1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * The input core 4 * 5 * Copyright (c) 1999-2002 Vojtech Pavlik 6 */ 7 8 9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/idr.h> 14 #include <linux/input/mt.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/major.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/poll.h> 23 #include <linux/device.h> 24 #include <linux/mutex.h> 25 #include <linux/rcupdate.h> 26 #include "input-compat.h" 27 #include "input-poller.h" 28 29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 30 MODULE_DESCRIPTION("Input core"); 31 MODULE_LICENSE("GPL"); 32 33 #define INPUT_MAX_CHAR_DEVICES 1024 34 #define INPUT_FIRST_DYNAMIC_DEV 256 35 static DEFINE_IDA(input_ida); 36 37 static LIST_HEAD(input_dev_list); 38 static LIST_HEAD(input_handler_list); 39 40 /* 41 * input_mutex protects access to both input_dev_list and input_handler_list. 42 * This also causes input_[un]register_device and input_[un]register_handler 43 * be mutually exclusive which simplifies locking in drivers implementing 44 * input handlers. 45 */ 46 static DEFINE_MUTEX(input_mutex); 47 48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 49 50 static inline int is_event_supported(unsigned int code, 51 unsigned long *bm, unsigned int max) 52 { 53 return code <= max && test_bit(code, bm); 54 } 55 56 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 57 { 58 if (fuzz) { 59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 60 return old_val; 61 62 if (value > old_val - fuzz && value < old_val + fuzz) 63 return (old_val * 3 + value) / 4; 64 65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 66 return (old_val + value) / 2; 67 } 68 69 return value; 70 } 71 72 static void input_start_autorepeat(struct input_dev *dev, int code) 73 { 74 if (test_bit(EV_REP, dev->evbit) && 75 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 76 dev->timer.function) { 77 dev->repeat_key = code; 78 mod_timer(&dev->timer, 79 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 80 } 81 } 82 83 static void input_stop_autorepeat(struct input_dev *dev) 84 { 85 del_timer(&dev->timer); 86 } 87 88 /* 89 * Pass event first through all filters and then, if event has not been 90 * filtered out, through all open handles. This function is called with 91 * dev->event_lock held and interrupts disabled. 92 */ 93 static unsigned int input_to_handler(struct input_handle *handle, 94 struct input_value *vals, unsigned int count) 95 { 96 struct input_handler *handler = handle->handler; 97 struct input_value *end = vals; 98 struct input_value *v; 99 100 if (handler->filter) { 101 for (v = vals; v != vals + count; v++) { 102 if (handler->filter(handle, v->type, v->code, v->value)) 103 continue; 104 if (end != v) 105 *end = *v; 106 end++; 107 } 108 count = end - vals; 109 } 110 111 if (!count) 112 return 0; 113 114 if (handler->events) 115 handler->events(handle, vals, count); 116 else if (handler->event) 117 for (v = vals; v != vals + count; v++) 118 handler->event(handle, v->type, v->code, v->value); 119 120 return count; 121 } 122 123 /* 124 * Pass values first through all filters and then, if event has not been 125 * filtered out, through all open handles. This function is called with 126 * dev->event_lock held and interrupts disabled. 127 */ 128 static void input_pass_values(struct input_dev *dev, 129 struct input_value *vals, unsigned int count) 130 { 131 struct input_handle *handle; 132 struct input_value *v; 133 134 if (!count) 135 return; 136 137 rcu_read_lock(); 138 139 handle = rcu_dereference(dev->grab); 140 if (handle) { 141 count = input_to_handler(handle, vals, count); 142 } else { 143 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 144 if (handle->open) { 145 count = input_to_handler(handle, vals, count); 146 if (!count) 147 break; 148 } 149 } 150 151 rcu_read_unlock(); 152 153 /* trigger auto repeat for key events */ 154 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { 155 for (v = vals; v != vals + count; v++) { 156 if (v->type == EV_KEY && v->value != 2) { 157 if (v->value) 158 input_start_autorepeat(dev, v->code); 159 else 160 input_stop_autorepeat(dev); 161 } 162 } 163 } 164 } 165 166 static void input_pass_event(struct input_dev *dev, 167 unsigned int type, unsigned int code, int value) 168 { 169 struct input_value vals[] = { { type, code, value } }; 170 171 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 172 } 173 174 /* 175 * Generate software autorepeat event. Note that we take 176 * dev->event_lock here to avoid racing with input_event 177 * which may cause keys get "stuck". 178 */ 179 static void input_repeat_key(struct timer_list *t) 180 { 181 struct input_dev *dev = from_timer(dev, t, timer); 182 unsigned long flags; 183 184 spin_lock_irqsave(&dev->event_lock, flags); 185 186 if (test_bit(dev->repeat_key, dev->key) && 187 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 188 struct input_value vals[] = { 189 { EV_KEY, dev->repeat_key, 2 }, 190 input_value_sync 191 }; 192 193 input_set_timestamp(dev, ktime_get()); 194 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 195 196 if (dev->rep[REP_PERIOD]) 197 mod_timer(&dev->timer, jiffies + 198 msecs_to_jiffies(dev->rep[REP_PERIOD])); 199 } 200 201 spin_unlock_irqrestore(&dev->event_lock, flags); 202 } 203 204 #define INPUT_IGNORE_EVENT 0 205 #define INPUT_PASS_TO_HANDLERS 1 206 #define INPUT_PASS_TO_DEVICE 2 207 #define INPUT_SLOT 4 208 #define INPUT_FLUSH 8 209 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 210 211 static int input_handle_abs_event(struct input_dev *dev, 212 unsigned int code, int *pval) 213 { 214 struct input_mt *mt = dev->mt; 215 bool is_mt_event; 216 int *pold; 217 218 if (code == ABS_MT_SLOT) { 219 /* 220 * "Stage" the event; we'll flush it later, when we 221 * get actual touch data. 222 */ 223 if (mt && *pval >= 0 && *pval < mt->num_slots) 224 mt->slot = *pval; 225 226 return INPUT_IGNORE_EVENT; 227 } 228 229 is_mt_event = input_is_mt_value(code); 230 231 if (!is_mt_event) { 232 pold = &dev->absinfo[code].value; 233 } else if (mt) { 234 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 235 } else { 236 /* 237 * Bypass filtering for multi-touch events when 238 * not employing slots. 239 */ 240 pold = NULL; 241 } 242 243 if (pold) { 244 *pval = input_defuzz_abs_event(*pval, *pold, 245 dev->absinfo[code].fuzz); 246 if (*pold == *pval) 247 return INPUT_IGNORE_EVENT; 248 249 *pold = *pval; 250 } 251 252 /* Flush pending "slot" event */ 253 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 254 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 255 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 256 } 257 258 return INPUT_PASS_TO_HANDLERS; 259 } 260 261 static int input_get_disposition(struct input_dev *dev, 262 unsigned int type, unsigned int code, int *pval) 263 { 264 int disposition = INPUT_IGNORE_EVENT; 265 int value = *pval; 266 267 switch (type) { 268 269 case EV_SYN: 270 switch (code) { 271 case SYN_CONFIG: 272 disposition = INPUT_PASS_TO_ALL; 273 break; 274 275 case SYN_REPORT: 276 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 277 break; 278 case SYN_MT_REPORT: 279 disposition = INPUT_PASS_TO_HANDLERS; 280 break; 281 } 282 break; 283 284 case EV_KEY: 285 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 286 287 /* auto-repeat bypasses state updates */ 288 if (value == 2) { 289 disposition = INPUT_PASS_TO_HANDLERS; 290 break; 291 } 292 293 if (!!test_bit(code, dev->key) != !!value) { 294 295 __change_bit(code, dev->key); 296 disposition = INPUT_PASS_TO_HANDLERS; 297 } 298 } 299 break; 300 301 case EV_SW: 302 if (is_event_supported(code, dev->swbit, SW_MAX) && 303 !!test_bit(code, dev->sw) != !!value) { 304 305 __change_bit(code, dev->sw); 306 disposition = INPUT_PASS_TO_HANDLERS; 307 } 308 break; 309 310 case EV_ABS: 311 if (is_event_supported(code, dev->absbit, ABS_MAX)) 312 disposition = input_handle_abs_event(dev, code, &value); 313 314 break; 315 316 case EV_REL: 317 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 318 disposition = INPUT_PASS_TO_HANDLERS; 319 320 break; 321 322 case EV_MSC: 323 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 324 disposition = INPUT_PASS_TO_ALL; 325 326 break; 327 328 case EV_LED: 329 if (is_event_supported(code, dev->ledbit, LED_MAX) && 330 !!test_bit(code, dev->led) != !!value) { 331 332 __change_bit(code, dev->led); 333 disposition = INPUT_PASS_TO_ALL; 334 } 335 break; 336 337 case EV_SND: 338 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 339 340 if (!!test_bit(code, dev->snd) != !!value) 341 __change_bit(code, dev->snd); 342 disposition = INPUT_PASS_TO_ALL; 343 } 344 break; 345 346 case EV_REP: 347 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 348 dev->rep[code] = value; 349 disposition = INPUT_PASS_TO_ALL; 350 } 351 break; 352 353 case EV_FF: 354 if (value >= 0) 355 disposition = INPUT_PASS_TO_ALL; 356 break; 357 358 case EV_PWR: 359 disposition = INPUT_PASS_TO_ALL; 360 break; 361 } 362 363 *pval = value; 364 return disposition; 365 } 366 367 static void input_handle_event(struct input_dev *dev, 368 unsigned int type, unsigned int code, int value) 369 { 370 int disposition = input_get_disposition(dev, type, code, &value); 371 372 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 373 add_input_randomness(type, code, value); 374 375 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 376 dev->event(dev, type, code, value); 377 378 if (!dev->vals) 379 return; 380 381 if (disposition & INPUT_PASS_TO_HANDLERS) { 382 struct input_value *v; 383 384 if (disposition & INPUT_SLOT) { 385 v = &dev->vals[dev->num_vals++]; 386 v->type = EV_ABS; 387 v->code = ABS_MT_SLOT; 388 v->value = dev->mt->slot; 389 } 390 391 v = &dev->vals[dev->num_vals++]; 392 v->type = type; 393 v->code = code; 394 v->value = value; 395 } 396 397 if (disposition & INPUT_FLUSH) { 398 if (dev->num_vals >= 2) 399 input_pass_values(dev, dev->vals, dev->num_vals); 400 dev->num_vals = 0; 401 /* 402 * Reset the timestamp on flush so we won't end up 403 * with a stale one. Note we only need to reset the 404 * monolithic one as we use its presence when deciding 405 * whether to generate a synthetic timestamp. 