1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * The input core 4 * 5 * Copyright (c) 1999-2002 Vojtech Pavlik 6 */ 7 8 9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/idr.h> 14 #include <linux/input/mt.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/major.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/pm.h> 23 #include <linux/poll.h> 24 #include <linux/device.h> 25 #include <linux/kstrtox.h> 26 #include <linux/mutex.h> 27 #include <linux/rcupdate.h> 28 #include "input-compat.h" 29 #include "input-core-private.h" 30 #include "input-poller.h" 31 32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 33 MODULE_DESCRIPTION("Input core"); 34 MODULE_LICENSE("GPL"); 35 36 #define INPUT_MAX_CHAR_DEVICES 1024 37 #define INPUT_FIRST_DYNAMIC_DEV 256 38 static DEFINE_IDA(input_ida); 39 40 static LIST_HEAD(input_dev_list); 41 static LIST_HEAD(input_handler_list); 42 43 /* 44 * input_mutex protects access to both input_dev_list and input_handler_list. 45 * This also causes input_[un]register_device and input_[un]register_handler 46 * be mutually exclusive which simplifies locking in drivers implementing 47 * input handlers. 48 */ 49 static DEFINE_MUTEX(input_mutex); 50 51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 52 53 static const unsigned int input_max_code[EV_CNT] = { 54 [EV_KEY] = KEY_MAX, 55 [EV_REL] = REL_MAX, 56 [EV_ABS] = ABS_MAX, 57 [EV_MSC] = MSC_MAX, 58 [EV_SW] = SW_MAX, 59 [EV_LED] = LED_MAX, 60 [EV_SND] = SND_MAX, 61 [EV_FF] = FF_MAX, 62 }; 63 64 static inline int is_event_supported(unsigned int code, 65 unsigned long *bm, unsigned int max) 66 { 67 return code <= max && test_bit(code, bm); 68 } 69 70 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 71 { 72 if (fuzz) { 73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 74 return old_val; 75 76 if (value > old_val - fuzz && value < old_val + fuzz) 77 return (old_val * 3 + value) / 4; 78 79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 80 return (old_val + value) / 2; 81 } 82 83 return value; 84 } 85 86 static void input_start_autorepeat(struct input_dev *dev, int code) 87 { 88 if (test_bit(EV_REP, dev->evbit) && 89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 90 dev->timer.function) { 91 dev->repeat_key = code; 92 mod_timer(&dev->timer, 93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 94 } 95 } 96 97 static void input_stop_autorepeat(struct input_dev *dev) 98 { 99 del_timer(&dev->timer); 100 } 101 102 /* 103 * Pass event first through all filters and then, if event has not been 104 * filtered out, through all open handles. This function is called with 105 * dev->event_lock held and interrupts disabled. 106 */ 107 static unsigned int input_to_handler(struct input_handle *handle, 108 struct input_value *vals, unsigned int count) 109 { 110 struct input_handler *handler = handle->handler; 111 struct input_value *end = vals; 112 struct input_value *v; 113 114 if (handler->filter) { 115 for (v = vals; v != vals + count; v++) { 116 if (handler->filter(handle, v->type, v->code, v->value)) 117 continue; 118 if (end != v) 119 *end = *v; 120 end++; 121 } 122 count = end - vals; 123 } 124 125 if (!count) 126 return 0; 127 128 if (handler->events) 129 handler->events(handle, vals, count); 130 else if (handler->event) 131 for (v = vals; v != vals + count; v++) 132 handler->event(handle, v->type, v->code, v->value); 133 134 return count; 135 } 136 137 /* 138 * Pass values first through all filters and then, if event has not been 139 * filtered out, through all open handles. This function is called with 140 * dev->event_lock held and interrupts disabled. 141 */ 142 static void input_pass_values(struct input_dev *dev, 143 struct input_value *vals, unsigned int count) 144 { 145 struct input_handle *handle; 146 struct input_value *v; 147 148 lockdep_assert_held(&dev->event_lock); 149 150 if (!count) 151 return; 152 153 rcu_read_lock(); 154 155 handle = rcu_dereference(dev->grab); 156 if (handle) { 157 count = input_to_handler(handle, vals, count); 158 } else { 159 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 160 if (handle->open) { 161 count = input_to_handler(handle, vals, count); 162 if (!count) 163 break; 164 } 165 } 166 167 rcu_read_unlock(); 168 169 /* trigger auto repeat for key events */ 170 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { 171 for (v = vals; v != vals + count; v++) { 172 if (v->type == EV_KEY && v->value != 2) { 173 if (v->value) 174 input_start_autorepeat(dev, v->code); 175 else 176 input_stop_autorepeat(dev); 177 } 178 } 179 } 180 } 181 182 #define INPUT_IGNORE_EVENT 0 183 #define INPUT_PASS_TO_HANDLERS 1 184 #define INPUT_PASS_TO_DEVICE 2 185 #define INPUT_SLOT 4 186 #define INPUT_FLUSH 8 187 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 188 189 static int input_handle_abs_event(struct input_dev *dev, 190 unsigned int code, int *pval) 191 { 192 struct input_mt *mt = dev->mt; 193 bool is_new_slot = false; 194 bool is_mt_event; 195 int *pold; 196 197 if (code == ABS_MT_SLOT) { 198 /* 199 * "Stage" the event; we'll flush it later, when we 200 * get actual touch data. 201 */ 202 if (mt && *pval >= 0 && *pval < mt->num_slots) 203 mt->slot = *pval; 204 205 return INPUT_IGNORE_EVENT; 206 } 207 208 is_mt_event = input_is_mt_value(code); 209 210 if (!is_mt_event) { 211 pold = &dev->absinfo[code].value; 212 } else if (mt) { 213 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 214 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value; 215 } else { 216 /* 217 * Bypass filtering for multi-touch events when 218 * not employing slots. 219 */ 220 pold = NULL; 221 } 222 223 if (pold) { 224 *pval = input_defuzz_abs_event(*pval, *pold, 225 dev->absinfo[code].fuzz); 226 if (*pold == *pval) 227 return INPUT_IGNORE_EVENT; 228 229 *pold = *pval; 230 } 231 232 /* Flush pending "slot" event */ 233 if (is_new_slot) { 234 dev->absinfo[ABS_MT_SLOT].value = mt->slot; 235 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 236 } 237 238 return INPUT_PASS_TO_HANDLERS; 239 } 240 241 static int input_get_disposition(struct input_dev *dev, 242 unsigned int type, unsigned int code, int *pval) 243 { 244 int disposition = INPUT_IGNORE_EVENT; 245 int value = *pval; 246 247 /* filter-out events from inhibited devices */ 248 if (dev->inhibited) 249 return INPUT_IGNORE_EVENT; 250 251 switch (type) { 252 253 case EV_SYN: 254 switch (code) { 255 case SYN_CONFIG: 256 disposition = INPUT_PASS_TO_ALL; 257 break; 258 259 case SYN_REPORT: 260 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 261 break; 262 case SYN_MT_REPORT: 263 disposition = INPUT_PASS_TO_HANDLERS; 264 break; 265 } 266 break; 267 268 case EV_KEY: 269 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 270 271 /* auto-repeat bypasses state updates */ 272 if (value == 2) { 273 disposition = INPUT_PASS_TO_HANDLERS; 274 break; 275 } 276 277 if (!!test_bit(code, dev->key) != !!value) { 278 279 __change_bit(code, dev->key); 280 disposition = INPUT_PASS_TO_HANDLERS; 281 } 282 } 283 break; 284 285 case EV_SW: 286 if (is_event_supported(code, dev->swbit, SW_MAX) && 287 !!test_bit(code, dev->sw) != !!value) { 288 289 __change_bit(code, dev->sw); 290 disposition = INPUT_PASS_TO_HANDLERS; 291 } 292 break; 293 294 case EV_ABS: 295 if (is_event_supported(code, dev->absbit, ABS_MAX)) 296 disposition = input_handle_abs_event(dev, code, &value); 297 298 break; 299 300 case EV_REL: 301 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 302 disposition = INPUT_PASS_TO_HANDLERS; 303 304 break; 305 306 case EV_MSC: 307 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 308 disposition = INPUT_PASS_TO_ALL; 309 310 break; 311 312 case EV_LED: 313 if (is_event_supported(code, dev->ledbit, LED_MAX) && 314 !!test_bit(code, dev->led) != !!value) { 315 316 __change_bit(code, dev->led); 317 disposition = INPUT_PASS_TO_ALL; 318 } 319 break; 320 321 case EV_SND: 322 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 323 324 if (!!test_bit(code, dev->snd) != !!value) 325 __change_bit(code, dev->snd); 326 disposition = INPUT_PASS_TO_ALL; 327 } 328 break; 329 330 case EV_REP: 331 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 332 dev->rep[code] = value; 333 disposition = INPUT_PASS_TO_ALL; 334 } 335 break; 336 337 case EV_FF: 338 if (value >= 0) 339 disposition = INPUT_PASS_TO_ALL; 340 break; 341 342 case EV_PWR: 343 disposition = INPUT_PASS_TO_ALL; 344 break; 345 } 346 347 *pval = value; 348 return disposition; 349 } 350 351 static void input_event_dispose(struct input_dev *dev, int disposition, 352 unsigned int type, unsigned int code, int value) 353 { 354 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 355 dev->event(dev, type, code, value); 356 357 if (!dev->vals) 358 return; 359 360 if (disposition & INPUT_PASS_TO_HANDLERS) { 361 struct input_value *v; 362 363 if (disposition & INPUT_SLOT) { 364 v = &dev->vals[dev->num_vals++]; 365 v->type = EV_ABS; 366 v->code = ABS_MT_SLOT; 367 v->value = dev->mt->slot; 368 } 369 370 v = &dev->vals[dev->num_vals++]; 371 v->type = type; 372 v->code = code; 373 v->value = value; 374 } 375 376 if (disposition & INPUT_FLUSH) { 377 if (dev->num_vals >= 2) 378 input_pass_values(dev, dev->vals, dev->num_vals); 379 dev->num_vals = 0; 380 /* 381 * Reset the timestamp on flush so we won't end up 382 * with a stale one. Note we only need to reset the 383 * monolithic one as we use its presence when deciding 384 * whether to generate a synthetic timestamp. 