xref: /linux/drivers/input/input.c (revision 1d1997db870f4058676439ef7014390ba9e24eb2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28 
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32 
33 #define INPUT_MAX_CHAR_DEVICES		1024
34 #define INPUT_FIRST_DYNAMIC_DEV		256
35 static DEFINE_IDA(input_ida);
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49 
50 static inline int is_event_supported(unsigned int code,
51 				     unsigned long *bm, unsigned int max)
52 {
53 	return code <= max && test_bit(code, bm);
54 }
55 
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 	if (fuzz) {
59 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 			return old_val;
61 
62 		if (value > old_val - fuzz && value < old_val + fuzz)
63 			return (old_val * 3 + value) / 4;
64 
65 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 			return (old_val + value) / 2;
67 	}
68 
69 	return value;
70 }
71 
72 static void input_start_autorepeat(struct input_dev *dev, int code)
73 {
74 	if (test_bit(EV_REP, dev->evbit) &&
75 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
76 	    dev->timer.function) {
77 		dev->repeat_key = code;
78 		mod_timer(&dev->timer,
79 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
80 	}
81 }
82 
83 static void input_stop_autorepeat(struct input_dev *dev)
84 {
85 	del_timer(&dev->timer);
86 }
87 
88 /*
89  * Pass event first through all filters and then, if event has not been
90  * filtered out, through all open handles. This function is called with
91  * dev->event_lock held and interrupts disabled.
92  */
93 static unsigned int input_to_handler(struct input_handle *handle,
94 			struct input_value *vals, unsigned int count)
95 {
96 	struct input_handler *handler = handle->handler;
97 	struct input_value *end = vals;
98 	struct input_value *v;
99 
100 	if (handler->filter) {
101 		for (v = vals; v != vals + count; v++) {
102 			if (handler->filter(handle, v->type, v->code, v->value))
103 				continue;
104 			if (end != v)
105 				*end = *v;
106 			end++;
107 		}
108 		count = end - vals;
109 	}
110 
111 	if (!count)
112 		return 0;
113 
114 	if (handler->events)
115 		handler->events(handle, vals, count);
116 	else if (handler->event)
117 		for (v = vals; v != vals + count; v++)
118 			handler->event(handle, v->type, v->code, v->value);
119 
120 	return count;
121 }
122 
123 /*
124  * Pass values first through all filters and then, if event has not been
125  * filtered out, through all open handles. This function is called with
126  * dev->event_lock held and interrupts disabled.
127  */
128 static void input_pass_values(struct input_dev *dev,
129 			      struct input_value *vals, unsigned int count)
130 {
131 	struct input_handle *handle;
132 	struct input_value *v;
133 
134 	if (!count)
135 		return;
136 
137 	rcu_read_lock();
138 
139 	handle = rcu_dereference(dev->grab);
140 	if (handle) {
141 		count = input_to_handler(handle, vals, count);
142 	} else {
143 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
144 			if (handle->open) {
145 				count = input_to_handler(handle, vals, count);
146 				if (!count)
147 					break;
148 			}
149 	}
150 
151 	rcu_read_unlock();
152 
153 	/* trigger auto repeat for key events */
154 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
155 		for (v = vals; v != vals + count; v++) {
156 			if (v->type == EV_KEY && v->value != 2) {
157 				if (v->value)
158 					input_start_autorepeat(dev, v->code);
159 				else
160 					input_stop_autorepeat(dev);
161 			}
162 		}
163 	}
164 }
165 
166 static void input_pass_event(struct input_dev *dev,
167 			     unsigned int type, unsigned int code, int value)
168 {
169 	struct input_value vals[] = { { type, code, value } };
170 
171 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
172 }
173 
174 /*
175  * Generate software autorepeat event. Note that we take
176  * dev->event_lock here to avoid racing with input_event
177  * which may cause keys get "stuck".
178  */
179 static void input_repeat_key(struct timer_list *t)
180 {
181 	struct input_dev *dev = from_timer(dev, t, timer);
182 	unsigned long flags;
183 
184 	spin_lock_irqsave(&dev->event_lock, flags);
185 
186 	if (test_bit(dev->repeat_key, dev->key) &&
187 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
188 		struct input_value vals[] =  {
189 			{ EV_KEY, dev->repeat_key, 2 },
190 			input_value_sync
191 		};
192 
193 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
194 
195 		if (dev->rep[REP_PERIOD])
196 			mod_timer(&dev->timer, jiffies +
197 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
198 	}
199 
200 	spin_unlock_irqrestore(&dev->event_lock, flags);
201 }
202 
203 #define INPUT_IGNORE_EVENT	0
204 #define INPUT_PASS_TO_HANDLERS	1
205 #define INPUT_PASS_TO_DEVICE	2
206 #define INPUT_SLOT		4
207 #define INPUT_FLUSH		8
208 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
209 
210 static int input_handle_abs_event(struct input_dev *dev,
211 				  unsigned int code, int *pval)
212 {
213 	struct input_mt *mt = dev->mt;
214 	bool is_mt_event;
215 	int *pold;
216 
217 	if (code == ABS_MT_SLOT) {
218 		/*
219 		 * "Stage" the event; we'll flush it later, when we
220 		 * get actual touch data.
221 		 */
222 		if (mt && *pval >= 0 && *pval < mt->num_slots)
223 			mt->slot = *pval;
224 
225 		return INPUT_IGNORE_EVENT;
226 	}
227 
228 	is_mt_event = input_is_mt_value(code);
229 
230 	if (!is_mt_event) {
231 		pold = &dev->absinfo[code].value;
232 	} else if (mt) {
233 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
234 	} else {
235 		/*
236 		 * Bypass filtering for multi-touch events when
237 		 * not employing slots.
238 		 */
239 		pold = NULL;
240 	}
241 
242 	if (pold) {
243 		*pval = input_defuzz_abs_event(*pval, *pold,
244 						dev->absinfo[code].fuzz);
245 		if (*pold == *pval)
246 			return INPUT_IGNORE_EVENT;
247 
248 		*pold = *pval;
249 	}
250 
251 	/* Flush pending "slot" event */
252 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
253 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
254 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
255 	}
256 
257 	return INPUT_PASS_TO_HANDLERS;
258 }
259 
260 static int input_get_disposition(struct input_dev *dev,
261 			  unsigned int type, unsigned int code, int *pval)
262 {
263 	int disposition = INPUT_IGNORE_EVENT;
264 	int value = *pval;
265 
266 	switch (type) {
267 
268 	case EV_SYN:
269 		switch (code) {
270 		case SYN_CONFIG:
271 			disposition = INPUT_PASS_TO_ALL;
272 			break;
273 
274 		case SYN_REPORT:
275 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
276 			break;
277 		case SYN_MT_REPORT:
278 			disposition = INPUT_PASS_TO_HANDLERS;
279 			break;
280 		}
281 		break;
282 
283 	case EV_KEY:
284 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
285 
286 			/* auto-repeat bypasses state updates */
287 			if (value == 2) {
288 				disposition = INPUT_PASS_TO_HANDLERS;
289 				break;
290 			}
291 
292 			if (!!test_bit(code, dev->key) != !!value) {
293 
294 				__change_bit(code, dev->key);
295 				disposition = INPUT_PASS_TO_HANDLERS;
296 			}
297 		}
298 		break;
299 
300 	case EV_SW:
301 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
302 		    !!test_bit(code, dev->sw) != !!value) {
303 
304 			__change_bit(code, dev->sw);
305 			disposition = INPUT_PASS_TO_HANDLERS;
306 		}
307 		break;
308 
309 	case EV_ABS:
310 		if (is_event_supported(code, dev->absbit, ABS_MAX))
311 			disposition = input_handle_abs_event(dev, code, &value);
312 
313 		break;
314 
315 	case EV_REL:
316 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
317 			disposition = INPUT_PASS_TO_HANDLERS;
318 
319 		break;
320 
321 	case EV_MSC:
322 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
323 			disposition = INPUT_PASS_TO_ALL;
324 
325 		break;
326 
327 	case EV_LED:
328 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
329 		    !!test_bit(code, dev->led) != !!value) {
330 
331 			__change_bit(code, dev->led);
332 			disposition = INPUT_PASS_TO_ALL;
333 		}
334 		break;
335 
336 	case EV_SND:
337 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
338 
339 			if (!!test_bit(code, dev->snd) != !!value)
340 				__change_bit(code, dev->snd);
341 			disposition = INPUT_PASS_TO_ALL;
342 		}
343 		break;
344 
345 	case EV_REP:
346 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
347 			dev->rep[code] = value;
348 			disposition = INPUT_PASS_TO_ALL;
349 		}
350 		break;
351 
352 	case EV_FF:
353 		if (value >= 0)
354 			disposition = INPUT_PASS_TO_ALL;
355 		break;
356 
357 	case EV_PWR:
358 		disposition = INPUT_PASS_TO_ALL;
359 		break;
360 	}
361 
362 	*pval = value;
363 	return disposition;
364 }
365 
366 static void input_handle_event(struct input_dev *dev,
367 			       unsigned int type, unsigned int code, int value)
368 {
369 	int disposition = input_get_disposition(dev, type, code, &value);
370 
371 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
372 		add_input_randomness(type, code, value);
373 
374 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
375 		dev->event(dev, type, code, value);
376 
377 	if (!dev->vals)
378 		return;
379 
380 	if (disposition & INPUT_PASS_TO_HANDLERS) {
381 		struct input_value *v;
382 
383 		if (disposition & INPUT_SLOT) {
384 			v = &dev->vals[dev->num_vals++];
385 			v->type = EV_ABS;
386 			v->code = ABS_MT_SLOT;
387 			v->value = dev->mt->slot;
388 		}
389 
390 		v = &dev->vals[dev->num_vals++];
391 		v->type = type;
392 		v->code = code;
393 		v->value = value;
394 	}
395 
396 	if (disposition & INPUT_FLUSH) {
397 		if (dev->num_vals >= 2)
398 			input_pass_values(dev, dev->vals, dev->num_vals);
399 		dev->num_vals = 0;
400 		/*
401 		 * Reset the timestamp on flush so we won't end up
402 		 * with a stale one. Note we only need to reset the
403 		 * monolithic one as we use its presence when deciding
404 		 * whether to generate a synthetic timestamp.