406 */ 407 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0); 408 } else if (dev->num_vals >= dev->max_vals - 2) { 409 dev->vals[dev->num_vals++] = input_value_sync; 410 input_pass_values(dev, dev->vals, dev->num_vals); 411 dev->num_vals = 0; 412 } 413 414 } 415 416 /** 417 * input_event() - report new input event 418 * @dev: device that generated the event 419 * @type: type of the event 420 * @code: event code 421 * @value: value of the event 422 * 423 * This function should be used by drivers implementing various input 424 * devices to report input events. See also input_inject_event(). 425 * 426 * NOTE: input_event() may be safely used right after input device was 427 * allocated with input_allocate_device(), even before it is registered 428 * with input_register_device(), but the event will not reach any of the 429 * input handlers. Such early invocation of input_event() may be used 430 * to 'seed' initial state of a switch or initial position of absolute 431 * axis, etc. 432 */ 433 void input_event(struct input_dev *dev, 434 unsigned int type, unsigned int code, int value) 435 { 436 unsigned long flags; 437 438 if (is_event_supported(type, dev->evbit, EV_MAX)) { 439 440 spin_lock_irqsave(&dev->event_lock, flags); 441 input_handle_event(dev, type, code, value); 442 spin_unlock_irqrestore(&dev->event_lock, flags); 443 } 444 } 445 EXPORT_SYMBOL(input_event); 446 447 /** 448 * input_inject_event() - send input event from input handler 449 * @handle: input handle to send event through 450 * @type: type of the event 451 * @code: event code 452 * @value: value of the event 453 * 454 * Similar to input_event() but will ignore event if device is 455 * "grabbed" and handle injecting event is not the one that owns 456 * the device. 457 */ 458 void input_inject_event(struct input_handle *handle, 459 unsigned int type, unsigned int code, int value) 460 { 461 struct input_dev *dev = handle->dev; 462 struct input_handle *grab; 463 unsigned long flags; 464 465 if (is_event_supported(type, dev->evbit, EV_MAX)) { 466 spin_lock_irqsave(&dev->event_lock, flags); 467 468 rcu_read_lock(); 469 grab = rcu_dereference(dev->grab); 470 if (!grab || grab == handle) 471 input_handle_event(dev, type, code, value); 472 rcu_read_unlock(); 473 474 spin_unlock_irqrestore(&dev->event_lock, flags); 475 } 476 } 477 EXPORT_SYMBOL(input_inject_event); 478 479 /** 480 * input_alloc_absinfo - allocates array of input_absinfo structs 481 * @dev: the input device emitting absolute events 482 * 483 * If the absinfo struct the caller asked for is already allocated, this 484 * functions will not do anything. 485 */ 486 void input_alloc_absinfo(struct input_dev *dev) 487 { 488 if (dev->absinfo) 489 return; 490 491 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); 492 if (!dev->absinfo) { 493 dev_err(dev->dev.parent ?: &dev->dev, 494 "%s: unable to allocate memory\n", __func__); 495 /* 496 * We will handle this allocation failure in 497 * input_register_device() when we refuse to register input 498 * device with ABS bits but without absinfo. 499 */ 500 } 501 } 502 EXPORT_SYMBOL(input_alloc_absinfo); 503 504 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 505 int min, int max, int fuzz, int flat) 506 { 507 struct input_absinfo *absinfo; 508 509 input_alloc_absinfo(dev); 510 if (!dev->absinfo) 511 return; 512 513 absinfo = &dev->absinfo[axis]; 514 absinfo->minimum = min; 515 absinfo->maximum = max; 516 absinfo->fuzz = fuzz; 517 absinfo->flat = flat; 518 519 __set_bit(EV_ABS, dev->evbit); 520 __set_bit(axis, dev->absbit); 521 } 522 EXPORT_SYMBOL(input_set_abs_params); 523 524 525 /** 526 * input_grab_device - grabs device for exclusive use 527 * @handle: input handle that wants to own the device 528 * 529 * When a device is grabbed by an input handle all events generated by 530 * the device are delivered only to this handle. Also events injected 531 * by other input handles are ignored while device is grabbed. 532 */ 533 int input_grab_device(struct input_handle *handle) 534 { 535 struct input_dev *dev = handle->dev; 536 int retval; 537 538 retval = mutex_lock_interruptible(&dev->mutex); 539 if (retval) 540 return retval; 541 542 if (dev->grab) { 543 retval = -EBUSY; 544 goto out; 545 } 546 547 rcu_assign_pointer(dev->grab, handle); 548 549 out: 550 mutex_unlock(&dev->mutex); 551 return retval; 552 } 553 EXPORT_SYMBOL(input_grab_device); 554 555 static void __input_release_device(struct input_handle *handle) 556 { 557 struct input_dev *dev = handle->dev; 558 struct input_handle *grabber; 559 560 grabber = rcu_dereference_protected(dev->grab, 561 lockdep_is_held(&dev->mutex)); 562 if (grabber == handle) { 563 rcu_assign_pointer(dev->grab, NULL); 564 /* Make sure input_pass_event() notices that grab is gone */ 565 synchronize_rcu(); 566 567 list_for_each_entry(handle, &dev->h_list, d_node) 568 if (handle->open && handle->handler->start) 569 handle->handler->start(handle); 570 } 571 } 572 573 /** 574 * input_release_device - release previously grabbed device 575 * @handle: input handle that owns the device 576 * 577 * Releases previously grabbed device so that other input handles can 578 * start receiving input events. Upon release all handlers attached 579 * to the device have their start() method called so they have a change 580 * to synchronize device state with the rest of the system. 581 */ 582 void input_release_device(struct input_handle *handle) 583 { 584 struct input_dev *dev = handle->dev; 585 586 mutex_lock(&dev->mutex); 587 __input_release_device(handle); 588 mutex_unlock(&dev->mutex); 589 } 590 EXPORT_SYMBOL(input_release_device); 591 592 /** 593 * input_open_device - open input device 594 * @handle: handle through which device is being accessed 595 * 596 * This function should be called by input handlers when they 597 * want to start receive events from given input device. 598 */ 599 int input_open_device(struct input_handle *handle) 600 { 601 struct input_dev *dev = handle->dev; 602 int retval; 603 604 retval = mutex_lock_interruptible(&dev->mutex); 605 if (retval) 606 return retval; 607 608 if (dev->going_away) { 609 retval = -ENODEV; 610 goto out; 611 } 612 613 handle->open++; 614 615 if (dev->users++) { 616 /* 617 * Device is already opened, so we can exit immediately and 618 * report success. 619 */ 620 goto out; 621 } 622 623 if (dev->open) { 624 retval = dev->open(dev); 625 if (retval) { 626 dev->users--; 627 handle->open--; 628 /* 629 * Make sure we are not delivering any more events 630 * through this handle 631 */ 632 synchronize_rcu(); 633 goto out; 634 } 635 } 636 637 if (dev->poller) 638 input_dev_poller_start(dev->poller); 639 640 out: 641 mutex_unlock(&dev->mutex); 642 return retval; 643 } 644 EXPORT_SYMBOL(input_open_device); 645 646 int input_flush_device(struct input_handle *handle, struct file *file) 647 { 648 struct input_dev *dev = handle->dev; 649 int retval; 650 651 retval = mutex_lock_interruptible(&dev->mutex); 652 if (retval) 653 return retval; 654 655 if (dev->flush) 656 retval = dev->flush(dev, file); 657 658 mutex_unlock(&dev->mutex); 659 return retval; 660 } 661 EXPORT_SYMBOL(input_flush_device); 662 663 /** 664 * input_close_device - close input device 665 * @handle: handle through which device is being accessed 666 * 667 * This function should be called by input handlers when they 668 * want to stop receive events from given input device. 669 */ 670 void input_close_device(struct input_handle *handle) 671 { 672 struct input_dev *dev = handle->dev; 673 674 mutex_lock(&dev->mutex); 675 676 __input_release_device(handle); 677 678 if (!