_free_minor(unsigned int minor) 2822 { 2823 ida_free(&input_ida, minor); 2824 } 2825 EXPORT_SYMBOL(input_free_minor); 2826 2827 static int __init input_init(void) 2828 { 2829 int err; 2830 2831 err = class_register(&input_class); 2832 if (err) { 2833 pr_err("unable to register input_dev class\n"); 2834 return err; 2835 } 2836 2837 err = input_proc_init(); 2838 if (err) 2839 goto fail1; 2840 2841 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2842 INPUT_MAX_CHAR_DEVICES, "input"); 2843 if (err) { 2844 pr_err("unable to register char major %d", INPUT_MAJOR); 2845 goto fail2; 2846 } 2847 2848 return 0; 2849 2850 fail2: input_proc_exit(); 2851 fail1: class_unregister(&input_class); 2852 return err; 2853 } 2854 2855 static void __exit input_exit(void) 2856 { 2857 input_proc_exit(); 2858 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2859 INPUT_MAX_CHAR_DEVICES); 2860 class_unregister(&input_class); 2861 } 2862 2863 subsys_initcall(input_init); 2864 module_exit(input_exit); 2865