405 		 */
406 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
407 	} else if (dev->num_vals >= dev->max_vals - 2) {
408 		dev->vals[dev->num_vals++] = input_value_sync;
409 		input_pass_values(dev, dev->vals, dev->num_vals);
410 		dev->num_vals = 0;
411 	}
412 
413 }
414 
415 /**
416  * input_event() - report new input event
417  * @dev: device that generated the event
418  * @type: type of the event
419  * @code: event code
420  * @value: value of the event
421  *
422  * This function should be used by drivers implementing various input
423  * devices to report input events. See also input_inject_event().
424  *
425  * NOTE: input_event() may be safely used right after input device was
426  * allocated with input_allocate_device(), even before it is registered
427  * with input_register_device(), but the event will not reach any of the
428  * input handlers. Such early invocation of input_event() may be used
429  * to 'seed' initial state of a switch or initial position of absolute
430  * axis, etc.
431  */
432 void input_event(struct input_dev *dev,
433 		 unsigned int type, unsigned int code, int value)
434 {
435 	unsigned long flags;
436 
437 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
438 
439 		spin_lock_irqsave(&dev->event_lock, flags);
440 		input_handle_event(dev, type, code, value);
441 		spin_unlock_irqrestore(&dev->event_lock, flags);
442 	}
443 }
444 EXPORT_SYMBOL(input_event);
445 
446 /**
447  * input_inject_event() - send input event from input handler
448  * @handle: input handle to send event through
449  * @type: type of the event
450  * @code: event code
451  * @value: value of the event
452  *
453  * Similar to input_event() but will ignore event if device is
454  * "grabbed" and handle injecting event is not the one that owns
455  * the device.
456  */
457 void input_inject_event(struct input_handle *handle,
458 			unsigned int type, unsigned int code, int value)
459 {
460 	struct input_dev *dev = handle->dev;
461 	struct input_handle *grab;
462 	unsigned long flags;
463 
464 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
465 		spin_lock_irqsave(&dev->event_lock, flags);
466 
467 		rcu_read_lock();
468 		grab = rcu_dereference(dev->grab);
469 		if (!grab || grab == handle)
470 			input_handle_event(dev, type, code, value);
471 		rcu_read_unlock();
472 
473 		spin_unlock_irqrestore(&dev->event_lock, flags);
474 	}
475 }
476 EXPORT_SYMBOL(input_inject_event);
477 
478 /**
479  * input_alloc_absinfo - allocates array of input_absinfo structs
480  * @dev: the input device emitting absolute events
481  *
482  * If the absinfo struct the caller asked for is already allocated, this
483  * functions will not do anything.
484  */
485 void input_alloc_absinfo(struct input_dev *dev)
486 {
487 	if (dev->absinfo)
488 		return;
489 
490 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
491 	if (!dev->absinfo) {
492 		dev_err(dev->dev.parent ?: &dev->dev,
493 			"%s: unable to allocate memory\n", __func__);
494 		/*
495 		 * We will handle this allocation failure in
496 		 * input_register_device() when we refuse to register input
497 		 * device with ABS bits but without absinfo.
498 		 */
499 	}
500 }
501 EXPORT_SYMBOL(input_alloc_absinfo);
502 
503 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
504 			  int min, int max, int fuzz, int flat)
505 {
506 	struct input_absinfo *absinfo;
507 
508 	input_alloc_absinfo(dev);
509 	if (!dev->absinfo)
510 		return;
511 
512 	absinfo = &dev->absinfo[axis];
513 	absinfo->minimum = min;
514 	absinfo->maximum = max;
515 	absinfo->fuzz = fuzz;
516 	absinfo->flat = flat;
517 
518 	__set_bit(EV_ABS, dev->evbit);
519 	__set_bit(axis, dev->absbit);
520 }
521 EXPORT_SYMBOL(input_set_abs_params);
522 
523 
524 /**
525  * input_grab_device - grabs device for exclusive use
526  * @handle: input handle that wants to own the device
527  *
528  * When a device is grabbed by an input handle all events generated by
529  * the device are delivered only to this handle. Also events injected
530  * by other input handles are ignored while device is grabbed.
531  */
532 int input_grab_device(struct input_handle *handle)
533 {
534 	struct input_dev *dev = handle->dev;
535 	int retval;
536 
537 	retval = mutex_lock_interruptible(&dev->mutex);
538 	if (retval)
539 		return retval;
540 
541 	if (dev->grab) {
542 		retval = -EBUSY;
543 		goto out;
544 	}
545 
546 	rcu_assign_pointer(dev->grab, handle);
547 
548  out:
549 	mutex_unlock(&dev->mutex);
550 	return retval;
551 }
552 EXPORT_SYMBOL(input_grab_device);
553 
554 static void __input_release_device(struct input_handle *handle)
555 {
556 	struct input_dev *dev = handle->dev;
557 	struct input_handle *grabber;
558 
559 	grabber = rcu_dereference_protected(dev->grab,
560 					    lockdep_is_held(&dev->mutex));
561 	if (grabber == handle) {
562 		rcu_assign_pointer(dev->grab, NULL);
563 		/* Make sure input_pass_event() notices that grab is gone */
564 		synchronize_rcu();
565 
566 		list_for_each_entry(handle, &dev->h_list, d_node)
567 			if (handle->open && handle->handler->start)
568 				handle->handler->start(handle);
569 	}
570 }
571 
572 /**
573  * input_release_device - release previously grabbed device
574  * @handle: input handle that owns the device
575  *
576  * Releases previously grabbed device so that other input handles can
577  * start receiving input events. Upon release all handlers attached
578  * to the device have their start() method called so they have a change
579  * to synchronize device state with the rest of the system.
580  */
581 void input_release_device(struct input_handle *handle)
582 {
583 	struct input_dev *dev = handle->dev;
584 
585 	mutex_lock(&dev->mutex);
586 	__input_release_device(handle);
587 	mutex_unlock(&dev->mutex);
588 }
589 EXPORT_SYMBOL(input_release_device);
590 
591 /**
592  * input_open_device - open input device
593  * @handle: handle through which device is being accessed
594  *
595  * This function should be called by input handlers when they
596  * want to start receive events from given input device.
597  */
598 int input_open_device(struct input_handle *handle)
599 {
600 	struct input_dev *dev = handle->dev;
601 	int retval;
602 
603 	retval = mutex_lock_interruptible(&dev->mutex);
604 	if (retval)
605 		return retval;
606 
607 	if (dev->going_away) {
608 		retval = -ENODEV;
609 		goto out;
610 	}
611 
612 	handle->open++;
613 
614 	if (dev->users++) {
615 		/*
616 		 * Device is already opened, so we can exit immediately and
617 		 * report success.
618 		 */
619 		goto out;
620 	}
621 
622 	if (dev->open) {
623 		retval = dev->open(dev);
624 		if (retval) {
625 			dev->users--;
626 			handle->open--;
627 			/*
628 			 * Make sure we are not delivering any more events
629 			 * through this handle
630 			 */
631 			synchronize_rcu();
632 			goto out;
633 		}
634 	}
635 
636 	if (dev->poller)
637 		input_dev_poller_start(dev->poller);
638 
639  out:
640 	mutex_unlock(&dev->mutex);
641 	return retval;
642 }
643 EXPORT_SYMBOL(input_open_device);
644 
645 int input_flush_device(struct input_handle *handle, struct file *file)
646 {
647 	struct input_dev *dev = handle->dev;
648 	int retval;
649 
650 	retval = mutex_lock_interruptible(&dev->mutex);
651 	if (retval)
652 		return retval;
653 
654 	if (dev->flush)
655 		retval = dev->flush(dev, file);
656 
657 	mutex_unlock(&dev->mutex);
658 	return retval;
659 }
660 EXPORT_SYMBOL(input_flush_device);
661 
662 /**
663  * input_close_device - close input device
664  * @handle: handle through which device is being accessed
665  *
666  * This function should be called by input handlers when they
667  * want to stop receive events from given input device.
668  */
669 void input_close_device(struct input_handle *handle)
670 {
671 	struct input_dev *dev = handle->dev;
672 
673 	mutex_lock(&dev->mutex);
674 
675 	__input_release_device(handle);
676 
677 	if (!--dev->users) {
678 		if (dev->poller)
679 			input_dev_poller_stop(dev->poller);
680 
681 		if (dev->close)
682 			dev->close(dev);
683 	}
684 
685 	if (!--handle->open) {
686 		/*
687 		 * synchronize_rcu() makes sure that input_pass_event()
688 		 * completed and that no more input events are delivered
689 		 * through this handle
690 		 */
691 		synchronize_rcu();
692 	}
693 
694 	mutex_unlock(&dev->mutex);
695 }
696 EXPORT_SYMBOL(input_close_device);
697 
698 /*
699  * Simulate keyup events for all keys that are marked as pressed.