385 */ 386 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0); 387 } else if (dev->num_vals >= dev->max_vals - 2) { 388 dev->vals[dev->num_vals++] = input_value_sync; 389 input_pass_values(dev, dev->vals, dev->num_vals); 390 dev->num_vals = 0; 391 } 392 } 393 394 void input_handle_event(struct input_dev *dev, 395 unsigned int type, unsigned int code, int value) 396 { 397 int disposition; 398 399 lockdep_assert_held(&dev->event_lock); 400 401 disposition = input_get_disposition(dev, type, code, &value); 402 if (disposition != INPUT_IGNORE_EVENT) { 403 if (type != EV_SYN) 404 add_input_randomness(type, code, value); 405 406 input_event_dispose(dev, disposition, type, code, value); 407 } 408 } 409 410 /** 411 * input_event() - report new input event 412 * @dev: device that generated the event 413 * @type: type of the event 414 * @code: event code 415 * @value: value of the event 416 * 417 * This function should be used by drivers implementing various input 418 * devices to report input events. See also input_inject_event(). 419 * 420 * NOTE: input_event() may be safely used right after input device was 421 * allocated with input_allocate_device(), even before it is registered 422 * with input_register_device(), but the event will not reach any of the 423 * input handlers. Such early invocation of input_event() may be used 424 * to 'seed' initial state of a switch or initial position of absolute 425 * axis, etc. 426 */ 427 void input_event(struct input_dev *dev, 428 unsigned int type, unsigned int code, int value) 429 { 430 unsigned long flags; 431 432 if (is_event_supported(type, dev->evbit, EV_MAX)) { 433 434 spin_lock_irqsave(&dev->event_lock, flags); 435 input_handle_event(dev, type, code, value); 436 spin_unlock_irqrestore(&dev->event_lock, flags); 437 } 438 } 439 EXPORT_SYMBOL(input_event); 440 441 /** 442 * input_inject_event() - send input event from input handler 443 * @handle: input handle to send event through 444 * @type: type of the event 445 * @code: event code 446 * @value: value of the event 447 * 448 * Similar to input_event() but will ignore event if device is 449 * "grabbed" and handle injecting event is not the one that owns 450 * the device. 451 */ 452 void input_inject_event(struct input_handle *handle, 453 unsigned int type, unsigned int code, int value) 454 { 455 struct input_dev *dev = handle->dev; 456 struct input_handle *grab; 457 unsigned long flags; 458 459 if (is_event_supported(type, dev->evbit, EV_MAX)) { 460 spin_lock_irqsave(&dev->event_lock, flags); 461 462 rcu_read_lock(); 463 grab = rcu_dereference(dev->grab); 464 if (!grab || grab == handle) 465 input_handle_event(dev, type, code, value); 466 rcu_read_unlock(); 467 468 spin_unlock_irqrestore(&dev->event_lock, flags); 469 } 470 } 471 EXPORT_SYMBOL(input_inject_event); 472 473 /** 474 * input_alloc_absinfo - allocates array of input_absinfo structs 475 * @dev: the input device emitting absolute events 476 * 477 * If the absinfo struct the caller asked for is already allocated, this 478 * functions will not do anything. 479 */ 480 void input_alloc_absinfo(struct input_dev *dev) 481 { 482 if (dev->absinfo) 483 return; 484 485 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); 486 if (!dev->absinfo) { 487 dev_err(dev->dev.parent ?: &dev->dev, 488 "%s: unable to allocate memory\n", __func__); 489 /* 490 * We will handle this allocation failure in 491 * input_register_device() when we refuse to register input 492 * device with ABS bits but without absinfo. 493 */ 494 } 495 } 496 EXPORT_SYMBOL(input_alloc_absinfo); 497 498 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 499 int min, int max, int fuzz, int flat) 500 { 501 struct input_absinfo *absinfo; 502 503 __set_bit(EV_ABS, dev->evbit); 504 __set_bit(axis, dev->absbit); 505 506 input_alloc_absinfo(dev); 507 if (!dev->absinfo) 508 return; 509 510 absinfo = &dev->absinfo[axis]; 511 absinfo->minimum = min; 512 absinfo->maximum = max; 513 absinfo->fuzz = fuzz; 514 absinfo->flat = flat; 515 } 516 EXPORT_SYMBOL(input_set_abs_params); 517 518 /** 519 * input_copy_abs - Copy absinfo from one input_dev to another 520 * @dst: Destination input device to copy the abs settings to 521 * @dst_axis: ABS_* value selecting the destination axis 522 * @src: Source input device to copy the abs settings from 523 * @src_axis: ABS_* value selecting the source axis 524 * 525 * Set absinfo for the selected destination axis by copying it from 526 * the specified source input device's source axis. 527 * This is useful to e.g. setup a pen/stylus input-device for combined 528 * touchscreen/pen hardware where the pen uses the same coordinates as 529 * the touchscreen. 530 */ 531 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis, 532 const struct input_dev *src, unsigned int src_axis) 533 { 534 /* src must have EV_ABS and src_axis set */ 535 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) && 536 test_bit(src_axis, src->absbit)))) 537 return; 538 539 /* 540 * input_alloc_absinfo() may have failed for the source. Our caller is 541 * expected to catch this when registering the input devices, which may 542 * happen after the input_copy_abs() call. 543 */ 544 if (!src->absinfo) 545 return; 546 547 input_set_capability(dst, EV_ABS, dst_axis); 548 if (!dst->absinfo) 549 return; 550 551 dst->absinfo[dst_axis] = src->absinfo[src_axis]; 552 } 553 EXPORT_SYMBOL(input_copy_abs); 554 555 /** 556 * input_grab_device - grabs device for exclusive use 557 * @handle: input handle that wants to own the device 558 * 559 * When a device is grabbed by an input handle all events generated by 560 * the device are delivered only to this handle. Also events injected 561 * by other input handles are ignored while device is grabbed. 562 */ 563 int input_grab_device(struct input_handle *handle) 564 { 565 struct input_dev *dev = handle->dev; 566 int retval; 567 568 retval = mutex_lock_interruptible(&dev->mutex); 569 if (retval) 570 return retval; 571 572 if (dev->grab) { 573 retval = -EBUSY; 574 goto out; 575 } 576 577 rcu_assign_pointer(dev->grab, handle); 578 579 out: 580 mutex_unlock(&dev->mutex); 581 return retval; 582 } 583 EXPORT_SYMBOL(input_grab_device); 584 585 static void __input_release_device(struct input_handle *handle) 586 { 587 struct input_dev *dev = handle->dev; 588 struct input_handle *grabber; 589 590 grabber = rcu_dereference_protected(dev->grab, 591 lockdep_is_held(&dev->mutex)); 592 if (grabber == handle) { 593 rcu_assign_pointer(dev->grab, NULL); 594 /* Make sure input_pass_values() notices that grab is gone */ 595 synchronize_rcu(); 596 597 list_for_each_entry(handle, &dev->h_list, d_node) 598 if (handle->open && handle->handler->start) 599 handle->handler->start(handle); 600 } 601 } 602 603 /** 604 * input_release_device - release previously grabbed device 605 * @handle: input handle that owns the device 606 * 607 * Releases previously grabbed device so that other input handles can 608 * start receiving input events. Upon release all handlers attached 609 * to the device have their start() method called so they have a change 610 * to synchronize device state with the rest of the system. 611 */ 612 void input_release_device(struct input_handle *handle) 613 { 614 struct input_dev *dev = handle->dev; 615 616 mutex_lock(&dev->mutex); 617 __input_release_device(handle); 618 mutex_unlock(&dev->mutex); 619 } 620 EXPORT_SYMBOL(input_release_device); 621 622 /** 623 * input_open_device - open input device 624 * @handle: handle through which device is being accessed 625 * 626 * This function should be called by input handlers when they 627 * want to start receive events from given input device. 628 */ 629 int input_open_device(struct input_handle *handle) 630 { 631 struct input_dev *dev = handle->dev; 632 int retval; 633 634 retval = mutex_lock_interruptible(&dev->mutex); 635 if (retval) 636 return retval; 637 638 if (dev->going_away) { 639 retval = -ENODEV; 640 goto out; 641 } 642 643 handle->open++; 644 645 if (dev->users++ || dev->inhibited) { 646 /* 647 * Device is already opened and/or inhibited, 648 * so we can exit immediately and report success. 649 */ 650 goto out; 651 } 652 653 if (dev->open) { 654 retval = dev->open(dev); 655 if (retval) { 656 dev->users--; 657 handle->open--; 658 /* 659 * Make sure we are not delivering any more events 660 * through this handle 661 */ 662 synchronize_rcu(); 663 goto out; 664 } 665 } 666 667 if (dev->poller) 668 input_dev_poller_start(dev->poller); 669 670 out: 671 mutex_unlock(&dev->mutex); 672 return retval; 673 } 674 EXPORT_SYMBOL(input_open_device); 675 676 int input_flush_device(struct input_handle *handle, struct file *file) 677 { 678 struct input_dev *dev = handle->dev; 679 int retval; 680 681 retval = mutex_lock_interruptible(&dev->mutex); 682 if (retval) 683 return retval; 684 685 if (dev->flush) 686 retval = dev->flush(dev, file); 687 688 mutex_unlock(&dev->mutex); 689 return retval; 690 } 691 EXPORT_SYMBOL(input_flush_device); 692 693 /** 694 * input_close_device - close input device 695 * @handle: handle through which device is being accessed 696 * 697 * This function should be called by input handlers when they 698 * want to stop receive events from given input device. 699 */ 700 void input_close_device(struct input_handle *handle) 701 { 702 struct input_dev *dev = handle->dev; 703 704 mutex_lock(&dev->mutex); 705 706 __input_release_device(handle); 707 708 if (!--dev->users && !dev->inhibited) { 709 if (dev->poller) 710 input_dev_poller_stop(dev->poller); 711 if (dev->close) 712 dev->close(dev); 713 } 714 715 if (!--handle->open) { 716 /* 717 * synchronize_rcu() makes sure that input_pass_values() 718 * completed and that no more input events are delivered 719 * through this handle 720 */ 721 synchronize_rcu(); 722 } 723 724 mutex_unlock(&dev->mutex); 725 } 726 EXPORT_SYMBOL(input_close_device); 727 728 /* 729 * Simulate keyup events for all keys that are marked as pressed. 