1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * The input core 4 * 5 * Copyright (c) 1999-2002 Vojtech Pavlik 6 */ 7 8 9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/idr.h> 14 #include <linux/input/mt.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/major.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/pm.h> 23 #include <linux/poll.h> 24 #include <linux/device.h> 25 #include <linux/kstrtox.h> 26 #include <linux/mutex.h> 27 #include <linux/rcupdate.h> 28 #include "input-compat.h" 29 #include "input-core-private.h" 30 #include "input-poller.h" 31 32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 33 MODULE_DESCRIPTION("Input core"); 34 MODULE_LICENSE("GPL"); 35 36 #define INPUT_MAX_CHAR_DEVICES 1024 37 #define INPUT_FIRST_DYNAMIC_DEV 256 38 static DEFINE_IDA(input_ida); 39 40 static LIST_HEAD(input_dev_list); 41 static LIST_HEAD(input_handler_list); 42 43 /* 44 * input_mutex protects access to both input_dev_list and input_handler_list. 45 * This also causes input_[un]register_device and input_[un]register_handler 46 * be mutually exclusive which simplifies locking in drivers implementing 47 * input handlers. 48 */ 49 static DEFINE_MUTEX(input_mutex); 50 51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 52 53 static const unsigned int input_max_code[EV_CNT] = { 54 [EV_KEY] = KEY_MAX, 55 [EV_REL] = REL_MAX, 56 [EV_ABS] = ABS_MAX, 57 [EV_MSC] = MSC_MAX, 58 [EV_SW] = SW_MAX, 59 [EV_LED] = LED_MAX, 60 [EV_SND] = SND_MAX, 61 [EV_FF] = FF_MAX, 62 }; 63 64 static inline int is_event_supported(unsigned int code, 65 unsigned long *bm, unsigned int max) 66 { 67 return code <= max && test_bit(code, bm); 68 } 69 70 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 71 { 72 if (fuzz) { 73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 74 return old_val; 75 76 if (value > old_val - fuzz && value < old_val + fuzz) 77 return (old_val * 3 + value) / 4; 78 79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 80 return (old_val + value) / 2; 81 } 82 83 return value; 84 } 85 86 static void input_start_autorepeat(struct input_dev *dev, int code) 87 { 88 if (test_bit(EV_REP, dev->evbit) && 89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 90 dev->timer.function) { 91 dev->repeat_key = code; 92 mod_timer(&dev->timer, 93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 94 } 95 } 96 97 static void input_stop_autorepeat(struct input_dev *dev) 98 { 99 del_timer(&dev->timer); 100 } 101 102 /* 103 * Pass values first through all filters and then, if event has not been 104 * filtered out, through all open handles. This order is achieved by placing 105 * filters at the head of the list of handles attached to the device, and 106 * placing regular handles at the tail of the list. 107 * 108 * This function is called with dev->event_lock held and interrupts disabled. 109 */ 110 static void input_pass_values(struct input_dev *dev, 111 struct input_value *vals, unsigned int count) 112 { 113 struct input_handle *handle; 114 struct input_value *v; 115 116 lockdep_assert_held(&dev->event_lock); 117 118 rcu_read_lock(); 119 120 handle = rcu_dereference(dev->grab); 121 if (handle) { 122 count = handle->handler->events(handle, vals, count); 123 } else { 124 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 125 if (handle->open) { 126 count = handle->handler->events(handle, vals, 127 count); 128 if (!count) 129 break; 130 } 131 } 132 133 rcu_read_unlock(); 134 135 /* trigger auto repeat for key events */ 136 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { 137 for (v = vals; v != vals + count; v++) { 138 if (v->type == EV_KEY && v->value != 2) { 139 if (v->value) 140 input_start_autorepeat(dev, v->code); 141 else 142 input_stop_autorepeat(dev); 143 } 144 } 145 } 146 } 147 148 #define INPUT_IGNORE_EVENT 0 149 #define INPUT_PASS_TO_HANDLERS 1 150 #define INPUT_PASS_TO_DEVICE 2 151 #define INPUT_SLOT 4 152 #define INPUT_FLUSH 8 153 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 154 155 static int input_handle_abs_event(struct input_dev *dev, 156 unsigned int code, int *pval) 157 { 158 struct input_mt *mt = dev->mt; 159 bool is_new_slot = false; 160 bool is_mt_event; 161 int *pold; 162 163 if (code == ABS_MT_SLOT) { 164 /* 165 * "Stage" the event; we'll flush it later, when we 166 * get actual touch data. 167 */ 168 if (mt && *pval >= 0 && *pval < mt->num_slots) 169 mt->slot = *pval; 170 171 return INPUT_IGNORE_EVENT; 172 } 173 174 is_mt_event = input_is_mt_value(code); 175 176 if (!is_mt_event) { 177 pold = &dev->absinfo[code].value; 178 } else if (mt) { 179 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 180 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value; 181 } else { 182 /* 183 * Bypass filtering for multi-touch events when 184 * not employing slots. 185 */ 186 pold = NULL; 187 } 188 189 if (pold) { 190 *pval = input_defuzz_abs_event(*pval, *pold, 191 dev->absinfo[code].fuzz); 192 if (*pold == *pval) 193 return INPUT_IGNORE_EVENT; 194 195 *pold = *pval; 196 } 197 198 /* Flush pending "slot" event */ 199 if (is_new_slot) { 200 dev->absinfo[ABS_MT_SLOT].value = mt->slot; 201 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 202 } 203 204 return INPUT_PASS_TO_HANDLERS; 205 } 206 207 static int input_get_disposition(struct input_dev *dev, 208 unsigned int type, unsigned int code, int *pval) 209 { 210 int disposition = INPUT_IGNORE_EVENT; 211 int value = *pval; 212 213 /* filter-out events from inhibited devices */ 214 if (dev->inhibited) 215 return INPUT_IGNORE_EVENT; 216 217 switch (type) { 218 219 case EV_SYN: 220 switch (code) { 221 case SYN_CONFIG: 222 disposition = INPUT_PASS_TO_ALL; 223 break; 224 225 case SYN_REPORT: 226 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 227 break; 228 case SYN_MT_REPORT: 229 disposition = INPUT_PASS_TO_HANDLERS; 230 break; 231 } 232 break; 233 234 case EV_KEY: 235 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 236 237 /* auto-repeat bypasses state updates */ 238 if (value == 2) { 239 disposition = INPUT_PASS_TO_HANDLERS; 240 break; 241 } 242 243 if (!!test_bit(code, dev->key) != !!value) { 244 245 __change_bit(code, dev->key); 246 disposition = INPUT_PASS_TO_HANDLERS; 247 } 248 } 249 break; 250 251 case EV_SW: 252 if (is_event_supported(code, dev->swbit, SW_MAX) && 253 !!test_bit(code, dev->sw) != !!value) { 254 255 __change_bit(code, dev->sw); 256 disposition = INPUT_PASS_TO_HANDLERS; 257 } 258 break; 259 260 case EV_ABS: 261 if (is_event_supported(code, dev->absbit, ABS_MAX)) 262 disposition = input_handle_abs_event(dev, code, &value); 263 264 break; 265 266 case EV_REL: 267 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 268 disposition = INPUT_PASS_TO_HANDLERS; 269 270 break; 271 272 case EV_MSC: 273 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 274 disposition = INPUT_PASS_TO_ALL; 275 276 break; 277 278 case EV_LED: 279 if (is_event_supported(code, dev->ledbit, LED_MAX) && 280 !!test_bit(code, dev->led) != !!value) { 281 282 __change_bit(code, dev->led); 283 disposition = INPUT_PASS_TO_ALL; 284 } 285 break; 286 287 case EV_SND: 288 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 289 290 if (!!test_bit(code, dev->snd) != !!value) 291 __change_bit(code, dev->snd); 292 disposition = INPUT_PASS_TO_ALL; 293 } 294 break; 295 296 case EV_REP: 297 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 298 dev->rep[code] = value; 299 disposition = INPUT_PASS_TO_ALL; 300 } 301 break; 302 303 case EV_FF: 304 if (value >= 0) 305 disposition = INPUT_PASS_TO_ALL; 306 break; 307 308 case EV_PWR: 309 disposition = INPUT_PASS_TO_ALL; 310 break; 311 } 312 313 *pval = value; 314 return disposition; 315 } 316 317 static void input_event_dispose(struct input_dev *dev, int disposition, 318 unsigned int type, unsigned int code, int value) 319 { 320 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 321 dev->event(dev, type, code, value); 322 323 if (disposition & INPUT_PASS_TO_HANDLERS) { 324 struct input_value *v; 325 326 if (disposition & INPUT_SLOT) { 327 v = &dev->vals[dev->num_vals++]; 328 v->type = EV_ABS; 329 v->code = ABS_MT_SLOT; 330 v->value = dev->mt->slot; 331 } 332 333 v = &dev->vals[dev->num_vals++]; 334 v->type = type; 335 v->code = code; 336 v->value = value; 337 } 338 339 if (disposition & INPUT_FLUSH) { 340 if (dev->num_vals >= 2) 341 input_pass_values(dev, dev->vals, dev->num_vals); 342 dev->num_vals = 0; 343 /* 344 * Reset the timestamp on flush so we won't end up 345 * with a stale one. Note we only need to reset the 346 * monolithic one as we use its presence when deciding 347 * whether to generate a synthetic timestamp. 