700  * The function must be called with dev->event_lock held.
701  */
702 static void input_dev_release_keys(struct input_dev *dev)
703 {
704 	bool need_sync = false;
705 	int code;
706 
707 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
708 		for_each_set_bit(code, dev->key, KEY_CNT) {
709 			input_pass_event(dev, EV_KEY, code, 0);
710 			need_sync = true;
711 		}
712 
713 		if (need_sync)
714 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
715 
716 		memset(dev->key, 0, sizeof(dev->key));
717 	}
718 }
719 
720 /*
721  * Prepare device for unregistering
722  */
723 static void input_disconnect_device(struct input_dev *dev)
724 {
725 	struct input_handle *handle;
726 
727 	/*
728 	 * Mark device as going away. Note that we take dev->mutex here
729 	 * not to protect access to dev->going_away but rather to ensure
730 	 * that there are no threads in the middle of input_open_device()
731 	 */
732 	mutex_lock(&dev->mutex);
733 	dev->going_away = true;
734 	mutex_unlock(&dev->mutex);
735 
736 	spin_lock_irq(&dev->event_lock);
737 
738 	/*
739 	 * Simulate keyup events for all pressed keys so that handlers
740 	 * are not left with "stuck" keys. The driver may continue
741 	 * generate events even after we done here but they will not
742 	 * reach any handlers.
743 	 */
744 	input_dev_release_keys(dev);
745 
746 	list_for_each_entry(handle, &dev->h_list, d_node)
747 		handle->open = 0;
748 
749 	spin_unlock_irq(&dev->event_lock);
750 }
751 
752 /**
753  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
754  * @ke: keymap entry containing scancode to be converted.
755  * @scancode: pointer to the location where converted scancode should
756  *	be stored.
757  *
758  * This function is used to convert scancode stored in &struct keymap_entry
759  * into scalar form understood by legacy keymap handling methods. These
760  * methods expect scancodes to be represented as 'unsigned int'.
761  */
762 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
763 			     unsigned int *scancode)
764 {
765 	switch (ke->len) {
766 	case 1:
767 		*scancode = *((u8 *)ke->scancode);
768 		break;
769 
770 	case 2:
771 		*scancode = *((u16 *)ke->scancode);
772 		break;
773 
774 	case 4:
775 		*scancode = *((u32 *)ke->scancode);
776 		break;
777 
778 	default:
779 		return -EINVAL;
780 	}
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL(input_scancode_to_scalar);
785 
786 /*
787  * Those routines handle the default case where no [gs]etkeycode() is
788  * defined. In this case, an array indexed by the scancode is used.
789  */
790 
791 static unsigned int input_fetch_keycode(struct input_dev *dev,
792 					unsigned int index)
793 {
794 	switch (dev->keycodesize) {
795 	case 1:
796 		return ((u8 *)dev->keycode)[index];
797 
798 	case 2:
799 		return ((u16 *)dev->keycode)[index];
800 
801 	default:
802 		return ((u32 *)dev->keycode)[index];
803 	}
804 }
805 
806 static int input_default_getkeycode(struct input_dev *dev,
807 				    struct input_keymap_entry *ke)
808 {
809 	unsigned int index;
810 	int error;
811 
812 	if (!dev->keycodesize)
813 		return -EINVAL;
814 
815 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
816 		index = ke->index;
817 	else {
818 		error = input_scancode_to_scalar(ke, &index);
819 		if (error)
820 			return error;
821 	}
822 
823 	if (index >= dev->keycodemax)
824 		return -EINVAL;
825 
826 	ke->keycode = input_fetch_keycode(dev, index);
827 	ke->index = index;
828 	ke->len = sizeof(index);
829 	memcpy(ke->scancode, &index, sizeof(index));
830 
831 	return 0;
832 }
833 
834 static int input_default_setkeycode(struct input_dev *dev,
835 				    const struct input_keymap_entry *ke,
836 				    unsigned int *old_keycode)
837 {
838 	unsigned int index;
839 	int error;
840 	int i;
841 
842 	if (!dev->keycodesize)
843 		return -EINVAL;
844 
845 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
846 		index = ke->index;
847 	} else {
848 		error = input_scancode_to_scalar(ke, &index);
849 		if (error)
850 			return error;
851 	}
852 
853 	if (index >= dev->keycodemax)
854 		return -EINVAL;
855 
856 	if (dev->keycodesize < sizeof(ke->keycode) &&
857 			(ke->keycode >> (dev->keycodesize * 8)))
858 		return -EINVAL;
859 
860 	switch (dev->keycodesize) {
861 		case 1: {
862 			u8 *k = (u8 *)dev->keycode;
863 			*old_keycode = k[index];
864 			k[index] = ke->keycode;
865 			break;
866 		}
867 		case 2: {
868 			u16 *k = (u16 *)dev->keycode;
869 			*old_keycode = k[index];
870 			k[index] = ke->keycode;
871 			break;
872 		}
873 		default: {
874 			u32 *k = (u32 *)dev->keycode;
875 			*old_keycode = k[index];
876 			k[index] = ke->keycode;
877 			break;
878 		}
879 	}
880 
881 	__clear_bit(*old_keycode, dev->keybit);
882 	__set_bit(ke->keycode, dev->keybit);
883 
884 	for (i = 0; i < dev->keycodemax; i++) {
885 		if (input_fetch_keycode(dev, i) == *old_keycode) {
886 			__set_bit(*old_keycode, dev->keybit);
887 			break; /* Setting the bit twice is useless, so break */
888 		}
889 	}
890 
891 	return 0;
892 }
893 
894 /**
895  * input_get_keycode - retrieve keycode currently mapped to a given scancode
896  * @dev: input device which keymap is being queried
897  * @ke: keymap entry
898  *
899  * This function should be called by anyone interested in retrieving current
900  * keymap. Presently evdev handlers use it.
901  */
902 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
903 {
904 	unsigned long flags;
905 	int retval;
906 
907 	spin_lock_irqsave(&dev->event_lock, flags);
908 	retval = dev->getkeycode(dev, ke);
909 	spin_unlock_irqrestore(&dev->event_lock, flags);
910 
911 	return retval;
912 }
913 EXPORT_SYMBOL(input_get_keycode);
914 
915 /**
916  * input_set_keycode - attribute a keycode to a given scancode
917  * @dev: input device which keymap is being updated
918  * @ke: new keymap entry
919  *
920  * This function should be called by anyone needing to update current
921  * keymap. Presently keyboard and evdev handlers use it.
922  */
923 int input_set_keycode(struct input_dev *dev,
924 		      const struct input_keymap_entry *ke)
925 {
926 	unsigned long flags;
927 	unsigned int old_keycode;
928 	int retval;
929 
930 	if (ke->keycode > KEY_MAX)
931 		return -EINVAL;
932 
933 	spin_lock_irqsave(&dev->event_lock, flags);
934 
935 	retval = dev->setkeycode(dev, ke, &old_keycode);
936 	if (retval)
937 		goto out;
938 
939 	/* Make sure KEY_RESERVED did not get enabled. */
940 	__clear_bit(KEY_RESERVED, dev->keybit);
941 
942 	/*
943 	 * Simulate keyup event if keycode is not present
944 	 * in the keymap anymore
945 	 */
946 	if (test_bit(EV_KEY, dev->evbit) &&
947 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
948 	    __test_and_clear_bit(old_keycode, dev->key)) {
949 		struct input_value vals[] =  {
950 			{ EV_KEY, old_keycode, 0 },
951 			input_value_sync
952 		};
953 
954 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
955 	}
956 
957  out:
958 	spin_unlock_irqrestore(&dev->event_lock, flags);
959 
960 	return retval;
961 }
962 EXPORT_SYMBOL(input_set_keycode);
963 
964 bool input_match_device_id(const struct input_dev *dev,
965 			   const struct input_device_id *id)
966 {
967 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
968 		if (id->bustype != dev->id.bustype)
969 			return false;
970 
971 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
972 		if (id->vendor != dev->id.vendor)
973 			return false;
974 
975 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
976 		if (id->product != dev->id.product)
977 			return false;
978 
979 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
980 		if (id->version != dev->id.version)
981 			return false;
982 
983 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
984 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
985 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
986 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
987 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
988 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
989 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
990 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
991 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
992 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
993 		return false;
994 	}
995 
996 	return true;
997 }
998 EXPORT_SYMBOL(input_match_device_id);
999 
1000 static const struct input_device_id *input_match_device(struct input_handler *handler,
1001 							struct input_dev *dev)
1002 {
1003 	const struct input_device_id *id;
1004 
1005 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1006 		if (input_match_device_id(dev, id) &&
1007 		    (!handler->match || handler->match(handler, dev))) {
1008 			return id;
1009 		}
1010 	}
1011 
1012 	return NULL;
1013 }
1014 
1015 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1016 {
1017 	const struct input_device_id *id;
1018 	int error;
1019 
1020 	id = input_match_device(handler, dev);
1021 	if (!id)
1022 		return -ENODEV;
1023 
1024 	error = handler->connect(handler, dev, id);
1025 	if (error && error != -ENODEV)
1026 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1027 		       handler->name, kobject_name(&dev->dev.kobj), error);
1028 
1029 	return error;
1030 }
1031 
1032 #ifdef CONFIG_COMPAT
1033 
1034 static int input_bits_to_string(char *buf, int buf_size,
1035 				unsigned long bits, bool skip_empty)
1036 {
1037 	int len = 0;
1038 
1039 	if (in_compat_syscall()) {
1040 		u32 dword = bits >> 32;
1041 		if (dword || !skip_empty)
1042 			len += snprintf(buf, buf_size, "%x ", dword);
1043 
1044 		dword = bits & 0xffffffffUL;
1045 		if (dword || !skip_empty || len)
1046 			len += snprintf(buf + len, max(buf_size - len, 0),
1047 					"%x", dword);
1048 	} else {
1049 		if (bits || !skip_empty)
1050 			len += snprintf(buf, buf_size, "%lx", bits);
1051 	}
1052 
1053 	return len;
1054 }
1055 
1056 #else /* !CONFIG_COMPAT */
1057 
1058 static int input_bits_to_string(char *buf, int buf_size,
1059 				unsigned long bits, bool skip_empty)
1060 {
1061 	return bits || !skip_empty ?
