1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #include <linux/init.h> 14 #include <linux/types.h> 15 #include <linux/input.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/random.h> 19 #include <linux/major.h> 20 #include <linux/proc_fs.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/device.h> 25 #include <linux/mutex.h> 26 #include <linux/rcupdate.h> 27 #include "input-compat.h" 28 29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 30 MODULE_DESCRIPTION("Input core"); 31 MODULE_LICENSE("GPL"); 32 33 #define INPUT_DEVICES 256 34 35 static LIST_HEAD(input_dev_list); 36 static LIST_HEAD(input_handler_list); 37 38 /* 39 * input_mutex protects access to both input_dev_list and input_handler_list. 40 * This also causes input_[un]register_device and input_[un]register_handler 41 * be mutually exclusive which simplifies locking in drivers implementing 42 * input handlers. 43 */ 44 static DEFINE_MUTEX(input_mutex); 45 46 static struct input_handler *input_table[8]; 47 48 static inline int is_event_supported(unsigned int code, 49 unsigned long *bm, unsigned int max) 50 { 51 return code <= max && test_bit(code, bm); 52 } 53 54 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 55 { 56 if (fuzz) { 57 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 58 return old_val; 59 60 if (value > old_val - fuzz && value < old_val + fuzz) 61 return (old_val * 3 + value) / 4; 62 63 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 64 return (old_val + value) / 2; 65 } 66 67 return value; 68 } 69 70 /* 71 * Pass event first through all filters and then, if event has not been 72 * filtered out, through all open handles. This function is called with 73 * dev->event_lock held and interrupts disabled. 74 */ 75 static void input_pass_event(struct input_dev *dev, 76 struct input_handler *src_handler, 77 unsigned int type, unsigned int code, int value) 78 { 79 struct input_handler *handler; 80 struct input_handle *handle; 81 82 rcu_read_lock(); 83 84 handle = rcu_dereference(dev->grab); 85 if (handle) 86 handle->handler->event(handle, type, code, value); 87 else { 88 bool filtered = false; 89 90 list_for_each_entry_rcu(handle, &dev->h_list, d_node) { 91 if (!handle->open) 92 continue; 93 94 handler = handle->handler; 95 96 /* 97 * If this is the handler that injected this 98 * particular event we want to skip it to avoid 99 * filters firing again and again. 100 */ 101 if (handler == src_handler) 102 continue; 103 104 if (!handler->filter) { 105 if (filtered) 106 break; 107 108 handler->event(handle, type, code, value); 109 110 } else if (handler->filter(handle, type, code, value)) 111 filtered = true; 112 } 113 } 114 115 rcu_read_unlock(); 116 } 117 118 /* 119 * Generate software autorepeat event. Note that we take 120 * dev->event_lock here to avoid racing with input_event 121 * which may cause keys get "stuck". 122 */ 123 static void input_repeat_key(unsigned long data) 124 { 125 struct input_dev *dev = (void *) data; 126 unsigned long flags; 127 128 spin_lock_irqsave(&dev->event_lock, flags); 129 130 if (test_bit(dev->repeat_key, dev->key) && 131 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 132 133 input_pass_event(dev, NULL, EV_KEY, dev->repeat_key, 2); 134 135 if (dev->sync) { 136 /* 137 * Only send SYN_REPORT if we are not in a middle 138 * of driver parsing a new hardware packet. 139 * Otherwise assume that the driver will send 140 * SYN_REPORT once it's done. 141 */ 142 input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1); 143 } 144 145 if (dev->rep[REP_PERIOD]) 146 mod_timer(&dev->timer, jiffies + 147 msecs_to_jiffies(dev->rep[REP_PERIOD])); 148 } 149 150 spin_unlock_irqrestore(&dev->event_lock, flags); 151 } 152 153 static void input_start_autorepeat(struct input_dev *dev, int code) 154 { 155 if (test_bit(EV_REP, dev->evbit) && 156 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 157 dev->timer.data) { 158 dev->repeat_key = code; 159 mod_timer(&dev->timer, 160 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 161 } 162 } 163 164 static void input_stop_autorepeat(struct input_dev *dev) 165 { 166 del_timer(&dev->timer); 167 } 168 169 #define INPUT_IGNORE_EVENT 0 170 #define INPUT_PASS_TO_HANDLERS 1 171 #define INPUT_PASS_TO_DEVICE 2 172 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 173 174 static int input_handle_abs_event(struct input_dev *dev, 175 struct input_handler *src_handler, 176 unsigned int code, int *pval) 177 { 178 bool is_mt_event; 179 int *pold; 180 181 if (code == ABS_MT_SLOT) { 182 /* 183 * "Stage" the event; we'll flush it later, when we 184 * get actual touch data. 185 */ 186 if (*pval >= 0 && *pval < dev->mtsize) 187 dev->slot = *pval; 188 189 return INPUT_IGNORE_EVENT; 190 } 191 192 is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST; 193 194 if (!is_mt_event) { 195 pold = &dev->absinfo[code].value; 196 } else if (dev->mt) { 197 struct input_mt_slot *mtslot = &dev->mt[dev->slot]; 198 pold = &mtslot->abs[code - ABS_MT_FIRST]; 199 } else { 200 /* 201 * Bypass filtering for multi-touch events when 202 * not employing slots. 203 */ 204 pold = NULL; 205 } 206 207 if (pold) { 208 *pval = input_defuzz_abs_event(*pval, *pold, 209 dev->absinfo[code].fuzz); 210 if (*pold == *pval) 211 return INPUT_IGNORE_EVENT; 212 213 *pold = *pval; 214 } 215 216 /* Flush pending "slot" event */ 217 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 218 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot); 219 input_pass_event(dev, src_handler, 220 EV_ABS, ABS_MT_SLOT, dev->slot); 221 } 222 223 return INPUT_PASS_TO_HANDLERS; 224 } 225 226 static void input_handle_event(struct input_dev *dev, 227 struct input_handler *src_handler, 228 unsigned int type, unsigned int code, int value) 229 { 230 int disposition = INPUT_IGNORE_EVENT; 231 232 switch (type) { 233 234 case EV_SYN: 235 switch (code) { 236 case SYN_CONFIG: 237 disposition = INPUT_PASS_TO_ALL; 238 break; 239 240 case SYN_REPORT: 241 if (!dev->sync) { 242 dev->sync = true; 243 disposition = INPUT_PASS_TO_HANDLERS; 244 } 245 break; 246 case SYN_MT_REPORT: 247 dev->sync = false; 248 disposition = INPUT_PASS_TO_HANDLERS; 249 break; 250 } 251 break; 252 253 case EV_KEY: 254 if (is_event_supported(code, dev->keybit, KEY_MAX) && 255 !!test_bit(code, dev->key) != value) { 256 257 if (value != 2) { 258 __change_bit(code, dev->key); 259 if (value) 260 input_start_autorepeat(dev, code); 261 else 262 input_stop_autorepeat(dev); 263 } 264 265 disposition = INPUT_PASS_TO_HANDLERS; 266 } 267 break; 268 269 case EV_SW: 270 if (is_event_supported(code, dev->swbit, SW_MAX) && 271 !!test_bit(code, dev->sw) != value) { 272 273 __change_bit(code, dev->sw); 274 disposition = INPUT_PASS_TO_HANDLERS; 275 } 276 break; 277 278 case EV_ABS: 279 if (is_event_supported(code, dev->absbit, ABS_MAX)) 280 disposition = input_handle_abs_event(dev, src_handler, 281 code, &value); 282 283 break; 284 285 case EV_REL: 286 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 287 disposition = INPUT_PASS_TO_HANDLERS; 288 289 break; 290 291 case EV_MSC: 292 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 293 disposition = INPUT_PASS_TO_ALL; 294 295 break; 296 297 case EV_LED: 298 if (is_event_supported(code, dev->ledbit, LED_MAX) && 299 !!test_bit(code, dev->led) != value) { 300 301 __change_bit(code, dev->led); 302 disposition = INPUT_PASS_TO_ALL; 303 } 304 break; 305 306 case EV_SND: 307 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 308 309 if (!!test_bit(code, dev->snd) != !!value) 310 __change_bit(code, dev->snd); 311 disposition = INPUT_PASS_TO_ALL; 312 } 313 break; 314 315 case EV_REP: 316 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 317 dev->rep[code] = value; 318 disposition = INPUT_PASS_TO_ALL; 319 } 320 break; 321 322 case EV_FF: 323 if (value >= 0) 324 disposition = INPUT_PASS_TO_ALL; 325 break; 326 327 case EV_PWR: 328 disposition = INPUT_PASS_TO_ALL; 329 break; 330 } 331 332 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 333 dev->sync = false; 334 335 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 336 dev->event(dev, type, code, value); 337 338 if (disposition & INPUT_PASS_TO_HANDLERS) 339 input_pass_event(dev, src_handler, type, code, value); 340 } 341 342 /** 343 * input_event() - report new input event 344 * @dev: device that generated the event 345 * @type: type of the event 346 * @code: event code 347 * @value: value of the event 348 * 349 * This function should be used by drivers implementing various input 350 * devices to report input events. See also input_inject_event(). 