348 */ 349 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0); 350 } else if (dev->num_vals >= dev->max_vals - 2) { 351 dev->vals[dev->num_vals++] = input_value_sync; 352 input_pass_values(dev, dev->vals, dev->num_vals); 353 dev->num_vals = 0; 354 } 355 } 356 357 void input_handle_event(struct input_dev *dev, 358 unsigned int type, unsigned int code, int value) 359 { 360 int disposition; 361 362 lockdep_assert_held(&dev->event_lock); 363 364 disposition = input_get_disposition(dev, type, code, &value); 365 if (disposition != INPUT_IGNORE_EVENT) { 366 if (type != EV_SYN) 367 add_input_randomness(type, code, value); 368 369 input_event_dispose(dev, disposition, type, code, value); 370 } 371 } 372 373 /** 374 * input_event() - report new input event 375 * @dev: device that generated the event 376 * @type: type of the event 377 * @code: event code 378 * @value: value of the event 379 * 380 * This function should be used by drivers implementing various input 381 * devices to report input events. See also input_inject_event(). 382 * 383 * NOTE: input_event() may be safely used right after input device was 384 * allocated with input_allocate_device(), even before it is registered 385 * with input_register_device(), but the event will not reach any of the 386 * input handlers. Such early invocation of input_event() may be used 387 * to 'seed' initial state of a switch or initial position of absolute 388 * axis, etc. 389 */ 390 void input_event(struct input_dev *dev, 391 unsigned int type, unsigned int code, int value) 392 { 393 unsigned long flags; 394 395 if (is_event_supported(type, dev->evbit, EV_MAX)) { 396 397 spin_lock_irqsave(&dev->event_lock, flags); 398 input_handle_event(dev, type, code, value); 399 spin_unlock_irqrestore(&dev->event_lock, flags); 400 } 401 } 402 EXPORT_SYMBOL(input_event); 403 404 /** 405 * input_inject_event() - send input event from input handler 406 * @handle: input handle to send event through 407 * @type: type of the event 408 * @code: event code 409 * @value: value of the event 410 * 411 * Similar to input_event() but will ignore event if device is 412 * "grabbed" and handle injecting event is not the one that owns 413 * the device. 414 */ 415 void input_inject_event(struct input_handle *handle, 416 unsigned int type, unsigned int code, int value) 417 { 418 struct input_dev *dev = handle->dev; 419 struct input_handle *grab; 420 unsigned long flags; 421 422 if (is_event_supported(type, dev->evbit, EV_MAX)) { 423 spin_lock_irqsave(&dev->event_lock, flags); 424 425 rcu_read_lock(); 426 grab = rcu_dereference(dev->grab); 427 if (!grab || grab == handle) 428 input_handle_event(dev, type, code, value); 429 rcu_read_unlock(); 430 431 spin_unlock_irqrestore(&dev->event_lock, flags); 432 } 433 } 434 EXPORT_SYMBOL(input_inject_event); 435 436 /** 437 * input_alloc_absinfo - allocates array of input_absinfo structs 438 * @dev: the input device emitting absolute events 439 * 440 * If the absinfo struct the caller asked for is already allocated, this 441 * functions will not do anything. 442 */ 443 void input_alloc_absinfo(struct input_dev *dev) 444 { 445 if (dev->absinfo) 446 return; 447 448 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); 449 if (!dev->absinfo) { 450 dev_err(dev->dev.parent ?: &dev->dev, 451 "%s: unable to allocate memory\n", __func__); 452 /* 453 * We will handle this allocation failure in 454 * input_register_device() when we refuse to register input 455 * device with ABS bits but without absinfo. 456 */ 457 } 458 } 459 EXPORT_SYMBOL(input_alloc_absinfo); 460 461 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 462 int min, int max, int fuzz, int flat) 463 { 464 struct input_absinfo *absinfo; 465 466 __set_bit(EV_ABS, dev->evbit); 467 __set_bit(axis, dev->absbit); 468 469 input_alloc_absinfo(dev); 470 if (!dev->absinfo) 471 return; 472 473 absinfo = &dev->absinfo[axis]; 474 absinfo->minimum = min; 475 absinfo->maximum = max; 476 absinfo->fuzz = fuzz; 477 absinfo->flat = flat; 478 } 479 EXPORT_SYMBOL(input_set_abs_params); 480 481 /** 482 * input_copy_abs - Copy absinfo from one input_dev to another 483 * @dst: Destination input device to copy the abs settings to 484 * @dst_axis: ABS_* value selecting the destination axis 485 * @src: Source input device to copy the abs settings from 486 * @src_axis: ABS_* value selecting the source axis 487 * 488 * Set absinfo for the selected destination axis by copying it from 489 * the specified source input device's source axis. 490 * This is useful to e.g. setup a pen/stylus input-device for combined 491 * touchscreen/pen hardware where the pen uses the same coordinates as 492 * the touchscreen. 493 */ 494 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis, 495 const struct input_dev *src, unsigned int src_axis) 496 { 497 /* src must have EV_ABS and src_axis set */ 498 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) && 499 test_bit(src_axis, src->absbit)))) 500 return; 501 502 /* 503 * input_alloc_absinfo() may have failed for the source. Our caller is 504 * expected to catch this when registering the input devices, which may 505 * happen after the input_copy_abs() call. 506 */ 507 if (!src->absinfo) 508 return; 509 510 input_set_capability(dst, EV_ABS, dst_axis); 511 if (!dst->absinfo) 512 return; 513 514 dst->absinfo[dst_axis] = src->absinfo[src_axis]; 515 } 516 EXPORT_SYMBOL(input_copy_abs); 517 518 /** 519 * input_grab_device - grabs device for exclusive use 520 * @handle: input handle that wants to own the device 521 * 522 * When a device is grabbed by an input handle all events generated by 523 * the device are delivered only to this handle. Also events injected 524 * by other input handles are ignored while device is grabbed. 525 */ 526 int input_grab_device(struct input_handle *handle) 527 { 528 struct input_dev *dev = handle->dev; 529 int retval; 530 531 retval = mutex_lock_interruptible(&dev->mutex); 532 if (retval) 533 return retval; 534 535 if (dev->grab) { 536 retval = -EBUSY; 537 goto out; 538 } 539 540 rcu_assign_pointer(dev->grab, handle); 541 542 out: 543 mutex_unlock(&dev->mutex); 544 return retval; 545 } 546 EXPORT_SYMBOL(input_grab_device); 547 548 static void __input_release_device(struct input_handle *handle) 549 { 550 struct input_dev *dev = handle->dev; 551 struct input_handle *grabber; 552 553 grabber = rcu_dereference_protected(dev->grab, 554 lockdep_is_held(&dev->mutex)); 555 if (grabber == handle) { 556 rcu_assign_pointer(dev->grab, NULL); 557 /* Make sure input_pass_values() notices that grab is gone */ 558 synchronize_rcu(); 559 560 list_for_each_entry(handle, &dev->h_list, d_node) 561 if (handle->open && handle->handler->start) 562 handle->handler->start(handle); 563 } 564 } 565 566 /** 567 * input_release_device - release previously grabbed device 568 * @handle: input handle that owns the device 569 * 570 * Releases previously grabbed device so that other input handles can 571 * start receiving input events. Upon release all handlers attached 572 * to the device have their start() method called so they have a change 573 * to synchronize device state with the rest of the system. 574 */ 575 void input_release_device(struct input_handle *handle) 576 { 577 struct input_dev *dev = handle->dev; 578 579 mutex_lock(&dev->mutex); 580 __input_release_device(handle); 581 mutex_unlock(&dev->mutex); 582 } 583 EXPORT_SYMBOL(input_release_device); 584 585 /** 586 * input_open_device - open input device 587 * @handle: handle through which device is being accessed 588 * 589 * This function should be called by input handlers when they 590 * want to start receive events from given input device. 591 */ 592 int input_open_device(struct input_handle *handle) 593 { 594 struct input_dev *dev = handle->dev; 595 int retval; 596 597 retval = mutex_lock_interruptible(&dev->mutex); 598 if (retval) 599 return retval; 600 601 if (dev->going_away) { 602 retval = -ENODEV; 603 goto out; 604 } 605 606 handle->open++; 607 608 if (dev->users++ || dev->inhibited) { 609 /* 610 * Device is already opened and/or inhibited, 611 * so we can exit immediately and report success. 612 */ 613 goto out; 614 } 615 616 if (dev->open) { 617 retval = dev->open(dev); 618 if (retval) { 619 dev->users--; 620 handle->open--; 621 /* 622 * Make sure we are not delivering any more events 623 * through this handle 624 */ 625 synchronize_rcu(); 626 goto out; 627 } 628 } 629 630 if (dev->poller) 631 input_dev_poller_start(dev->poller); 632 633 out: 634 mutex_unlock(&dev->mutex); 635 return retval; 636 } 637 EXPORT_SYMBOL(input_open_device); 638 639 int input_flush_device(struct input_handle *handle, struct file *file) 640 { 641 struct input_dev *dev = handle->dev; 642 int retval; 643 644 retval = mutex_lock_interruptible(&dev->mutex); 645 if (retval) 646 return retval; 647 648 if (dev->flush) 649 retval = dev->flush(dev, file); 650 651 mutex_unlock(&dev->mutex); 652 return retval; 653 } 654 EXPORT_SYMBOL(input_flush_device); 655 656 /** 657 * input_close_device - close input device 658 * @handle: handle through which device is being accessed 659 * 660 * This function should be called by input handlers when they 661 * want to stop receive events from given input device. 