--dev->users) { 679 if (dev->poller) 680 input_dev_poller_stop(dev->poller); 681 682 if (dev->close) 683 dev->close(dev); 684 } 685 686 if (!--handle->open) { 687 /* 688 * synchronize_rcu() makes sure that input_pass_event() 689 * completed and that no more input events are delivered 690 * through this handle 691 */ 692 synchronize_rcu(); 693 } 694 695 mutex_unlock(&dev->mutex); 696 } 697 EXPORT_SYMBOL(input_close_device); 698 699 /* 700 * Simulate keyup events for all keys that are marked as pressed. 701 * The function must be called with dev->event_lock held. 702 */ 703 static void input_dev_release_keys(struct input_dev *dev) 704 { 705 bool need_sync = false; 706 int code; 707 708 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 709 for_each_set_bit(code, dev->key, KEY_CNT) { 710 input_pass_event(dev, EV_KEY, code, 0); 711 need_sync = true; 712 } 713 714 if (need_sync) 715 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 716 717 memset(dev->key, 0, sizeof(dev->key)); 718 } 719 } 720 721 /* 722 * Prepare device for unregistering 723 */ 724 static void input_disconnect_device(struct input_dev *dev) 725 { 726 struct input_handle *handle; 727 728 /* 729 * Mark device as going away. Note that we take dev->mutex here 730 * not to protect access to dev->going_away but rather to ensure 731 * that there are no threads in the middle of input_open_device() 732 */ 733 mutex_lock(&dev->mutex); 734 dev->going_away = true; 735 mutex_unlock(&dev->mutex); 736 737 spin_lock_irq(&dev->event_lock); 738 739 /* 740 * Simulate keyup events for all pressed keys so that handlers 741 * are not left with "stuck" keys. The driver may continue 742 * generate events even after we done here but they will not 743 * reach any handlers. 744 */ 745 input_dev_release_keys(dev); 746 747 list_for_each_entry(handle, &dev->h_list, d_node) 748 handle->open = 0; 749 750 spin_unlock_irq(&dev->event_lock); 751 } 752 753 /** 754 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 755 * @ke: keymap entry containing scancode to be converted. 756 * @scancode: pointer to the location where converted scancode should 757 * be stored. 758 * 759 * This function is used to convert scancode stored in &struct keymap_entry 760 * into scalar form understood by legacy keymap handling methods. These 761 * methods expect scancodes to be represented as 'unsigned int'. 762 */ 763 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 764 unsigned int *scancode) 765 { 766 switch (ke->len) { 767 case 1: 768 *scancode = *((u8 *)ke->scancode); 769 break; 770 771 case 2: 772 *scancode = *((u16 *)ke->scancode); 773 break; 774 775 case 4: 776 *scancode = *((u32 *)ke->scancode); 777 break; 778 779 default: 780 return -EINVAL; 781 } 782 783 return 0; 784 } 785 EXPORT_SYMBOL(input_scancode_to_scalar); 786 787 /* 788 * Those routines handle the default case where no [gs]etkeycode() is 789 * defined. In this case, an array indexed by the scancode is used. 790 */ 791 792 static unsigned int input_fetch_keycode(struct input_dev *dev, 793 unsigned int index) 794 { 795 switch (dev->keycodesize) { 796 case 1: 797 return ((u8 *)dev->keycode)[index]; 798 799 case 2: 800 return ((u16 *)dev->keycode)[index]; 801 802 default: 803 return ((u32 *)dev->keycode)[index]; 804 } 805 } 806 807 static int input_default_getkeycode(struct input_dev *dev, 808 struct input_keymap_entry *ke) 809 { 810 unsigned int index; 811 int error; 812 813 if (!dev->keycodesize) 814 return -EINVAL; 815 816 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 817 index = ke->index; 818 else { 819 error = input_scancode_to_scalar(ke, &index); 820 if (error) 821 return error; 822 } 823 824 if (index >= dev->keycodemax) 825 return -EINVAL; 826 827 ke->keycode = input_fetch_keycode(dev, index); 828 ke->index = index; 829 ke->len = sizeof(index); 830 memcpy(ke->scancode, &index, sizeof(index)); 831 832 return 0; 833 } 834 835 static int input_default_setkeycode(struct input_dev *dev, 836 const struct input_keymap_entry *ke, 837 unsigned int *old_keycode) 838 { 839 unsigned int index; 840 int error; 841 int i; 842 843 if (!dev->keycodesize) 844 return -EINVAL; 845 846 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 847 index = ke->index; 848 } else { 849 error = input_scancode_to_scalar(ke, &index); 850 if (error) 851 return error; 852 } 853 854 if (index >= dev->keycodemax) 855 return -EINVAL; 856 857 if (dev->keycodesize < sizeof(ke->keycode) && 858 (ke->keycode >> (dev->keycodesize * 8))) 859 return -EINVAL; 860 861 switch (dev->keycodesize) { 862 case 1: { 863 u8 *k = (u8 *)dev->keycode; 864 *old_keycode = k[index]; 865 k[index] = ke->keycode; 866 break; 867 } 868 case 2: { 869 u16 *k = (u16 *)dev->keycode; 870 *old_keycode = k[index]; 871 k[index] = ke->keycode; 872 break; 873 } 874 default: { 875 u32 *k = (u32 *)dev->keycode; 876 *old_keycode = k[index]; 877 k[index] = ke->keycode; 878 break; 879 } 880 } 881 882 if (*old_keycode <= KEY_MAX) { 883 __clear_bit(*old_keycode, dev->keybit); 884 for (i = 0; i < dev->keycodemax; i++) { 885 if (input_fetch_keycode(dev, i) == *old_keycode) { 886 __set_bit(*old_keycode, dev->keybit); 887 /* Setting the bit twice is useless, so break */ 888 break; 889 } 890 } 891 } 892 893 __set_bit(ke->keycode, dev->keybit); 894 return 0; 895 } 896 897 /** 898 * input_get_keycode - retrieve keycode currently mapped to a given scancode 899 * @dev: input device which keymap is being queried 900 * @ke: keymap entry 901 * 902 * This function should be called by anyone interested in retrieving current 903 * keymap. Presently evdev handlers use it. 904 */ 905 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 906 { 907 unsigned long flags; 908 int retval; 909 910 spin_lock_irqsave(&dev->event_lock, flags); 911 retval = dev->getkeycode(dev, ke); 912 spin_unlock_irqrestore(&dev->event_lock, flags); 913 914 return retval; 915 } 916 EXPORT_SYMBOL(input_get_keycode); 917 918 /** 919 * input_set_keycode - attribute a keycode to a given scancode 920 * @dev: input device which keymap is being updated 921 * @ke: new keymap entry 922 * 923 * This function should be called by anyone needing to update current 924 * keymap. Presently keyboard and evdev handlers use it. 925 */ 926 int input_set_keycode(struct input_dev *dev, 927 const struct input_keymap_entry *ke) 928 { 929 unsigned long flags; 930 unsigned int old_keycode; 931 int retval; 932 933 if (ke->keycode > KEY_MAX) 934 return -EINVAL; 935 936 spin_lock_irqsave(&dev->event_lock, flags); 937 938 retval = dev->setkeycode(dev, ke, &old_keycode); 939 if (retval) 940 goto out; 941 942 /* Make sure KEY_RESERVED did not get enabled. */ 943 __clear_bit(KEY_RESERVED, dev->keybit); 944 945 /* 946 * Simulate keyup event if keycode is not present 947 * in the keymap anymore 948 */ 949 if (old_keycode > KEY_MAX) { 950 dev_warn(dev->dev.parent ?: &dev->dev, 951 "%s: got too big old keycode %#x\n", 952 __func__, old_keycode); 953 } else if (test_bit(EV_KEY, dev->evbit) && 954 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 955 __test_and_clear_bit(old_keycode, dev->key)) { 956 struct input_value vals[] = { 957 { EV_KEY, old_keycode, 0 }, 958 input_value_sync 959 }; 960 961 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 962 } 963 964 out: 965 spin_unlock_irqrestore(&dev->event_lock, flags); 966 967 return retval; 968 } 969 EXPORT_SYMBOL(input_set_keycode); 970 971 bool input_match_device_id(const struct input_dev *dev, 972 const struct input_device_id *id) 973 { 974 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 975 if (id->bustype != dev->id.bustype) 976 return false; 977 978 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 979 if (id->vendor != dev->id.vendor) 980 return false; 981 982 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 983 if (id->product != dev->id.product) 984 return false; 985 986 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 987 if (id->version != dev->id.version) 988 return false; 989 990 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || 991 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || 992 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || 993 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || 994 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || 995 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || 996 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || 997 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || 998 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || 999 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { 1000 return false; 1001 } 1002 1003 return true; 1004 } 1005 EXPORT_SYMBOL(input_match_device_id); 1006 1007 static const struct input_device_id *input_match_device(struct input_handler *handler, 1008 struct input_dev *dev) 1009 { 1010 const struct input_device_id *id; 1011 1012 for (id = handler->id_table; id->flags || id->driver_info; id++) { 1013 if (input_match_device_id(dev, id) && 1014 (!handler->match || handler->match(handler, dev))) { 1015 return id; 1016 } 1017 } 1018 1019 return NULL; 1020 } 1021 1022 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 1023 { 1024 const struct input_device_id *id; 1025 int error; 1026 1027 id = input_match_device(handler, dev); 1028 if (!id) 1029 return -ENODEV; 1030 1031 error = handler->connect(handler, dev, id); 1032 if (error && error != -ENODEV) 1033 pr_err("failed to attach handler %s to device %s, error: %d\n", 1034 handler->name, kobject_name(&dev->dev.kobj), error); 1035 1036 return error; 1037 } 1038 1039 #ifdef CONFIG_COMPAT 1040 1041 static int input_bits_to_string(char *buf, int buf_size, 1042 unsigned long bits, bool skip_empty) 1043 { 1044 int len = 0; 1045 1046 if (in_compat_syscall()) { 1047 u32 dword = bits >> 32; 1048 if (dword || !skip_empty) 1049 len += snprintf(buf, buf_size, "%x ", dword); 1050 1051 dword = bits & 0xffffffffUL; 1052 if (dword || !skip_empty || len) 1053 len += snprintf(buf + len, max(buf_size - len, 0), 1054 "%x", dword); 1055 } else { 1056 if (bits || !skip_empty) 1057 len += snprintf(buf, buf_size, "%lx", bits); 1058 } 1059 1060 return len; 1061 } 1062 1063 #else /* !CONFIG_COMPAT */ 1064 1065 static int input_bits_to_string(char *buf, int buf_size, 1066 unsigned long bits, bool skip_empty) 1067 { 1068 return bits || !skip_empty ? 1069 snprintf(buf, buf_size, "%lx", bits) : 0; 1070 } 1071 1072 #endif 1073 1074 #ifdef CONFIG_PROC_FS 1075 1076 static struct proc_dir_entry *proc_bus_input_dir; 1077 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1078 static int input_devices_state; 1079 1080 static inline void input_wakeup_procfs_readers(void) 1081 { 1082 input_devices_state++; 1083 wake_up(&input_devices_poll_wait); 1084 } 1085 1086 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) 1087 { 1088 poll_wait(file, &input_devices_poll_wait, wait); 1089 if (file->f_version != input_devices_state) { 1090 file->f_version = input_devices_state; 1091 return EPOLLIN | EPOLLRDNORM; 1092 } 1093 1094 return 0; 1095 } 1096 1097 union input_seq_state { 1098 struct { 1099 unsigned short pos; 1100 bool mutex_acquired; 1101 }; 1102 void *p; 1103 }; 1104 1105 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1106 { 1107 union input_seq_state *state = (union input_seq_state *)&seq->private; 1108 int error; 1109 1110 /* We need to fit into seq->private pointer */ 1111 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1112 1113 error = mutex_lock_interruptible(&input_mutex); 1114 if (error) { 1115 state->mutex_acquired = false; 1116 return ERR_PTR(error); 1117 } 1118 1119 state->mutex_acquired = true; 1120 1121 return seq_list_start(&input_dev_list, *pos); 1122 } 1123 1124 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1125 { 1126 return seq_list_next(v, &input_dev_list, pos); 1127 } 1128 1129 static void input_seq_stop(struct seq_file *seq, void *v) 1130 { 1131 union input_seq_state *state = (union input_seq_state *)&seq->private; 1132 1133 if (state->mutex_acquired) 1134 mutex_unlock(&input_mutex); 1135 } 1136 1137 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1138 unsigned long *bitmap, int max) 1139 { 1140 int i; 1141 bool skip_empty = true; 1142 char buf[18]; 1143 1144 seq_printf(seq, "B: %s=", name); 1145 1146 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1147 if (input_bits_to_string(buf, sizeof(buf), 1148 bitmap[i], skip_empty)) { 1149 skip_empty = false; 1150 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1151 } 1152 } 1153 1154 /* 1155 * If no output was produced print a single 0. 1156 */ 1157 if (skip_empty) 1158 seq_putc(seq, '0'); 1159 1160 seq_putc(seq, '\n'); 1161 } 1162 1163 static int input_devices_seq_show(struct seq_file *seq, void *v) 1164 { 1165 struct input_dev *dev = container_of(v, struct input_dev, node); 1166 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1167 struct input_handle *handle; 1168 1169 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1170 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1171 1172 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1173 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1174 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1175 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1176 seq_puts(seq, "H: Handlers="); 1177 1178 list_for_each_entry(handle, &dev->h_list, d_node) 1179 seq_printf(seq, "%s ", handle->name); 1180 seq_putc(seq, '\n'); 1181 1182 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1183 1184 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1185 if (test_bit(EV_KEY, dev->evbit)) 1186 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1187 if (test_bit(EV_REL, dev->evbit)) 1188 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1189 if (test_bit(EV_ABS, dev->evbit)) 1190 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1191 if (test_bit(EV_MSC, dev->evbit)) 1192 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1193 if (test_bit(EV_LED, dev->evbit)) 1194 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1195 if (test_bit(EV_SND, dev->evbit)) 1196 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1197 if (test_bit(EV_FF, dev->evbit)) 1198 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1199 if (test_bit(EV_SW, dev->evbit)) 1200 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1201 1202 seq_putc(seq, '\n'); 1203 1204 kfree(path); 1205 return 0; 1206 } 1207 1208 static const struct seq_operations input_devices_seq_ops = { 1209 .start = input_devices_seq_start, 1210 .next = input_devices_seq_next, 1211 .stop = input_seq_stop, 1212 .show = input_devices_seq_show, 1213 }; 1214 1215 static int input_proc_devices_open(struct inode *inode, struct file *file) 1216 { 1217 return seq_open(file, &input_devices_seq_ops); 1218 } 1219 1220 static const struct proc_ops input_devices_proc_ops = { 1221 .proc_open = input_proc_devices_open, 1222 .proc_poll = input_proc_devices_poll, 1223 .proc_read = seq_read, 1224 .proc_lseek = seq_lseek, 1225 .proc_release = seq_release, 1226 }; 1227 1228 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1229 { 1230 union input_seq_state *state = (union input_seq_state *)&seq->private; 1231 int error; 1232 1233 /* We need to fit into seq->private pointer */ 1234 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1235 1236 error = mutex_lock_interruptible(&input_mutex); 1237 if (error) { 1238 state->mutex_acquired = false; 1239 return ERR_PTR(error); 1240 } 1241 1242 state->mutex_acquired = true; 1243 state->pos = *pos; 1244 1245 return seq_list_start(&input_handler_list, *pos); 1246 } 1247 1248 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1249 { 1250 union input_seq_state *state = (union input_seq_state *)&seq->private; 1251 1252 state->pos = *pos + 1; 1253 return seq_list_next(v, &input_handler_list, pos); 1254 } 1255 1256 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1257 { 1258 struct input_handler *handler = container_of(v, struct input_handler, node); 1259 union input_seq_state *state = (union input_seq_state *)&seq->private; 1260 1261 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1262 if (handler->filter) 1263 seq_puts(seq, " (filter)"); 1264 if (handler->legacy_minors) 1265 seq_printf(seq, " Minor=%d", handler->minor); 1266 seq_putc(seq, '\n'); 1267 1268 return 0; 1269 } 1270 1271 static const struct seq_operations input_handlers_seq_ops = { 1272 .start = input_handlers_seq_start, 1273 .next = input_handlers_seq_next, 1274 .stop = input_seq_stop, 1275 .show = input_handlers_seq_show, 1276 }; 1277 1278 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1279 { 1280 return seq_open(file, &input_handlers_seq_ops); 1281 } 1282 1283 static const struct proc_ops input_handlers_proc_ops = { 1284 .proc_open = input_proc_handlers_open, 1285 .proc_read = seq_read, 1286 .proc_lseek = seq_lseek, 1287 .proc_release = seq_release, 1288 }; 1289 1290 static int __init input_proc_init(void) 1291 { 1292 struct proc_dir_entry *entry; 1293 1294 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1295 if (!proc_bus_input_dir) 1296 return -ENOMEM; 1297 1298 entry = proc_create("devices", 0, proc_bus_input_dir, 1299 &input_devices_proc_ops); 1300 if (!entry) 1301 goto fail1; 1302 1303 entry = proc_create("handlers", 0, proc_bus_input_dir, 1304 &input_handlers_proc_ops); 1305 if (!entry) 1306 goto fail2; 1307 1308 return 0; 1309 1310 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1311 fail1: remove_proc_entry("bus/input", NULL); 1312 return -ENOMEM; 1313 } 1314 1315 static void input_proc_exit(void) 1316 { 1317 remove_proc_entry("devices", proc_bus_input_dir); 1318 remove_proc_entry("handlers", proc_bus_input_dir); 1319 remove_proc_entry("bus/input", NULL); 1320 } 1321 1322 #else /* !CONFIG_PROC_FS */ 1323 static inline void input_wakeup_procfs_readers(void) { } 1324 static inline int input_proc_init(void) { return 0; } 1325 static inline void input_proc_exit(void) { } 