730 * The function must be called with dev->event_lock held. 731 */ 732 static bool input_dev_release_keys(struct input_dev *dev) 733 { 734 bool need_sync = false; 735 int code; 736 737 lockdep_assert_held(&dev->event_lock); 738 739 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 740 for_each_set_bit(code, dev->key, KEY_CNT) { 741 input_handle_event(dev, EV_KEY, code, 0); 742 need_sync = true; 743 } 744 } 745 746 return need_sync; 747 } 748 749 /* 750 * Prepare device for unregistering 751 */ 752 static void input_disconnect_device(struct input_dev *dev) 753 { 754 struct input_handle *handle; 755 756 /* 757 * Mark device as going away. Note that we take dev->mutex here 758 * not to protect access to dev->going_away but rather to ensure 759 * that there are no threads in the middle of input_open_device() 760 */ 761 mutex_lock(&dev->mutex); 762 dev->going_away = true; 763 mutex_unlock(&dev->mutex); 764 765 spin_lock_irq(&dev->event_lock); 766 767 /* 768 * Simulate keyup events for all pressed keys so that handlers 769 * are not left with "stuck" keys. The driver may continue 770 * generate events even after we done here but they will not 771 * reach any handlers. 772 */ 773 if (input_dev_release_keys(dev)) 774 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 775 776 list_for_each_entry(handle, &dev->h_list, d_node) 777 handle->open = 0; 778 779 spin_unlock_irq(&dev->event_lock); 780 } 781 782 /** 783 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 784 * @ke: keymap entry containing scancode to be converted. 785 * @scancode: pointer to the location where converted scancode should 786 * be stored. 787 * 788 * This function is used to convert scancode stored in &struct keymap_entry 789 * into scalar form understood by legacy keymap handling methods. These 790 * methods expect scancodes to be represented as 'unsigned int'. 791 */ 792 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 793 unsigned int *scancode) 794 { 795 switch (ke->len) { 796 case 1: 797 *scancode = *((u8 *)ke->scancode); 798 break; 799 800 case 2: 801 *scancode = *((u16 *)ke->scancode); 802 break; 803 804 case 4: 805 *scancode = *((u32 *)ke->scancode); 806 break; 807 808 default: 809 return -EINVAL; 810 } 811 812 return 0; 813 } 814 EXPORT_SYMBOL(input_scancode_to_scalar); 815 816 /* 817 * Those routines handle the default case where no [gs]etkeycode() is 818 * defined. In this case, an array indexed by the scancode is used. 819 */ 820 821 static unsigned int input_fetch_keycode(struct input_dev *dev, 822 unsigned int index) 823 { 824 switch (dev->keycodesize) { 825 case 1: 826 return ((u8 *)dev->keycode)[index]; 827 828 case 2: 829 return ((u16 *)dev->keycode)[index]; 830 831 default: 832 return ((u32 *)dev->keycode)[index]; 833 } 834 } 835 836 static int input_default_getkeycode(struct input_dev *dev, 837 struct input_keymap_entry *ke) 838 { 839 unsigned int index; 840 int error; 841 842 if (!dev->keycodesize) 843 return -EINVAL; 844 845 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 846 index = ke->index; 847 else { 848 error = input_scancode_to_scalar(ke, &index); 849 if (error) 850 return error; 851 } 852 853 if (index >= dev->keycodemax) 854 return -EINVAL; 855 856 ke->keycode = input_fetch_keycode(dev, index); 857 ke->index = index; 858 ke->len = sizeof(index); 859 memcpy(ke->scancode, &index, sizeof(index)); 860 861 return 0; 862 } 863 864 static int input_default_setkeycode(struct input_dev *dev, 865 const struct input_keymap_entry *ke, 866 unsigned int *old_keycode) 867 { 868 unsigned int index; 869 int error; 870 int i; 871 872 if (!dev->keycodesize) 873 return -EINVAL; 874 875 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 876 index = ke->index; 877 } else { 878 error = input_scancode_to_scalar(ke, &index); 879 if (error) 880 return error; 881 } 882 883 if (index >= dev->keycodemax) 884 return -EINVAL; 885 886 if (dev->keycodesize < sizeof(ke->keycode) && 887 (ke->keycode >> (dev->keycodesize * 8))) 888 return -EINVAL; 889 890 switch (dev->keycodesize) { 891 case 1: { 892 u8 *k = (u8 *)dev->keycode; 893 *old_keycode = k[index]; 894 k[index] = ke->keycode; 895 break; 896 } 897 case 2: { 898 u16 *k = (u16 *)dev->keycode; 899 *old_keycode = k[index]; 900 k[index] = ke->keycode; 901 break; 902 } 903 default: { 904 u32 *k = (u32 *)dev->keycode; 905 *old_keycode = k[index]; 906 k[index] = ke->keycode; 907 break; 908 } 909 } 910 911 if (*old_keycode <= KEY_MAX) { 912 __clear_bit(*old_keycode, dev->keybit); 913 for (i = 0; i < dev->keycodemax; i++) { 914 if (input_fetch_keycode(dev, i) == *old_keycode) { 915 __set_bit(*old_keycode, dev->keybit); 916 /* Setting the bit twice is useless, so break */ 917 break; 918 } 919 } 920 } 921 922 __set_bit(ke->keycode, dev->keybit); 923 return 0; 924 } 925 926 /** 927 * input_get_keycode - retrieve keycode currently mapped to a given scancode 928 * @dev: input device which keymap is being queried 929 * @ke: keymap entry 930 * 931 * This function should be called by anyone interested in retrieving current 932 * keymap. Presently evdev handlers use it. 933 */ 934 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 935 { 936 unsigned long flags; 937 int retval; 938 939 spin_lock_irqsave(&dev->event_lock, flags); 940 retval = dev->getkeycode(dev, ke); 941 spin_unlock_irqrestore(&dev->event_lock, flags); 942 943 return retval; 944 } 945 EXPORT_SYMBOL(input_get_keycode); 946 947 /** 948 * input_set_keycode - attribute a keycode to a given scancode 949 * @dev: input device which keymap is being updated 950 * @ke: new keymap entry 951 * 952 * This function should be called by anyone needing to update current 953 * keymap. Presently keyboard and evdev handlers use it. 954 */ 955 int input_set_keycode(struct input_dev *dev, 956 const struct input_keymap_entry *ke) 957 { 958 unsigned long flags; 959 unsigned int old_keycode; 960 int retval; 961 962 if (ke->keycode > KEY_MAX) 963 return -EINVAL; 964 965 spin_lock_irqsave(&dev->event_lock, flags); 966 967 retval = dev->setkeycode(dev, ke, &old_keycode); 968 if (retval) 969 goto out; 970 971 /* Make sure KEY_RESERVED did not get enabled. */ 972 __clear_bit(KEY_RESERVED, dev->keybit); 973 974 /* 975 * Simulate keyup event if keycode is not present 976 * in the keymap anymore 977 */ 978 if (old_keycode > KEY_MAX) { 979 dev_warn(dev->dev.parent ?: &dev->dev, 980 "%s: got too big old keycode %#x\n", 981 __func__, old_keycode); 982 } else if (test_bit(EV_KEY, dev->evbit) && 983 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 984 __test_and_clear_bit(old_keycode, dev->key)) { 985 /* 986 * We have to use input_event_dispose() here directly instead 987 * of input_handle_event() because the key we want to release 988 * here is considered no longer supported by the device and 989 * input_handle_event() will ignore it. 990 */ 991 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS, 992 EV_KEY, old_keycode, 0); 993 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH, 994 EV_SYN, SYN_REPORT, 1); 995 } 996 997 out: 998 spin_unlock_irqrestore(&dev->event_lock, flags); 999 1000 return retval; 1001 } 1002 EXPORT_SYMBOL(input_set_keycode); 1003 1004 bool input_match_device_id(const struct input_dev *dev, 1005 const struct input_device_id *id) 1006 { 1007 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 1008 if (id->bustype != dev->id.bustype) 1009 return false; 1010 1011 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 1012 if (id->vendor != dev->id.vendor) 1013 return false; 1014 1015 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 1016 if (id->product != dev->id.product) 1017 return false; 1018 1019 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 1020 if (id->version != dev->id.version) 1021 return false; 1022 1023 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || 1024 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || 1025 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || 1026 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || 1027 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || 1028 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || 1029 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || 1030 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || 1031 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || 1032 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { 1033 return false; 1034 } 1035 1036 return true; 1037 } 1038 EXPORT_SYMBOL(input_match_device_id); 1039 1040 static const struct input_device_id *input_match_device(struct input_handler *handler, 1041 struct input_dev *dev) 1042 { 1043 const struct input_device_id *id; 1044 1045 for (id = handler->id_table; id->flags || id->driver_info; id++) { 1046 if (input_match_device_id(dev, id) && 1047 (!handler->match || handler->match(handler, dev))) { 1048 return id; 1049 } 1050 } 1051 1052 return NULL; 1053 } 1054 1055 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 1056 { 1057 const struct input_device_id *id; 1058 int error; 1059 1060 id = input_match_device(handler, dev); 1061 if (!id) 1062 return -ENODEV; 1063 1064 error = handler->connect(handler, dev, id); 1065 if (error && error != -ENODEV) 1066 pr_err("failed to attach handler %s to device %s, error: %d\n", 1067 handler->name, kobject_name(&dev->dev.kobj), error); 1068 1069 return error; 1070 } 1071 1072 #ifdef CONFIG_COMPAT 1073 1074 static int input_bits_to_string(char *buf, int buf_size, 1075 unsigned long bits, bool skip_empty) 1076 { 1077 int len = 0; 1078 1079 if (in_compat_syscall()) { 1080 u32 dword = bits >> 32; 1081 if (dword || !skip_empty) 1082 len += snprintf(buf, buf_size, "%x ", dword); 1083 1084 dword = bits & 0xffffffffUL; 1085 if (dword || !skip_empty || len) 1086 len += snprintf(buf + len, max(buf_size - len, 0), 1087 "%x", dword); 1088 } else { 1089 if (bits || !skip_empty) 1090 len += snprintf(buf, buf_size, "%lx", bits); 1091 } 1092 1093 return len; 1094 } 1095 1096 #else /* !CONFIG_COMPAT */ 1097 1098 static int input_bits_to_string(char *buf, int buf_size, 1099 unsigned long bits, bool skip_empty) 1100 { 1101 return bits || !skip_empty ? 