662 */ 663 void input_close_device(struct input_handle *handle) 664 { 665 struct input_dev *dev = handle->dev; 666 667 mutex_lock(&dev->mutex); 668 669 __input_release_device(handle); 670 671 if (!--dev->users && !dev->inhibited) { 672 if (dev->poller) 673 input_dev_poller_stop(dev->poller); 674 if (dev->close) 675 dev->close(dev); 676 } 677 678 if (!--handle->open) { 679 /* 680 * synchronize_rcu() makes sure that input_pass_values() 681 * completed and that no more input events are delivered 682 * through this handle 683 */ 684 synchronize_rcu(); 685 } 686 687 mutex_unlock(&dev->mutex); 688 } 689 EXPORT_SYMBOL(input_close_device); 690 691 /* 692 * Simulate keyup events for all keys that are marked as pressed. 693 * The function must be called with dev->event_lock held. 694 */ 695 static bool input_dev_release_keys(struct input_dev *dev) 696 { 697 bool need_sync = false; 698 int code; 699 700 lockdep_assert_held(&dev->event_lock); 701 702 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 703 for_each_set_bit(code, dev->key, KEY_CNT) { 704 input_handle_event(dev, EV_KEY, code, 0); 705 need_sync = true; 706 } 707 } 708 709 return need_sync; 710 } 711 712 /* 713 * Prepare device for unregistering 714 */ 715 static void input_disconnect_device(struct input_dev *dev) 716 { 717 struct input_handle *handle; 718 719 /* 720 * Mark device as going away. Note that we take dev->mutex here 721 * not to protect access to dev->going_away but rather to ensure 722 * that there are no threads in the middle of input_open_device() 723 */ 724 mutex_lock(&dev->mutex); 725 dev->going_away = true; 726 mutex_unlock(&dev->mutex); 727 728 spin_lock_irq(&dev->event_lock); 729 730 /* 731 * Simulate keyup events for all pressed keys so that handlers 732 * are not left with "stuck" keys. The driver may continue 733 * generate events even after we done here but they will not 734 * reach any handlers. 735 */ 736 if (input_dev_release_keys(dev)) 737 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 738 739 list_for_each_entry(handle, &dev->h_list, d_node) 740 handle->open = 0; 741 742 spin_unlock_irq(&dev->event_lock); 743 } 744 745 /** 746 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 747 * @ke: keymap entry containing scancode to be converted. 748 * @scancode: pointer to the location where converted scancode should 749 * be stored. 750 * 751 * This function is used to convert scancode stored in &struct keymap_entry 752 * into scalar form understood by legacy keymap handling methods. These 753 * methods expect scancodes to be represented as 'unsigned int'. 754 */ 755 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 756 unsigned int *scancode) 757 { 758 switch (ke->len) { 759 case 1: 760 *scancode = *((u8 *)ke->scancode); 761 break; 762 763 case 2: 764 *scancode = *((u16 *)ke->scancode); 765 break; 766 767 case 4: 768 *scancode = *((u32 *)ke->scancode); 769 break; 770 771 default: 772 return -EINVAL; 773 } 774 775 return 0; 776 } 777 EXPORT_SYMBOL(input_scancode_to_scalar); 778 779 /* 780 * Those routines handle the default case where no [gs]etkeycode() is 781 * defined. In this case, an array indexed by the scancode is used. 782 */ 783 784 static unsigned int input_fetch_keycode(struct input_dev *dev, 785 unsigned int index) 786 { 787 switch (dev->keycodesize) { 788 case 1: 789 return ((u8 *)dev->keycode)[index]; 790 791 case 2: 792 return ((u16 *)dev->keycode)[index]; 793 794 default: 795 return ((u32 *)dev->keycode)[index]; 796 } 797 } 798 799 static int input_default_getkeycode(struct input_dev *dev, 800 struct input_keymap_entry *ke) 801 { 802 unsigned int index; 803 int error; 804 805 if (!dev->keycodesize) 806 return -EINVAL; 807 808 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 809 index = ke->index; 810 else { 811 error = input_scancode_to_scalar(ke, &index); 812 if (error) 813 return error; 814 } 815 816 if (index >= dev->keycodemax) 817 return -EINVAL; 818 819 ke->keycode = input_fetch_keycode(dev, index); 820 ke->index = index; 821 ke->len = sizeof(index); 822 memcpy(ke->scancode, &index, sizeof(index)); 823 824 return 0; 825 } 826 827 static int input_default_setkeycode(struct input_dev *dev, 828 const struct input_keymap_entry *ke, 829 unsigned int *old_keycode) 830 { 831 unsigned int index; 832 int error; 833 int i; 834 835 if (!dev->keycodesize) 836 return -EINVAL; 837 838 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 839 index = ke->index; 840 } else { 841 error = input_scancode_to_scalar(ke, &index); 842 if (error) 843 return error; 844 } 845 846 if (index >= dev->keycodemax) 847 return -EINVAL; 848 849 if (dev->keycodesize < sizeof(ke->keycode) && 850 (ke->keycode >> (dev->keycodesize * 8))) 851 return -EINVAL; 852 853 switch (dev->keycodesize) { 854 case 1: { 855 u8 *k = (u8 *)dev->keycode; 856 *old_keycode = k[index]; 857 k[index] = ke->keycode; 858 break; 859 } 860 case 2: { 861 u16 *k = (u16 *)dev->keycode; 862 *old_keycode = k[index]; 863 k[index] = ke->keycode; 864 break; 865 } 866 default: { 867 u32 *k = (u32 *)dev->keycode; 868 *old_keycode = k[index]; 869 k[index] = ke->keycode; 870 break; 871 } 872 } 873 874 if (*old_keycode <= KEY_MAX) { 875 __clear_bit(*old_keycode, dev->keybit); 876 for (i = 0; i < dev->keycodemax; i++) { 877 if (input_fetch_keycode(dev, i) == *old_keycode) { 878 __set_bit(*old_keycode, dev->keybit); 879 /* Setting the bit twice is useless, so break */ 880 break; 881 } 882 } 883 } 884 885 __set_bit(ke->keycode, dev->keybit); 886 return 0; 887 } 888 889 /** 890 * input_get_keycode - retrieve keycode currently mapped to a given scancode 891 * @dev: input device which keymap is being queried 892 * @ke: keymap entry 893 * 894 * This function should be called by anyone interested in retrieving current 895 * keymap. Presently evdev handlers use it. 896 */ 897 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 898 { 899 unsigned long flags; 900 int retval; 901 902 spin_lock_irqsave(&dev->event_lock, flags); 903 retval = dev->getkeycode(dev, ke); 904 spin_unlock_irqrestore(&dev->event_lock, flags); 905 906 return retval; 907 } 908 EXPORT_SYMBOL(input_get_keycode); 909 910 /** 911 * input_set_keycode - attribute a keycode to a given scancode 912 * @dev: input device which keymap is being updated 913 * @ke: new keymap entry 914 * 915 * This function should be called by anyone needing to update current 916 * keymap. Presently keyboard and evdev handlers use it. 917 */ 918 int input_set_keycode(struct input_dev *dev, 919 const struct input_keymap_entry *ke) 920 { 921 unsigned long flags; 922 unsigned int old_keycode; 923 int retval; 924 925 if (ke->keycode > KEY_MAX) 926 return -EINVAL; 927 928 spin_lock_irqsave(&dev->event_lock, flags); 929 930 retval = dev->setkeycode(dev, ke, &old_keycode); 931 if (retval) 932 goto out; 933 934 /* Make sure KEY_RESERVED did not get enabled. */ 935 __clear_bit(KEY_RESERVED, dev->keybit); 936 937 /* 938 * Simulate keyup event if keycode is not present 939 * in the keymap anymore 940 */ 941 if (old_keycode > KEY_MAX) { 942 dev_warn(dev->dev.parent ?: &dev->dev, 943 "%s: got too big old keycode %#x\n", 944 __func__, old_keycode); 945 } else if (test_bit(EV_KEY, dev->evbit) && 946 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 947 __test_and_clear_bit(old_keycode, dev->key)) { 948 /* 949 * We have to use input_event_dispose() here directly instead 950 * of input_handle_event() because the key we want to release 951 * here is considered no longer supported by the device and 952 * input_handle_event() will ignore it. 953 */ 954 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS, 955 EV_KEY, old_keycode, 0); 956 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH, 957 EV_SYN, SYN_REPORT, 1); 958 } 959 960 out: 961 spin_unlock_irqrestore(&dev->event_lock, flags); 962 963 return retval; 964 } 965 EXPORT_SYMBOL(input_set_keycode); 966 967 bool input_match_device_id(const struct input_dev *dev, 968 const struct input_device_id *id) 969 { 970 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 971 if (id->bustype != dev->id.bustype) 972 return false; 973 974 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 975 if (id->vendor != dev->id.vendor) 976 return false; 977 978 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 979 if (id->product != dev->id.product) 980 return false; 981 982 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 983 if (id->version != dev->id.version) 984 return false; 985 986 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || 987 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || 988 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || 989 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || 990 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || 991 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || 992 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || 993 