1326 #endif 1327 1328 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1329 static ssize_t input_dev_show_##name(struct device *dev, \ 1330 struct device_attribute *attr, \ 1331 char *buf) \ 1332 { \ 1333 struct input_dev *input_dev = to_input_dev(dev); \ 1334 \ 1335 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1336 input_dev->name ? input_dev->name : ""); \ 1337 } \ 1338 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1339 1340 INPUT_DEV_STRING_ATTR_SHOW(name); 1341 INPUT_DEV_STRING_ATTR_SHOW(phys); 1342 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1343 1344 static int input_print_modalias_bits(char *buf, int size, 1345 char name, unsigned long *bm, 1346 unsigned int min_bit, unsigned int max_bit) 1347 { 1348 int len = 0, i; 1349 1350 len += snprintf(buf, max(size, 0), "%c", name); 1351 for (i = min_bit; i < max_bit; i++) 1352 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1353 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1354 return len; 1355 } 1356 1357 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1358 int add_cr) 1359 { 1360 int len; 1361 1362 len = snprintf(buf, max(size, 0), 1363 "input:b%04Xv%04Xp%04Xe%04X-", 1364 id->id.bustype, id->id.vendor, 1365 id->id.product, id->id.version); 1366 1367 len += input_print_modalias_bits(buf + len, size - len, 1368 'e', id->evbit, 0, EV_MAX); 1369 len += input_print_modalias_bits(buf + len, size - len, 1370 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1371 len += input_print_modalias_bits(buf + len, size - len, 1372 'r', id->relbit, 0, REL_MAX); 1373 len += input_print_modalias_bits(buf + len, size - len, 1374 'a', id->absbit, 0, ABS_MAX); 1375 len += input_print_modalias_bits(buf + len, size - len, 1376 'm', id->mscbit, 0, MSC_MAX); 1377 len += input_print_modalias_bits(buf + len, size - len, 1378 'l', id->ledbit, 0, LED_MAX); 1379 len += input_print_modalias_bits(buf + len, size - len, 1380 's', id->sndbit, 0, SND_MAX); 1381 len += input_print_modalias_bits(buf + len, size - len, 1382 'f', id->ffbit, 0, FF_MAX); 1383 len += input_print_modalias_bits(buf + len, size - len, 1384 'w', id->swbit, 0, SW_MAX); 1385 1386 if (add_cr) 1387 len += snprintf(buf + len, max(size - len, 0), "\n"); 1388 1389 return len; 1390 } 1391 1392 static ssize_t input_dev_show_modalias(struct device *dev, 1393 struct device_attribute *attr, 1394 char *buf) 1395 { 1396 struct input_dev *id = to_input_dev(dev); 1397 ssize_t len; 1398 1399 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1400 1401 return min_t(int, len, PAGE_SIZE); 1402 } 1403 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1404 1405 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1406 int max, int add_cr); 1407 1408 static ssize_t input_dev_show_properties(struct device *dev, 1409 struct device_attribute *attr, 1410 char *buf) 1411 { 1412 struct input_dev *input_dev = to_input_dev(dev); 1413 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1414 INPUT_PROP_MAX, true); 1415 return min_t(int, len, PAGE_SIZE); 1416 } 1417 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1418 1419 static struct attribute *input_dev_attrs[] = { 1420 &dev_attr_name.attr, 1421 &dev_attr_phys.attr, 1422 &dev_attr_uniq.attr, 1423 &dev_attr_modalias.attr, 1424 &dev_attr_properties.attr, 1425 NULL 1426 }; 1427 1428 static const struct attribute_group input_dev_attr_group = { 1429 .attrs = input_dev_attrs, 1430 }; 1431 1432 #define INPUT_DEV_ID_ATTR(name) \ 1433 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1434 struct device_attribute *attr, \ 1435 char *buf) \ 1436 { \ 1437 struct input_dev *input_dev = to_input_dev(dev); \ 1438 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1439 } \ 1440 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1441 1442 INPUT_DEV_ID_ATTR(bustype); 1443 INPUT_DEV_ID_ATTR(vendor); 1444 INPUT_DEV_ID_ATTR(product); 1445 INPUT_DEV_ID_ATTR(version); 1446 1447 static struct attribute *input_dev_id_attrs[] = { 1448 &dev_attr_bustype.attr, 1449 &dev_attr_vendor.attr, 1450 &dev_attr_product.attr, 1451 &dev_attr_version.attr, 1452 NULL 1453 }; 1454 1455 static const struct attribute_group input_dev_id_attr_group = { 1456 .name = "id", 1457 .attrs = input_dev_id_attrs, 1458 }; 1459 1460 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1461 int max, int add_cr) 1462 { 1463 int i; 1464 int len = 0; 1465 bool skip_empty = true; 1466 1467 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1468 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1469 bitmap[i], skip_empty); 1470 if (len) { 1471 skip_empty = false; 1472 if (i > 0) 1473 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1474 } 1475 } 1476 1477 /* 1478 * If no output was produced print a single 0. 1479 */ 1480 if (len == 0) 1481 len = snprintf(buf, buf_size, "%d", 0); 1482 1483 if (add_cr) 1484 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1485 1486 return len; 1487 } 1488 1489 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1490 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1491 struct device_attribute *attr, \ 1492 char *buf) \ 1493 { \ 1494 struct input_dev *input_dev = to_input_dev(dev); \ 1495 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1496 input_dev->bm##bit, ev##_MAX, \ 1497 true); \ 1498 return min_t(int, len, PAGE_SIZE); \ 1499 } \ 1500 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1501 1502 INPUT_DEV_CAP_ATTR(EV, ev); 1503 INPUT_DEV_CAP_ATTR(KEY, key); 1504 INPUT_DEV_CAP_ATTR(REL, rel); 1505 INPUT_DEV_CAP_ATTR(ABS, abs); 1506 INPUT_DEV_CAP_ATTR(MSC, msc); 1507 INPUT_DEV_CAP_ATTR(LED, led); 1508 INPUT_DEV_CAP_ATTR(SND, snd); 1509 INPUT_DEV_CAP_ATTR(FF, ff); 1510 INPUT_DEV_CAP_ATTR(SW, sw); 1511 1512 static struct attribute *input_dev_caps_attrs[] = { 1513 &dev_attr_ev.attr, 1514 &dev_attr_key.attr, 1515 &dev_attr_rel.attr, 1516 &dev_attr_abs.attr, 1517 &dev_attr_msc.attr, 1518 &dev_attr_led.attr, 1519 &dev_attr_snd.attr, 1520 &dev_attr_ff.attr, 1521 &dev_attr_sw.attr, 1522 NULL 1523 }; 1524 1525 static const struct attribute_group input_dev_caps_attr_group = { 1526 .name = "capabilities", 1527 .attrs = input_dev_caps_attrs, 1528 }; 1529 1530 static const struct attribute_group *input_dev_attr_groups[] = { 1531 &input_dev_attr_group, 1532 &input_dev_id_attr_group, 1533 &input_dev_caps_attr_group, 1534 &input_poller_attribute_group, 1535 NULL 1536 }; 1537 1538 static void input_dev_release(struct device *device) 1539 { 1540 struct input_dev *dev = to_input_dev(device); 1541 1542 input_ff_destroy(dev); 1543 input_mt_destroy_slots(dev); 1544 kfree(dev->poller); 1545 kfree(dev->absinfo); 1546 kfree(dev->vals); 1547 kfree(dev); 1548 1549 module_put(THIS_MODULE); 1550 } 1551 1552 /* 1553 * Input uevent interface - loading event handlers based on 1554 * device bitfields. 1555 */ 1556 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1557 const char *name, unsigned long *bitmap, int max) 1558 { 1559 int len; 1560 1561 if (add_uevent_var(env, "%s", name)) 1562 return -ENOMEM; 1563 1564 len = input_print_bitmap(&env->buf[env->buflen - 1], 1565 sizeof(env->buf) - env->buflen, 1566 bitmap, max, false); 1567 if (len >= (sizeof(env->buf) - env->buflen)) 1568 return -ENOMEM; 1569 1570 env->buflen += len; 1571 return 0; 1572 } 1573 1574 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1575 struct input_dev *dev) 1576 { 1577 int len; 1578 1579 if (add_uevent_var(env, "MODALIAS=")) 1580 return -ENOMEM; 1581 1582 len = input_print_modalias(&env->buf[env->buflen - 1], 1583 sizeof(env->buf) - env->buflen, 1584 dev, 0); 1585 if (len >= (sizeof(env->buf) - env->buflen)) 1586 return -ENOMEM; 1587 1588 env->buflen += len; 1589 return 0; 1590 } 1591 1592 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1593 do { \ 1594 int err = add_uevent_var(env, fmt, val); \ 1595 if (err) \ 1596 return err; \ 1597 } while (0) 1598 1599 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1600 do { \ 1601 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1602 if (err) \ 1603 return err; \ 1604 } while (0) 1605 1606 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1607 do { \ 1608 int err = input_add_uevent_modalias_var(env, dev); \ 1609 if (err) \ 1610 return err; \ 1611 } while (0) 1612 1613 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1614 { 1615 struct input_dev *dev = to_input_dev(device); 1616 1617 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1618 dev->id.bustype, dev->id.vendor, 1619 dev->id.product, dev->id.version); 1620 if (dev->name) 1621 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1622 if (dev->phys) 1623 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1624 if (dev->uniq) 1625 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1626 1627 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1628 1629 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1630 if (test_bit(EV_KEY, dev->evbit)) 1631 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1632 