1062 		snprintf(buf, buf_size, "%lx", bits) : 0;
1063 }
1064 
1065 #endif
1066 
1067 #ifdef CONFIG_PROC_FS
1068 
1069 static struct proc_dir_entry *proc_bus_input_dir;
1070 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1071 static int input_devices_state;
1072 
1073 static inline void input_wakeup_procfs_readers(void)
1074 {
1075 	input_devices_state++;
1076 	wake_up(&input_devices_poll_wait);
1077 }
1078 
1079 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1080 {
1081 	poll_wait(file, &input_devices_poll_wait, wait);
1082 	if (file->f_version != input_devices_state) {
1083 		file->f_version = input_devices_state;
1084 		return EPOLLIN | EPOLLRDNORM;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 union input_seq_state {
1091 	struct {
1092 		unsigned short pos;
1093 		bool mutex_acquired;
1094 	};
1095 	void *p;
1096 };
1097 
1098 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1099 {
1100 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1101 	int error;
1102 
1103 	/* We need to fit into seq->private pointer */
1104 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1105 
1106 	error = mutex_lock_interruptible(&input_mutex);
1107 	if (error) {
1108 		state->mutex_acquired = false;
1109 		return ERR_PTR(error);
1110 	}
1111 
1112 	state->mutex_acquired = true;
1113 
1114 	return seq_list_start(&input_dev_list, *pos);
1115 }
1116 
1117 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1118 {
1119 	return seq_list_next(v, &input_dev_list, pos);
1120 }
1121 
1122 static void input_seq_stop(struct seq_file *seq, void *v)
1123 {
1124 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1125 
1126 	if (state->mutex_acquired)
1127 		mutex_unlock(&input_mutex);
1128 }
1129 
1130 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1131 				   unsigned long *bitmap, int max)
1132 {
1133 	int i;
1134 	bool skip_empty = true;
1135 	char buf[18];
1136 
1137 	seq_printf(seq, "B: %s=", name);
1138 
1139 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1140 		if (input_bits_to_string(buf, sizeof(buf),
1141 					 bitmap[i], skip_empty)) {
1142 			skip_empty = false;
1143 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1144 		}
1145 	}
1146 
1147 	/*
1148 	 * If no output was produced print a single 0.
1149 	 */
1150 	if (skip_empty)
1151 		seq_putc(seq, '0');
1152 
1153 	seq_putc(seq, '\n');
1154 }
1155 
1156 static int input_devices_seq_show(struct seq_file *seq, void *v)
1157 {
1158 	struct input_dev *dev = container_of(v, struct input_dev, node);
1159 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1160 	struct input_handle *handle;
1161 
1162 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1163 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1164 
1165 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1166 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1167 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1168 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1169 	seq_puts(seq, "H: Handlers=");
1170 
1171 	list_for_each_entry(handle, &dev->h_list, d_node)
1172 		seq_printf(seq, "%s ", handle->name);
1173 	seq_putc(seq, '\n');
1174 
1175 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1176 
1177 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1178 	if (test_bit(EV_KEY, dev->evbit))
1179 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1180 	if (test_bit(EV_REL, dev->evbit))
1181 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1182 	if (test_bit(EV_ABS, dev->evbit))
1183 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1184 	if (test_bit(EV_MSC, dev->evbit))
1185 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1186 	if (test_bit(EV_LED, dev->evbit))
1187 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1188 	if (test_bit(EV_SND, dev->evbit))
1189 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1190 	if (test_bit(EV_FF, dev->evbit))
1191 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1192 	if (test_bit(EV_SW, dev->evbit))
1193 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1194 
1195 	seq_putc(seq, '\n');
1196 
1197 	kfree(path);
1198 	return 0;
1199 }
1200 
1201 static const struct seq_operations input_devices_seq_ops = {
1202 	.start	= input_devices_seq_start,
1203 	.next	= input_devices_seq_next,
1204 	.stop	= input_seq_stop,
1205 	.show	= input_devices_seq_show,
1206 };
1207 
1208 static int input_proc_devices_open(struct inode *inode, struct file *file)
1209 {
1210 	return seq_open(file, &input_devices_seq_ops);
1211 }
1212 
1213 static const struct file_operations input_devices_fileops = {
1214 	.owner		= THIS_MODULE,
1215 	.open		= input_proc_devices_open,
1216 	.poll		= input_proc_devices_poll,
1217 	.read		= seq_read,
1218 	.llseek		= seq_lseek,
1219 	.release	= seq_release,
1220 };
1221 
1222 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1223 {
1224 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1225 	int error;
1226 
1227 	/* We need to fit into seq->private pointer */
1228 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1229 
1230 	error = mutex_lock_interruptible(&input_mutex);
1231 	if (error) {
1232 		state->mutex_acquired = false;
1233 		return ERR_PTR(error);
1234 	}
1235 
1236 	state->mutex_acquired = true;
1237 	state->pos = *pos;
1238 
1239 	return seq_list_start(&input_handler_list, *pos);
1240 }
1241 
1242 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1243 {
1244 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1245 
1246 	state->pos = *pos + 1;
1247 	return seq_list_next(v, &input_handler_list, pos);
1248 }
1249 
1250 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1251 {
1252 	struct input_handler *handler = container_of(v, struct input_handler, node);
1253 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1254 
1255 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1256 	if (handler->filter)
1257 		seq_puts(seq, " (filter)");
1258 	if (handler->legacy_minors)
1259 		seq_printf(seq, " Minor=%d", handler->minor);
1260 	seq_putc(seq, '\n');
1261 
1262 	return 0;
1263 }
1264 
1265 static const struct seq_operations input_handlers_seq_ops = {
1266 	.start	= input_handlers_seq_start,
1267 	.next	= input_handlers_seq_next,
1268 	.stop	= input_seq_stop,
1269 	.show	= input_handlers_seq_show,
1270 };
1271 
1272 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1273 {
1274 	return seq_open(file, &input_handlers_seq_ops);
1275 }
1276 
1277 static const struct file_operations input_handlers_fileops = {
1278 	.owner		= THIS_MODULE,
1279 	.open		= input_proc_handlers_open,
1280 	.read		= seq_read,
1281 	.llseek		= seq_lseek,
1282 	.release	= seq_release,
1283 };
1284 
1285 static int __init input_proc_init(void)
1286 {
1287 	struct proc_dir_entry *entry;
1288 
1289 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1290 	if (!proc_bus_input_dir)
1291 		return -ENOMEM;
1292 
1293 	entry = proc_create("devices", 0, proc_bus_input_dir,
1294 			    &input_devices_fileops);
1295 	if (!entry)
1296 		goto fail1;
1297 
1298 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1299 			    &input_handlers_fileops);
1300 	if (!entry)
1301 		goto fail2;
1302 
1303 	return 0;
1304 
1305  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1306  fail1: remove_proc_entry("bus/input", NULL);
1307 	return -ENOMEM;
1308 }
1309 
1310 static void input_proc_exit(void)
1311 {
1312 	remove_proc_entry("devices", proc_bus_input_dir);
1313 	remove_proc_entry("handlers", proc_bus_input_dir);
1314 	remove_proc_entry("bus/input", NULL);
1315 }
1316 
1317 #else /* !CONFIG_PROC_FS */
1318 static inline void input_wakeup_procfs_readers(void) { }
1319 static inline int input_proc_init(void) { return 0; }
1320 static inline void input_proc_exit(void) { }
1321 #endif
1322 
1323 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1324 static ssize_t input_dev_show_##name(struct device *dev,		\
1325 				     struct device_attribute *attr,	\
1326 				     char *buf)				\
1327 {									\
1328 	struct input_dev *input_dev = to_input_dev(dev);		\
1329 									\
1330 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1331 			 input_dev->name ? input_dev->name : "");	\
1332 }									\
1333 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1334 
1335 INPUT_DEV_STRING_ATTR_SHOW(name);
1336 INPUT_DEV_STRING_ATTR_SHOW(phys);
1337 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1338 
1339 static int input_print_modalias_bits(char *buf, int size,
1340 				     char name, unsigned long *bm,
1341 				     unsigned int min_bit, unsigned int max_bit)
1342 {
1343 	int len = 0, i;
1344 
1345 	len += snprintf(buf, max(size, 0), "%c", name);
1346 	for (i = min_bit; i < max_bit; i++)
1347 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1348 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1349 	return len;
1350 }
1351 
1352 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1353 				int add_cr)
1354 {
1355 	int len;
1356 
1357 	len = snprintf(buf, max(size, 0),
1358 		       "input:b%04Xv%04Xp%04Xe%04X-",
1359 		       id->id.bustype, id->id.vendor,
1360 		       id->id.product, id->id.version);
1361 
1362 	len += input_print_modalias_bits(buf + len, size - len,
1363 				'e', id->evbit, 0, EV_MAX);
1364 	len += input_print_modalias_bits(buf + len, size - len,
1365 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1366 	len += input_print_modalias_bits(buf + len, size - len,
1367 				'r', id->relbit, 0, REL_MAX);
1368 	len += input_print_modalias_bits(buf + len, size - len,
1369 				'a', id->absbit, 0, ABS_MAX);
1370 	len += input_print_modalias_bits(buf + len, size - len,
1371 				'm', id->mscbit, 0, MSC_MAX);