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || 994 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || 995 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { 996 return false; 997 } 998 999 return true; 1000 } 1001 EXPORT_SYMBOL(input_match_device_id); 1002 1003 static const struct input_device_id *input_match_device(struct input_handler *handler, 1004 struct input_dev *dev) 1005 { 1006 const struct input_device_id *id; 1007 1008 for (id = handler->id_table; id->flags || id->driver_info; id++) { 1009 if (input_match_device_id(dev, id) && 1010 (!handler->match || handler->match(handler, dev))) { 1011 return id; 1012 } 1013 } 1014 1015 return NULL; 1016 } 1017 1018 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 1019 { 1020 const struct input_device_id *id; 1021 int error; 1022 1023 id = input_match_device(handler, dev); 1024 if (!id) 1025 return -ENODEV; 1026 1027 error = handler->connect(handler, dev, id); 1028 if (error && error != -ENODEV) 1029 pr_err("failed to attach handler %s to device %s, error: %d\n", 1030 handler->name, kobject_name(&dev->dev.kobj), error); 1031 1032 return error; 1033 } 1034 1035 #ifdef CONFIG_COMPAT 1036 1037 static int input_bits_to_string(char *buf, int buf_size, 1038 unsigned long bits, bool skip_empty) 1039 { 1040 int len = 0; 1041 1042 if (in_compat_syscall()) { 1043 u32 dword = bits >> 32; 1044 if (dword || !skip_empty) 1045 len += snprintf(buf, buf_size, "%x ", dword); 1046 1047 dword = bits & 0xffffffffUL; 1048 if (dword || !skip_empty || len) 1049 len += snprintf(buf + len, max(buf_size - len, 0), 1050 "%x", dword); 1051 } else { 1052 if (bits || !skip_empty) 1053 len += snprintf(buf, buf_size, "%lx", bits); 1054 } 1055 1056 return len; 1057 } 1058 1059 #else /* !CONFIG_COMPAT */ 1060 1061 static int input_bits_to_string(char *buf, int buf_size, 1062 unsigned long bits, bool skip_empty) 1063 { 1064 return bits || !skip_empty ? 1065 snprintf(buf, buf_size, "%lx", bits) : 0; 1066 } 1067 1068 #endif 1069 1070 #ifdef CONFIG_PROC_FS 1071 1072 static struct proc_dir_entry *proc_bus_input_dir; 1073 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1074 static int input_devices_state; 1075 1076 static inline void input_wakeup_procfs_readers(void) 1077 { 1078 input_devices_state++; 1079 wake_up(&input_devices_poll_wait); 1080 } 1081 1082 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) 1083 { 1084 poll_wait(file, &input_devices_poll_wait, wait); 1085 if (file->f_version != input_devices_state) { 1086 file->f_version = input_devices_state; 1087 return EPOLLIN | EPOLLRDNORM; 1088 } 1089 1090 return 0; 1091 } 1092 1093 union input_seq_state { 1094 struct { 1095 unsigned short pos; 1096 bool mutex_acquired; 1097 }; 1098 void *p; 1099 }; 1100 1101 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1102 { 1103 union input_seq_state *state = (union input_seq_state *)&seq->private; 1104 int error; 1105 1106 /* We need to fit into seq->private pointer */ 1107 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1108 1109 error = mutex_lock_interruptible(&input_mutex); 1110 if (error) { 1111 state->mutex_acquired = false; 1112 return ERR_PTR(error); 1113 } 1114 1115 state->mutex_acquired = true; 1116 1117 return seq_list_start(&input_dev_list, *pos); 1118 } 1119 1120 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1121 { 1122 return seq_list_next(v, &input_dev_list, pos); 1123 } 1124 1125 static void input_seq_stop(struct seq_file *seq, void *v) 1126 { 1127 union input_seq_state *state = (union input_seq_state *)&seq->private; 1128 1129 if (state->mutex_acquired) 1130 mutex_unlock(&input_mutex); 1131 } 1132 1133 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1134 unsigned long *bitmap, int max) 1135 { 1136 int i; 1137 bool skip_empty = true; 1138 char buf[18]; 1139 1140 seq_printf(seq, "B: %s=", name); 1141 1142 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1143 if (input_bits_to_string(buf, sizeof(buf), 1144 bitmap[i], skip_empty)) { 1145 skip_empty = false; 1146 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1147 } 1148 } 1149 1150 /* 1151 * If no output was produced print a single 0. 1152 */ 1153 if (skip_empty) 1154 seq_putc(seq, '0'); 1155 1156 seq_putc(seq, '\n'); 1157 } 1158 1159 static int input_devices_seq_show(struct seq_file *seq, void *v) 1160 { 1161 struct input_dev *dev = container_of(v, struct input_dev, node); 1162 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1163 struct input_handle *handle; 1164 1165 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1166 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1167 1168 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1169 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1170 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1171 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1172 seq_puts(seq, "H: Handlers="); 1173 1174 list_for_each_entry(handle, &dev->h_list, d_node) 1175 seq_printf(seq, "%s ", handle->name); 1176 seq_putc(seq, '\n'); 1177 1178 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1179 1180 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1181 if (test_bit(EV_KEY, dev->evbit)) 1182 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1183 if (test_bit(EV_REL, dev->evbit)) 1184 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1185 if (test_bit(EV_ABS, dev->evbit)) 1186 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1187 if (test_bit(EV_MSC, dev->evbit)) 1188 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1189 if (test_bit(EV_LED, dev->evbit)) 1190 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1191 if (test_bit(EV_SND, dev->evbit)) 1192 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1193 if (test_bit(EV_FF, dev->evbit)) 1194 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1195 if (test_bit(EV_SW, dev->evbit)) 1196 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1197 1198 seq_putc(seq, '\n'); 1199 1200 kfree(path); 1201 return 0; 1202 } 1203 1204 static const struct seq_operations input_devices_seq_ops = { 1205 .start = input_devices_seq_start, 1206 .next = input_devices_seq_next, 1207 .stop = input_seq_stop, 1208 .show = input_devices_seq_show, 1209 }; 1210 1211 static int input_proc_devices_open(struct inode *inode, struct file *file) 1212 { 1213 return seq_open(file, &input_devices_seq_ops); 1214 } 1215 1216 static const struct proc_ops input_devices_proc_ops = { 1217 .proc_open = input_proc_devices_open, 1218 .proc_poll = input_proc_devices_poll, 1219 .proc_read = seq_read, 1220 .proc_lseek = seq_lseek, 1221 .proc_release = seq_release, 1222 }; 1223 1224 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1225 { 1226 union input_seq_state *state = (union input_seq_state *)&seq->private; 1227 int error; 1228 1229 /* We need to fit into seq->private pointer */ 1230 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1231 1232 error = mutex_lock_interruptible(&input_mutex); 1233 if (error) { 1234 state->mutex_acquired = false; 1235 return ERR_PTR(error); 1236 } 1237 1238 state->mutex_acquired = true; 1239 state->pos = *pos; 1240 1241 return seq_list_start(&input_handler_list, *pos); 1242 } 1243 1244 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1245 { 1246 union input_seq_state *state = (union input_seq_state *)&seq->private; 1247 1248 state->pos = *pos + 1; 1249 return seq_list_next(v, &input_handler_list, pos); 1250 } 1251 1252 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1253 { 1254 struct input_handler *handler = container_of(v, struct input_handler, node); 1255 union input_seq_state *state = (union input_seq_state *)&seq->private; 1256 1257 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1258 if (handler->filter) 1259 seq_puts(seq, " (filter)"); 1260 if (handler->legacy_minors) 1261 seq_printf(seq, " Minor=%d", handler->minor); 1262 seq_putc(seq, '\n'); 1263 1264 return 0; 1265 } 1266 1267 static const struct seq_operations input_handlers_seq_ops = { 1268 .start = input_handlers_seq_start, 1269 .next = input_handlers_seq_next, 1270 .stop = input_seq_stop, 1271 .show = input_handlers_seq_show, 1272 }; 1273 1274 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1275 { 1276 return seq_open(file, &input_handlers_seq_ops); 1277 } 1278 1279 static const struct proc_ops input_handlers_proc_ops = { 1280 .proc_open = input_proc_handlers_open, 1281 .proc_read = seq_read, 1282 .proc_lseek = seq_lseek, 1283 .proc_release = seq_release, 1284 }; 1285 1286 static int __init input_proc_init(void) 1287 { 1288 struct proc_dir_entry *entry; 1289 1290 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1291 if (!proc_bus_input_dir) 1292 return -ENOMEM; 1293 1294 entry = proc_create("devices", 0, proc_bus_input_dir, 1295 &input_devices_proc_ops); 1296 if (!entry) 1297 goto fail1; 1298 1299 entry = proc_create("handlers", 0, proc_bus_input_dir, 1300 &input_handlers_proc_ops); 1301 if (!entry) 1302 goto fail2; 1303 1304 