351 * 352 * NOTE: input_event() may be safely used right after input device was 353 * allocated with input_allocate_device(), even before it is registered 354 * with input_register_device(), but the event will not reach any of the 355 * input handlers. Such early invocation of input_event() may be used 356 * to 'seed' initial state of a switch or initial position of absolute 357 * axis, etc. 358 */ 359 void input_event(struct input_dev *dev, 360 unsigned int type, unsigned int code, int value) 361 { 362 unsigned long flags; 363 364 if (is_event_supported(type, dev->evbit, EV_MAX)) { 365 366 spin_lock_irqsave(&dev->event_lock, flags); 367 add_input_randomness(type, code, value); 368 input_handle_event(dev, NULL, type, code, value); 369 spin_unlock_irqrestore(&dev->event_lock, flags); 370 } 371 } 372 EXPORT_SYMBOL(input_event); 373 374 /** 375 * input_inject_event() - send input event from input handler 376 * @handle: input handle to send event through 377 * @type: type of the event 378 * @code: event code 379 * @value: value of the event 380 * 381 * Similar to input_event() but will ignore event if device is 382 * "grabbed" and handle injecting event is not the one that owns 383 * the device. 384 */ 385 void input_inject_event(struct input_handle *handle, 386 unsigned int type, unsigned int code, int value) 387 { 388 struct input_dev *dev = handle->dev; 389 struct input_handle *grab; 390 unsigned long flags; 391 392 if (is_event_supported(type, dev->evbit, EV_MAX)) { 393 spin_lock_irqsave(&dev->event_lock, flags); 394 395 rcu_read_lock(); 396 grab = rcu_dereference(dev->grab); 397 if (!grab || grab == handle) 398 input_handle_event(dev, handle->handler, 399 type, code, value); 400 rcu_read_unlock(); 401 402 spin_unlock_irqrestore(&dev->event_lock, flags); 403 } 404 } 405 EXPORT_SYMBOL(input_inject_event); 406 407 /** 408 * input_alloc_absinfo - allocates array of input_absinfo structs 409 * @dev: the input device emitting absolute events 410 * 411 * If the absinfo struct the caller asked for is already allocated, this 412 * functions will not do anything. 413 */ 414 void input_alloc_absinfo(struct input_dev *dev) 415 { 416 if (!dev->absinfo) 417 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 418 GFP_KERNEL); 419 420 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 421 } 422 EXPORT_SYMBOL(input_alloc_absinfo); 423 424 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 425 int min, int max, int fuzz, int flat) 426 { 427 struct input_absinfo *absinfo; 428 429 input_alloc_absinfo(dev); 430 if (!dev->absinfo) 431 return; 432 433 absinfo = &dev->absinfo[axis]; 434 absinfo->minimum = min; 435 absinfo->maximum = max; 436 absinfo->fuzz = fuzz; 437 absinfo->flat = flat; 438 439 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis); 440 } 441 EXPORT_SYMBOL(input_set_abs_params); 442 443 444 /** 445 * input_grab_device - grabs device for exclusive use 446 * @handle: input handle that wants to own the device 447 * 448 * When a device is grabbed by an input handle all events generated by 449 * the device are delivered only to this handle. Also events injected 450 * by other input handles are ignored while device is grabbed. 451 */ 452 int input_grab_device(struct input_handle *handle) 453 { 454 struct input_dev *dev = handle->dev; 455 int retval; 456 457 retval = mutex_lock_interruptible(&dev->mutex); 458 if (retval) 459 return retval; 460 461 if (dev->grab) { 462 retval = -EBUSY; 463 goto out; 464 } 465 466 rcu_assign_pointer(dev->grab, handle); 467 synchronize_rcu(); 468 469 out: 470 mutex_unlock(&dev->mutex); 471 return retval; 472 } 473 EXPORT_SYMBOL(input_grab_device); 474 475 static void __input_release_device(struct input_handle *handle) 476 { 477 struct input_dev *dev = handle->dev; 478 479 if (dev->grab == handle) { 480 rcu_assign_pointer(dev->grab, NULL); 481 /* Make sure input_pass_event() notices that grab is gone */ 482 synchronize_rcu(); 483 484 list_for_each_entry(handle, &dev->h_list, d_node) 485 if (handle->open && handle->handler->start) 486 handle->handler->start(handle); 487 } 488 } 489 490 /** 491 * input_release_device - release previously grabbed device 492 * @handle: input handle that owns the device 493 * 494 * Releases previously grabbed device so that other input handles can 495 * start receiving input events. Upon release all handlers attached 496 * to the device have their start() method called so they have a change 497 * to synchronize device state with the rest of the system. 498 */ 499 void input_release_device(struct input_handle *handle) 500 { 501 struct input_dev *dev = handle->dev; 502 503 mutex_lock(&dev->mutex); 504 __input_release_device(handle); 505 mutex_unlock(&dev->mutex); 506 } 507 EXPORT_SYMBOL(input_release_device); 508 509 /** 510 * input_open_device - open input device 511 * @handle: handle through which device is being accessed 512 * 513 * This function should be called by input handlers when they 514 * want to start receive events from given input device. 515 */ 516 int input_open_device(struct input_handle *handle) 517 { 518 struct input_dev *dev = handle->dev; 519 int retval; 520 521 retval = mutex_lock_interruptible(&dev->mutex); 522 if (retval) 523 return retval; 524 525 if (dev->going_away) { 526 retval = -ENODEV; 527 goto out; 528 } 529 530 handle->open++; 531 532 if (!dev->users++ && dev->open) 533 retval = dev->open(dev); 534 535 if (retval) { 536 dev->users--; 537 if (!--handle->open) { 538 /* 539 * Make sure we are not delivering any more events 540 * through this handle 541 */ 542 synchronize_rcu(); 543 } 544 } 545 546 out: 547 mutex_unlock(&dev->mutex); 548 return retval; 549 } 550 EXPORT_SYMBOL(input_open_device); 551 552 int input_flush_device(struct input_handle *handle, struct file *file) 553 { 554 struct input_dev *dev = handle->dev; 555 int retval; 556 557 retval = mutex_lock_interruptible(&dev->mutex); 558 if (retval) 559 return retval; 560 561 if (dev->flush) 562 retval = dev->flush(dev, file); 563 564 mutex_unlock(&dev->mutex); 565 return retval; 566 } 567 EXPORT_SYMBOL(input_flush_device); 568 569 /** 570 * input_close_device - close input device 571 * @handle: handle through which device is being accessed 572 * 573 * This function should be called by input handlers when they 574 * want to stop receive events from given input device. 575 */ 576 void input_close_device(struct input_handle *handle) 577 { 578 struct input_dev *dev = handle->dev; 579 580 mutex_lock(&dev->mutex); 581 582 __input_release_device(handle); 583 584 if (!--dev->users && dev->close) 585 dev->close(dev); 586 587 if (!