1102 snprintf(buf, buf_size, "%lx", bits) : 0; 1103 } 1104 1105 #endif 1106 1107 #ifdef CONFIG_PROC_FS 1108 1109 static struct proc_dir_entry *proc_bus_input_dir; 1110 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1111 static int input_devices_state; 1112 1113 static inline void input_wakeup_procfs_readers(void) 1114 { 1115 input_devices_state++; 1116 wake_up(&input_devices_poll_wait); 1117 } 1118 1119 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) 1120 { 1121 poll_wait(file, &input_devices_poll_wait, wait); 1122 if (file->f_version != input_devices_state) { 1123 file->f_version = input_devices_state; 1124 return EPOLLIN | EPOLLRDNORM; 1125 } 1126 1127 return 0; 1128 } 1129 1130 union input_seq_state { 1131 struct { 1132 unsigned short pos; 1133 bool mutex_acquired; 1134 }; 1135 void *p; 1136 }; 1137 1138 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1139 { 1140 union input_seq_state *state = (union input_seq_state *)&seq->private; 1141 int error; 1142 1143 /* We need to fit into seq->private pointer */ 1144 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1145 1146 error = mutex_lock_interruptible(&input_mutex); 1147 if (error) { 1148 state->mutex_acquired = false; 1149 return ERR_PTR(error); 1150 } 1151 1152 state->mutex_acquired = true; 1153 1154 return seq_list_start(&input_dev_list, *pos); 1155 } 1156 1157 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1158 { 1159 return seq_list_next(v, &input_dev_list, pos); 1160 } 1161 1162 static void input_seq_stop(struct seq_file *seq, void *v) 1163 { 1164 union input_seq_state *state = (union input_seq_state *)&seq->private; 1165 1166 if (state->mutex_acquired) 1167 mutex_unlock(&input_mutex); 1168 } 1169 1170 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1171 unsigned long *bitmap, int max) 1172 { 1173 int i; 1174 bool skip_empty = true; 1175 char buf[18]; 1176 1177 seq_printf(seq, "B: %s=", name); 1178 1179 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1180 if (input_bits_to_string(buf, sizeof(buf), 1181 bitmap[i], skip_empty)) { 1182 skip_empty = false; 1183 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1184 } 1185 } 1186 1187 /* 1188 * If no output was produced print a single 0. 1189 */ 1190 if (skip_empty) 1191 seq_putc(seq, '0'); 1192 1193 seq_putc(seq, '\n'); 1194 } 1195 1196 static int input_devices_seq_show(struct seq_file *seq, void *v) 1197 { 1198 struct input_dev *dev = container_of(v, struct input_dev, node); 1199 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1200 struct input_handle *handle; 1201 1202 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1203 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1204 1205 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1206 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1207 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1208 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1209 seq_puts(seq, "H: Handlers="); 1210 1211 list_for_each_entry(handle, &dev->h_list, d_node) 1212 seq_printf(seq, "%s ", handle->name); 1213 seq_putc(seq, '\n'); 1214 1215 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1216 1217 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1218 if (test_bit(EV_KEY, dev->evbit)) 1219 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1220 if (test_bit(EV_REL, dev->evbit)) 1221 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1222 if (test_bit(EV_ABS, dev->evbit)) 1223 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1224 if (test_bit(EV_MSC, dev->evbit)) 1225 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1226 if (test_bit(EV_LED, dev->evbit)) 1227 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1228 if (test_bit(EV_SND, dev->evbit)) 1229 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1230 if (test_bit(EV_FF, dev->evbit)) 1231 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1232 if (test_bit(EV_SW, dev->evbit)) 1233 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1234 1235 seq_putc(seq, '\n'); 1236 1237 kfree(path); 1238 return 0; 1239 } 1240 1241 static const struct seq_operations input_devices_seq_ops = { 1242 .start = input_devices_seq_start, 1243 .next = input_devices_seq_next, 1244 .stop = input_seq_stop, 1245 .show = input_devices_seq_show, 1246 }; 1247 1248 static int input_proc_devices_open(struct inode *inode, struct file *file) 1249 { 1250 return seq_open(file, &input_devices_seq_ops); 1251 } 1252 1253 static const struct proc_ops input_devices_proc_ops = { 1254 .proc_open = input_proc_devices_open, 1255 .proc_poll = input_proc_devices_poll, 1256 .proc_read = seq_read, 1257 .proc_lseek = seq_lseek, 1258 .proc_release = seq_release, 1259 }; 1260 1261 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1262 { 1263 union input_seq_state *state = (union input_seq_state *)&seq->private; 1264 int error; 1265 1266 /* We need to fit into seq->private pointer */ 1267 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1268 1269 error = mutex_lock_interruptible(&input_mutex); 1270 if (error) { 1271 state->mutex_acquired = false; 1272 return ERR_PTR(error); 1273 } 1274 1275 state->mutex_acquired = true; 1276 state->pos = *pos; 1277 1278 return seq_list_start(&input_handler_list, *pos); 1279 } 1280 1281 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1282 { 1283 union input_seq_state *state = (union input_seq_state *)&seq->private; 1284 1285 state->pos = *pos + 1; 1286 return seq_list_next(v, &input_handler_list, pos); 1287 } 1288 1289 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1290 { 1291 struct input_handler *handler = container_of(v, struct input_handler, node); 1292 union input_seq_state *state = (union input_seq_state *)&seq->private; 1293 1294 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1295 if (handler->filter) 1296 seq_puts(seq, " (filter)"); 1297 if (handler->legacy_minors) 1298 seq_printf(seq, " Minor=%d", handler->minor); 1299 seq_putc(seq, '\n'); 1300 1301 return 0; 1302 } 1303 1304 static const struct seq_operations input_handlers_seq_ops = { 1305 .start = input_handlers_seq_start, 1306 .next = input_handlers_seq_next, 1307 .stop = input_seq_stop, 1308 .show = input_handlers_seq_show, 1309 }; 1310 1311 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1312 { 1313 return seq_open(file, &input_handlers_seq_ops); 1314 } 1315 1316 static const struct proc_ops input_handlers_proc_ops = { 1317 .proc_open = input_proc_handlers_open, 1318 .proc_read = seq_read, 1319 .proc_lseek = seq_lseek, 1320 .proc_release = seq_release, 1321 }; 1322 1323 static int __init input_proc_init(void) 1324 { 1325 struct proc_dir_entry *entry; 1326 1327 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1328 if (!proc_bus_input_dir) 1329 return -ENOMEM; 1330 1331 entry = proc_create("devices", 0, proc_bus_input_dir, 1332 &input_devices_proc_ops); 1333 if (!entry) 1334 goto fail1; 1335 1336 entry = proc_create("handlers", 0, proc_bus_input_dir, 1337 &input_handlers_proc_ops); 1338 if (!entry) 1339 goto fail2; 1340 1341 return 0; 1342 1343 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1344 fail1: remove_proc_entry("bus/input", NULL); 1345 return -ENOMEM; 1346 } 1347 1348 static void input_proc_exit(void) 1349 { 1350 remove_proc_entry("devices", proc_bus_input_dir); 1351 remove_proc_entry("handlers", proc_bus_input_dir); 1352 remove_proc_entry("bus/input", NULL); 1353 } 1354 1355 #else /* !CONFIG_PROC_FS */ 1356 static inline void input_wakeup_procfs_readers(void) { } 1357 static inline int input_proc_init(void) { return 0; } 1358 static inline void input_proc_exit(void) { } 1359 #endif 1360 1361 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1362 static ssize_t input_dev_show_##name(struct device *dev, \ 1363 struct device_attribute *attr, \ 1364 char *buf) \ 1365 { \ 1366 struct input_dev *input_dev = to_input_dev(dev); \ 1367 \ 1368 return sysfs_emit(buf, "%s\n", \ 1369 input_dev->name ? input_dev->name : ""); \ 1370 } \ 1371 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1372 1373 INPUT_DEV_STRING_ATTR_SHOW(name); 1374 INPUT_DEV_STRING_ATTR_SHOW(phys); 1375 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1376 1377 static int input_print_modalias_bits(char *buf, int size, 1378 char name, const unsigned long *bm, 1379 unsigned int min_bit, unsigned int max_bit) 1380 { 1381 int bit = min_bit; 1382 int len = 0; 1383 1384 len += snprintf(buf, max(size, 0), "%c", name); 1385 for_each_set_bit_from(bit, bm, max_bit) 1386 len += snprintf(buf + len, max(size - len, 0), "%X,", bit); 1387 return len; 1388 } 1389 1390 static int input_print_modalias_parts(char *buf, int size, int full_len, 1391 const struct input_dev *id) 1392 { 1393 int len, klen, remainder, space; 1394 1395 len = snprintf(buf, max(size, 0), 1396 "input:b%04Xv%04Xp%04Xe%04X-", 1397 id->id.bustype, id->id.vendor, 1398 id->id.product, id->id.version); 1399 1400 len += input_print_modalias_bits(buf + len, size - len, 1401 'e', id->evbit, 0, EV_MAX); 1402 1403 /* 1404 * Calculate the remaining space in the buffer making sure we 1405 * have place for the terminating 0. 1406 */ 1407 space = max(size - (len + 1), 0); 1408 1409 klen = input_print_modalias_bits(buf + len, size - len, 1410 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1411 len += klen; 1412 1413 /* 1414 * If we have more data than we can fit in the buffer, check 1415 * if we can trim key data to fit in the rest. We will indicate 1416 * that key data is incomplete by adding "+" sign at the end, like 1417 * this: * "k1,2,3,45,+,". 1418 * 1419 * Note that we shortest key info (if present) is "k+," so we 1420 * can only try to trim if key data is longer than that. 1421 */ 1422 if (full_len && size < full_len + 1 && klen > 3) { 1423 remainder = full_len - len; 1424 /* 1425 * We can only trim if we have space for the remainder 1426 * and also for at least "k+," which is 3 more characters. 1427 */ 1428 if (remainder <= space - 3) { 1429 /* 1430 * We are guaranteed to have 'k' in the buffer, so 1431 * we need at least 3 additional bytes for storing 1432 * "+," in addition to the remainder. 