return 0; 1305 1306 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1307 fail1: remove_proc_entry("bus/input", NULL); 1308 return -ENOMEM; 1309 } 1310 1311 static void input_proc_exit(void) 1312 { 1313 remove_proc_entry("devices", proc_bus_input_dir); 1314 remove_proc_entry("handlers", proc_bus_input_dir); 1315 remove_proc_entry("bus/input", NULL); 1316 } 1317 1318 #else /* !CONFIG_PROC_FS */ 1319 static inline void input_wakeup_procfs_readers(void) { } 1320 static inline int input_proc_init(void) { return 0; } 1321 static inline void input_proc_exit(void) { } 1322 #endif 1323 1324 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1325 static ssize_t input_dev_show_##name(struct device *dev, \ 1326 struct device_attribute *attr, \ 1327 char *buf) \ 1328 { \ 1329 struct input_dev *input_dev = to_input_dev(dev); \ 1330 \ 1331 return sysfs_emit(buf, "%s\n", \ 1332 input_dev->name ? input_dev->name : ""); \ 1333 } \ 1334 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1335 1336 INPUT_DEV_STRING_ATTR_SHOW(name); 1337 INPUT_DEV_STRING_ATTR_SHOW(phys); 1338 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1339 1340 static int input_print_modalias_bits(char *buf, int size, 1341 char name, const unsigned long *bm, 1342 unsigned int min_bit, unsigned int max_bit) 1343 { 1344 int bit = min_bit; 1345 int len = 0; 1346 1347 len += snprintf(buf, max(size, 0), "%c", name); 1348 for_each_set_bit_from(bit, bm, max_bit) 1349 len += snprintf(buf + len, max(size - len, 0), "%X,", bit); 1350 return len; 1351 } 1352 1353 static int input_print_modalias_parts(char *buf, int size, int full_len, 1354 const struct input_dev *id) 1355 { 1356 int len, klen, remainder, space; 1357 1358 len = snprintf(buf, max(size, 0), 1359 "input:b%04Xv%04Xp%04Xe%04X-", 1360 id->id.bustype, id->id.vendor, 1361 id->id.product, id->id.version); 1362 1363 len += input_print_modalias_bits(buf + len, size - len, 1364 'e', id->evbit, 0, EV_MAX); 1365 1366 /* 1367 * Calculate the remaining space in the buffer making sure we 1368 * have place for the terminating 0. 1369 */ 1370 space = max(size - (len + 1), 0); 1371 1372 klen = input_print_modalias_bits(buf + len, size - len, 1373 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1374 len += klen; 1375 1376 /* 1377 * If we have more data than we can fit in the buffer, check 1378 * if we can trim key data to fit in the rest. We will indicate 1379 * that key data is incomplete by adding "+" sign at the end, like 1380 * this: * "k1,2,3,45,+,". 1381 * 1382 * Note that we shortest key info (if present) is "k+," so we 1383 * can only try to trim if key data is longer than that. 1384 */ 1385 if (full_len && size < full_len + 1 && klen > 3) { 1386 remainder = full_len - len; 1387 /* 1388 * We can only trim if we have space for the remainder 1389 * and also for at least "k+," which is 3 more characters. 1390 */ 1391 if (remainder <= space - 3) { 1392 /* 1393 * We are guaranteed to have 'k' in the buffer, so 1394 * we need at least 3 additional bytes for storing 1395 * "+," in addition to the remainder. 1396 */ 1397 for (int i = size - 1 - remainder - 3; i >= 0; i--) { 1398 if (buf[i] == 'k' || buf[i] == ',') { 1399 strcpy(buf + i + 1, "+,"); 1400 len = i + 3; /* Not counting '\0' */ 1401 break; 1402 } 1403 } 1404 } 1405 } 1406 1407 len += input_print_modalias_bits(buf + len, size - len, 1408 'r', id->relbit, 0, REL_MAX); 1409 len += input_print_modalias_bits(buf + len, size - len, 1410 'a', id->absbit, 0, ABS_MAX); 1411 len += input_print_modalias_bits(buf + len, size - len, 1412 'm', id->mscbit, 0, MSC_MAX); 1413 len += input_print_modalias_bits(buf + len, size - len, 1414 'l', id->ledbit, 0, LED_MAX); 1415 len += input_print_modalias_bits(buf + len, size - len, 1416 's', id->sndbit, 0, SND_MAX); 1417 len += input_print_modalias_bits(buf + len, size - len, 1418 'f', id->ffbit, 0, FF_MAX); 1419 len += input_print_modalias_bits(buf + len, size - len, 1420 'w', id->swbit, 0, SW_MAX); 1421 1422 return len; 1423 } 1424 1425 static int input_print_modalias(char *buf, int size, const struct input_dev *id) 1426 { 1427 int full_len; 1428 1429 /* 1430 * Printing is done in 2 passes: first one figures out total length 1431 * needed for the modalias string, second one will try to trim key 1432 * data in case when buffer is too small for the entire modalias. 1433 * If the buffer is too small regardless, it will fill as much as it 1434 * can (without trimming key data) into the buffer and leave it to 1435 * the caller to figure out what to do with the result. 1436 */ 1437 full_len = input_print_modalias_parts(NULL, 0, 0, id); 1438 return input_print_modalias_parts(buf, size, full_len, id); 1439 } 1440 1441 static ssize_t input_dev_show_modalias(struct device *dev, 1442 struct device_attribute *attr, 1443 char *buf) 1444 { 1445 struct input_dev *id = to_input_dev(dev); 1446 ssize_t len; 1447 1448 len = input_print_modalias(buf, PAGE_SIZE, id); 1449 if (len < PAGE_SIZE - 2) 1450 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1451 1452 return min_t(int, len, PAGE_SIZE); 1453 } 1454 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1455 1456 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, 1457 int max, int add_cr); 1458 1459 static ssize_t input_dev_show_properties(struct device *dev, 1460 struct device_attribute *attr, 1461 char *buf) 1462 { 1463 struct input_dev *input_dev = to_input_dev(dev); 1464 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1465 INPUT_PROP_MAX, true); 1466 return min_t(int, len, PAGE_SIZE); 1467 } 1468 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1469 1470 static int input_inhibit_device(struct input_dev *dev); 1471 static int input_uninhibit_device(struct input_dev *dev); 1472 1473 static ssize_t inhibited_show(struct device *dev, 1474 struct device_attribute *attr, 1475 char *buf) 1476 { 1477 struct input_dev *input_dev = to_input_dev(dev); 1478 1479 return sysfs_emit(buf, "%d\n", input_dev->inhibited); 1480 } 1481 1482 static ssize_t inhibited_store(struct device *dev, 1483 struct device_attribute *attr, const char *buf, 1484 size_t len) 1485 { 1486 struct input_dev *input_dev = to_input_dev(dev); 1487 ssize_t rv; 1488 bool inhibited; 1489 1490 if (kstrtobool(buf, &inhibited)) 1491 return -EINVAL; 1492 1493 if (inhibited) 1494 rv = input_inhibit_device(input_dev); 1495 else 1496 rv = input_uninhibit_device(input_dev); 1497 1498 if (rv != 0) 1499 return rv; 1500 1501 return len; 1502 } 1503 1504 static DEVICE_ATTR_RW(inhibited); 1505 1506 static struct attribute *input_dev_attrs[] = { 1507 &dev_attr_name.attr, 1508 &dev_attr_phys.attr, 1509 &dev_attr_uniq.attr, 1510 &dev_attr_modalias.attr, 1511 &dev_attr_properties.attr, 1512 &dev_attr_inhibited.attr, 1513 NULL 1514 }; 1515 1516 static const struct attribute_group input_dev_attr_group = { 1517 .attrs = input_dev_attrs, 1518 }; 1519 1520 #define INPUT_DEV_ID_ATTR(name) \ 1521 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1522 struct device_attribute *attr, \ 1523 char *buf) \ 1524 { \ 1525 struct input_dev *input_dev = to_input_dev(dev); \ 1526 return sysfs_emit(buf, "%04x\n", input_dev->id.name); \ 1527 } \ 1528 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1529 1530 INPUT_DEV_ID_ATTR(bustype); 1531 INPUT_DEV_ID_ATTR(vendor); 1532 INPUT_DEV_ID_ATTR(product); 1533 INPUT_DEV_ID_ATTR(version); 1534 1535 static struct attribute *input_dev_id_attrs[] = { 1536 &dev_attr_bustype.attr, 1537 &dev_attr_vendor.attr, 1538 &dev_attr_product.attr, 1539 &dev_attr_version.attr, 1540 NULL 1541 }; 1542 1543 static const struct attribute_group input_dev_id_attr_group = { 1544 .name = "id", 1545 .attrs = input_dev_id_attrs, 1546 }; 1547 1548 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, 1549 int max, int add_cr) 1550 { 1551 int i; 1552 int len = 0; 1553 bool skip_empty = true; 1554 1555 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1556 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1557 bitmap[i], skip_empty); 1558 if (len) { 1559 skip_empty = false; 1560 if (i > 0) 1561 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1562 } 1563 } 1564 1565 /* 1566 * If no output was produced print a single 0. 