--handle->open) { 588 /* 589 * synchronize_rcu() makes sure that input_pass_event() 590 * completed and that no more input events are delivered 591 * through this handle 592 */ 593 synchronize_rcu(); 594 } 595 596 mutex_unlock(&dev->mutex); 597 } 598 EXPORT_SYMBOL(input_close_device); 599 600 /* 601 * Simulate keyup events for all keys that are marked as pressed. 602 * The function must be called with dev->event_lock held. 603 */ 604 static void input_dev_release_keys(struct input_dev *dev) 605 { 606 int code; 607 608 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 609 for (code = 0; code <= KEY_MAX; code++) { 610 if (is_event_supported(code, dev->keybit, KEY_MAX) && 611 __test_and_clear_bit(code, dev->key)) { 612 input_pass_event(dev, NULL, EV_KEY, code, 0); 613 } 614 } 615 input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1); 616 } 617 } 618 619 /* 620 * Prepare device for unregistering 621 */ 622 static void input_disconnect_device(struct input_dev *dev) 623 { 624 struct input_handle *handle; 625 626 /* 627 * Mark device as going away. Note that we take dev->mutex here 628 * not to protect access to dev->going_away but rather to ensure 629 * that there are no threads in the middle of input_open_device() 630 */ 631 mutex_lock(&dev->mutex); 632 dev->going_away = true; 633 mutex_unlock(&dev->mutex); 634 635 spin_lock_irq(&dev->event_lock); 636 637 /* 638 * Simulate keyup events for all pressed keys so that handlers 639 * are not left with "stuck" keys. The driver may continue 640 * generate events even after we done here but they will not 641 * reach any handlers. 642 */ 643 input_dev_release_keys(dev); 644 645 list_for_each_entry(handle, &dev->h_list, d_node) 646 handle->open = 0; 647 648 spin_unlock_irq(&dev->event_lock); 649 } 650 651 /** 652 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 653 * @ke: keymap entry containing scancode to be converted. 654 * @scancode: pointer to the location where converted scancode should 655 * be stored. 656 * 657 * This function is used to convert scancode stored in &struct keymap_entry 658 * into scalar form understood by legacy keymap handling methods. These 659 * methods expect scancodes to be represented as 'unsigned int'. 660 */ 661 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 662 unsigned int *scancode) 663 { 664 switch (ke->len) { 665 case 1: 666 *scancode = *((u8 *)ke->scancode); 667 break; 668 669 case 2: 670 *scancode = *((u16 *)ke->scancode); 671 break; 672 673 case 4: 674 *scancode = *((u32 *)ke->scancode); 675 break; 676 677 default: 678 return -EINVAL; 679 } 680 681 return 0; 682 } 683 EXPORT_SYMBOL(input_scancode_to_scalar); 684 685 /* 686 * Those routines handle the default case where no [gs]etkeycode() is 687 * defined. In this case, an array indexed by the scancode is used. 688 */ 689 690 static unsigned int input_fetch_keycode(struct input_dev *dev, 691 unsigned int index) 692 { 693 switch (dev->keycodesize) { 694 case 1: 695 return ((u8 *)dev->keycode)[index]; 696 697 case 2: 698 return ((u16 *)dev->keycode)[index]; 699 700 default: 701 return ((u32 *)dev->keycode)[index]; 702 } 703 } 704 705 static int input_default_getkeycode(struct input_dev *dev, 706 struct input_keymap_entry *ke) 707 { 708 unsigned int index; 709 int error; 710 711 if (!dev->keycodesize) 712 return -EINVAL; 713 714 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 715 index = ke->index; 716 else { 717 error = input_scancode_to_scalar(ke, &index); 718 if (error) 719 return error; 720 } 721 722 if (index >= dev->keycodemax) 723 return -EINVAL; 724 725 ke->keycode = input_fetch_keycode(dev, index); 726 ke->index = index; 727 ke->len = sizeof(index); 728 memcpy(ke->scancode, &index, sizeof(index)); 729 730 return 0; 731 } 732 733 static int input_default_setkeycode(struct input_dev *dev, 734 const struct input_keymap_entry *ke, 735 unsigned int *old_keycode) 736 { 737 unsigned int index; 738 int error; 739 int i; 740 741 if (!dev->keycodesize) 742 return -EINVAL; 743 744 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 745 index = ke->index; 746 } else { 747 error = input_scancode_to_scalar(ke, &index); 748 if (error) 749 return error; 750 } 751 752 if (index >= dev->keycodemax) 753 return -EINVAL; 754 755 if (dev->keycodesize < sizeof(ke->keycode) && 756 (ke->keycode >> (dev->keycodesize * 8))) 757 return -EINVAL; 758 759 switch (dev->keycodesize) { 760 case 1: { 761 u8 *k = (u8 *)dev->keycode; 762 *old_keycode = k[index]; 763 k[index] = ke->keycode; 764 break; 765 } 766 case 2: { 767 u16 *k = (u16 *)dev->keycode; 768 *old_keycode = k[index]; 769 k[index] = ke->keycode; 770 break; 771 } 772 default: { 773 u32 *k = (u32 *)dev->keycode; 774 *old_keycode = k[index]; 775 k[index] = ke->keycode; 776 break; 777 } 778 } 779 780 __clear_bit(*old_keycode, dev->keybit); 781 __set_bit(ke->keycode, dev->keybit); 782 783 for (i = 0; i < dev->keycodemax; i++) { 784 if (input_fetch_keycode(dev, i) == *old_keycode) { 785 __set_bit(*old_keycode, dev->keybit); 786 break; /* Setting the bit twice is useless, so break */ 787 } 788 } 789 790 return 0; 791 } 792 793 /** 794 * input_get_keycode - retrieve keycode currently mapped to a given scancode 795 * @dev: input device which keymap is being queried 796 * @ke: keymap entry 797 * 798 * This function should be called by anyone interested in retrieving current 799 * keymap. Presently evdev handlers use it. 800 */ 801 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 802 { 803 unsigned long flags; 804 int retval; 805 806 spin_lock_irqsave(&dev->event_lock, flags); 807 808 if (dev->getkeycode) { 809 /* 810 * Support for legacy drivers, that don't implement the new 811 * ioctls 812 */ 813 u32 scancode = ke->index; 814 815 memcpy(ke->scancode, &scancode, sizeof(scancode)); 816 ke->len = sizeof(scancode); 817 retval = dev->getkeycode(dev, scancode, &ke->keycode); 818 } else { 819 retval = dev->getkeycode_new(dev, ke); 820 } 821 822 spin_unlock_irqrestore(&dev->event_lock, flags); 823 return retval; 824 } 825 EXPORT_SYMBOL(input_get_keycode); 826 827 /** 828 * input_set_keycode - attribute a keycode to a given scancode 829 * @dev: input device which keymap is being updated 830 * @ke: new keymap entry 831 * 832 * This function should be called by anyone needing to update current 833 * keymap. Presently keyboard and evdev handlers use it. 834 */ 835 int input_set_keycode(struct input_dev *dev, 836 const struct input_keymap_entry *ke) 837 { 838 unsigned long flags; 839 unsigned int old_keycode; 840 int retval; 841 842 if (ke->keycode > KEY_MAX) 843 return -EINVAL; 844 845 spin_lock_irqsave(&dev->event_lock, flags); 846 847 if (dev->setkeycode) { 848 /* 849 * Support for legacy drivers, that don't implement the new 850 * ioctls 851 */ 852 unsigned int scancode; 853 854 retval = input_scancode_to_scalar(ke, &scancode); 855 if (retval) 856 goto out; 857 858 /* 859 * We need to know the old scancode, in order to generate a 860 * keyup effect, if the set operation happens successfully 861 */ 862 if (!dev->getkeycode) { 863 retval = -EINVAL; 864 goto out; 865 } 866 867 retval = dev->getkeycode(dev, scancode, &old_keycode); 868 if (retval) 869 goto out; 870 871 retval = dev->setkeycode(dev, scancode, ke->keycode); 872 } else { 873 retval = dev->setkeycode_new(dev, ke, &old_keycode); 874 } 875 876 if (retval) 877 goto out; 878 879 /* Make sure KEY_RESERVED did not get enabled. */ 880 __clear_bit(KEY_RESERVED, dev->keybit); 881 882 /* 883 * Simulate keyup event if keycode is not present 884 * in the keymap anymore 885 */ 886 if (test_bit(EV_KEY, dev->evbit) && 887 