1372 	len += input_print_modalias_bits(buf + len, size - len,
1373 				'l', id->ledbit, 0, LED_MAX);
1374 	len += input_print_modalias_bits(buf + len, size - len,
1375 				's', id->sndbit, 0, SND_MAX);
1376 	len += input_print_modalias_bits(buf + len, size - len,
1377 				'f', id->ffbit, 0, FF_MAX);
1378 	len += input_print_modalias_bits(buf + len, size - len,
1379 				'w', id->swbit, 0, SW_MAX);
1380 
1381 	if (add_cr)
1382 		len += snprintf(buf + len, max(size - len, 0), "\n");
1383 
1384 	return len;
1385 }
1386 
1387 static ssize_t input_dev_show_modalias(struct device *dev,
1388 				       struct device_attribute *attr,
1389 				       char *buf)
1390 {
1391 	struct input_dev *id = to_input_dev(dev);
1392 	ssize_t len;
1393 
1394 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1395 
1396 	return min_t(int, len, PAGE_SIZE);
1397 }
1398 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1399 
1400 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1401 			      int max, int add_cr);
1402 
1403 static ssize_t input_dev_show_properties(struct device *dev,
1404 					 struct device_attribute *attr,
1405 					 char *buf)
1406 {
1407 	struct input_dev *input_dev = to_input_dev(dev);
1408 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1409 				     INPUT_PROP_MAX, true);
1410 	return min_t(int, len, PAGE_SIZE);
1411 }
1412 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1413 
1414 static struct attribute *input_dev_attrs[] = {
1415 	&dev_attr_name.attr,
1416 	&dev_attr_phys.attr,
1417 	&dev_attr_uniq.attr,
1418 	&dev_attr_modalias.attr,
1419 	&dev_attr_properties.attr,
1420 	NULL
1421 };
1422 
1423 static const struct attribute_group input_dev_attr_group = {
1424 	.attrs	= input_dev_attrs,
1425 };
1426 
1427 #define INPUT_DEV_ID_ATTR(name)						\
1428 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1429 					struct device_attribute *attr,	\
1430 					char *buf)			\
1431 {									\
1432 	struct input_dev *input_dev = to_input_dev(dev);		\
1433 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1434 }									\
1435 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1436 
1437 INPUT_DEV_ID_ATTR(bustype);
1438 INPUT_DEV_ID_ATTR(vendor);
1439 INPUT_DEV_ID_ATTR(product);
1440 INPUT_DEV_ID_ATTR(version);
1441 
1442 static struct attribute *input_dev_id_attrs[] = {
1443 	&dev_attr_bustype.attr,
1444 	&dev_attr_vendor.attr,
1445 	&dev_attr_product.attr,
1446 	&dev_attr_version.attr,
1447 	NULL
1448 };
1449 
1450 static const struct attribute_group input_dev_id_attr_group = {
1451 	.name	= "id",
1452 	.attrs	= input_dev_id_attrs,
1453 };
1454 
1455 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1456 			      int max, int add_cr)
1457 {
1458 	int i;
1459 	int len = 0;
1460 	bool skip_empty = true;
1461 
1462 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1463 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1464 					    bitmap[i], skip_empty);
1465 		if (len) {
1466 			skip_empty = false;
1467 			if (i > 0)
1468 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1469 		}
1470 	}
1471 
1472 	/*
1473 	 * If no output was produced print a single 0.
1474 	 */
1475 	if (len == 0)
1476 		len = snprintf(buf, buf_size, "%d", 0);
1477 
1478 	if (add_cr)
1479 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1480 
1481 	return len;
1482 }
1483 
1484 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1485 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1486 				       struct device_attribute *attr,	\
1487 				       char *buf)			\
1488 {									\
1489 	struct input_dev *input_dev = to_input_dev(dev);		\
1490 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1491 				     input_dev->bm##bit, ev##_MAX,	\
1492 				     true);				\
1493 	return min_t(int, len, PAGE_SIZE);				\
1494 }									\
1495 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1496 
1497 INPUT_DEV_CAP_ATTR(EV, ev);
1498 INPUT_DEV_CAP_ATTR(KEY, key);
1499 INPUT_DEV_CAP_ATTR(REL, rel);
1500 INPUT_DEV_CAP_ATTR(ABS, abs);
1501 INPUT_DEV_CAP_ATTR(MSC, msc);
1502 INPUT_DEV_CAP_ATTR(LED, led);
1503 INPUT_DEV_CAP_ATTR(SND, snd);
1504 INPUT_DEV_CAP_ATTR(FF, ff);
1505 INPUT_DEV_CAP_ATTR(SW, sw);
1506 
1507 static struct attribute *input_dev_caps_attrs[] = {
1508 	&dev_attr_ev.attr,
1509 	&dev_attr_key.attr,
1510 	&dev_attr_rel.attr,
1511 	&dev_attr_abs.attr,
1512 	&dev_attr_msc.attr,
1513 	&dev_attr_led.attr,
1514 	&dev_attr_snd.attr,
1515 	&dev_attr_ff.attr,
1516 	&dev_attr_sw.attr,
1517 	NULL
1518 };
1519 
1520 static const struct attribute_group input_dev_caps_attr_group = {
1521 	.name	= "capabilities",
1522 	.attrs	= input_dev_caps_attrs,
1523 };
1524 
1525 static const struct attribute_group *input_dev_attr_groups[] = {
1526 	&input_dev_attr_group,
1527 	&input_dev_id_attr_group,
1528 	&input_dev_caps_attr_group,
1529 	&input_poller_attribute_group,
1530 	NULL
1531 };
1532 
1533 static void input_dev_release(struct device *device)
1534 {
1535 	struct input_dev *dev = to_input_dev(device);
1536 
1537 	input_ff_destroy(dev);
1538 	input_mt_destroy_slots(dev);
1539 	kfree(dev->poller);
1540 	kfree(dev->absinfo);
1541 	kfree(dev->vals);
1542 	kfree(dev);
1543 
1544 	module_put(THIS_MODULE);
1545 }
1546 
1547 /*
1548  * Input uevent interface - loading event handlers based on
1549  * device bitfields.
1550  */
1551 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1552 				   const char *name, unsigned long *bitmap, int max)
1553 {
1554 	int len;
1555 
1556 	if (add_uevent_var(env, "%s", name))
1557 		return -ENOMEM;
1558 
1559 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1560 				 sizeof(env->buf) - env->buflen,
1561 				 bitmap, max, false);
1562 	if (len >= (sizeof(env->buf) - env->buflen))
1563 		return -ENOMEM;
1564 
1565 	env->buflen += len;
1566 	return 0;
1567 }
1568 
1569 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1570 					 struct input_dev *dev)
1571 {
1572 	int len;
1573 
1574 	if (add_uevent_var(env, "MODALIAS="))
1575 		return -ENOMEM;
1576 
1577 	len = input_print_modalias(&env->buf[env->buflen - 1],
1578 				   sizeof(env->buf) - env->buflen,
1579 				   dev, 0);
1580 	if (len >= (sizeof(env->buf) - env->buflen))
1581 		return -ENOMEM;
1582 
1583 	env->buflen += len;
1584 	return 0;
1585 }
1586 
1587 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1588 	do {								\
1589 		int err = add_uevent_var(env, fmt, val);		\
1590 		if (err)						\
1591 			return err;					\
1592 	} while (0)
1593 
1594 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1595 	do {								\
1596 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1597 		if (err)						\
1598 			return err;					\
1599 	} while (0)
1600 
1601 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1602 	do {								\
1603 		int err = input_add_uevent_modalias_var(env, dev);	\
1604 		if (err)						\
1605 			return err;					\
1606 	} while (0)
1607 
1608 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1609 {
1610 	struct input_dev *dev = to_input_dev(device);
1611 
1612 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1613 				dev->id.bustype, dev->id.vendor,
1614 				dev->id.product, dev->id.version);
1615 	if (dev->name)
1616 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1617 	if (dev->phys)
1618 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1619 	if (dev->uniq)
1620 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1621 
1622 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1623 
1624 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1625 	if (test_bit(EV_KEY, dev->evbit))
1626 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1627 	if (test_bit(EV_REL, dev->evbit))
1628 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1629 	if (test_bit(EV_ABS, dev->evbit))
1630 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1631 	if (test_bit(EV_MSC, dev->evbit))
1632 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1633 	if (test_bit(EV_LED, dev->evbit))
1634 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1635 	if (test_bit(EV_SND, dev->evbit))
1636 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1637 	if (test_bit(EV_FF, dev->evbit))
1638 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1639 	if (test_bit(EV_SW, dev->evbit))
1640 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1641 
1642 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1643 
1644 	return 0;
1645 }
1646 
1647 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1648 	do {								\
1649 		int i;							\
1650 		bool active;						\
1651 									\
1652 		if (!test_bit(EV_##type, dev->evbit))			\
1653 			break;						\
1654 									\
1655 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1656 			active = test_bit(i, dev->bits);		\
1657 			if (!active && !on)				\
1658 				continue;				\
1659 									\
1660 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1661 		}							\
1662 	} while (0)
1663 
1664 static void input_dev_toggle(struct input_dev *dev, bool activate)
1665 {
1666 	if (!dev->event)
1667 		return;
1668 
1669 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1670 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1671 
1672 	if (activate && test_bit(EV_REP, dev->evbit)) {
1673 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1674 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1675 	}
1676 }
1677 
1678 /**
1679  * input_reset_device() - reset/restore the state of input device
1680  * @dev: input device whose state needs to be reset
1681  *
1682  * This function tries to reset the state of an opened input device and
1683  * bring internal state and state if the hardware in sync with each other.