1567 */ 1568 if (len == 0) 1569 len = snprintf(buf, buf_size, "%d", 0); 1570 1571 if (add_cr) 1572 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1573 1574 return len; 1575 } 1576 1577 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1578 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1579 struct device_attribute *attr, \ 1580 char *buf) \ 1581 { \ 1582 struct input_dev *input_dev = to_input_dev(dev); \ 1583 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1584 input_dev->bm##bit, ev##_MAX, \ 1585 true); \ 1586 return min_t(int, len, PAGE_SIZE); \ 1587 } \ 1588 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1589 1590 INPUT_DEV_CAP_ATTR(EV, ev); 1591 INPUT_DEV_CAP_ATTR(KEY, key); 1592 INPUT_DEV_CAP_ATTR(REL, rel); 1593 INPUT_DEV_CAP_ATTR(ABS, abs); 1594 INPUT_DEV_CAP_ATTR(MSC, msc); 1595 INPUT_DEV_CAP_ATTR(LED, led); 1596 INPUT_DEV_CAP_ATTR(SND, snd); 1597 INPUT_DEV_CAP_ATTR(FF, ff); 1598 INPUT_DEV_CAP_ATTR(SW, sw); 1599 1600 static struct attribute *input_dev_caps_attrs[] = { 1601 &dev_attr_ev.attr, 1602 &dev_attr_key.attr, 1603 &dev_attr_rel.attr, 1604 &dev_attr_abs.attr, 1605 &dev_attr_msc.attr, 1606 &dev_attr_led.attr, 1607 &dev_attr_snd.attr, 1608 &dev_attr_ff.attr, 1609 &dev_attr_sw.attr, 1610 NULL 1611 }; 1612 1613 static const struct attribute_group input_dev_caps_attr_group = { 1614 .name = "capabilities", 1615 .attrs = input_dev_caps_attrs, 1616 }; 1617 1618 static const struct attribute_group *input_dev_attr_groups[] = { 1619 &input_dev_attr_group, 1620 &input_dev_id_attr_group, 1621 &input_dev_caps_attr_group, 1622 &input_poller_attribute_group, 1623 NULL 1624 }; 1625 1626 static void input_dev_release(struct device *device) 1627 { 1628 struct input_dev *dev = to_input_dev(device); 1629 1630 input_ff_destroy(dev); 1631 input_mt_destroy_slots(dev); 1632 kfree(dev->poller); 1633 kfree(dev->absinfo); 1634 kfree(dev->vals); 1635 kfree(dev); 1636 1637 module_put(THIS_MODULE); 1638 } 1639 1640 /* 1641 * Input uevent interface - loading event handlers based on 1642 * device bitfields. 1643 */ 1644 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1645 const char *name, const unsigned long *bitmap, int max) 1646 { 1647 int len; 1648 1649 if (add_uevent_var(env, "%s", name)) 1650 return -ENOMEM; 1651 1652 len = input_print_bitmap(&env->buf[env->buflen - 1], 1653 sizeof(env->buf) - env->buflen, 1654 bitmap, max, false); 1655 if (len >= (sizeof(env->buf) - env->buflen)) 1656 return -ENOMEM; 1657 1658 env->buflen += len; 1659 return 0; 1660 } 1661 1662 /* 1663 * This is a pretty gross hack. When building uevent data the driver core 1664 * may try adding more environment variables to kobj_uevent_env without 1665 * telling us, so we have no idea how much of the buffer we can use to 1666 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially 1667 * reduce amount of memory we will use for the modalias environment variable. 1668 * 1669 * The potential additions are: 1670 * 1671 * SEQNUM=18446744073709551615 - (%llu - 28 bytes) 1672 * HOME=/ (6 bytes) 1673 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes) 1674 * 1675 * 68 bytes total. Allow extra buffer - 96 bytes 1676 */ 1677 #define UEVENT_ENV_EXTRA_LEN 96 1678 1679 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1680 const struct input_dev *dev) 1681 { 1682 int len; 1683 1684 if (add_uevent_var(env, "MODALIAS=")) 1685 return -ENOMEM; 1686 1687 len = input_print_modalias(&env->buf[env->buflen - 1], 1688 (int)sizeof(env->buf) - env->buflen - 1689 UEVENT_ENV_EXTRA_LEN, 1690 dev); 1691 if (len >= ((int)sizeof(env->buf) - env->buflen - 1692 UEVENT_ENV_EXTRA_LEN)) 1693 return -ENOMEM; 1694 1695 env->buflen += len; 1696 return 0; 1697 } 1698 1699 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1700 do { \ 1701 int err = add_uevent_var(env, fmt, val); \ 1702 if (err) \ 1703 return err; \ 1704 } while (0) 1705 1706 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1707 do { \ 1708 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1709 if (err) \ 1710 return err; \ 1711 } while (0) 1712 1713 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1714 do { \ 1715 int err = input_add_uevent_modalias_var(env, dev); \ 1716 if (err) \ 1717 return err; \ 1718 } while (0) 1719 1720 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env) 1721 { 1722 const struct input_dev *dev = to_input_dev(device); 1723 1724 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1725 dev->id.bustype, dev->id.vendor, 1726 dev->id.product, dev->id.version); 1727 if (dev->name) 1728 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1729 if (dev->phys) 1730 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1731 if (dev->uniq) 1732 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1733 1734 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1735 1736 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1737 if (test_bit(EV_KEY, dev->evbit)) 1738 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1739 if (test_bit(EV_REL, dev->evbit)) 1740 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1741 if (test_bit(EV_ABS, dev->evbit)) 1742 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1743 if (test_bit(EV_MSC, dev->evbit)) 1744 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1745 if (test_bit(EV_LED, dev->evbit)) 1746 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1747 if (test_bit(EV_SND, dev->evbit)) 1748 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1749 if (test_bit(EV_FF, dev->evbit)) 1750 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1751 if (test_bit(EV_SW, dev->evbit)) 1752 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1753 1754 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1755 1756 return 0; 1757 } 1758 1759 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1760 do { \ 1761 int i; \ 1762 bool active; \ 1763 \ 1764 if (!test_bit(EV_##type, dev->evbit)) \ 1765 break; \ 1766 \ 1767 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ 1768 active = test_bit(i, dev->bits); \ 1769 if (!active && !on) \ 1770 continue; \ 1771 \ 1772 dev->event(dev, EV_##type, i, on ? active : 0); \ 1773 } \ 1774 } while (0) 1775 1776 static void input_dev_toggle(struct input_dev *dev, bool activate) 1777 { 1778 if (!dev->event) 1779 return; 1780 1781 INPUT_DO_TOGGLE(dev, LED, led, activate); 1782 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1783 1784 if (activate && test_bit(EV_REP, dev->evbit)) { 1785 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1786 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1787 } 1788 } 1789 1790 /** 1791 * input_reset_device() - reset/restore the state of input device 1792 * @dev: input device whose state needs to be reset 1793 * 1794 * This function tries to reset the state of an opened input device and 1795 * bring internal state and state if the hardware in sync with each other. 1796 * We mark all keys as released, restore LED state, repeat rate, etc. 1797 */ 1798 void input_reset_device(struct input_dev *dev) 1799 { 1800 unsigned long flags; 1801 1802 mutex_lock(&dev->mutex); 1803 spin_lock_irqsave(&dev->event_lock, flags); 1804 1805 input_dev_toggle(dev, true); 1806 if (input_dev_release_keys(dev)) 1807 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 1808 1809 spin_unlock_irqrestore(&dev->event_lock, flags); 1810 mutex_unlock(&dev->mutex); 1811 } 1812 EXPORT_SYMBOL(input_reset_device); 1813 1814 static int input_inhibit_device(struct input_dev *dev) 1815 { 1816 mutex_lock(&dev->mutex); 1817 1818 if (dev->inhibited) 1819 goto out; 1820 1821 if (dev->users) { 1822 if (dev->close) 1823 dev->close(dev); 1824 if (dev->poller) 1825 input_dev_poller_stop(dev->poller); 1826 } 1827 1828 spin_lock_irq(&dev->event_lock); 1829 input_mt_release_slots(dev); 1830 input_dev_release_keys(dev); 1831 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 1832 input_dev_toggle(dev, false); 1833 spin_unlock_irq(&dev->event_lock); 1834 1835 dev->inhibited = true; 1836 1837 out: 1838 mutex_unlock(&dev->mutex); 1839 return 0; 1840 } 1841 1842 static int input_uninhibit_device(struct input_dev *dev) 1843 { 1844 int ret = 0; 1845 1846 mutex_lock(&dev->mutex); 1847 1848 if (!dev->inhibited) 1849 goto out; 1850 1851 if (dev->users) { 1852 if (dev->open) { 1853 ret = dev->open(dev); 1854 if (ret) 1855 goto out; 1856 } 1857 if (dev->poller) 1858 input_dev_poller_start(dev->poller); 1859 } 1860 1861 dev->inhibited = false; 1862 spin_lock_irq(&dev->event_lock); 1863 input_dev_toggle(dev, true); 1864 spin_unlock_irq(&dev->event_lock); 1865 1866 out: 1867 mutex_unlock(&dev->mutex); 1868 return ret; 1869 } 1870 1871 static int input_dev_suspend(struct device *dev) 1872 { 1873 struct input_dev *input_dev = to_input_dev(dev); 1874 1875 spin_lock_irq(&input_dev->event_lock); 1876 1877 /* 1878 * Keys that are pressed now are unlikely to be 1879 * still pressed when we resume. 1880 */ 1881 if (input_dev_release_keys(input_dev)) 1882 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); 1883 1884 /* Turn off LEDs and sounds, if any are active. */ 1885 input_dev_toggle(input_dev, false); 1886 1887 spin_unlock_irq(&input_dev->event_lock); 1888 1889 return 0; 1890 } 1891 1892 static int input_dev_resume(struct device *dev) 1893 { 1894 struct input_dev *input_dev = to_input_dev(dev); 1895 1896 spin_lock_irq(&input_dev->event_lock); 1897 1898 /* Restore state of LEDs and sounds, if any were active. */ 1899 input_dev_toggle(input_dev, true); 1900 1901 spin_unlock_irq(&input_dev->event_lock); 1902 1903 return 0; 1904 } 1905 1906 static int input_dev_freeze(struct device *dev) 1907 { 1908 struct input_dev *input_dev = to_input_dev(dev); 1909 1910 spin_lock_irq(&input_dev->event_lock); 1911 1912 /* 1913 * Keys that are pressed now are unlikely to be 1914 * still pressed when we resume. 