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 888 __test_and_clear_bit(old_keycode, dev->key)) { 889 890 input_pass_event(dev, NULL, EV_KEY, old_keycode, 0); 891 if (dev->sync) 892 input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1); 893 } 894 895 out: 896 spin_unlock_irqrestore(&dev->event_lock, flags); 897 898 return retval; 899 } 900 EXPORT_SYMBOL(input_set_keycode); 901 902 #define MATCH_BIT(bit, max) \ 903 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 904 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 905 break; \ 906 if (i != BITS_TO_LONGS(max)) \ 907 continue; 908 909 static const struct input_device_id *input_match_device(struct input_handler *handler, 910 struct input_dev *dev) 911 { 912 const struct input_device_id *id; 913 int i; 914 915 for (id = handler->id_table; id->flags || id->driver_info; id++) { 916 917 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 918 if (id->bustype != dev->id.bustype) 919 continue; 920 921 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 922 if (id->vendor != dev->id.vendor) 923 continue; 924 925 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 926 if (id->product != dev->id.product) 927 continue; 928 929 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 930 if (id->version != dev->id.version) 931 continue; 932 933 MATCH_BIT(evbit, EV_MAX); 934 MATCH_BIT(keybit, KEY_MAX); 935 MATCH_BIT(relbit, REL_MAX); 936 MATCH_BIT(absbit, ABS_MAX); 937 MATCH_BIT(mscbit, MSC_MAX); 938 MATCH_BIT(ledbit, LED_MAX); 939 MATCH_BIT(sndbit, SND_MAX); 940 MATCH_BIT(ffbit, FF_MAX); 941 MATCH_BIT(swbit, SW_MAX); 942 943 if (!handler->match || handler->match(handler, dev)) 944 return id; 945 } 946 947 return NULL; 948 } 949 950 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 951 { 952 const struct input_device_id *id; 953 int error; 954 955 id = input_match_device(handler, dev); 956 if (!id) 957 return -ENODEV; 958 959 error = handler->connect(handler, dev, id); 960 if (error && error != -ENODEV) 961 printk(KERN_ERR 962 "input: failed to attach handler %s to device %s, " 963 "error: %d\n", 964 handler->name, kobject_name(&dev->dev.kobj), error); 965 966 return error; 967 } 968 969 #ifdef CONFIG_COMPAT 970 971 static int input_bits_to_string(char *buf, int buf_size, 972 unsigned long bits, bool skip_empty) 973 { 974 int len = 0; 975 976 if (INPUT_COMPAT_TEST) { 977 u32 dword = bits >> 32; 978 if (dword || !skip_empty) 979 len += snprintf(buf, buf_size, "%x ", dword); 980 981 dword = bits & 0xffffffffUL; 982 if (dword || !skip_empty || len) 983 len += snprintf(buf + len, max(buf_size - len, 0), 984 "%x", dword); 985 } else { 986 if (bits || !skip_empty) 987 len += snprintf(buf, buf_size, "%lx", bits); 988 } 989 990 return len; 991 } 992 993 #else /* !CONFIG_COMPAT */ 994 995 static int input_bits_to_string(char *buf, int buf_size, 996 unsigned long bits, bool skip_empty) 997 { 998 return bits || !skip_empty ? 999 snprintf(buf, buf_size, "%lx", bits) : 0; 1000 } 1001 1002 #endif 1003 1004 #ifdef CONFIG_PROC_FS 1005 1006 static struct proc_dir_entry *proc_bus_input_dir; 1007 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1008 static int input_devices_state; 1009 1010 static inline void input_wakeup_procfs_readers(void) 1011 { 1012 input_devices_state++; 1013 wake_up(&input_devices_poll_wait); 1014 } 1015 1016 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1017 { 1018 poll_wait(file, &input_devices_poll_wait, wait); 1019 if (file->f_version != input_devices_state) { 1020 file->f_version = input_devices_state; 1021 return POLLIN | POLLRDNORM; 1022 } 1023 1024 return 0; 1025 } 1026 1027 union input_seq_state { 1028 struct { 1029 unsigned short pos; 1030 bool mutex_acquired; 1031 }; 1032 void *p; 1033 }; 1034 1035 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1036 { 1037 union input_seq_state *state = (union input_seq_state *)&seq->private; 1038 int error; 1039 1040 /* We need to fit into seq->private pointer */ 1041 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1042 1043 error = mutex_lock_interruptible(&input_mutex); 1044 if (error) { 1045 state->mutex_acquired = false; 1046 return ERR_PTR(error); 1047 } 1048 1049 state->mutex_acquired = true; 1050 1051 return seq_list_start(&input_dev_list, *pos); 1052 } 1053 1054 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1055 { 1056 return seq_list_next(v, &input_dev_list, pos); 1057 } 1058 1059 static void input_seq_stop(struct seq_file *seq, void *v) 1060 { 1061 union input_seq_state *state = (union input_seq_state *)&seq->private; 1062 1063 if (state->mutex_acquired) 1064 mutex_unlock(&input_mutex); 1065 } 1066 1067 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1068 unsigned long *bitmap, int max) 1069 { 1070 int i; 1071 bool skip_empty = true; 1072 char buf[18]; 1073 1074 seq_printf(seq, "B: %s=", name); 1075 1076 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1077 if (input_bits_to_string(buf, sizeof(buf), 1078 bitmap[i], skip_empty)) { 1079 skip_empty = false; 1080 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1081 } 1082 } 1083 1084 /* 1085 * If no output was produced print a single 0. 1086 */ 1087 if (skip_empty) 1088 seq_puts(seq, "0"); 1089 1090 seq_putc(seq, '\n'); 1091 } 1092 1093 static int input_devices_seq_show(struct seq_file *seq, void *v) 1094 { 1095 struct input_dev *dev = container_of(v, struct input_dev, node); 1096 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1097 struct input_handle *handle; 1098 1099 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1100 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1101 1102 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1103 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1104 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1105 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1106 seq_printf(seq, "H: Handlers="); 1107 1108 list_for_each_entry(handle, &dev->h_list, d_node) 1109 seq_printf(seq, "%s ", handle->name); 1110 seq_putc(seq, '\n'); 1111 1112 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1113 if (test_bit(EV_KEY, dev->evbit)) 1114 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1115 if (test_bit(EV_REL, dev->evbit)) 1116 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1117 if (test_bit(EV_ABS, dev->evbit)) 1118 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1119 if (test_bit(EV_MSC, dev->evbit)) 1120 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1121 if (test_bit(EV_LED, dev->evbit)) 1122 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1123 if (test_bit(EV_SND, dev->evbit)) 1124 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1125 if (test_bit(EV_FF, dev->evbit)) 1126 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1127 if (test_bit(EV_SW, dev->evbit)) 1128 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1129 1130 seq_putc(seq, '\n'); 1131 1132 kfree(path); 1133 return 0; 1134 } 1135 1136 static const struct seq_operations input_devices_seq_ops = { 1137 .start = input_devices_seq_start, 1138 .next = input_devices_seq_next, 1139 .stop = input_seq_stop, 1140 .show = input_devices_seq_show, 1141 }; 1142 1143 static int input_proc_devices_open(struct inode *inode, struct file *file) 1144 { 1145 return seq_open(file, &input_devices_seq_ops); 1146 } 1147 1148 static const struct file_operations input_devices_fileops = { 1149 .owner = THIS_MODULE, 1150 .open = input_proc_devices_open, 1151 .poll = input_proc_devices_poll, 1152 .read = seq_read, 1153 .llseek = seq_lseek, 1154 .release = seq_release, 1155 }; 1156 1157 