1433 */ 1434 for (int i = size - 1 - remainder - 3; i >= 0; i--) { 1435 if (buf[i] == 'k' || buf[i] == ',') { 1436 strcpy(buf + i + 1, "+,"); 1437 len = i + 3; /* Not counting '\0' */ 1438 break; 1439 } 1440 } 1441 } 1442 } 1443 1444 len += input_print_modalias_bits(buf + len, size - len, 1445 'r', id->relbit, 0, REL_MAX); 1446 len += input_print_modalias_bits(buf + len, size - len, 1447 'a', id->absbit, 0, ABS_MAX); 1448 len += input_print_modalias_bits(buf + len, size - len, 1449 'm', id->mscbit, 0, MSC_MAX); 1450 len += input_print_modalias_bits(buf + len, size - len, 1451 'l', id->ledbit, 0, LED_MAX); 1452 len += input_print_modalias_bits(buf + len, size - len, 1453 's', id->sndbit, 0, SND_MAX); 1454 len += input_print_modalias_bits(buf + len, size - len, 1455 'f', id->ffbit, 0, FF_MAX); 1456 len += input_print_modalias_bits(buf + len, size - len, 1457 'w', id->swbit, 0, SW_MAX); 1458 1459 return len; 1460 } 1461 1462 static int input_print_modalias(char *buf, int size, const struct input_dev *id) 1463 { 1464 int full_len; 1465 1466 /* 1467 * Printing is done in 2 passes: first one figures out total length 1468 * needed for the modalias string, second one will try to trim key 1469 * data in case when buffer is too small for the entire modalias. 1470 * If the buffer is too small regardless, it will fill as much as it 1471 * can (without trimming key data) into the buffer and leave it to 1472 * the caller to figure out what to do with the result. 1473 */ 1474 full_len = input_print_modalias_parts(NULL, 0, 0, id); 1475 return input_print_modalias_parts(buf, size, full_len, id); 1476 } 1477 1478 static ssize_t input_dev_show_modalias(struct device *dev, 1479 struct device_attribute *attr, 1480 char *buf) 1481 { 1482 struct input_dev *id = to_input_dev(dev); 1483 ssize_t len; 1484 1485 len = input_print_modalias(buf, PAGE_SIZE, id); 1486 if (len < PAGE_SIZE - 2) 1487 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1488 1489 return min_t(int, len, PAGE_SIZE); 1490 } 1491 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1492 1493 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, 1494 int max, int add_cr); 1495 1496 static ssize_t input_dev_show_properties(struct device *dev, 1497 struct device_attribute *attr, 1498 char *buf) 1499 { 1500 struct input_dev *input_dev = to_input_dev(dev); 1501 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1502 INPUT_PROP_MAX, true); 1503 return min_t(int, len, PAGE_SIZE); 1504 } 1505 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1506 1507 static int input_inhibit_device(struct input_dev *dev); 1508 static int input_uninhibit_device(struct input_dev *dev); 1509 1510 static ssize_t inhibited_show(struct device *dev, 1511 struct device_attribute *attr, 1512 char *buf) 1513 { 1514 struct input_dev *input_dev = to_input_dev(dev); 1515 1516 return sysfs_emit(buf, "%d\n", input_dev->inhibited); 1517 } 1518 1519 static ssize_t inhibited_store(struct device *dev, 1520 struct device_attribute *attr, const char *buf, 1521 size_t len) 1522 { 1523 struct input_dev *input_dev = to_input_dev(dev); 1524 ssize_t rv; 1525 bool inhibited; 1526 1527 if (kstrtobool(buf, &inhibited)) 1528 return -EINVAL; 1529 1530 if (inhibited) 1531 rv = input_inhibit_device(input_dev); 1532 else 1533 rv = input_uninhibit_device(input_dev); 1534 1535 if (rv != 0) 1536 return rv; 1537 1538 return len; 1539 } 1540 1541 static DEVICE_ATTR_RW(inhibited); 1542 1543 static struct attribute *input_dev_attrs[] = { 1544 &dev_attr_name.attr, 1545 &dev_attr_phys.attr, 1546 &dev_attr_uniq.attr, 1547 &dev_attr_modalias.attr, 1548 &dev_attr_properties.attr, 1549 &dev_attr_inhibited.attr, 1550 NULL 1551 }; 1552 1553 static const struct attribute_group input_dev_attr_group = { 1554 .attrs = input_dev_attrs, 1555 }; 1556 1557 #define INPUT_DEV_ID_ATTR(name) \ 1558 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1559 struct device_attribute *attr, \ 1560 char *buf) \ 1561 { \ 1562 struct input_dev *input_dev = to_input_dev(dev); \ 1563 return sysfs_emit(buf, "%04x\n", input_dev->id.name); \ 1564 } \ 1565 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1566 1567 INPUT_DEV_ID_ATTR(bustype); 1568 INPUT_DEV_ID_ATTR(vendor); 1569 INPUT_DEV_ID_ATTR(product); 1570 INPUT_DEV_ID_ATTR(version); 1571 1572 static struct attribute *input_dev_id_attrs[] = { 1573 &dev_attr_bustype.attr, 1574 &dev_attr_vendor.attr, 1575 &dev_attr_product.attr, 1576 &dev_attr_version.attr, 1577 NULL 1578 }; 1579 1580 static const struct attribute_group input_dev_id_attr_group = { 1581 .name = "id", 1582 .attrs = input_dev_id_attrs, 1583 }; 1584 1585 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, 1586 int max, int add_cr) 1587 { 1588 int i; 1589 int len = 0; 1590 bool skip_empty = true; 1591 1592 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1593 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1594 bitmap[i], skip_empty); 1595 if (len) { 1596 skip_empty = false; 1597 if (i > 0) 1598 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1599 } 1600 } 1601 1602 /* 1603 * If no output was produced print a single 0. 1604 */ 1605 if (len == 0) 1606 len = snprintf(buf, buf_size, "%d", 0); 1607 1608 if (add_cr) 1609 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1610 1611 return len; 1612 } 1613 1614 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1615 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1616 struct device_attribute *attr, \ 1617 char *buf) \ 1618 { \ 1619 struct input_dev *input_dev = to_input_dev(dev); \ 1620 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1621 input_dev->bm##bit, ev##_MAX, \ 1622 true); \ 1623 return min_t(int, len, PAGE_SIZE); \ 1624 } \ 1625 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1626 1627 INPUT_DEV_CAP_ATTR(EV, ev); 1628 INPUT_DEV_CAP_ATTR(KEY, key); 1629 INPUT_DEV_CAP_ATTR(REL, rel); 1630 INPUT_DEV_CAP_ATTR(ABS, abs); 1631 INPUT_DEV_CAP_ATTR(MSC, msc); 1632 INPUT_DEV_CAP_ATTR(LED, led); 1633 INPUT_DEV_CAP_ATTR(SND, snd); 1634 INPUT_DEV_CAP_ATTR(FF, ff); 1635 INPUT_DEV_CAP_ATTR(SW, sw); 1636 1637 static struct attribute *input_dev_caps_attrs[] = { 1638 &dev_attr_ev.attr, 1639 &dev_attr_key.attr, 1640 &dev_attr_rel.attr, 1641 &dev_attr_abs.attr, 1642 &dev_attr_msc.attr, 1643 &dev_attr_led.attr, 1644 &dev_attr_snd.attr, 1645 &dev_attr_ff.attr, 1646 &dev_attr_sw.attr, 1647 NULL 1648 }; 1649 1650 static const struct attribute_group input_dev_caps_attr_group = { 1651 .name = "capabilities", 1652 .attrs = input_dev_caps_attrs, 1653 }; 1654 1655 static const struct attribute_group *input_dev_attr_groups[] = { 1656 &input_dev_attr_group, 1657 &input_dev_id_attr_group, 1658 &input_dev_caps_attr_group, 1659 &input_poller_attribute_group, 1660 NULL 1661 }; 1662 1663 static void input_dev_release(struct device *device) 1664 { 1665 struct input_dev *dev = to_input_dev(device); 1666 1667 input_ff_destroy(dev); 1668 input_mt_destroy_slots(dev); 1669 kfree(dev->poller); 1670 kfree(dev->absinfo); 1671 kfree(dev->vals); 1672 kfree(dev); 1673 1674 module_put(THIS_MODULE); 1675 } 1676 1677 /* 1678 * Input uevent interface - loading event handlers based on 1679 * device bitfields. 1680 */ 1681 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1682 const char *name, const unsigned long *bitmap, int max) 1683 { 1684 int len; 1685 1686 if (add_uevent_var(env, "%s", name)) 1687 return -ENOMEM; 1688 1689 len = input_print_bitmap(&env->buf[env->buflen - 1], 1690 sizeof(env->buf) - env->buflen, 1691 bitmap, max, false); 1692 if (len >= (sizeof(env->buf) - env->buflen)) 1693 return -ENOMEM; 1694 1695 env->buflen += len; 1696 return 0; 1697 } 1698 1699 /* 1700 * This is a pretty gross hack. When building uevent data the driver core 1701 * may try adding more environment variables to kobj_uevent_env without 1702 * telling us, so we have no idea how much of the buffer we can use to 1703 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially 1704 * reduce amount of memory we will use for the modalias environment variable. 1705 * 1706 * The potential additions are: 1707 * 1708 * SEQNUM=18446744073709551615 - (%llu - 28 bytes) 1709 * HOME=/ (6 bytes) 1710 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes) 1711 * 1712 * 68 bytes total. Allow extra buffer - 96 bytes 1713 */ 1714 #define UEVENT_ENV_EXTRA_LEN 96 1715 1716 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1717 const struct input_dev *dev) 1718 { 1719 int len; 1720 1721 if (add_uevent_var(env, "MODALIAS=")) 1722 return -ENOMEM; 1723 1724 len = input_print_modalias(&env->buf[env->buflen - 1], 1725 (int)sizeof(env->buf) - env->buflen - 1726 UEVENT_ENV_EXTRA_LEN, 1727 dev); 1728 if (len >= ((int)sizeof(env->buf) - env->buflen - 1729 UEVENT_ENV_EXTRA_LEN)) 1730 return -ENOMEM; 1731 1732 env->buflen += len; 1733 return 0; 1734 } 1735 1736 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1737 do { \ 1738 int err = add_uevent_var(env, fmt, val); \ 1739 if (err) \ 1740 return err; \ 1741 } while (0) 1742 1743 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1744 do { \ 1745 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1746 if (err) \ 1747 return err; \ 1748 } while (0) 1749 1750 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1751 do { \ 1752 int err = input_add_uevent_modalias_var(env, dev); \ 1753 if (err) \ 1754 return err; \ 1755 } while (0) 1756 1757 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env) 1758 { 1759 const struct input_dev *dev = to_input_dev(device); 1760 1761 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1762 dev->id.bustype, dev->id.vendor, 1763 dev->id.product, dev->id.version); 1764 if (dev->name) 1765 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1766 if (dev->phys) 1767 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1768 