if (test_bit(EV_REL, dev->evbit)) 1633 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1634 if (test_bit(EV_ABS, dev->evbit)) 1635 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1636 if (test_bit(EV_MSC, dev->evbit)) 1637 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1638 if (test_bit(EV_LED, dev->evbit)) 1639 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1640 if (test_bit(EV_SND, dev->evbit)) 1641 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1642 if (test_bit(EV_FF, dev->evbit)) 1643 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1644 if (test_bit(EV_SW, dev->evbit)) 1645 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1646 1647 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1648 1649 return 0; 1650 } 1651 1652 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1653 do { \ 1654 int i; \ 1655 bool active; \ 1656 \ 1657 if (!test_bit(EV_##type, dev->evbit)) \ 1658 break; \ 1659 \ 1660 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ 1661 active = test_bit(i, dev->bits); \ 1662 if (!active && !on) \ 1663 continue; \ 1664 \ 1665 dev->event(dev, EV_##type, i, on ? active : 0); \ 1666 } \ 1667 } while (0) 1668 1669 static void input_dev_toggle(struct input_dev *dev, bool activate) 1670 { 1671 if (!dev->event) 1672 return; 1673 1674 INPUT_DO_TOGGLE(dev, LED, led, activate); 1675 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1676 1677 if (activate && test_bit(EV_REP, dev->evbit)) { 1678 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1679 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1680 } 1681 } 1682 1683 /** 1684 * input_reset_device() - reset/restore the state of input device 1685 * @dev: input device whose state needs to be reset 1686 * 1687 * This function tries to reset the state of an opened input device and 1688 * bring internal state and state if the hardware in sync with each other. 1689 * We mark all keys as released, restore LED state, repeat rate, etc. 1690 */ 1691 void input_reset_device(struct input_dev *dev) 1692 { 1693 unsigned long flags; 1694 1695 mutex_lock(&dev->mutex); 1696 spin_lock_irqsave(&dev->event_lock, flags); 1697 1698 input_dev_toggle(dev, true); 1699 input_dev_release_keys(dev); 1700 1701 spin_unlock_irqrestore(&dev->event_lock, flags); 1702 mutex_unlock(&dev->mutex); 1703 } 1704 EXPORT_SYMBOL(input_reset_device); 1705 1706 #ifdef CONFIG_PM_SLEEP 1707 static int input_dev_suspend(struct device *dev) 1708 { 1709 struct input_dev *input_dev = to_input_dev(dev); 1710 1711 spin_lock_irq(&input_dev->event_lock); 1712 1713 /* 1714 * Keys that are pressed now are unlikely to be 1715 * still pressed when we resume. 1716 */ 1717 input_dev_release_keys(input_dev); 1718 1719 /* Turn off LEDs and sounds, if any are active. */ 1720 input_dev_toggle(input_dev, false); 1721 1722 spin_unlock_irq(&input_dev->event_lock); 1723 1724 return 0; 1725 } 1726 1727 static int input_dev_resume(struct device *dev) 1728 { 1729 struct input_dev *input_dev = to_input_dev(dev); 1730 1731 spin_lock_irq(&input_dev->event_lock); 1732 1733 /* Restore state of LEDs and sounds, if any were active. */ 1734 input_dev_toggle(input_dev, true); 1735 1736 spin_unlock_irq(&input_dev->event_lock); 1737 1738 return 0; 1739 } 1740 1741 static int input_dev_freeze(struct device *dev) 1742 { 1743 struct input_dev *input_dev = to_input_dev(dev); 1744 1745 spin_lock_irq(&input_dev->event_lock); 1746 1747 /* 1748 * Keys that are pressed now are unlikely to be 1749 * still pressed when we resume. 1750 */ 1751 input_dev_release_keys(input_dev); 1752 1753 spin_unlock_irq(&input_dev->event_lock); 1754 1755 return 0; 1756 } 1757 1758 static int input_dev_poweroff(struct device *dev) 1759 { 1760 struct input_dev *input_dev = to_input_dev(dev); 1761 1762 spin_lock_irq(&input_dev->event_lock); 1763 1764 /* Turn off LEDs and sounds, if any are active. */ 1765 input_dev_toggle(input_dev, false); 1766 1767 spin_unlock_irq(&input_dev->event_lock); 1768 1769 return 0; 1770 } 1771 1772 static const struct dev_pm_ops input_dev_pm_ops = { 1773 .suspend = input_dev_suspend, 1774 .resume = input_dev_resume, 1775 .freeze = input_dev_freeze, 1776 .poweroff = input_dev_poweroff, 1777 .restore = input_dev_resume, 1778 }; 1779 #endif /* CONFIG_PM */ 1780 1781 static const struct device_type input_dev_type = { 1782 .groups = input_dev_attr_groups, 1783 .release = input_dev_release, 1784 .uevent = input_dev_uevent, 1785 #ifdef CONFIG_PM_SLEEP 1786 .pm = &input_dev_pm_ops, 1787 #endif 1788 }; 1789 1790 static char *input_devnode(struct device *dev, umode_t *mode) 1791 { 1792 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1793 } 1794 1795 struct class input_class = { 1796 .name = "input", 1797 .devnode = input_devnode, 1798 }; 1799 EXPORT_SYMBOL_GPL(input_class); 1800 1801 /** 1802 * input_allocate_device - allocate memory for new input device 1803 * 1804 * Returns prepared struct input_dev or %NULL. 1805 * 1806 * NOTE: Use input_free_device() to free devices that have not been 1807 * registered; input_unregister_device() should be used for already 1808 * registered devices. 1809 */ 1810 struct input_dev *input_allocate_device(void) 1811 { 1812 static atomic_t input_no = ATOMIC_INIT(-1); 1813 struct input_dev *dev; 1814 1815 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1816 if (dev) { 1817 dev->dev.type = &input_dev_type; 1818 dev->dev.class = &input_class; 1819 device_initialize(&dev->dev); 1820 mutex_init(&dev->mutex); 1821 spin_lock_init(&dev->event_lock); 1822 timer_setup(&dev->timer, NULL, 0); 1823 INIT_LIST_HEAD(&dev->h_list); 1824 INIT_LIST_HEAD(&dev->node); 1825 1826 dev_set_name(&dev->dev, "input%lu", 1827 (unsigned long)atomic_inc_return(&input_no)); 1828 1829 __module_get(THIS_MODULE); 1830 } 1831 1832 return dev; 1833 } 1834 EXPORT_SYMBOL(input_allocate_device); 1835 1836 struct input_devres { 1837 struct input_dev *input; 1838 }; 1839 1840 static int devm_input_device_match(struct device *dev, void *res, void *data) 1841 { 1842 struct input_devres *devres = res; 1843 1844 return devres->input == data; 1845 } 1846 1847 static void devm_input_device_release(struct device *dev, void *res) 1848 { 1849 struct input_devres *devres = res; 1850 struct input_dev *input = devres->input; 1851 1852 dev_dbg(dev, "%s: dropping reference to %s\n", 1853 __func__, dev_name(&input->dev)); 1854 input_put_device(input); 1855 } 1856 1857 /** 1858 * devm_input_allocate_device - allocate managed input device 1859 * @dev: device owning the input device being created 1860 * 1861 * Returns prepared struct input_dev or %NULL. 1862 * 1863 * Managed input devices do not need to be explicitly unregistered or 1864 * freed as it will be done automatically when owner device unbinds from 1865 * its driver (or binding fails). Once managed input device is allocated, 1866 * it is ready to be set up and registered in the same fashion as regular 1867 * input device. There are no special devm_input_device_[un]register() 1868 * variants, regular ones work with both managed and unmanaged devices, 1869 * should you need them. In most cases however, managed input device need 1870 * not be explicitly unregistered or freed. 1871 * 1872 * NOTE: the owner device is set up as parent of input device and users 1873 * should not override it. 1874 */ 1875 struct input_dev *devm_input_allocate_device(struct device *dev) 1876 { 1877 struct input_dev *input; 1878 struct input_devres *devres; 1879 1880 devres = devres_alloc(devm_input_device_release, 1881 sizeof(*devres), GFP_KERNEL); 1882 if (!devres) 1883 return NULL; 1884 1885 input = input_allocate_device(); 1886 if (!input) { 1887 devres_free(devres); 1888 return NULL; 1889 } 1890 1891 input->dev.parent = dev; 1892 input->devres_managed = true; 1893 1894 devres->input = input; 1895 devres_add(dev, devres); 1896 1897 return input; 1898 } 1899 EXPORT_SYMBOL(devm_input_allocate_device); 1900 1901 /** 1902 * input_free_device - free memory occupied by input_dev structure 1903 * @dev: input device to free 1904 * 1905 * This function should only be used if input_register_device() 1906 * was not called yet or if it failed. Once device was registered 1907 * use input_unregister_device() and memory will be freed once last 1908 * reference to the device is dropped. 1909 * 1910 * Device should be allocated by input_allocate_device(). 1911 * 1912 * NOTE: If there are references to the input device then memory 1913 * will not be freed until last reference is dropped. 1914 */ 1915 void input_free_device(struct input_dev *dev) 1916 { 1917 if (dev) { 1918 if (dev->devres_managed) 1919 WARN_ON(devres_destroy(dev->dev.parent, 1920 devm_input_device_release, 1921 devm_input_device_match, 1922 dev)); 1923 input_put_device(dev); 1924 } 1925 } 1926 EXPORT_SYMBOL(input_free_device); 1927 1928 /** 1929 * input_set_timestamp - set timestamp for input events 1930 * @dev: input device to set timestamp for 1931 * @timestamp: the time at which the event has occurred 1932 * in CLOCK_MONOTONIC 1933 * 1934 * This function is intended to provide to the input system a more 1935 * accurate time of when an event actually occurred. The driver should 1936 * call this function as soon as a timestamp is acquired ensuring 1937 * clock conversions in input_set_timestamp are done correctly. 