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1158 { 1159 union input_seq_state *state = (union input_seq_state *)&seq->private; 1160 int error; 1161 1162 /* We need to fit into seq->private pointer */ 1163 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1164 1165 error = mutex_lock_interruptible(&input_mutex); 1166 if (error) { 1167 state->mutex_acquired = false; 1168 return ERR_PTR(error); 1169 } 1170 1171 state->mutex_acquired = true; 1172 state->pos = *pos; 1173 1174 return seq_list_start(&input_handler_list, *pos); 1175 } 1176 1177 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1178 { 1179 union input_seq_state *state = (union input_seq_state *)&seq->private; 1180 1181 state->pos = *pos + 1; 1182 return seq_list_next(v, &input_handler_list, pos); 1183 } 1184 1185 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1186 { 1187 struct input_handler *handler = container_of(v, struct input_handler, node); 1188 union input_seq_state *state = (union input_seq_state *)&seq->private; 1189 1190 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1191 if (handler->filter) 1192 seq_puts(seq, " (filter)"); 1193 if (handler->fops) 1194 seq_printf(seq, " Minor=%d", handler->minor); 1195 seq_putc(seq, '\n'); 1196 1197 return 0; 1198 } 1199 1200 static const struct seq_operations input_handlers_seq_ops = { 1201 .start = input_handlers_seq_start, 1202 .next = input_handlers_seq_next, 1203 .stop = input_seq_stop, 1204 .show = input_handlers_seq_show, 1205 }; 1206 1207 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1208 { 1209 return seq_open(file, &input_handlers_seq_ops); 1210 } 1211 1212 static const struct file_operations input_handlers_fileops = { 1213 .owner = THIS_MODULE, 1214 .open = input_proc_handlers_open, 1215 .read = seq_read, 1216 .llseek = seq_lseek, 1217 .release = seq_release, 1218 }; 1219 1220 static int __init input_proc_init(void) 1221 { 1222 struct proc_dir_entry *entry; 1223 1224 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1225 if (!proc_bus_input_dir) 1226 return -ENOMEM; 1227 1228 entry = proc_create("devices", 0, proc_bus_input_dir, 1229 &input_devices_fileops); 1230 if (!entry) 1231 goto fail1; 1232 1233 entry = proc_create("handlers", 0, proc_bus_input_dir, 1234 &input_handlers_fileops); 1235 if (!entry) 1236 goto fail2; 1237 1238 return 0; 1239 1240 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1241 fail1: remove_proc_entry("bus/input", NULL); 1242 return -ENOMEM; 1243 } 1244 1245 static void input_proc_exit(void) 1246 { 1247 remove_proc_entry("devices", proc_bus_input_dir); 1248 remove_proc_entry("handlers", proc_bus_input_dir); 1249 remove_proc_entry("bus/input", NULL); 1250 } 1251 1252 #else /* !CONFIG_PROC_FS */ 1253 static inline void input_wakeup_procfs_readers(void) { } 1254 static inline int input_proc_init(void) { return 0; } 1255 static inline void input_proc_exit(void) { } 1256 #endif 1257 1258 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1259 static ssize_t input_dev_show_##name(struct device *dev, \ 1260 struct device_attribute *attr, \ 1261 char *buf) \ 1262 { \ 1263 struct input_dev *input_dev = to_input_dev(dev); \ 1264 \ 1265 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1266 input_dev->name ? input_dev->name : ""); \ 1267 } \ 1268 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1269 1270 INPUT_DEV_STRING_ATTR_SHOW(name); 1271 INPUT_DEV_STRING_ATTR_SHOW(phys); 1272 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1273 1274 static int input_print_modalias_bits(char *buf, int size, 1275 char name, unsigned long *bm, 1276 unsigned int min_bit, unsigned int max_bit) 1277 { 1278 int len = 0, i; 1279 1280 len += snprintf(buf, max(size, 0), "%c", name); 1281 for (i = min_bit; i < max_bit; i++) 1282 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1283 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1284 return len; 1285 } 1286 1287 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1288 int add_cr) 1289 { 1290 int len; 1291 1292 len = snprintf(buf, max(size, 0), 1293 "input:b%04Xv%04Xp%04Xe%04X-", 1294 id->id.bustype, id->id.vendor, 1295 id->id.product, id->id.version); 1296 1297 len += input_print_modalias_bits(buf + len, size - len, 1298 'e', id->evbit, 0, EV_MAX); 1299 len += input_print_modalias_bits(buf + len, size - len, 1300 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1301 len += input_print_modalias_bits(buf + len, size - len, 1302 'r', id->relbit, 0, REL_MAX); 1303 len += input_print_modalias_bits(buf + len, size - len, 1304 'a', id->absbit, 0, ABS_MAX); 1305 len += input_print_modalias_bits(buf + len, size - len, 1306 'm', id->mscbit, 0, MSC_MAX); 1307 len += input_print_modalias_bits(buf + len, size - len, 1308 'l', id->ledbit, 0, LED_MAX); 1309 len += input_print_modalias_bits(buf + len, size - len, 1310 's', id->sndbit, 0, SND_MAX); 1311 len += input_print_modalias_bits(buf + len, size - len, 1312 'f', id->ffbit, 0, FF_MAX); 1313 len += input_print_modalias_bits(buf + len, size - len, 1314 'w', id->swbit, 0, SW_MAX); 1315 1316 if (add_cr) 1317 len += snprintf(buf + len, max(size - len, 0), "\n"); 1318 1319 return len; 1320 } 1321 1322 static ssize_t input_dev_show_modalias(struct device *dev, 1323 struct device_attribute *attr, 1324 char *buf) 1325 { 1326 struct input_dev *id = to_input_dev(dev); 1327 ssize_t len; 1328 1329 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1330 1331 return min_t(int, len, PAGE_SIZE); 1332 } 1333 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1334 1335 static struct attribute *input_dev_attrs[] = { 1336 &dev_attr_name.attr, 1337 &dev_attr_phys.attr, 1338 &dev_attr_uniq.attr, 1339 &dev_attr_modalias.attr, 1340 NULL 1341 }; 1342 1343 static struct attribute_group input_dev_attr_group = { 1344 .attrs = input_dev_attrs, 1345 }; 1346 1347 #define INPUT_DEV_ID_ATTR(name) \ 1348 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1349 struct device_attribute *attr, \ 1350 char *buf) \ 1351 { \ 1352 struct input_dev *input_dev = to_input_dev(dev); \ 1353 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1354 } \ 1355 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1356 1357 INPUT_DEV_ID_ATTR(bustype); 1358 INPUT_DEV_ID_ATTR(vendor); 1359 INPUT_DEV_ID_ATTR(product); 1360 INPUT_DEV_ID_ATTR(version); 1361 1362 static struct attribute *input_dev_id_attrs[] = { 1363 &dev_attr_bustype.attr, 1364 &dev_attr_vendor.attr, 1365 &dev_attr_product.attr, 1366 &dev_attr_version.attr, 1367 NULL 1368 }; 1369 1370 static struct attribute_group input_dev_id_attr_group = { 1371 .name = "id", 1372 .attrs = input_dev_id_attrs, 1373 }; 1374 1375 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1376 int max, int add_cr) 1377 { 1378 int i; 1379 int len = 0; 1380 bool skip_empty = true; 1381 1382 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1383 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1384 bitmap[i], skip_empty); 1385 if (len) { 1386 skip_empty = false; 1387 if (i > 0) 1388 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1389 } 1390 } 1391 1392 /* 1393 * If no output was produced print a single 0. 