if (dev->uniq) 1769 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1770 1771 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1772 1773 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1774 if (test_bit(EV_KEY, dev->evbit)) 1775 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1776 if (test_bit(EV_REL, dev->evbit)) 1777 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1778 if (test_bit(EV_ABS, dev->evbit)) 1779 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1780 if (test_bit(EV_MSC, dev->evbit)) 1781 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1782 if (test_bit(EV_LED, dev->evbit)) 1783 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1784 if (test_bit(EV_SND, dev->evbit)) 1785 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1786 if (test_bit(EV_FF, dev->evbit)) 1787 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1788 if (test_bit(EV_SW, dev->evbit)) 1789 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1790 1791 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1792 1793 return 0; 1794 } 1795 1796 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1797 do { \ 1798 int i; \ 1799 bool active; \ 1800 \ 1801 if (!test_bit(EV_##type, dev->evbit)) \ 1802 break; \ 1803 \ 1804 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ 1805 active = test_bit(i, dev->bits); \ 1806 if (!active && !on) \ 1807 continue; \ 1808 \ 1809 dev->event(dev, EV_##type, i, on ? active : 0); \ 1810 } \ 1811 } while (0) 1812 1813 static void input_dev_toggle(struct input_dev *dev, bool activate) 1814 { 1815 if (!dev->event) 1816 return; 1817 1818 INPUT_DO_TOGGLE(dev, LED, led, activate); 1819 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1820 1821 if (activate && test_bit(EV_REP, dev->evbit)) { 1822 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1823 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1824 } 1825 } 1826 1827 /** 1828 * input_reset_device() - reset/restore the state of input device 1829 * @dev: input device whose state needs to be reset 1830 * 1831 * This function tries to reset the state of an opened input device and 1832 * bring internal state and state if the hardware in sync with each other. 1833 * We mark all keys as released, restore LED state, repeat rate, etc. 1834 */ 1835 void input_reset_device(struct input_dev *dev) 1836 { 1837 unsigned long flags; 1838 1839 mutex_lock(&dev->mutex); 1840 spin_lock_irqsave(&dev->event_lock, flags); 1841 1842 input_dev_toggle(dev, true); 1843 if (input_dev_release_keys(dev)) 1844 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 1845 1846 spin_unlock_irqrestore(&dev->event_lock, flags); 1847 mutex_unlock(&dev->mutex); 1848 } 1849 EXPORT_SYMBOL(input_reset_device); 1850 1851 static int input_inhibit_device(struct input_dev *dev) 1852 { 1853 mutex_lock(&dev->mutex); 1854 1855 if (dev->inhibited) 1856 goto out; 1857 1858 if (dev->users) { 1859 if (dev->close) 1860 dev->close(dev); 1861 if (dev->poller) 1862 input_dev_poller_stop(dev->poller); 1863 } 1864 1865 spin_lock_irq(&dev->event_lock); 1866 input_mt_release_slots(dev); 1867 input_dev_release_keys(dev); 1868 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 1869 input_dev_toggle(dev, false); 1870 spin_unlock_irq(&dev->event_lock); 1871 1872 dev->inhibited = true; 1873 1874 out: 1875 mutex_unlock(&dev->mutex); 1876 return 0; 1877 } 1878 1879 static int input_uninhibit_device(struct input_dev *dev) 1880 { 1881 int ret = 0; 1882 1883 mutex_lock(&dev->mutex); 1884 1885 if (!dev->inhibited) 1886 goto out; 1887 1888 if (dev->users) { 1889 if (dev->open) { 1890 ret = dev->open(dev); 1891 if (ret) 1892 goto out; 1893 } 1894 if (dev->poller) 1895 input_dev_poller_start(dev->poller); 1896 } 1897 1898 dev->inhibited = false; 1899 spin_lock_irq(&dev->event_lock); 1900 input_dev_toggle(dev, true); 1901 spin_unlock_irq(&dev->event_lock); 1902 1903 out: 1904 mutex_unlock(&dev->mutex); 1905 return ret; 1906 } 1907 1908 static int input_dev_suspend(struct device *dev) 1909 { 1910 struct input_dev *input_dev = to_input_dev(dev); 1911 1912 spin_lock_irq(&input_dev->event_lock); 1913 1914 /* 1915 * Keys that are pressed now are unlikely to be 1916 * still pressed when we resume. 1917 */ 1918 if (input_dev_release_keys(input_dev)) 1919 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); 1920 1921 /* Turn off LEDs and sounds, if any are active. */ 1922 input_dev_toggle(input_dev, false); 1923 1924 spin_unlock_irq(&input_dev->event_lock); 1925 1926 return 0; 1927 } 1928 1929 static int input_dev_resume(struct device *dev) 1930 { 1931 struct input_dev *input_dev = to_input_dev(dev); 1932 1933 spin_lock_irq(&input_dev->event_lock); 1934 1935 /* Restore state of LEDs and sounds, if any were active. */ 1936 input_dev_toggle(input_dev, true); 1937 1938 spin_unlock_irq(&input_dev->event_lock); 1939 1940 return 0; 1941 } 1942 1943 static int input_dev_freeze(struct device *dev) 1944 { 1945 struct input_dev *input_dev = to_input_dev(dev); 1946 1947 spin_lock_irq(&input_dev->event_lock); 1948 1949 /* 1950 * Keys that are pressed now are unlikely to be 1951 * still pressed when we resume. 1952 */ 1953 if (input_dev_release_keys(input_dev)) 1954 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); 1955 1956 spin_unlock_irq(&input_dev->event_lock); 1957 1958 return 0; 1959 } 1960 1961 static int input_dev_poweroff(struct device *dev) 1962 { 1963 struct input_dev *input_dev = to_input_dev(dev); 1964 1965 spin_lock_irq(&input_dev->event_lock); 1966 1967 /* Turn off LEDs and sounds, if any are active. */ 1968 input_dev_toggle(input_dev, false); 1969 1970 spin_unlock_irq(&input_dev->event_lock); 1971 1972 return 0; 1973 } 1974 1975 static const struct dev_pm_ops input_dev_pm_ops = { 1976 .suspend = input_dev_suspend, 1977 .resume = input_dev_resume, 1978 .freeze = input_dev_freeze, 1979 .poweroff = input_dev_poweroff, 1980 .restore = input_dev_resume, 1981 }; 1982 1983 static const struct device_type input_dev_type = { 1984 .groups = input_dev_attr_groups, 1985 .release = input_dev_release, 1986 .uevent = input_dev_uevent, 1987 .pm = pm_sleep_ptr(&input_dev_pm_ops), 1988 }; 1989 1990 static char *input_devnode(const struct device *dev, umode_t *mode) 1991 { 1992 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1993 } 1994 1995 const struct class input_class = { 1996 .name = "input", 1997 .devnode = input_devnode, 1998 }; 1999 EXPORT_SYMBOL_GPL(input_class); 2000 2001 /** 2002 * input_allocate_device - allocate memory for new input device 2003 * 2004 * Returns prepared struct input_dev or %NULL. 2005 * 2006 * NOTE: Use input_free_device() to free devices that have not been 2007 * registered; input_unregister_device() should be used for already 2008 * registered devices. 2009 */ 2010 struct input_dev *input_allocate_device(void) 2011 { 2012 static atomic_t input_no = ATOMIC_INIT(-1); 2013 struct input_dev *dev; 2014 2015 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2016 if (dev) { 2017 dev->dev.type = &input_dev_type; 2018 dev->dev.class = &input_class; 2019 device_initialize(&dev->dev); 2020 mutex_init(&dev->mutex); 2021 spin_lock_init(&dev->event_lock); 2022 timer_setup(&dev->timer, NULL, 0); 2023 INIT_LIST_HEAD(&dev->h_list); 2024 INIT_LIST_HEAD(&dev->node); 2025 2026 dev_set_name(&dev->dev, "input%lu", 2027 (unsigned long)atomic_inc_return(&input_no)); 2028 2029 __module_get(THIS_MODULE); 2030 } 2031 2032 return dev; 2033 } 2034 EXPORT_SYMBOL(input_allocate_device); 2035 2036 struct input_devres { 2037 struct input_dev *input; 2038 }; 2039 2040 static int devm_input_device_match(struct device *dev, void *res, void *data) 2041 { 2042 struct input_devres *devres = res; 2043 2044 return devres->input == data; 2045 } 2046 2047 static void devm_input_device_release(struct device *dev, void *res) 2048 { 2049 struct input_devres *devres = res; 2050 struct input_dev *input = devres->input; 2051 2052 dev_dbg(dev, "%s: dropping reference to %s\n", 2053 __func__, dev_name(&input->dev)); 2054 input_put_device(input); 2055 } 2056 2057 /** 2058 * devm_input_allocate_device - allocate managed input device 2059 * @dev: device owning the input device being created 2060 * 2061 * Returns prepared struct input_dev or %NULL. 2062 * 2063 * Managed input devices do not need to be explicitly unregistered or 2064 * freed as it will be done automatically when owner device unbinds from 2065 * its driver (or binding fails). Once managed input device is allocated, 2066 * it is ready to be set up and registered in the same fashion as regular 2067 * input device. There are no special devm_input_device_[un]register() 2068 * variants, regular ones work with both managed and unmanaged devices, 2069 * should you need them. In most cases however, managed input device need 2070 * not be explicitly unregistered or freed. 2071 * 2072 * NOTE: the owner device is set up as parent of input device and users 2073 * should not override it. 2074 */ 2075 struct input_dev *devm_input_allocate_device(struct device *dev) 2076 { 2077 struct input_dev *input; 2078 struct input_devres *devres; 2079 2080 devres = devres_alloc(devm_input_device_release, 2081 sizeof(*devres), GFP_KERNEL); 2082 if (!devres) 2083 return NULL; 2084 2085 input = input_allocate_device(); 2086 if (!input) { 2087 devres_free(devres); 2088 return NULL; 2089 } 2090 2091 input->dev.parent = dev; 2092 input->devres_managed = true; 2093 2094 devres->input = input; 2095 devres_add(dev, devres); 2096 2097 return input; 2098 } 2099 EXPORT_SYMBOL(devm_input_allocate_device); 2100 2101 /** 2102 * input_free_device - free memory occupied by input_dev structure 2103 * @dev: input device to free 2104 * 2105 * This function should only be used if input_register_device() 2106 * was not called yet or if it failed. Once device was registered 2107 * use input_unregister_device() and memory will be freed once last 2108 * reference to the device is dropped. 