1938 * 1939 * The system entering suspend state between timestamp acquisition and 1940 * calling input_set_timestamp can result in inaccurate conversions. 1941 */ 1942 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) 1943 { 1944 dev->timestamp[INPUT_CLK_MONO] = timestamp; 1945 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp); 1946 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp, 1947 TK_OFFS_BOOT); 1948 } 1949 EXPORT_SYMBOL(input_set_timestamp); 1950 1951 /** 1952 * input_get_timestamp - get timestamp for input events 1953 * @dev: input device to get timestamp from 1954 * 1955 * A valid timestamp is a timestamp of non-zero value. 1956 */ 1957 ktime_t *input_get_timestamp(struct input_dev *dev) 1958 { 1959 const ktime_t invalid_timestamp = ktime_set(0, 0); 1960 1961 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp)) 1962 input_set_timestamp(dev, ktime_get()); 1963 1964 return dev->timestamp; 1965 } 1966 EXPORT_SYMBOL(input_get_timestamp); 1967 1968 /** 1969 * input_set_capability - mark device as capable of a certain event 1970 * @dev: device that is capable of emitting or accepting event 1971 * @type: type of the event (EV_KEY, EV_REL, etc...) 1972 * @code: event code 1973 * 1974 * In addition to setting up corresponding bit in appropriate capability 1975 * bitmap the function also adjusts dev->evbit. 1976 */ 1977 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1978 { 1979 switch (type) { 1980 case EV_KEY: 1981 __set_bit(code, dev->keybit); 1982 break; 1983 1984 case EV_REL: 1985 __set_bit(code, dev->relbit); 1986 break; 1987 1988 case EV_ABS: 1989 input_alloc_absinfo(dev); 1990 if (!dev->absinfo) 1991 return; 1992 1993 __set_bit(code, dev->absbit); 1994 break; 1995 1996 case EV_MSC: 1997 __set_bit(code, dev->mscbit); 1998 break; 1999 2000 case EV_SW: 2001 __set_bit(code, dev->swbit); 2002 break; 2003 2004 case EV_LED: 2005 __set_bit(code, dev->ledbit); 2006 break; 2007 2008 case EV_SND: 2009 __set_bit(code, dev->sndbit); 2010 break; 2011 2012 case EV_FF: 2013 __set_bit(code, dev->ffbit); 2014 break; 2015 2016 case EV_PWR: 2017 /* do nothing */ 2018 break; 2019 2020 default: 2021 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); 2022 dump_stack(); 2023 return; 2024 } 2025 2026 __set_bit(type, dev->evbit); 2027 } 2028 EXPORT_SYMBOL(input_set_capability); 2029 2030 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 2031 { 2032 int mt_slots; 2033 int i; 2034 unsigned int events; 2035 2036 if (dev->mt) { 2037 mt_slots = dev->mt->num_slots; 2038 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 2039 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 2040 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 2041 mt_slots = clamp(mt_slots, 2, 32); 2042 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 2043 mt_slots = 2; 2044 } else { 2045 mt_slots = 0; 2046 } 2047 2048 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 2049 2050 if (test_bit(EV_ABS, dev->evbit)) 2051 for_each_set_bit(i, dev->absbit, ABS_CNT) 2052 events += input_is_mt_axis(i) ? mt_slots : 1; 2053 2054 if (test_bit(EV_REL, dev->evbit)) 2055 events += bitmap_weight(dev->relbit, REL_CNT); 2056 2057 /* Make room for KEY and MSC events */ 2058 events += 7; 2059 2060 return events; 2061 } 2062 2063 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 2064 do { \ 2065 if (!test_bit(EV_##type, dev->evbit)) \ 2066 memset(dev->bits##bit, 0, \ 2067 sizeof(dev->bits##bit)); \ 2068 } while (0) 2069 2070 static void input_cleanse_bitmasks(struct input_dev *dev) 2071 { 2072 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2073 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2074 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2075 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2076 INPUT_CLEANSE_BITMASK(dev, LED, led); 2077 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2078 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2079 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2080 } 2081 2082 static void __input_unregister_device(struct input_dev *dev) 2083 { 2084 struct input_handle *handle, *next; 2085 2086 input_disconnect_device(dev); 2087 2088 mutex_lock(&input_mutex); 2089 2090 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2091 handle->handler->disconnect(handle); 2092 WARN_ON(!list_empty(&dev->h_list)); 2093 2094 del_timer_sync(&dev->timer); 2095 list_del_init(&dev->node); 2096 2097 input_wakeup_procfs_readers(); 2098 2099 mutex_unlock(&input_mutex); 2100 2101 device_del(&dev->dev); 2102 } 2103 2104 static void devm_input_device_unregister(struct device *dev, void *res) 2105 { 2106 struct input_devres *devres = res; 2107 struct input_dev *input = devres->input; 2108 2109 dev_dbg(dev, "%s: unregistering device %s\n", 2110 __func__, dev_name(&input->dev)); 2111 __input_unregister_device(input); 2112 } 2113 2114 /** 2115 * input_enable_softrepeat - enable software autorepeat 2116 * @dev: input device 2117 * @delay: repeat delay 2118 * @period: repeat period 2119 * 2120 * Enable software autorepeat on the input device. 2121 */ 2122 void input_enable_softrepeat(struct input_dev *dev, int delay, int period) 2123 { 2124 dev->timer.function = input_repeat_key; 2125 dev->rep[REP_DELAY] = delay; 2126 dev->rep[REP_PERIOD] = period; 2127 } 2128 EXPORT_SYMBOL(input_enable_softrepeat); 2129 2130 /** 2131 * input_register_device - register device with input core 2132 * @dev: device to be registered 2133 * 2134 * This function registers device with input core. The device must be 2135 * allocated with input_allocate_device() and all it's capabilities 2136 * set up before registering. 2137 * If function fails the device must be freed with input_free_device(). 2138 * Once device has been successfully registered it can be unregistered 2139 * with input_unregister_device(); input_free_device() should not be 2140 * called in this case. 2141 * 2142 * Note that this function is also used to register managed input devices 2143 * (ones allocated with devm_input_allocate_device()). Such managed input 2144 * devices need not be explicitly unregistered or freed, their tear down 2145 * is controlled by the devres infrastructure. It is also worth noting 2146 * that tear down of managed input devices is internally a 2-step process: 2147 * registered managed input device is first unregistered, but stays in 2148 * memory and can still handle input_event() calls (although events will 2149 * not be delivered anywhere). The freeing of managed input device will 2150 * happen later, when devres stack is unwound to the point where device 2151 * allocation was made. 2152 */ 2153 int input_register_device(struct input_dev *dev) 2154 { 2155 struct input_devres *devres = NULL; 2156 struct input_handler *handler; 2157 unsigned int packet_size; 2158 const char *path; 2159 int error; 2160 2161 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { 2162 dev_err(&dev->dev, 2163 "Absolute device without dev->absinfo, refusing to register\n"); 2164 return -EINVAL; 2165 } 2166 2167 if (dev->devres_managed) { 2168 devres = devres_alloc(devm_input_device_unregister, 2169 sizeof(*devres), GFP_KERNEL); 2170 if (!devres) 2171 return -ENOMEM; 2172 2173 devres->input = dev; 2174 } 2175 2176 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2177 __set_bit(EV_SYN, dev->evbit); 2178 2179 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2180 __clear_bit(KEY_RESERVED, dev->keybit); 2181 2182 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2183 input_cleanse_bitmasks(dev); 2184 2185 packet_size = input_estimate_events_per_packet(dev); 2186 if (dev->hint_events_per_packet < packet_size) 2187 dev->hint_events_per_packet = packet_size; 2188 2189 dev->max_vals = dev->hint_events_per_packet + 2; 2190 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 2191 if (!dev->vals) { 2192 error = -ENOMEM; 2193 goto err_devres_free; 2194 } 2195 2196 /* 2197 * If delay and period are pre-set by the driver, then autorepeating 2198 * is handled by the driver itself and we don't do it in input.c. 2199 */ 2200 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) 2201 input_enable_softrepeat(dev, 250, 33); 2202 2203 if (!dev->getkeycode) 2204 dev->getkeycode = input_default_getkeycode; 2205 2206 if (!dev->setkeycode) 2207 dev->setkeycode = input_default_setkeycode; 2208 2209 if (dev->poller) 2210 input_dev_poller_finalize(dev->poller); 2211 2212 error = device_add(&dev->dev); 2213 if (error) 2214 goto err_free_vals; 2215 2216 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2217 pr_info("%s as %s\n", 2218 dev->name ? dev->name : "Unspecified device", 2219 path ? path : "N/A"); 2220 kfree(path); 2221 2222 error = mutex_lock_interruptible(&input_mutex); 2223 if (error) 2224 goto err_device_del; 2225 2226 list_add_tail(&dev->node, &input_dev_list); 2227 2228 list_for_each_entry(handler, &input_handler_list, node) 2229 input_attach_handler(dev, handler); 2230 2231 input_wakeup_procfs_readers(); 2232 2233 mutex_unlock(&input_mutex); 2234 2235 if (dev->devres_managed) { 2236 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2237 __func__, dev_name(&dev->dev)); 2238 devres_add(dev->dev.parent, devres); 2239 } 2240 return 0; 2241 2242 err_device_del: 2243 device_del(&dev->dev); 2244 err_free_vals: 2245 kfree(dev->vals); 2246 dev->vals = NULL; 2247 err_devres_free: 2248 devres_free(devres); 2249 return error; 2250 } 2251 EXPORT_SYMBOL(input_register_device); 2252 2253 /** 2254 * input_unregister_device - unregister previously registered device 2255 * @dev: device to be unregistered 2256 * 2257 * This function unregisters an input device. Once device is unregistered 2258 * the caller should not try to access it as it may get freed at any moment. 