1915 */ 1916 if (input_dev_release_keys(input_dev)) 1917 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); 1918 1919 spin_unlock_irq(&input_dev->event_lock); 1920 1921 return 0; 1922 } 1923 1924 static int input_dev_poweroff(struct device *dev) 1925 { 1926 struct input_dev *input_dev = to_input_dev(dev); 1927 1928 spin_lock_irq(&input_dev->event_lock); 1929 1930 /* Turn off LEDs and sounds, if any are active. */ 1931 input_dev_toggle(input_dev, false); 1932 1933 spin_unlock_irq(&input_dev->event_lock); 1934 1935 return 0; 1936 } 1937 1938 static const struct dev_pm_ops input_dev_pm_ops = { 1939 .suspend = input_dev_suspend, 1940 .resume = input_dev_resume, 1941 .freeze = input_dev_freeze, 1942 .poweroff = input_dev_poweroff, 1943 .restore = input_dev_resume, 1944 }; 1945 1946 static const struct device_type input_dev_type = { 1947 .groups = input_dev_attr_groups, 1948 .release = input_dev_release, 1949 .uevent = input_dev_uevent, 1950 .pm = pm_sleep_ptr(&input_dev_pm_ops), 1951 }; 1952 1953 static char *input_devnode(const struct device *dev, umode_t *mode) 1954 { 1955 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1956 } 1957 1958 const struct class input_class = { 1959 .name = "input", 1960 .devnode = input_devnode, 1961 }; 1962 EXPORT_SYMBOL_GPL(input_class); 1963 1964 /** 1965 * input_allocate_device - allocate memory for new input device 1966 * 1967 * Returns prepared struct input_dev or %NULL. 1968 * 1969 * NOTE: Use input_free_device() to free devices that have not been 1970 * registered; input_unregister_device() should be used for already 1971 * registered devices. 1972 */ 1973 struct input_dev *input_allocate_device(void) 1974 { 1975 static atomic_t input_no = ATOMIC_INIT(-1); 1976 struct input_dev *dev; 1977 1978 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1979 if (!dev) 1980 return NULL; 1981 1982 /* 1983 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare, 1984 * see input_estimate_events_per_packet(). We will tune the number 1985 * when we register the device. 1986 */ 1987 dev->max_vals = 10; 1988 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 1989 if (!dev->vals) { 1990 kfree(dev); 1991 return NULL; 1992 } 1993 1994 mutex_init(&dev->mutex); 1995 spin_lock_init(&dev->event_lock); 1996 timer_setup(&dev->timer, NULL, 0); 1997 INIT_LIST_HEAD(&dev->h_list); 1998 INIT_LIST_HEAD(&dev->node); 1999 2000 dev->dev.type = &input_dev_type; 2001 dev->dev.class = &input_class; 2002 device_initialize(&dev->dev); 2003 /* 2004 * From this point on we can no longer simply "kfree(dev)", we need 2005 * to use input_free_device() so that device core properly frees its 2006 * resources associated with the input device. 2007 */ 2008 2009 dev_set_name(&dev->dev, "input%lu", 2010 (unsigned long)atomic_inc_return(&input_no)); 2011 2012 __module_get(THIS_MODULE); 2013 2014 return dev; 2015 } 2016 EXPORT_SYMBOL(input_allocate_device); 2017 2018 struct input_devres { 2019 struct input_dev *input; 2020 }; 2021 2022 static int devm_input_device_match(struct device *dev, void *res, void *data) 2023 { 2024 struct input_devres *devres = res; 2025 2026 return devres->input == data; 2027 } 2028 2029 static void devm_input_device_release(struct device *dev, void *res) 2030 { 2031 struct input_devres *devres = res; 2032 struct input_dev *input = devres->input; 2033 2034 dev_dbg(dev, "%s: dropping reference to %s\n", 2035 __func__, dev_name(&input->dev)); 2036 input_put_device(input); 2037 } 2038 2039 /** 2040 * devm_input_allocate_device - allocate managed input device 2041 * @dev: device owning the input device being created 2042 * 2043 * Returns prepared struct input_dev or %NULL. 2044 * 2045 * Managed input devices do not need to be explicitly unregistered or 2046 * freed as it will be done automatically when owner device unbinds from 2047 * its driver (or binding fails). Once managed input device is allocated, 2048 * it is ready to be set up and registered in the same fashion as regular 2049 * input device. There are no special devm_input_device_[un]register() 2050 * variants, regular ones work with both managed and unmanaged devices, 2051 * should you need them. In most cases however, managed input device need 2052 * not be explicitly unregistered or freed. 2053 * 2054 * NOTE: the owner device is set up as parent of input device and users 2055 * should not override it. 2056 */ 2057 struct input_dev *devm_input_allocate_device(struct device *dev) 2058 { 2059 struct input_dev *input; 2060 struct input_devres *devres; 2061 2062 devres = devres_alloc(devm_input_device_release, 2063 sizeof(*devres), GFP_KERNEL); 2064 if (!devres) 2065 return NULL; 2066 2067 input = input_allocate_device(); 2068 if (!input) { 2069 devres_free(devres); 2070 return NULL; 2071 } 2072 2073 input->dev.parent = dev; 2074 input->devres_managed = true; 2075 2076 devres->input = input; 2077 devres_add(dev, devres); 2078 2079 return input; 2080 } 2081 EXPORT_SYMBOL(devm_input_allocate_device); 2082 2083 /** 2084 * input_free_device - free memory occupied by input_dev structure 2085 * @dev: input device to free 2086 * 2087 * This function should only be used if input_register_device() 2088 * was not called yet or if it failed. Once device was registered 2089 * use input_unregister_device() and memory will be freed once last 2090 * reference to the device is dropped. 2091 * 2092 * Device should be allocated by input_allocate_device(). 2093 * 2094 * NOTE: If there are references to the input device then memory 2095 * will not be freed until last reference is dropped. 2096 */ 2097 void input_free_device(struct input_dev *dev) 2098 { 2099 if (dev) { 2100 if (dev->devres_managed) 2101 WARN_ON(devres_destroy(dev->dev.parent, 2102 devm_input_device_release, 2103 devm_input_device_match, 2104 dev)); 2105 input_put_device(dev); 2106 } 2107 } 2108 EXPORT_SYMBOL(input_free_device); 2109 2110 /** 2111 * input_set_timestamp - set timestamp for input events 2112 * @dev: input device to set timestamp for 2113 * @timestamp: the time at which the event has occurred 2114 * in CLOCK_MONOTONIC 2115 * 2116 * This function is intended to provide to the input system a more 2117 * accurate time of when an event actually occurred. The driver should 2118 * call this function as soon as a timestamp is acquired ensuring 2119 * clock conversions in input_set_timestamp are done correctly. 2120 * 2121 * The system entering suspend state between timestamp acquisition and 2122 * calling input_set_timestamp can result in inaccurate conversions. 2123 */ 2124 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) 2125 { 2126 dev->timestamp[INPUT_CLK_MONO] = timestamp; 2127 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp); 2128 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp, 2129 TK_OFFS_BOOT); 2130 } 2131 EXPORT_SYMBOL(input_set_timestamp); 2132 2133 /** 2134 * input_get_timestamp - get timestamp for input events 2135 * @dev: input device to get timestamp from 2136 * 2137 * A valid timestamp is a timestamp of non-zero value. 2138 */ 2139 ktime_t *input_get_timestamp(struct input_dev *dev) 2140 { 2141 const ktime_t invalid_timestamp = ktime_set(0, 0); 2142 2143 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp)) 2144 input_set_timestamp(dev, ktime_get()); 2145 2146 return dev->timestamp; 2147 } 2148 EXPORT_SYMBOL(input_get_timestamp); 2149 2150 /** 2151 * input_set_capability - mark device as capable of a certain event 2152 * @dev: device that is capable of emitting or accepting event 2153 * @type: type of the event (EV_KEY, EV_REL, etc...) 2154 * @code: event code 2155 * 2156 * In addition to setting up corresponding bit in appropriate capability 2157 * bitmap the function also adjusts dev->evbit. 