2109 * 2110 * Device should be allocated by input_allocate_device(). 2111 * 2112 * NOTE: If there are references to the input device then memory 2113 * will not be freed until last reference is dropped. 2114 */ 2115 void input_free_device(struct input_dev *dev) 2116 { 2117 if (dev) { 2118 if (dev->devres_managed) 2119 WARN_ON(devres_destroy(dev->dev.parent, 2120 devm_input_device_release, 2121 devm_input_device_match, 2122 dev)); 2123 input_put_device(dev); 2124 } 2125 } 2126 EXPORT_SYMBOL(input_free_device); 2127 2128 /** 2129 * input_set_timestamp - set timestamp for input events 2130 * @dev: input device to set timestamp for 2131 * @timestamp: the time at which the event has occurred 2132 * in CLOCK_MONOTONIC 2133 * 2134 * This function is intended to provide to the input system a more 2135 * accurate time of when an event actually occurred. The driver should 2136 * call this function as soon as a timestamp is acquired ensuring 2137 * clock conversions in input_set_timestamp are done correctly. 2138 * 2139 * The system entering suspend state between timestamp acquisition and 2140 * calling input_set_timestamp can result in inaccurate conversions. 2141 */ 2142 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) 2143 { 2144 dev->timestamp[INPUT_CLK_MONO] = timestamp; 2145 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp); 2146 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp, 2147 TK_OFFS_BOOT); 2148 } 2149 EXPORT_SYMBOL(input_set_timestamp); 2150 2151 /** 2152 * input_get_timestamp - get timestamp for input events 2153 * @dev: input device to get timestamp from 2154 * 2155 * A valid timestamp is a timestamp of non-zero value. 2156 */ 2157 ktime_t *input_get_timestamp(struct input_dev *dev) 2158 { 2159 const ktime_t invalid_timestamp = ktime_set(0, 0); 2160 2161 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp)) 2162 input_set_timestamp(dev, ktime_get()); 2163 2164 return dev->timestamp; 2165 } 2166 EXPORT_SYMBOL(input_get_timestamp); 2167 2168 /** 2169 * input_set_capability - mark device as capable of a certain event 2170 * @dev: device that is capable of emitting or accepting event 2171 * @type: type of the event (EV_KEY, EV_REL, etc...) 2172 * @code: event code 2173 * 2174 * In addition to setting up corresponding bit in appropriate capability 2175 * bitmap the function also adjusts dev->evbit. 2176 */ 2177 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 2178 { 2179 if (type < EV_CNT && input_max_code[type] && 2180 code > input_max_code[type]) { 2181 pr_err("%s: invalid code %u for type %u\n", __func__, code, 2182 type); 2183 dump_stack(); 2184 return; 2185 } 2186 2187 switch (type) { 2188 case EV_KEY: 2189 __set_bit(code, dev->keybit); 2190 break; 2191 2192 case EV_REL: 2193 __set_bit(code, dev->relbit); 2194 break; 2195 2196 case EV_ABS: 2197 input_alloc_absinfo(dev); 2198 __set_bit(code, dev->absbit); 2199 break; 2200 2201 case EV_MSC: 2202 __set_bit(code, dev->mscbit); 2203 break; 2204 2205 case EV_SW: 2206 __set_bit(code, dev->swbit); 2207 break; 2208 2209 case EV_LED: 2210 __set_bit(code, dev->ledbit); 2211 break; 2212 2213 case EV_SND: 2214 __set_bit(code, dev->sndbit); 2215 break; 2216 2217 case EV_FF: 2218 __set_bit(code, dev->ffbit); 2219 break; 2220 2221 case EV_PWR: 2222 /* do nothing */ 2223 break; 2224 2225 default: 2226 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); 2227 dump_stack(); 2228 return; 2229 } 2230 2231 __set_bit(type, dev->evbit); 2232 } 2233 EXPORT_SYMBOL(input_set_capability); 2234 2235 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 2236 { 2237 int mt_slots; 2238 int i; 2239 unsigned int events; 2240 2241 if (dev->mt) { 2242 mt_slots = dev->mt->num_slots; 2243 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 2244 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 2245 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 2246 mt_slots = clamp(mt_slots, 2, 32); 2247 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 2248 mt_slots = 2; 2249 } else { 2250 mt_slots = 0; 2251 } 2252 2253 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 2254 2255 if (test_bit(EV_ABS, dev->evbit)) 2256 for_each_set_bit(i, dev->absbit, ABS_CNT) 2257 events += input_is_mt_axis(i) ? mt_slots : 1; 2258 2259 if (test_bit(EV_REL, dev->evbit)) 2260 events += bitmap_weight(dev->relbit, REL_CNT); 2261 2262 /* Make room for KEY and MSC events */ 2263 events += 7; 2264 2265 return events; 2266 } 2267 2268 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 2269 do { \ 2270 if (!test_bit(EV_##type, dev->evbit)) \ 2271 memset(dev->bits##bit, 0, \ 2272 sizeof(dev->bits##bit)); \ 2273 } while (0) 2274 2275 static void input_cleanse_bitmasks(struct input_dev *dev) 2276 { 2277 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2278 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2279 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2280 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2281 INPUT_CLEANSE_BITMASK(dev, LED, led); 2282 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2283 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2284 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2285 } 2286 2287 static void __input_unregister_device(struct input_dev *dev) 2288 { 2289 struct input_handle *handle, *next; 2290 2291 input_disconnect_device(dev); 2292 2293 mutex_lock(&input_mutex); 2294 2295 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2296 handle->handler->disconnect(handle); 2297 WARN_ON(!list_empty(&dev->h_list)); 2298 2299 del_timer_sync(&dev->timer); 2300 list_del_init(&dev->node); 2301 2302 input_wakeup_procfs_readers(); 2303 2304 mutex_unlock(&input_mutex); 2305 2306 device_del(&dev->dev); 2307 } 2308 2309 static void devm_input_device_unregister(struct device *dev, void *res) 2310 { 2311 struct input_devres *devres = res; 2312 struct input_dev *input = devres->input; 2313 2314 dev_dbg(dev, "%s: unregistering device %s\n", 2315 __func__, dev_name(&input->dev)); 2316 __input_unregister_device(input); 2317 } 2318 2319 /* 2320 * Generate software autorepeat event. Note that we take 2321 * dev->event_lock here to avoid racing with input_event 2322 * which may cause keys get "stuck". 2323 */ 2324 static void input_repeat_key(struct timer_list *t) 2325 { 2326 struct input_dev *dev = from_timer(dev, t, timer); 2327 unsigned long flags; 2328 2329 spin_lock_irqsave(&dev->event_lock, flags); 2330 2331 if (!dev->inhibited && 2332 test_bit(dev->repeat_key, dev->key) && 2333 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 2334 2335 input_set_timestamp(dev, ktime_get()); 2336 input_handle_event(dev, EV_KEY, dev->repeat_key, 2); 2337 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 2338 2339 if (dev->rep[REP_PERIOD]) 2340 mod_timer(&dev->timer, jiffies + 2341 msecs_to_jiffies(dev->rep[REP_PERIOD])); 2342 } 2343 2344 spin_unlock_irqrestore(&dev->event_lock, flags); 2345 } 2346 2347 /** 2348 * input_enable_softrepeat - enable software autorepeat 2349 * @dev: input device 2350 * @delay: repeat delay 2351 * @period: repeat period 2352 * 2353 * Enable software autorepeat on the input device. 2354 */ 2355 void input_enable_softrepeat(struct input_dev *dev, int delay, int period) 2356 { 2357 dev->timer.function = input_repeat_key; 2358 dev->rep[REP_DELAY] = delay; 2359 dev->rep[REP_PERIOD] = period; 2360 } 2361 EXPORT_SYMBOL(input_enable_softrepeat); 2362 2363 bool input_device_enabled(struct input_dev *dev) 2364 { 2365 lockdep_assert_held(&dev->mutex); 2366 2367 return !dev->inhibited && dev->users > 0; 2368 } 2369 EXPORT_SYMBOL_GPL(input_device_enabled); 2370 2371 /** 2372 * input_register_device - register device with input core 2373 * @dev: device to be registered 2374 * 2375 * This function registers device with input core. The device must be 2376 * allocated with input_allocate_device() and all it's capabilities 2377 * set up before registering. 2378 * If function fails the device must be freed with input_free_device(). 2379 * Once device has been successfully registered it can be unregistered 2380 * with input_unregister_device(); input_free_device() should not be 2381 * called in this case. 2382 * 2383 * Note that this function is also used to register managed input devices 2384 * (ones allocated with devm_input_allocate_device()). Such managed input 2385 * devices need not be explicitly unregistered or freed, their tear down 2386 * is controlled by the devres infrastructure. It is also worth noting 2387 * that tear down of managed input devices is internally a 2-step process: 2388 * registered managed input device is first unregistered, but stays in 2389 * memory and can still handle input_event() calls (although events will 2390 * not be delivered anywhere). The freeing of managed input device will 2391 * happen later, when devres stack is unwound to the point where device 2392 * allocation was made. 2393 */ 2394 int input_register_device(struct input_dev *dev) 2395 { 2396 struct input_devres *devres = NULL; 2397 struct input_handler *handler; 2398 unsigned int packet_size; 2399 const char *path; 2400 int error; 2401 2402 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { 2403 dev_err(&dev->dev, 2404 "Absolute device without dev->absinfo, refusing to register\n"); 2405 return -EINVAL; 2406 } 2407 2408 if (dev->devres_managed) { 2409 devres = devres_alloc(devm_input_device_unregister, 2410 sizeof(*devres), GFP_KERNEL); 2411 if (!devres) 2412 return -ENOMEM; 2413 2414 devres->input = dev; 2415 } 2416 2417 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2418 __set_bit(EV_SYN, dev->evbit); 2419 2420 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2421 __clear_bit(KEY_RESERVED, dev->keybit); 2422 2423 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2424 input_cleanse_bitmasks(dev); 2425 2426 packet_size = input_estimate_events_per_packet(dev); 