2259 */ 2260 void input_unregister_device(struct input_dev *dev) 2261 { 2262 if (dev->devres_managed) { 2263 WARN_ON(devres_destroy(dev->dev.parent, 2264 devm_input_device_unregister, 2265 devm_input_device_match, 2266 dev)); 2267 __input_unregister_device(dev); 2268 /* 2269 * We do not do input_put_device() here because it will be done 2270 * when 2nd devres fires up. 2271 */ 2272 } else { 2273 __input_unregister_device(dev); 2274 input_put_device(dev); 2275 } 2276 } 2277 EXPORT_SYMBOL(input_unregister_device); 2278 2279 /** 2280 * input_register_handler - register a new input handler 2281 * @handler: handler to be registered 2282 * 2283 * This function registers a new input handler (interface) for input 2284 * devices in the system and attaches it to all input devices that 2285 * are compatible with the handler. 2286 */ 2287 int input_register_handler(struct input_handler *handler) 2288 { 2289 struct input_dev *dev; 2290 int error; 2291 2292 error = mutex_lock_interruptible(&input_mutex); 2293 if (error) 2294 return error; 2295 2296 INIT_LIST_HEAD(&handler->h_list); 2297 2298 list_add_tail(&handler->node, &input_handler_list); 2299 2300 list_for_each_entry(dev, &input_dev_list, node) 2301 input_attach_handler(dev, handler); 2302 2303 input_wakeup_procfs_readers(); 2304 2305 mutex_unlock(&input_mutex); 2306 return 0; 2307 } 2308 EXPORT_SYMBOL(input_register_handler); 2309 2310 /** 2311 * input_unregister_handler - unregisters an input handler 2312 * @handler: handler to be unregistered 2313 * 2314 * This function disconnects a handler from its input devices and 2315 * removes it from lists of known handlers. 2316 */ 2317 void input_unregister_handler(struct input_handler *handler) 2318 { 2319 struct input_handle *handle, *next; 2320 2321 mutex_lock(&input_mutex); 2322 2323 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2324 handler->disconnect(handle); 2325 WARN_ON(!list_empty(&handler->h_list)); 2326 2327 list_del_init(&handler->node); 2328 2329 input_wakeup_procfs_readers(); 2330 2331 mutex_unlock(&input_mutex); 2332 } 2333 EXPORT_SYMBOL(input_unregister_handler); 2334 2335 /** 2336 * input_handler_for_each_handle - handle iterator 2337 * @handler: input handler to iterate 2338 * @data: data for the callback 2339 * @fn: function to be called for each handle 2340 * 2341 * Iterate over @bus's list of devices, and call @fn for each, passing 2342 * it @data and stop when @fn returns a non-zero value. The function is 2343 * using RCU to traverse the list and therefore may be using in atomic 2344 * contexts. The @fn callback is invoked from RCU critical section and 2345 * thus must not sleep. 2346 */ 2347 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2348 int (*fn)(struct input_handle *, void *)) 2349 { 2350 struct input_handle *handle; 2351 int retval = 0; 2352 2353 rcu_read_lock(); 2354 2355 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2356 retval = fn(handle, data); 2357 if (retval) 2358 break; 2359 } 2360 2361 rcu_read_unlock(); 2362 2363 return retval; 2364 } 2365 EXPORT_SYMBOL(input_handler_for_each_handle); 2366 2367 /** 2368 * input_register_handle - register a new input handle 2369 * @handle: handle to register 2370 * 2371 * This function puts a new input handle onto device's 2372 * and handler's lists so that events can flow through 2373 * it once it is opened using input_open_device(). 2374 * 2375 * This function is supposed to be called from handler's 2376 * connect() method. 2377 */ 2378 int input_register_handle(struct input_handle *handle) 2379 { 2380 struct input_handler *handler = handle->handler; 2381 struct input_dev *dev = handle->dev; 2382 int error; 2383 2384 /* 2385 * We take dev->mutex here to prevent race with 2386 * input_release_device(). 2387 */ 2388 error = mutex_lock_interruptible(&dev->mutex); 2389 if (error) 2390 return error; 2391 2392 /* 2393 * Filters go to the head of the list, normal handlers 2394 * to the tail. 2395 */ 2396 if (handler->filter) 2397 list_add_rcu(&handle->d_node, &dev->h_list); 2398 else 2399 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2400 2401 mutex_unlock(&dev->mutex); 2402 2403 /* 2404 * Since we are supposed to be called from ->connect() 2405 * which is mutually exclusive with ->disconnect() 2406 * we can't be racing with input_unregister_handle() 2407 * and so separate lock is not needed here. 2408 */ 2409 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2410 2411 if (handler->start) 2412 handler->start(handle); 2413 2414 return 0; 2415 } 2416 EXPORT_SYMBOL(input_register_handle); 2417 2418 /** 2419 * input_unregister_handle - unregister an input handle 2420 * @handle: handle to unregister 2421 * 2422 * This function removes input handle from device's 2423 * and handler's lists. 2424 * 2425 * This function is supposed to be called from handler's 2426 * disconnect() method. 2427 */ 2428 void input_unregister_handle(struct input_handle *handle) 2429 { 2430 struct input_dev *dev = handle->dev; 2431 2432 list_del_rcu(&handle->h_node); 2433 2434 /* 2435 * Take dev->mutex to prevent race with input_release_device(). 2436 */ 2437 mutex_lock(&dev->mutex); 2438 list_del_rcu(&handle->d_node); 2439 mutex_unlock(&dev->mutex); 2440 2441 synchronize_rcu(); 2442 } 2443 EXPORT_SYMBOL(input_unregister_handle); 2444 2445 /** 2446 * input_get_new_minor - allocates a new input minor number 2447 * @legacy_base: beginning or the legacy range to be searched 2448 * @legacy_num: size of legacy range 2449 * @allow_dynamic: whether we can also take ID from the dynamic range 2450 * 2451 * This function allocates a new device minor for from input major namespace. 2452 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2453 * parameters and whether ID can be allocated from dynamic range if there are 2454 * no free IDs in legacy range. 2455 */ 2456 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2457 bool allow_dynamic) 2458 { 2459 /* 2460 * This function should be called from input handler's ->connect() 2461 * methods, which are serialized with input_mutex, so no additional 2462 * locking is needed here. 2463 */ 2464 if (legacy_base >= 0) { 2465 int minor = ida_simple_get(&input_ida, 2466 legacy_base, 2467 legacy_base + legacy_num, 2468 GFP_KERNEL); 2469 if (minor >= 0 || !allow_dynamic) 2470 return minor; 2471 } 2472 2473 return ida_simple_get(&input_ida, 2474 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, 2475 GFP_KERNEL); 2476 } 2477 EXPORT_SYMBOL(input_get_new_minor); 2478 2479 /** 2480 * input_free_minor - release previously allocated minor 2481 * @minor: minor to be released 2482 * 2483 * This function releases previously allocated input minor so that it can be 2484 * reused later. 2485 */ 2486 void input_free_minor(unsigned int minor) 2487 { 2488 ida_simple_remove(&input_ida, minor); 2489 } 2490 EXPORT_SYMBOL(input_free_minor); 2491 2492 static int __init input_init(void) 2493 { 2494 int err; 2495 2496 err = class_register(&input_class); 2497 if (err) { 2498 pr_err("unable to register input_dev class\n"); 2499 return err; 2500 } 2501 2502 err = input_proc_init(); 2503 if (err) 2504 goto fail1; 2505 2506 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2507 INPUT_MAX_CHAR_DEVICES, "input"); 2508 if (err) { 2509 pr_err("unable to register char major %d", INPUT_MAJOR); 2510 goto fail2; 2511 } 2512 2513 return 0; 2514 2515 fail2: input_proc_exit(); 2516 fail1: class_unregister(&input_class); 2517 return err; 2518 } 2519 2520 static void __exit input_exit(void) 2521 { 2522 input_proc_exit(); 2523 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2524 INPUT_MAX_CHAR_DEVICES); 2525 class_unregister(&input_class); 2526 } 2527 2528 subsys_initcall(input_init); 2529 module_exit(input_exit); 2530