1684  * We mark all keys as released, restore LED state, repeat rate, etc.
1685  */
1686 void input_reset_device(struct input_dev *dev)
1687 {
1688 	unsigned long flags;
1689 
1690 	mutex_lock(&dev->mutex);
1691 	spin_lock_irqsave(&dev->event_lock, flags);
1692 
1693 	input_dev_toggle(dev, true);
1694 	input_dev_release_keys(dev);
1695 
1696 	spin_unlock_irqrestore(&dev->event_lock, flags);
1697 	mutex_unlock(&dev->mutex);
1698 }
1699 EXPORT_SYMBOL(input_reset_device);
1700 
1701 #ifdef CONFIG_PM_SLEEP
1702 static int input_dev_suspend(struct device *dev)
1703 {
1704 	struct input_dev *input_dev = to_input_dev(dev);
1705 
1706 	spin_lock_irq(&input_dev->event_lock);
1707 
1708 	/*
1709 	 * Keys that are pressed now are unlikely to be
1710 	 * still pressed when we resume.
1711 	 */
1712 	input_dev_release_keys(input_dev);
1713 
1714 	/* Turn off LEDs and sounds, if any are active. */
1715 	input_dev_toggle(input_dev, false);
1716 
1717 	spin_unlock_irq(&input_dev->event_lock);
1718 
1719 	return 0;
1720 }
1721 
1722 static int input_dev_resume(struct device *dev)
1723 {
1724 	struct input_dev *input_dev = to_input_dev(dev);
1725 
1726 	spin_lock_irq(&input_dev->event_lock);
1727 
1728 	/* Restore state of LEDs and sounds, if any were active. */
1729 	input_dev_toggle(input_dev, true);
1730 
1731 	spin_unlock_irq(&input_dev->event_lock);
1732 
1733 	return 0;
1734 }
1735 
1736 static int input_dev_freeze(struct device *dev)
1737 {
1738 	struct input_dev *input_dev = to_input_dev(dev);
1739 
1740 	spin_lock_irq(&input_dev->event_lock);
1741 
1742 	/*
1743 	 * Keys that are pressed now are unlikely to be
1744 	 * still pressed when we resume.
1745 	 */
1746 	input_dev_release_keys(input_dev);
1747 
1748 	spin_unlock_irq(&input_dev->event_lock);
1749 
1750 	return 0;
1751 }
1752 
1753 static int input_dev_poweroff(struct device *dev)
1754 {
1755 	struct input_dev *input_dev = to_input_dev(dev);
1756 
1757 	spin_lock_irq(&input_dev->event_lock);
1758 
1759 	/* Turn off LEDs and sounds, if any are active. */
1760 	input_dev_toggle(input_dev, false);
1761 
1762 	spin_unlock_irq(&input_dev->event_lock);
1763 
1764 	return 0;
1765 }
1766 
1767 static const struct dev_pm_ops input_dev_pm_ops = {
1768 	.suspend	= input_dev_suspend,
1769 	.resume		= input_dev_resume,
1770 	.freeze		= input_dev_freeze,
1771 	.poweroff	= input_dev_poweroff,
1772 	.restore	= input_dev_resume,
1773 };
1774 #endif /* CONFIG_PM */
1775 
1776 static const struct device_type input_dev_type = {
1777 	.groups		= input_dev_attr_groups,
1778 	.release	= input_dev_release,
1779 	.uevent		= input_dev_uevent,
1780 #ifdef CONFIG_PM_SLEEP
1781 	.pm		= &input_dev_pm_ops,
1782 #endif
1783 };
1784 
1785 static char *input_devnode(struct device *dev, umode_t *mode)
1786 {
1787 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1788 }
1789 
1790 struct class input_class = {
1791 	.name		= "input",
1792 	.devnode	= input_devnode,
1793 };
1794 EXPORT_SYMBOL_GPL(input_class);
1795 
1796 /**
1797  * input_allocate_device - allocate memory for new input device
1798  *
1799  * Returns prepared struct input_dev or %NULL.
1800  *
1801  * NOTE: Use input_free_device() to free devices that have not been
1802  * registered; input_unregister_device() should be used for already
1803  * registered devices.
1804  */
1805 struct input_dev *input_allocate_device(void)
1806 {
1807 	static atomic_t input_no = ATOMIC_INIT(-1);
1808 	struct input_dev *dev;
1809 
1810 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1811 	if (dev) {
1812 		dev->dev.type = &input_dev_type;
1813 		dev->dev.class = &input_class;
1814 		device_initialize(&dev->dev);
1815 		mutex_init(&dev->mutex);
1816 		spin_lock_init(&dev->event_lock);
1817 		timer_setup(&dev->timer, NULL, 0);
1818 		INIT_LIST_HEAD(&dev->h_list);
1819 		INIT_LIST_HEAD(&dev->node);
1820 
1821 		dev_set_name(&dev->dev, "input%lu",
1822 			     (unsigned long)atomic_inc_return(&input_no));
1823 
1824 		__module_get(THIS_MODULE);
1825 	}
1826 
1827 	return dev;
1828 }
1829 EXPORT_SYMBOL(input_allocate_device);
1830 
1831 struct input_devres {
1832 	struct input_dev *input;
1833 };
1834 
1835 static int devm_input_device_match(struct device *dev, void *res, void *data)
1836 {
1837 	struct input_devres *devres = res;
1838 
1839 	return devres->input == data;
1840 }
1841 
1842 static void devm_input_device_release(struct device *dev, void *res)
1843 {
1844 	struct input_devres *devres = res;
1845 	struct input_dev *input = devres->input;
1846 
1847 	dev_dbg(dev, "%s: dropping reference to %s\n",
1848 		__func__, dev_name(&input->dev));
1849 	input_put_device(input);
1850 }
1851 
1852 /**
1853  * devm_input_allocate_device - allocate managed input device
1854  * @dev: device owning the input device being created
1855  *
1856  * Returns prepared struct input_dev or %NULL.
1857  *
1858  * Managed input devices do not need to be explicitly unregistered or
1859  * freed as it will be done automatically when owner device unbinds from
1860  * its driver (or binding fails). Once managed input device is allocated,
1861  * it is ready to be set up and registered in the same fashion as regular
1862  * input device. There are no special devm_input_device_[un]register()
1863  * variants, regular ones work with both managed and unmanaged devices,
1864  * should you need them. In most cases however, managed input device need
1865  * not be explicitly unregistered or freed.
1866  *
1867  * NOTE: the owner device is set up as parent of input device and users
1868  * should not override it.
1869  */
1870 struct input_dev *devm_input_allocate_device(struct device *dev)
1871 {
1872 	struct input_dev *input;
1873 	struct input_devres *devres;
1874 
1875 	devres = devres_alloc(devm_input_device_release,
1876 			      sizeof(*devres), GFP_KERNEL);
1877 	if (!devres)
1878 		return NULL;
1879 
1880 	input = input_allocate_device();
1881 	if (!input) {
1882 		devres_free(devres);
1883 		return NULL;
1884 	}
1885 
1886 	input->dev.parent = dev;
1887 	input->devres_managed = true;
1888 
1889 	devres->input = input;
1890 	devres_add(dev, devres);
1891 
1892 	return input;
1893 }
1894 EXPORT_SYMBOL(devm_input_allocate_device);
1895 
1896 /**
1897  * input_free_device - free memory occupied by input_dev structure
1898  * @dev: input device to free
1899  *
1900  * This function should only be used if input_register_device()
1901  * was not called yet or if it failed. Once device was registered
1902  * use input_unregister_device() and memory will be freed once last
1903  * reference to the device is dropped.
1904  *
1905  * Device should be allocated by input_allocate_device().
1906  *
1907  * NOTE: If there are references to the input device then memory
1908  * will not be freed until last reference is dropped.
1909  */
1910 void input_free_device(struct input_dev *dev)
1911 {
1912 	if (dev) {
1913 		if (dev->devres_managed)
1914 			WARN_ON(devres_destroy(dev->dev.parent,
1915 						devm_input_device_release,
1916 						devm_input_device_match,
1917 						dev));
1918 		input_put_device(dev);
1919 	}
1920 }
1921 EXPORT_SYMBOL(input_free_device);
1922 
1923 /**
1924  * input_set_timestamp - set timestamp for input events
1925  * @dev: input device to set timestamp for
1926  * @timestamp: the time at which the event has occurred
1927  *   in CLOCK_MONOTONIC
1928  *
1929  * This function is intended to provide to the input system a more
1930  * accurate time of when an event actually occurred. The driver should
1931  * call this function as soon as a timestamp is acquired ensuring
1932  * clock conversions in input_set_timestamp are done correctly.