2427 if (dev->hint_events_per_packet < packet_size) 2428 dev->hint_events_per_packet = packet_size; 2429 2430 dev->max_vals = dev->hint_events_per_packet + 2; 2431 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 2432 if (!dev->vals) { 2433 error = -ENOMEM; 2434 goto err_devres_free; 2435 } 2436 2437 /* 2438 * If delay and period are pre-set by the driver, then autorepeating 2439 * is handled by the driver itself and we don't do it in input.c. 2440 */ 2441 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) 2442 input_enable_softrepeat(dev, 250, 33); 2443 2444 if (!dev->getkeycode) 2445 dev->getkeycode = input_default_getkeycode; 2446 2447 if (!dev->setkeycode) 2448 dev->setkeycode = input_default_setkeycode; 2449 2450 if (dev->poller) 2451 input_dev_poller_finalize(dev->poller); 2452 2453 error = device_add(&dev->dev); 2454 if (error) 2455 goto err_free_vals; 2456 2457 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2458 pr_info("%s as %s\n", 2459 dev->name ? dev->name : "Unspecified device", 2460 path ? path : "N/A"); 2461 kfree(path); 2462 2463 error = mutex_lock_interruptible(&input_mutex); 2464 if (error) 2465 goto err_device_del; 2466 2467 list_add_tail(&dev->node, &input_dev_list); 2468 2469 list_for_each_entry(handler, &input_handler_list, node) 2470 input_attach_handler(dev, handler); 2471 2472 input_wakeup_procfs_readers(); 2473 2474 mutex_unlock(&input_mutex); 2475 2476 if (dev->devres_managed) { 2477 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2478 __func__, dev_name(&dev->dev)); 2479 devres_add(dev->dev.parent, devres); 2480 } 2481 return 0; 2482 2483 err_device_del: 2484 device_del(&dev->dev); 2485 err_free_vals: 2486 kfree(dev->vals); 2487 dev->vals = NULL; 2488 err_devres_free: 2489 devres_free(devres); 2490 return error; 2491 } 2492 EXPORT_SYMBOL(input_register_device); 2493 2494 /** 2495 * input_unregister_device - unregister previously registered device 2496 * @dev: device to be unregistered 2497 * 2498 * This function unregisters an input device. Once device is unregistered 2499 * the caller should not try to access it as it may get freed at any moment. 2500 */ 2501 void input_unregister_device(struct input_dev *dev) 2502 { 2503 if (dev->devres_managed) { 2504 WARN_ON(devres_destroy(dev->dev.parent, 2505 devm_input_device_unregister, 2506 devm_input_device_match, 2507 dev)); 2508 __input_unregister_device(dev); 2509 /* 2510 * We do not do input_put_device() here because it will be done 2511 * when 2nd devres fires up. 2512 */ 2513 } else { 2514 __input_unregister_device(dev); 2515 input_put_device(dev); 2516 } 2517 } 2518 EXPORT_SYMBOL(input_unregister_device); 2519 2520 /** 2521 * input_register_handler - register a new input handler 2522 * @handler: handler to be registered 2523 * 2524 * This function registers a new input handler (interface) for input 2525 * devices in the system and attaches it to all input devices that 2526 * are compatible with the handler. 2527 */ 2528 int input_register_handler(struct input_handler *handler) 2529 { 2530 struct input_dev *dev; 2531 int error; 2532 2533 error = mutex_lock_interruptible(&input_mutex); 2534 if (error) 2535 return error; 2536 2537 INIT_LIST_HEAD(&handler->h_list); 2538 2539 list_add_tail(&handler->node, &input_handler_list); 2540 2541 list_for_each_entry(dev, &input_dev_list, node) 2542 input_attach_handler(dev, handler); 2543 2544 input_wakeup_procfs_readers(); 2545 2546 mutex_unlock(&input_mutex); 2547 return 0; 2548 } 2549 EXPORT_SYMBOL(input_register_handler); 2550 2551 /** 2552 * input_unregister_handler - unregisters an input handler 2553 * @handler: handler to be unregistered 2554 * 2555 * This function disconnects a handler from its input devices and 2556 * removes it from lists of known handlers. 2557 */ 2558 void input_unregister_handler(struct input_handler *handler) 2559 { 2560 struct input_handle *handle, *next; 2561 2562 mutex_lock(&input_mutex); 2563 2564 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2565 handler->disconnect(handle); 2566 WARN_ON(!list_empty(&handler->h_list)); 2567 2568 list_del_init(&handler->node); 2569 2570 input_wakeup_procfs_readers(); 2571 2572 mutex_unlock(&input_mutex); 2573 } 2574 EXPORT_SYMBOL(input_unregister_handler); 2575 2576 /** 2577 * input_handler_for_each_handle - handle iterator 2578 * @handler: input handler to iterate 2579 * @data: data for the callback 2580 * @fn: function to be called for each handle 2581 * 2582 * Iterate over @bus's list of devices, and call @fn for each, passing 2583 * it @data and stop when @fn returns a non-zero value. The function is 2584 * using RCU to traverse the list and therefore may be using in atomic 2585 * contexts. The @fn callback is invoked from RCU critical section and 2586 * thus must not sleep. 2587 */ 2588 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2589 int (*fn)(struct input_handle *, void *)) 2590 { 2591 struct input_handle *handle; 2592 int retval = 0; 2593 2594 rcu_read_lock(); 2595 2596 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2597 retval = fn(handle, data); 2598 if (retval) 2599 break; 2600 } 2601 2602 rcu_read_unlock(); 2603 2604 return retval; 2605 } 2606 EXPORT_SYMBOL(input_handler_for_each_handle); 2607 2608 /** 2609 * input_register_handle - register a new input handle 2610 * @handle: handle to register 2611 * 2612 * This function puts a new input handle onto device's 2613 * and handler's lists so that events can flow through 2614 * it once it is opened using input_open_device(). 2615 * 2616 * This function is supposed to be called from handler's 2617 * connect() method. 2618 */ 2619 int input_register_handle(struct input_handle *handle) 2620 { 2621 struct input_handler *handler = handle->handler; 2622 struct input_dev *dev = handle->dev; 2623 int error; 2624 2625 /* 2626 * We take dev->mutex here to prevent race with 2627 * input_release_device(). 2628 */ 2629 error = mutex_lock_interruptible(&dev->mutex); 2630 if (error) 2631 return error; 2632 2633 /* 2634 * Filters go to the head of the list, normal handlers 2635 * to the tail. 2636 */ 2637 if (handler->filter) 2638 list_add_rcu(&handle->d_node, &dev->h_list); 2639 else 2640 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2641 2642 mutex_unlock(&dev->mutex); 2643 2644 /* 2645 * Since we are supposed to be called from ->connect() 2646 * which is mutually exclusive with ->disconnect() 2647 * we can't be racing with input_unregister_handle() 2648 * and so separate lock is not needed here. 2649 */ 2650 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2651 2652 if (handler->start) 2653 handler->start(handle); 2654 2655 return 0; 2656 } 2657 EXPORT_SYMBOL(input_register_handle); 2658 2659 /** 2660 * input_unregister_handle - unregister an input handle 2661 * @handle: handle to unregister 2662 * 2663 * This function removes input handle from device's 2664 * and handler's lists. 2665 * 2666 * This function is supposed to be called from handler's 2667 * disconnect() method. 2668 */ 2669 void input_unregister_handle(struct input_handle *handle) 2670 { 2671 struct input_dev *dev = handle->dev; 2672 2673 list_del_rcu(&handle->h_node); 2674 2675 /* 2676 * Take dev->mutex to prevent race with input_release_device(). 2677 */ 2678 mutex_lock(&dev->mutex); 2679 list_del_rcu(&handle->d_node); 2680 mutex_unlock(&dev->mutex); 2681 2682 synchronize_rcu(); 2683 } 2684 EXPORT_SYMBOL(input_unregister_handle); 2685 2686 /** 2687 * input_get_new_minor - allocates a new input minor number 2688 * @legacy_base: beginning or the legacy range to be searched 2689 * @legacy_num: size of legacy range 2690 * @allow_dynamic: whether we can also take ID from the dynamic range 2691 * 2692 * This function allocates a new device minor for from input major namespace. 2693 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2694 * parameters and whether ID can be allocated from dynamic range if there are 2695 * no free IDs in legacy range. 2696 */ 2697 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2698 bool allow_dynamic) 2699 { 2700 /* 2701 * This function should be called from input handler's ->connect() 2702 * methods, which are serialized with input_mutex, so no additional 2703 * locking is needed here. 2704 */ 2705 if (legacy_base >= 0) { 2706 int minor = ida_alloc_range(&input_ida, legacy_base, 2707 legacy_base + legacy_num - 1, 2708 GFP_KERNEL); 2709 if (minor >= 0 || !allow_dynamic) 2710 return minor; 2711 } 2712 2713 return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV, 2714 INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL); 2715 } 2716 EXPORT_SYMBOL(input_get_new_minor); 2717 2718 /** 2719 * input_free_minor - release previously allocated minor 2720 * @minor: minor to be released 2721 * 2722 * This function releases previously allocated input minor so that it can be 2723 * reused later. 2724 */ 2725 void input_free_minor(unsigned int minor) 2726 { 2727 ida_free(&input_ida, minor); 2728 } 2729 EXPORT_SYMBOL(input_free_minor); 2730 2731 static int __init input_init(void) 2732 { 2733 int err; 2734 2735 err = class_register(&input_class); 2736 if (err) { 2737 pr_err("unable to register input_dev class\n"); 2738 return err; 2739 } 2740 2741 err = input_proc_init(); 2742 if (err) 2743 goto fail1; 2744 2745 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2746 INPUT_MAX_CHAR_DEVICES, "input"); 2747 if (err) { 2748 pr_err("unable to register char major %d", INPUT_MAJOR); 2749 goto fail2; 2750 } 2751 2752 return 0; 2753 2754 fail2: input_proc_exit(); 2755 fail1: class_unregister(&input_class); 2756 return err; 2757 } 2758 2759 static void __exit input_exit(void) 2760 { 2761 input_proc_exit(); 2762 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2763 INPUT_MAX_CHAR_DEVICES); 2764 class_unregister(&input_class); 2765 } 2766 2767 subsys_initcall(input_init); 2768 module_exit(input_exit); 2769