1394 */ 1395 if (len == 0) 1396 len = snprintf(buf, buf_size, "%d", 0); 1397 1398 if (add_cr) 1399 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1400 1401 return len; 1402 } 1403 1404 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1405 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1406 struct device_attribute *attr, \ 1407 char *buf) \ 1408 { \ 1409 struct input_dev *input_dev = to_input_dev(dev); \ 1410 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1411 input_dev->bm##bit, ev##_MAX, \ 1412 true); \ 1413 return min_t(int, len, PAGE_SIZE); \ 1414 } \ 1415 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1416 1417 INPUT_DEV_CAP_ATTR(EV, ev); 1418 INPUT_DEV_CAP_ATTR(KEY, key); 1419 INPUT_DEV_CAP_ATTR(REL, rel); 1420 INPUT_DEV_CAP_ATTR(ABS, abs); 1421 INPUT_DEV_CAP_ATTR(MSC, msc); 1422 INPUT_DEV_CAP_ATTR(LED, led); 1423 INPUT_DEV_CAP_ATTR(SND, snd); 1424 INPUT_DEV_CAP_ATTR(FF, ff); 1425 INPUT_DEV_CAP_ATTR(SW, sw); 1426 1427 static struct attribute *input_dev_caps_attrs[] = { 1428 &dev_attr_ev.attr, 1429 &dev_attr_key.attr, 1430 &dev_attr_rel.attr, 1431 &dev_attr_abs.attr, 1432 &dev_attr_msc.attr, 1433 &dev_attr_led.attr, 1434 &dev_attr_snd.attr, 1435 &dev_attr_ff.attr, 1436 &dev_attr_sw.attr, 1437 NULL 1438 }; 1439 1440 static struct attribute_group input_dev_caps_attr_group = { 1441 .name = "capabilities", 1442 .attrs = input_dev_caps_attrs, 1443 }; 1444 1445 static const struct attribute_group *input_dev_attr_groups[] = { 1446 &input_dev_attr_group, 1447 &input_dev_id_attr_group, 1448 &input_dev_caps_attr_group, 1449 NULL 1450 }; 1451 1452 static void input_dev_release(struct device *device) 1453 { 1454 struct input_dev *dev = to_input_dev(device); 1455 1456 input_ff_destroy(dev); 1457 input_mt_destroy_slots(dev); 1458 kfree(dev->absinfo); 1459 kfree(dev); 1460 1461 module_put(THIS_MODULE); 1462 } 1463 1464 /* 1465 * Input uevent interface - loading event handlers based on 1466 * device bitfields. 1467 */ 1468 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1469 const char *name, unsigned long *bitmap, int max) 1470 { 1471 int len; 1472 1473 if (add_uevent_var(env, "%s=", name)) 1474 return -ENOMEM; 1475 1476 len = input_print_bitmap(&env->buf[env->buflen - 1], 1477 sizeof(env->buf) - env->buflen, 1478 bitmap, max, false); 1479 if (len >= (sizeof(env->buf) - env->buflen)) 1480 return -ENOMEM; 1481 1482 env->buflen += len; 1483 return 0; 1484 } 1485 1486 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1487 struct input_dev *dev) 1488 { 1489 int len; 1490 1491 if (add_uevent_var(env, "MODALIAS=")) 1492 return -ENOMEM; 1493 1494 len = input_print_modalias(&env->buf[env->buflen - 1], 1495 sizeof(env->buf) - env->buflen, 1496 dev, 0); 1497 if (len >= (sizeof(env->buf) - env->buflen)) 1498 return -ENOMEM; 1499 1500 env->buflen += len; 1501 return 0; 1502 } 1503 1504 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1505 do { \ 1506 int err = add_uevent_var(env, fmt, val); \ 1507 if (err) \ 1508 return err; \ 1509 } while (0) 1510 1511 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1512 do { \ 1513 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1514 if (err) \ 1515 return err; \ 1516 } while (0) 1517 1518 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1519 do { \ 1520 int err = input_add_uevent_modalias_var(env, dev); \ 1521 if (err) \ 1522 return err; \ 1523 } while (0) 1524 1525 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1526 { 1527 struct input_dev *dev = to_input_dev(device); 1528 1529 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1530 dev->id.bustype, dev->id.vendor, 1531 dev->id.product, dev->id.version); 1532 if (dev->name) 1533 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1534 if (dev->phys) 1535 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1536 if (dev->uniq) 1537 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1538 1539 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1540 if (test_bit(EV_KEY, dev->evbit)) 1541 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1542 if (test_bit(EV_REL, dev->evbit)) 1543 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1544 if (test_bit(EV_ABS, dev->evbit)) 1545 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1546 if (test_bit(EV_MSC, dev->evbit)) 1547 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1548 if (test_bit(EV_LED, dev->evbit)) 1549 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1550 if (test_bit(EV_SND, dev->evbit)) 1551 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1552 if (test_bit(EV_FF, dev->evbit)) 1553 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1554 if (test_bit(EV_SW, dev->evbit)) 1555 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1556 1557 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1558 1559 return 0; 1560 } 1561 1562 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1563 do { \ 1564 int i; \ 1565 bool active; \ 1566 \ 1567 if (!test_bit(EV_##type, dev->evbit)) \ 1568 break; \ 1569 \ 1570 for (i = 0; i < type##_MAX; i++) { \ 1571 if (!test_bit(i, dev->bits##bit)) \ 1572 continue; \ 1573 \ 1574 active = test_bit(i, dev->bits); \ 1575 if (!active && !on) \ 1576 continue; \ 1577 \ 1578 dev->event(dev, EV_##type, i, on ? active : 0); \ 1579 } \ 1580 } while (0) 1581 1582 static void input_dev_toggle(struct input_dev *dev, bool activate) 1583 { 1584 if (!dev->event) 1585 return; 1586 1587 INPUT_DO_TOGGLE(dev, LED, led, activate); 1588 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1589 1590 if (activate && test_bit(EV_REP, dev->evbit)) { 1591 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1592 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1593 } 1594 } 1595 1596 /** 1597 * input_reset_device() - reset/restore the state of input device 1598 * @dev: input device whose state needs to be reset 1599 * 1600 * This function tries to reset the state of an opened input device and 1601 * bring internal state and state if the hardware in sync with each other. 1602 * We mark all keys as released, restore LED state, repeat rate, etc. 1603 */ 1604 void input_reset_device(struct input_dev *dev) 1605 { 1606 mutex_lock(&dev->mutex); 1607 1608 if (dev->users) { 1609 input_dev_toggle(dev, true); 1610 1611 /* 1612 * Keys that have been pressed at suspend time are unlikely 1613 * to be still pressed when we resume. 1614 */ 1615 spin_lock_irq(&dev->event_lock); 1616 input_dev_release_keys(dev); 1617 spin_unlock_irq(&dev->event_lock); 1618 } 1619 1620 mutex_unlock(&dev->mutex); 1621 } 1622 EXPORT_SYMBOL(input_reset_device); 1623 1624 #ifdef CONFIG_PM 1625 static int input_dev_suspend(struct device *dev) 1626 { 1627 struct input_dev *input_dev = to_input_dev(dev); 1628 1629 mutex_lock(&input_dev->mutex); 1630 1631 if (input_dev->users) 1632 input_dev_toggle(input_dev, false); 1633 1634 mutex_unlock(&input_dev->mutex); 1635 1636 return 0; 1637 } 1638 1639 static int input_dev_resume(struct device *dev) 1640 { 1641 struct input_dev *input_dev = to_input_dev(dev); 1642 1643 input_reset_device(input_dev); 1644 1645 return 0; 1646 } 1647 1648 static const struct dev_pm_ops input_dev_pm_ops = { 1649 .suspend = input_dev_suspend, 1650 .resume = input_dev_resume, 1651 .poweroff = input_dev_suspend, 1652 .restore = input_dev_resume, 1653 }; 1654 #endif /* CONFIG_PM */ 1655 1656 static struct device_type input_dev_type = { 1657 .groups = input_dev_attr_groups, 1658 .release = input_dev_release, 1659 .uevent = input_dev_uevent, 1660 #ifdef CONFIG_PM 1661 .pm = &input_dev_pm_ops, 1662 #endif 1663 }; 1664 1665 static char *input_devnode(struct device *dev, mode_t *mode) 1666 { 1667 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1668 } 1669 1670 struct class input_class = { 1671 .name = "input", 1672 .devnode = input_devnode, 1673 }; 1674 EXPORT_SYMBOL_GPL(input_class); 1675 1676 /** 1677 * input_allocate_device - allocate memory for new input device 1678 * 1679 * Returns prepared struct input_dev or NULL. 1680 * 1681 * NOTE: Use input_free_device() to free devices that have not been 1682 * registered; input_unregister_device() should be used for already 1683 * registered devices. 