1933  *
1934  * The system entering suspend state between timestamp acquisition and
1935  * calling input_set_timestamp can result in inaccurate conversions.
1936  */
1937 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1938 {
1939 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
1940 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1941 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1942 							   TK_OFFS_BOOT);
1943 }
1944 EXPORT_SYMBOL(input_set_timestamp);
1945 
1946 /**
1947  * input_get_timestamp - get timestamp for input events
1948  * @dev: input device to get timestamp from
1949  *
1950  * A valid timestamp is a timestamp of non-zero value.
1951  */
1952 ktime_t *input_get_timestamp(struct input_dev *dev)
1953 {
1954 	const ktime_t invalid_timestamp = ktime_set(0, 0);
1955 
1956 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1957 		input_set_timestamp(dev, ktime_get());
1958 
1959 	return dev->timestamp;
1960 }
1961 EXPORT_SYMBOL(input_get_timestamp);
1962 
1963 /**
1964  * input_set_capability - mark device as capable of a certain event
1965  * @dev: device that is capable of emitting or accepting event
1966  * @type: type of the event (EV_KEY, EV_REL, etc...)
1967  * @code: event code
1968  *
1969  * In addition to setting up corresponding bit in appropriate capability
1970  * bitmap the function also adjusts dev->evbit.
1971  */
1972 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1973 {
1974 	switch (type) {
1975 	case EV_KEY:
1976 		__set_bit(code, dev->keybit);
1977 		break;
1978 
1979 	case EV_REL:
1980 		__set_bit(code, dev->relbit);
1981 		break;
1982 
1983 	case EV_ABS:
1984 		input_alloc_absinfo(dev);
1985 		if (!dev->absinfo)
1986 			return;
1987 
1988 		__set_bit(code, dev->absbit);
1989 		break;
1990 
1991 	case EV_MSC:
1992 		__set_bit(code, dev->mscbit);
1993 		break;
1994 
1995 	case EV_SW:
1996 		__set_bit(code, dev->swbit);
1997 		break;
1998 
1999 	case EV_LED:
2000 		__set_bit(code, dev->ledbit);
2001 		break;
2002 
2003 	case EV_SND:
2004 		__set_bit(code, dev->sndbit);
2005 		break;
2006 
2007 	case EV_FF:
2008 		__set_bit(code, dev->ffbit);
2009 		break;
2010 
2011 	case EV_PWR:
2012 		/* do nothing */
2013 		break;
2014 
2015 	default:
2016 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2017 		dump_stack();
2018 		return;
2019 	}
2020 
2021 	__set_bit(type, dev->evbit);
2022 }
2023 EXPORT_SYMBOL(input_set_capability);
2024 
2025 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2026 {
2027 	int mt_slots;
2028 	int i;
2029 	unsigned int events;
2030 
2031 	if (dev->mt) {
2032 		mt_slots = dev->mt->num_slots;
2033 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2034 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2035 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2036 		mt_slots = clamp(mt_slots, 2, 32);
2037 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2038 		mt_slots = 2;
2039 	} else {
2040 		mt_slots = 0;
2041 	}
2042 
2043 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2044 
2045 	if (test_bit(EV_ABS, dev->evbit))
2046 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2047 			events += input_is_mt_axis(i) ? mt_slots : 1;
2048 
2049 	if (test_bit(EV_REL, dev->evbit))
2050 		events += bitmap_weight(dev->relbit, REL_CNT);
2051 
2052 	/* Make room for KEY and MSC events */
2053 	events += 7;
2054 
2055 	return events;
2056 }
2057 
2058 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2059 	do {								\
2060 		if (!test_bit(EV_##type, dev->evbit))			\
2061 			memset(dev->bits##bit, 0,			\
2062 				sizeof(dev->bits##bit));		\
2063 	} while (0)
2064 
2065 static void input_cleanse_bitmasks(struct input_dev *dev)
2066 {
2067 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2068 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2069 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2070 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2071 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2072 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2073 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2074 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2075 }
2076 
2077 static void __input_unregister_device(struct input_dev *dev)
2078 {
2079 	struct input_handle *handle, *next;
2080 
2081 	input_disconnect_device(dev);
2082 
2083 	mutex_lock(&input_mutex);
2084 
2085 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2086 		handle->handler->disconnect(handle);
2087 	WARN_ON(!list_empty(&dev->h_list));
2088 
2089 	del_timer_sync(&dev->timer);
2090 	list_del_init(&dev->node);
2091 
2092 	input_wakeup_procfs_readers();
2093 
2094 	mutex_unlock(&input_mutex);
2095 
2096 	device_del(&dev->dev);
2097 }
2098 
2099 static void devm_input_device_unregister(struct device *dev, void *res)
2100 {
2101 	struct input_devres *devres = res;
2102 	struct input_dev *input = devres->input;
2103 
2104 	dev_dbg(dev, "%s: unregistering device %s\n",
2105 		__func__, dev_name(&input->dev));
2106 	__input_unregister_device(input);
2107 }
2108 
2109 /**
2110  * input_enable_softrepeat - enable software autorepeat
2111  * @dev: input device
2112  * @delay: repeat delay
2113  * @period: repeat period
2114  *
2115  * Enable software autorepeat on the input device.
2116  */
2117 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2118 {
2119 	dev->timer.function = input_repeat_key;
2120 	dev->rep[REP_DELAY] = delay;
2121 	dev->rep[REP_PERIOD] = period;
2122 }
2123 EXPORT_SYMBOL(input_enable_softrepeat);
2124 
2125 /**
2126  * input_register_device - register device with input core
2127  * @dev: device to be registered
2128  *
2129  * This function registers device with input core. The device must be
2130  * allocated with input_allocate_device() and all it's capabilities
2131  * set up before registering.
2132  * If function fails the device must be freed with input_free_device().
2133  * Once device has been successfully registered it can be unregistered
2134  * with input_unregister_device(); input_free_device() should not be
2135  * called in this case.
2136  *
2137  * Note that this function is also used to register managed input devices
2138  * (ones allocated with devm_input_allocate_device()). Such managed input
2139  * devices need not be explicitly unregistered or freed, their tear down
2140  * is controlled by the devres infrastructure. It is also worth noting
2141  * that tear down of managed input devices is internally a 2-step process:
2142  * registered managed input device is first unregistered, but stays in
2143  * memory and can still handle input_event() calls (although events will
2144  * not be delivered anywhere). The freeing of managed input device will
2145  * happen later, when devres stack is unwound to the point where device
2146  * allocation was made.
2147  */
2148 int input_register_device(struct input_dev *dev)
2149 {
2150 	struct input_devres *devres = NULL;
2151 	struct input_handler *handler;
2152 	unsigned int packet_size;
2153 	const char *path;
2154 	int error;
2155 
2156 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2157 		dev_err(&dev->dev,
2158 			"Absolute device without dev->absinfo, refusing to register\n");
2159 		return -EINVAL;
2160 	}
2161 
2162 	if (dev->devres_managed) {
2163 		devres = devres_alloc(devm_input_device_unregister,
2164 				      sizeof(*devres), GFP_KERNEL);
2165 		if (!devres)
2166 			return -ENOMEM;
2167 
2168 		devres->input = dev;
2169 	}
2170 
2171 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2172 	__set_bit(EV_SYN, dev->evbit);
2173 
2174 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2175 	__clear_bit(KEY_RESERVED, dev->keybit);
2176 
2177 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2178 	input_cleanse_bitmasks(dev);
2179 
2180 	packet_size = input_estimate_events_per_packet(dev);
2181 	if (dev->hint_events_per_packet < packet_size)
2182 		dev->hint_events_per_packet = packet_size;
2183 
2184 	dev->max_vals = dev->hint_events_per_packet + 2;
2185 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2186 	if (!dev->vals) {
2187 		error = -ENOMEM;
2188 		goto err_devres_free;
2189 	}
2190 
2191 	/*
2192 	 * If delay and period are pre-set by the driver, then autorepeating
2193 	 * is handled by the driver itself and we don't do it in input.c.
2194 	 */
2195 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2196 		input_enable_softrepeat(dev, 250, 33);
2197 
2198 	if (!dev->getkeycode)
2199 		dev->getkeycode = input_default_getkeycode;
2200 
2201 	if (!dev->setkeycode)
2202 		dev->setkeycode = input_default_setkeycode;
2203 
2204 	if (dev->poller)
2205 		input_dev_poller_finalize(dev->poller);
2206 
2207 	error = device_add(&dev->dev);
2208 	if (error)
2209 		goto err_free_vals;
2210 
2211 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2212 	pr_info("%s as %s\n",
2213 		dev->name ? dev->name : "Unspecified device",
2214 		path ? path : "N/A");
2215 	kfree(path);
2216 
2217 	error = mutex_lock_interruptible(&input_mutex);
2218 	if (error)
2219 		goto err_device_del;
2220 
2221 	list_add_tail(&dev->node, &input_dev_list);
2222 
2223 	list_for_each_entry(handler, &input_handler_list, node)
2224 		input_attach_handler(dev, handler);
2225 
2226 	input_wakeup_procfs_readers();
2227 
2228 	mutex_unlock(&input_mutex);
2229 
2230 	if (dev->devres_managed) {
2231 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2232 			__func__, dev_name(&dev->dev));
2233 		devres_add(dev->dev.parent, devres);
2234 	}
2235 	return 0;
2236 
2237 err_device_del:
2238 	device_del(&dev->dev);
2239 err_free_vals:
2240 	kfree(dev->vals);
2241 	dev->vals = NULL;
2242 err_devres_free:
2243 	devres_free(devres);
2244 	return error;
2245 }
2246 EXPORT_SYMBOL(input_register_device);
2247 
2248 /**
2249  * input_unregister_device - unregister previously registered device
2250  * @dev: device to be unregistered
2251  *
2252  * This function unregisters an input device. Once device is unregistered
2253  * the caller should not try to access it as it may get freed at any moment.