1684 */ 1685 struct input_dev *input_allocate_device(void) 1686 { 1687 struct input_dev *dev; 1688 1689 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1690 if (dev) { 1691 dev->dev.type = &input_dev_type; 1692 dev->dev.class = &input_class; 1693 device_initialize(&dev->dev); 1694 mutex_init(&dev->mutex); 1695 spin_lock_init(&dev->event_lock); 1696 INIT_LIST_HEAD(&dev->h_list); 1697 INIT_LIST_HEAD(&dev->node); 1698 1699 __module_get(THIS_MODULE); 1700 } 1701 1702 return dev; 1703 } 1704 EXPORT_SYMBOL(input_allocate_device); 1705 1706 /** 1707 * input_free_device - free memory occupied by input_dev structure 1708 * @dev: input device to free 1709 * 1710 * This function should only be used if input_register_device() 1711 * was not called yet or if it failed. Once device was registered 1712 * use input_unregister_device() and memory will be freed once last 1713 * reference to the device is dropped. 1714 * 1715 * Device should be allocated by input_allocate_device(). 1716 * 1717 * NOTE: If there are references to the input device then memory 1718 * will not be freed until last reference is dropped. 1719 */ 1720 void input_free_device(struct input_dev *dev) 1721 { 1722 if (dev) 1723 input_put_device(dev); 1724 } 1725 EXPORT_SYMBOL(input_free_device); 1726 1727 /** 1728 * input_mt_create_slots() - create MT input slots 1729 * @dev: input device supporting MT events and finger tracking 1730 * @num_slots: number of slots used by the device 1731 * 1732 * This function allocates all necessary memory for MT slot handling in the 1733 * input device, and adds ABS_MT_SLOT to the device capabilities. All slots 1734 * are initially marked as unused by setting ABS_MT_TRACKING_ID to -1. 1735 */ 1736 int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots) 1737 { 1738 int i; 1739 1740 if (!num_slots) 1741 return 0; 1742 1743 dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL); 1744 if (!dev->mt) 1745 return -ENOMEM; 1746 1747 dev->mtsize = num_slots; 1748 input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0); 1749 1750 /* Mark slots as 'unused' */ 1751 for (i = 0; i < num_slots; i++) 1752 dev->mt[i].abs[ABS_MT_TRACKING_ID - ABS_MT_FIRST] = -1; 1753 1754 return 0; 1755 } 1756 EXPORT_SYMBOL(input_mt_create_slots); 1757 1758 /** 1759 * input_mt_destroy_slots() - frees the MT slots of the input device 1760 * @dev: input device with allocated MT slots 1761 * 1762 * This function is only needed in error path as the input core will 1763 * automatically free the MT slots when the device is destroyed. 1764 */ 1765 void input_mt_destroy_slots(struct input_dev *dev) 1766 { 1767 kfree(dev->mt); 1768 dev->mt = NULL; 1769 dev->mtsize = 0; 1770 } 1771 EXPORT_SYMBOL(input_mt_destroy_slots); 1772 1773 /** 1774 * input_set_capability - mark device as capable of a certain event 1775 * @dev: device that is capable of emitting or accepting event 1776 * @type: type of the event (EV_KEY, EV_REL, etc...) 1777 * @code: event code 1778 * 1779 * In addition to setting up corresponding bit in appropriate capability 1780 * bitmap the function also adjusts dev->evbit. 1781 */ 1782 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1783 { 1784 switch (type) { 1785 case EV_KEY: 1786 __set_bit(code, dev->keybit); 1787 break; 1788 1789 case EV_REL: 1790 __set_bit(code, dev->relbit); 1791 break; 1792 1793 case EV_ABS: 1794 __set_bit(code, dev->absbit); 1795 break; 1796 1797 case EV_MSC: 1798 __set_bit(code, dev->mscbit); 1799 break; 1800 1801 case EV_SW: 1802 __set_bit(code, dev->swbit); 1803 break; 1804 1805 case EV_LED: 1806 __set_bit(code, dev->ledbit); 1807 break; 1808 1809 case EV_SND: 1810 __set_bit(code, dev->sndbit); 1811 break; 1812 1813 case EV_FF: 1814 __set_bit(code, dev->ffbit); 1815 break; 1816 1817 case EV_PWR: 1818 /* do nothing */ 1819 break; 1820 1821 default: 1822 printk(KERN_ERR 1823 "input_set_capability: unknown type %u (code %u)\n", 1824 type, code); 1825 dump_stack(); 1826 return; 1827 } 1828 1829 __set_bit(type, dev->evbit); 1830 } 1831 EXPORT_SYMBOL(input_set_capability); 1832 1833 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1834 do { \ 1835 if (!test_bit(EV_##type, dev->evbit)) \ 1836 memset(dev->bits##bit, 0, \ 1837 sizeof(dev->bits##bit)); \ 1838 } while (0) 1839 1840 static void input_cleanse_bitmasks(struct input_dev *dev) 1841 { 1842 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1843 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1844 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1845 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1846 INPUT_CLEANSE_BITMASK(dev, LED, led); 1847 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1848 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1849 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1850 } 1851 1852 /** 1853 * input_register_device - register device with input core 1854 * @dev: device to be registered 1855 * 1856 * This function registers device with input core. The device must be 1857 * allocated with input_allocate_device() and all it's capabilities 1858 * set up before registering. 1859 * If function fails the device must be freed with input_free_device(). 1860 * Once device has been successfully registered it can be unregistered 1861 * with input_unregister_device(); input_free_device() should not be 1862 * called in this case. 1863 */ 1864 int input_register_device(struct input_dev *dev) 1865 { 1866 static atomic_t input_no = ATOMIC_INIT(0); 1867 struct input_handler *handler; 1868 const char *path; 1869 int error; 1870 1871 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1872 __set_bit(EV_SYN, dev->evbit); 1873 1874 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1875 __clear_bit(KEY_RESERVED, dev->keybit); 1876 1877 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1878 input_cleanse_bitmasks(dev); 1879 1880 /* 1881 * If delay and period are pre-set by the driver, then autorepeating 1882 * is handled by the driver itself and we don't do it in input.c. 1883 */ 1884 init_timer(&dev->timer); 1885 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1886 dev->timer.data = (long) dev; 1887 dev->timer.function = input_repeat_key; 1888 dev->rep[REP_DELAY] = 250; 1889 dev->rep[REP_PERIOD] = 33; 1890 } 1891 1892 if (!dev->getkeycode && !dev->getkeycode_new) 1893 dev->getkeycode_new = input_default_getkeycode; 1894 1895 if (!dev->setkeycode && !dev->setkeycode_new) 1896 dev->setkeycode_new = input_default_setkeycode; 1897 1898 dev_set_name(&dev->dev, "input%ld", 1899 (unsigned long) atomic_inc_return(&input_no) - 1); 1900 1901 error = device_add(&dev->dev); 1902 if (error) 1903 return error; 1904 1905 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1906 printk(KERN_INFO "input: %s as %s\n", 1907 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1908 kfree(path); 1909 1910 error = mutex_lock_interruptible(&input_mutex); 1911 if (error) { 1912 device_del(&dev->dev); 1913 return error; 1914 } 1915 1916 list_add_tail(&dev->node, &input_dev_list); 1917 1918 list_for_each_entry(handler, &input_handler_list, node) 1919 input_attach_handler(dev, handler); 1920 1921 input_wakeup_procfs_readers(); 1922 1923 mutex_unlock(&input_mutex); 1924 1925 return 0; 1926 } 1927 EXPORT_SYMBOL(input_register_device); 1928 1929 /** 1930 * input_unregister_device - unregister previously registered device 1931 * @dev: device to be unregistered 1932 * 1933 * This function unregisters an input device. Once device is unregistered 1934 * the caller should not try to access it as it may get freed at any moment. 1935 */ 1936 void input_unregister_device(struct input_dev *dev) 1937 { 1938 struct input_handle *handle, *next; 1939 1940 input_disconnect_device(dev); 1941 1942 mutex_lock(&input_mutex); 1943 1944 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1945 handle->handler->disconnect(handle); 1946 WARN_ON(!list_empty(&dev->h_list)); 1947 1948 del_timer_sync(&dev->timer); 1949 list_del_init(&dev->node); 1950 1951 input_wakeup_procfs_readers(); 1952 1953 mutex_unlock(&input_mutex); 1954 1955 device_unregister(&dev->dev); 1956 } 1957 EXPORT_SYMBOL(input_unregister_device); 1958 1959 /** 1960 * input_register_handler - register a new input handler 1961 * @handler: handler to be registered 1962 * 1963 * This function registers a new input handler (interface) for input 1964 * devices in the system and attaches it to all input devices that 1965 * are compatible with the handler. 1966 */ 1967 int input_register_handler(struct input_handler *handler) 1968 { 1969 struct input_dev *dev; 1970 int retval; 1971 1972 retval = mutex_lock_interruptible(&input_mutex); 1973 if (retval) 1974 return retval; 1975 1976 INIT_LIST_HEAD(&handler->h_list); 1977 1978 if (handler->fops != NULL) { 1979 if (input_table[handler->minor >> 5]) { 1980 retval = -EBUSY; 1981 goto out; 1982 } 1983 input_table[handler->minor >> 5] = handler; 1984 } 1985 1986 list_add_tail(&handler->node, &input_handler_list); 1987 1988 list_for_each_entry(dev, &input_dev_list, node) 1989 input_attach_handler(dev, handler); 1990 1991 input_wakeup_procfs_readers(); 1992 1993 out: 1994 mutex_unlock(&input_mutex); 1995 return retval; 1996 } 1997 EXPORT_SYMBOL(input_register_handler); 1998 1999 /** 2000 * input_unregister_handler - unregisters an input handler 2001 * @handler: handler to be unregistered 2002 * 2003 * This function disconnects a handler from its input devices and 2004 * removes it from lists of known handlers. 2005 */ 2006 void input_unregister_handler(struct input_handler *handler) 2007 { 2008 struct input_handle *handle, *next; 2009 2010 mutex_lock(&input_mutex); 2011 2012 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2013 handler->disconnect(handle); 2014 WARN_ON(!list_empty(&handler->h_list)); 2015 2016 list_del_init(&handler->node); 2017 2018 if (handler->fops != NULL) 2019 input_table[handler->minor >> 5] = NULL; 2020 2021 input_wakeup_procfs_readers(); 2022 2023 mutex_unlock(&input_mutex); 2024 } 2025 EXPORT_SYMBOL(input_unregister_handler); 2026 2027 /** 2028 * input_handler_for_each_handle - handle iterator 2029 * @handler: input handler to iterate 2030 * @data: data for the callback 2031 * @fn: function to be called for each handle 2032 * 2033 * Iterate over @bus's list of devices, and call @fn for each, passing 2034 * it @data and stop when @fn returns a non-zero value. The function is 2035 * using RCU to traverse the list and therefore may be usind in atonic 2036 * contexts. The @fn callback is invoked from RCU critical section and 2037 * thus must not sleep. 2038 */ 2039 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2040 int (*fn)(struct input_handle *, void *)) 2041 { 2042 struct input_handle *handle; 2043 int retval = 0; 2044 2045 rcu_read_lock(); 2046 2047 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2048 retval = fn(handle, data); 2049 if (retval) 2050 break; 2051 } 2052 2053 rcu_read_unlock(); 2054 2055 return retval; 2056 } 2057 EXPORT_SYMBOL(input_handler_for_each_handle); 2058 2059 /** 2060 * input_register_handle - register a new input handle 2061 * @handle: handle to register 2062 * 2063 * This function puts a new input handle onto device's 2064 * and handler's lists so that events can flow through 2065 * it once it is opened using input_open_device(). 2066 * 2067 * This function is supposed to be called from handler's 2068 * connect() method. 2069 */ 2070 int input_register_handle(struct input_handle *handle) 2071 { 2072 struct input_handler *handler = handle->handler; 2073 struct input_dev *dev = handle->dev; 2074 int error; 2075 2076 /* 2077 * We take dev->mutex here to prevent race with 2078 * input_release_device(). 2079 */ 2080 error = mutex_lock_interruptible(&dev->mutex); 2081 if (error) 2082 return error; 2083 2084 /* 2085 * Filters go to the head of the list, normal handlers 2086 * to the tail. 2087 */ 2088 if (handler->filter) 2089 list_add_rcu(&handle->d_node, &dev->h_list); 2090 else 2091 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2092 2093 mutex_unlock(&dev->mutex); 2094 2095 /* 2096 * Since we are supposed to be called from ->connect() 2097 * which is mutually exclusive with ->disconnect() 2098 * we can't be racing with input_unregister_handle() 2099 * and so separate lock is not needed here. 2100 */ 2101 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2102 2103 if (handler->start) 2104 handler->start(handle); 2105 2106 return 0; 2107 } 2108 EXPORT_SYMBOL(input_register_handle); 2109 2110 /** 2111 * input_unregister_handle - unregister an input handle 2112 * @handle: handle to unregister 2113 * 2114 * This function removes input handle from device's 2115 * and handler's lists. 2116 * 2117 * This function is supposed to be called from handler's 2118 * disconnect() method. 2119 */ 2120 void input_unregister_handle(struct input_handle *handle) 2121 { 2122 struct input_dev *dev = handle->dev; 2123 2124 list_del_rcu(&handle->h_node); 2125 2126 /* 2127 * Take dev->mutex to prevent race with input_release_device(). 2128 */ 2129 mutex_lock(&dev->mutex); 2130 list_del_rcu(&handle->d_node); 2131 mutex_unlock(&dev->mutex); 2132 2133 synchronize_rcu(); 2134 } 2135 EXPORT_SYMBOL(input_unregister_handle); 2136 2137 static int input_open_file(struct inode *inode, struct file *file) 2138 { 2139 struct input_handler *handler; 2140 const struct file_operations *old_fops, *new_fops = NULL; 2141 int err; 2142 2143 err = mutex_lock_interruptible(&input_mutex); 2144 if (err) 2145 return err; 2146 2147 /* No load-on-demand here? */ 2148 handler = input_table[iminor(inode) >> 5]; 2149 if (handler) 2150 new_fops = fops_get(handler->fops); 2151 2152 mutex_unlock(&input_mutex); 2153 2154 /* 2155 * That's _really_ odd. Usually NULL ->open means "nothing special", 2156 * not "no device". Oh, well... 2157 */ 2158 if (!new_fops || !new_fops->open) { 2159 fops_put(new_fops); 2160 err = -ENODEV; 2161 goto out; 2162 } 2163 2164 old_fops = file->f_op; 2165 file->f_op = new_fops; 2166 2167 err = new_fops->open(inode, file); 2168 if (err) { 2169 fops_put(file->f_op); 2170 file->f_op = fops_get(old_fops); 2171 } 2172 fops_put(old_fops); 2173 out: 2174 return err; 2175 } 2176 2177 static const struct file_operations input_fops = { 2178 .owner = THIS_MODULE, 2179 .open = input_open_file, 2180 .llseek = noop_llseek, 2181 }; 2182 2183 static int __init input_init(void) 2184 { 2185 int err; 2186 2187 err = class_register(&input_class); 2188 if (err) { 2189 printk(KERN_ERR "input: unable to register input_dev class\n"); 2190 return err; 2191 } 2192 2193 err = input_proc_init(); 2194 if (err) 2195 goto fail1; 2196 2197 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 2198 if (err) { 2199 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 2200 goto fail2; 2201 } 2202 2203 return 0; 2204 2205 fail2: input_proc_exit(); 2206 fail1: class_unregister(&input_class); 2207 return err; 2208 } 2209 2210 static void __exit input_exit(void) 2211 { 2212 input_proc_exit(); 2213 unregister_chrdev(INPUT_MAJOR, "input"); 2214 class_unregister(&input_class); 2215 } 2216 2217 subsys_initcall(input_init); 2218 module_exit(input_exit); 2219