2254  */
2255 void input_unregister_device(struct input_dev *dev)
2256 {
2257 	if (dev->devres_managed) {
2258 		WARN_ON(devres_destroy(dev->dev.parent,
2259 					devm_input_device_unregister,
2260 					devm_input_device_match,
2261 					dev));
2262 		__input_unregister_device(dev);
2263 		/*
2264 		 * We do not do input_put_device() here because it will be done
2265 		 * when 2nd devres fires up.
2266 		 */
2267 	} else {
2268 		__input_unregister_device(dev);
2269 		input_put_device(dev);
2270 	}
2271 }
2272 EXPORT_SYMBOL(input_unregister_device);
2273 
2274 /**
2275  * input_register_handler - register a new input handler
2276  * @handler: handler to be registered
2277  *
2278  * This function registers a new input handler (interface) for input
2279  * devices in the system and attaches it to all input devices that
2280  * are compatible with the handler.
2281  */
2282 int input_register_handler(struct input_handler *handler)
2283 {
2284 	struct input_dev *dev;
2285 	int error;
2286 
2287 	error = mutex_lock_interruptible(&input_mutex);
2288 	if (error)
2289 		return error;
2290 
2291 	INIT_LIST_HEAD(&handler->h_list);
2292 
2293 	list_add_tail(&handler->node, &input_handler_list);
2294 
2295 	list_for_each_entry(dev, &input_dev_list, node)
2296 		input_attach_handler(dev, handler);
2297 
2298 	input_wakeup_procfs_readers();
2299 
2300 	mutex_unlock(&input_mutex);
2301 	return 0;
2302 }
2303 EXPORT_SYMBOL(input_register_handler);
2304 
2305 /**
2306  * input_unregister_handler - unregisters an input handler
2307  * @handler: handler to be unregistered
2308  *
2309  * This function disconnects a handler from its input devices and
2310  * removes it from lists of known handlers.
2311  */
2312 void input_unregister_handler(struct input_handler *handler)
2313 {
2314 	struct input_handle *handle, *next;
2315 
2316 	mutex_lock(&input_mutex);
2317 
2318 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2319 		handler->disconnect(handle);
2320 	WARN_ON(!list_empty(&handler->h_list));
2321 
2322 	list_del_init(&handler->node);
2323 
2324 	input_wakeup_procfs_readers();
2325 
2326 	mutex_unlock(&input_mutex);
2327 }
2328 EXPORT_SYMBOL(input_unregister_handler);
2329 
2330 /**
2331  * input_handler_for_each_handle - handle iterator
2332  * @handler: input handler to iterate
2333  * @data: data for the callback
2334  * @fn: function to be called for each handle
2335  *
2336  * Iterate over @bus's list of devices, and call @fn for each, passing
2337  * it @data and stop when @fn returns a non-zero value. The function is
2338  * using RCU to traverse the list and therefore may be using in atomic
2339  * contexts. The @fn callback is invoked from RCU critical section and
2340  * thus must not sleep.
2341  */
2342 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2343 				  int (*fn)(struct input_handle *, void *))
2344 {
2345 	struct input_handle *handle;
2346 	int retval = 0;
2347 
2348 	rcu_read_lock();
2349 
2350 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2351 		retval = fn(handle, data);
2352 		if (retval)
2353 			break;
2354 	}
2355 
2356 	rcu_read_unlock();
2357 
2358 	return retval;
2359 }
2360 EXPORT_SYMBOL(input_handler_for_each_handle);
2361 
2362 /**
2363  * input_register_handle - register a new input handle
2364  * @handle: handle to register
2365  *
2366  * This function puts a new input handle onto device's
2367  * and handler's lists so that events can flow through
2368  * it once it is opened using input_open_device().
2369  *
2370  * This function is supposed to be called from handler's
2371  * connect() method.
2372  */
2373 int input_register_handle(struct input_handle *handle)
2374 {
2375 	struct input_handler *handler = handle->handler;
2376 	struct input_dev *dev = handle->dev;
2377 	int error;
2378 
2379 	/*
2380 	 * We take dev->mutex here to prevent race with
2381 	 * input_release_device().
2382 	 */
2383 	error = mutex_lock_interruptible(&dev->mutex);
2384 	if (error)
2385 		return error;
2386 
2387 	/*
2388 	 * Filters go to the head of the list, normal handlers
2389 	 * to the tail.
2390 	 */
2391 	if (handler->filter)
2392 		list_add_rcu(&handle->d_node, &dev->h_list);
2393 	else
2394 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2395 
2396 	mutex_unlock(&dev->mutex);
2397 
2398 	/*
2399 	 * Since we are supposed to be called from ->connect()
2400 	 * which is mutually exclusive with ->disconnect()
2401 	 * we can't be racing with input_unregister_handle()
2402 	 * and so separate lock is not needed here.
2403 	 */
2404 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2405 
2406 	if (handler->start)
2407 		handler->start(handle);
2408 
2409 	return 0;
2410 }
2411 EXPORT_SYMBOL(input_register_handle);
2412 
2413 /**
2414  * input_unregister_handle - unregister an input handle
2415  * @handle: handle to unregister
2416  *
2417  * This function removes input handle from device's
2418  * and handler's lists.
2419  *
2420  * This function is supposed to be called from handler's
2421  * disconnect() method.
2422  */
2423 void input_unregister_handle(struct input_handle *handle)
2424 {
2425 	struct input_dev *dev = handle->dev;
2426 
2427 	list_del_rcu(&handle->h_node);
2428 
2429 	/*
2430 	 * Take dev->mutex to prevent race with input_release_device().
2431 	 */
2432 	mutex_lock(&dev->mutex);
2433 	list_del_rcu(&handle->d_node);
2434 	mutex_unlock(&dev->mutex);
2435 
2436 	synchronize_rcu();
2437 }
2438 EXPORT_SYMBOL(input_unregister_handle);
2439 
2440 /**
2441  * input_get_new_minor - allocates a new input minor number
2442  * @legacy_base: beginning or the legacy range to be searched
2443  * @legacy_num: size of legacy range
2444  * @allow_dynamic: whether we can also take ID from the dynamic range
2445  *
2446  * This function allocates a new device minor for from input major namespace.
2447  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2448  * parameters and whether ID can be allocated from dynamic range if there are
2449  * no free IDs in legacy range.
2450  */
2451 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2452 			bool allow_dynamic)
2453 {
2454 	/*
2455 	 * This function should be called from input handler's ->connect()
2456 	 * methods, which are serialized with input_mutex, so no additional
2457 	 * locking is needed here.
2458 	 */
2459 	if (legacy_base >= 0) {
2460 		int minor = ida_simple_get(&input_ida,
2461 					   legacy_base,
2462 					   legacy_base + legacy_num,
2463 					   GFP_KERNEL);
2464 		if (minor >= 0 || !allow_dynamic)
2465 			return minor;
2466 	}
2467 
2468 	return ida_simple_get(&input_ida,
2469 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2470 			      GFP_KERNEL);
2471 }
2472 EXPORT_SYMBOL(input_get_new_minor);
2473 
2474 /**
2475  * input_free_minor - release previously allocated minor
2476  * @minor: minor to be released
2477  *
2478  * This function releases previously allocated input minor so that it can be
2479  * reused later.
2480  */
2481 void input_free_minor(unsigned int minor)
2482 {
2483 	ida_simple_remove(&input_ida, minor);
2484 }
2485 EXPORT_SYMBOL(input_free_minor);
2486 
2487 static int __init input_init(void)
2488 {
2489 	int err;
2490 
2491 	err = class_register(&input_class);
2492 	if (err) {
2493 		pr_err("unable to register input_dev class\n");
2494 		return err;
2495 	}
2496 
2497 	err = input_proc_init();
2498 	if (err)
2499 		goto fail1;
2500 
2501 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2502 				     INPUT_MAX_CHAR_DEVICES, "input");
2503 	if (err) {
2504 		pr_err("unable to register char major %d", INPUT_MAJOR);
2505 		goto fail2;
2506 	}
2507 
2508 	return 0;
2509 
2510  fail2:	input_proc_exit();
2511  fail1:	class_unregister(&input_class);
2512 	return err;
2513 }
2514 
2515 static void __exit input_exit(void)
2516 {
2517 	input_proc_exit();
2518 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2519 				 INPUT_MAX_CHAR_DEVICES);
2520 	class_unregister(&input_class);
2521 }
2522 
2523 subsys_initcall(input_init);
2524 module_exit(input_exit);
2525