2158 */ 2159 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 2160 { 2161 if (type < EV_CNT && input_max_code[type] && 2162 code > input_max_code[type]) { 2163 pr_err("%s: invalid code %u for type %u\n", __func__, code, 2164 type); 2165 dump_stack(); 2166 return; 2167 } 2168 2169 switch (type) { 2170 case EV_KEY: 2171 __set_bit(code, dev->keybit); 2172 break; 2173 2174 case EV_REL: 2175 __set_bit(code, dev->relbit); 2176 break; 2177 2178 case EV_ABS: 2179 input_alloc_absinfo(dev); 2180 __set_bit(code, dev->absbit); 2181 break; 2182 2183 case EV_MSC: 2184 __set_bit(code, dev->mscbit); 2185 break; 2186 2187 case EV_SW: 2188 __set_bit(code, dev->swbit); 2189 break; 2190 2191 case EV_LED: 2192 __set_bit(code, dev->ledbit); 2193 break; 2194 2195 case EV_SND: 2196 __set_bit(code, dev->sndbit); 2197 break; 2198 2199 case EV_FF: 2200 __set_bit(code, dev->ffbit); 2201 break; 2202 2203 case EV_PWR: 2204 /* do nothing */ 2205 break; 2206 2207 default: 2208 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); 2209 dump_stack(); 2210 return; 2211 } 2212 2213 __set_bit(type, dev->evbit); 2214 } 2215 EXPORT_SYMBOL(input_set_capability); 2216 2217 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 2218 { 2219 int mt_slots; 2220 int i; 2221 unsigned int events; 2222 2223 if (dev->mt) { 2224 mt_slots = dev->mt->num_slots; 2225 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 2226 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 2227 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 2228 mt_slots = clamp(mt_slots, 2, 32); 2229 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 2230 mt_slots = 2; 2231 } else { 2232 mt_slots = 0; 2233 } 2234 2235 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 2236 2237 if (test_bit(EV_ABS, dev->evbit)) 2238 for_each_set_bit(i, dev->absbit, ABS_CNT) 2239 events += input_is_mt_axis(i) ? mt_slots : 1; 2240 2241 if (test_bit(EV_REL, dev->evbit)) 2242 events += bitmap_weight(dev->relbit, REL_CNT); 2243 2244 /* Make room for KEY and MSC events */ 2245 events += 7; 2246 2247 return events; 2248 } 2249 2250 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 2251 do { \ 2252 if (!test_bit(EV_##type, dev->evbit)) \ 2253 memset(dev->bits##bit, 0, \ 2254 sizeof(dev->bits##bit)); \ 2255 } while (0) 2256 2257 static void input_cleanse_bitmasks(struct input_dev *dev) 2258 { 2259 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2260 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2261 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2262 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2263 INPUT_CLEANSE_BITMASK(dev, LED, led); 2264 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2265 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2266 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2267 } 2268 2269 static void __input_unregister_device(struct input_dev *dev) 2270 { 2271 struct input_handle *handle, *next; 2272 2273 input_disconnect_device(dev); 2274 2275 mutex_lock(&input_mutex); 2276 2277 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2278 handle->handler->disconnect(handle); 2279 WARN_ON(!list_empty(&dev->h_list)); 2280 2281 del_timer_sync(&dev->timer); 2282 list_del_init(&dev->node); 2283 2284 input_wakeup_procfs_readers(); 2285 2286 mutex_unlock(&input_mutex); 2287 2288 device_del(&dev->dev); 2289 } 2290 2291 static void devm_input_device_unregister(struct device *dev, void *res) 2292 { 2293 struct input_devres *devres = res; 2294 struct input_dev *input = devres->input; 2295 2296 dev_dbg(dev, "%s: unregistering device %s\n", 2297 __func__, dev_name(&input->dev)); 2298 __input_unregister_device(input); 2299 } 2300 2301 /* 2302 * Generate software autorepeat event. Note that we take 2303 * dev->event_lock here to avoid racing with input_event 2304 * which may cause keys get "stuck". 2305 */ 2306 static void input_repeat_key(struct timer_list *t) 2307 { 2308 struct input_dev *dev = from_timer(dev, t, timer); 2309 unsigned long flags; 2310 2311 spin_lock_irqsave(&dev->event_lock, flags); 2312 2313 if (!dev->inhibited && 2314 test_bit(dev->repeat_key, dev->key) && 2315 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 2316 2317 input_set_timestamp(dev, ktime_get()); 2318 input_handle_event(dev, EV_KEY, dev->repeat_key, 2); 2319 input_handle_event(dev, EV_SYN, SYN_REPORT, 1); 2320 2321 if (dev->rep[REP_PERIOD]) 2322 mod_timer(&dev->timer, jiffies + 2323 msecs_to_jiffies(dev->rep[REP_PERIOD])); 2324 } 2325 2326 spin_unlock_irqrestore(&dev->event_lock, flags); 2327 } 2328 2329 /** 2330 * input_enable_softrepeat - enable software autorepeat 2331 * @dev: input device 2332 * @delay: repeat delay 2333 * @period: repeat period 2334 * 2335 * Enable software autorepeat on the input device. 2336 */ 2337 void input_enable_softrepeat(struct input_dev *dev, int delay, int period) 2338 { 2339 dev->timer.function = input_repeat_key; 2340 dev->rep[REP_DELAY] = delay; 2341 dev->rep[REP_PERIOD] = period; 2342 } 2343 EXPORT_SYMBOL(input_enable_softrepeat); 2344 2345 bool input_device_enabled(struct input_dev *dev) 2346 { 2347 lockdep_assert_held(&dev->mutex); 2348 2349 return !dev->inhibited && dev->users > 0; 2350 } 2351 EXPORT_SYMBOL_GPL(input_device_enabled); 2352 2353 static int input_device_tune_vals(struct input_dev *dev) 2354 { 2355 struct input_value *vals; 2356 unsigned int packet_size; 2357 unsigned int max_vals; 2358 2359 packet_size = input_estimate_events_per_packet(dev); 2360 if (dev->hint_events_per_packet < packet_size) 2361 dev->hint_events_per_packet = packet_size; 2362 2363 max_vals = dev->hint_events_per_packet + 2; 2364 if (dev->max_vals >= max_vals) 2365 return 0; 2366 2367 vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL); 2368 if (!vals) 2369 return -ENOMEM; 2370 2371 spin_lock_irq(&dev->event_lock); 2372 dev->max_vals = max_vals; 2373 swap(dev->vals, vals); 2374 spin_unlock_irq(&dev->event_lock); 2375 2376 /* Because of swap() above, this frees the old vals memory */ 2377 kfree(vals); 2378 2379 return 0; 2380 } 2381 2382 /** 2383 * input_register_device - register device with input core 2384 * @dev: device to be registered 2385 * 2386 * This function registers device with input core. The device must be 2387 * allocated with input_allocate_device() and all it's capabilities 2388 * set up before registering. 2389 * If function fails the device must be freed with input_free_device(). 2390 * Once device has been successfully registered it can be unregistered 2391 * with input_unregister_device(); input_free_device() should not be 2392 * called in this case. 2393 * 2394 * Note that this function is also used to register managed input devices 2395 * (ones allocated with devm_input_allocate_device()). Such managed input 2396 * devices need not be explicitly unregistered or freed, their tear down 2397 * is controlled by the devres infrastructure. It is also worth noting 2398 * that tear down of managed input devices is internally a 2-step process: 2399 * registered managed input device is first unregistered, but stays in 2400 * memory and can still handle input_event() calls (although events will 2401 * not be delivered anywhere). The freeing of managed input device will 2402 * happen later, when devres stack is unwound to the point where device 2403 * allocation was made. 2404 */ 2405 int input_register_device(struct input_dev *dev) 2406 { 2407 struct input_devres *devres = NULL; 2408 struct input_handler *handler; 2409 const char *path; 2410 int error; 2411 2412 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { 2413 dev_err(&dev->dev, 2414 "Absolute device without dev->absinfo, refusing to register\n"); 2415 return -EINVAL; 2416 } 2417 2418 if (dev->devres_managed) { 2419 devres = devres_alloc(devm_input_device_unregister, 2420 sizeof(*devres), GFP_KERNEL); 2421 if (!devres) 2422 return -ENOMEM; 2423 2424 devres->input = dev; 2425 } 2426 2427 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2428 __set_bit(EV_SYN, dev->evbit); 2429 2430 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2431 __clear_bit(KEY_RESERVED, dev->keybit); 2432 2433 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2434 input_cleanse_bitmasks(dev); 2435 2436 error = input_device_tune_vals(dev); 2437 if (error) 2438 goto err_devres_free; 2439 2440 /* 2441 * If delay and period are pre-set by the driver, then autorepeating 2442 * is handled by the driver itself and we don't do it in input.c. 2443 */ 2444 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) 2445 input_enable_softrepeat(dev, 250, 33); 2446 2447 if (!dev->getkeycode) 2448 dev->getkeycode = input_default_getkeycode; 2449 2450 if (!dev->setkeycode) 2451 dev->setkeycode = input_default_setkeycode; 2452 2453 if (dev->poller) 2454 input_dev_poller_finalize(dev->poller); 2455 2456 error = device_add(&dev->dev); 2457 if (error) 2458 goto err_devres_free; 2459 2460 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2461 pr_info("%s as %s\n", 2462 dev->name ? dev->name : "Unspecified device", 2463 path ? path : "N/A"); 2464 kfree(path); 2465 2466 error = mutex_lock_interruptible(&input_mutex); 2467 if (error) 2468 goto err_device_del; 2469 2470 list_add_tail(&dev->node, &input_dev_list); 2471 2472 list_for_each_entry(handler, &input_handler_list, node) 2473 input_attach_handler(dev, handler); 2474 2475 input_wakeup_procfs_readers(); 2476 2477 mutex_unlock(&input_mutex); 2478 2479 if (dev->devres_managed) { 2480 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2481 __func__, dev_name(&dev->dev)); 2482 devres_add(dev->dev.parent, devres); 2483 } 2484 return 0; 2485 2486 err_device_del: 2487 device_del(&dev->dev); 2488 err_devres_free: 2489 devres_free(devres); 2490 return error; 2491 } 2492 EXPORT_SYMBOL(input_register_device); 2493 2494 /** 2495 * input_unregister_device - unregister previously registered device 2496 * @dev: device to be unregistered 2497 * 2498 * This function unregisters an input device. Once device is unregistered 2499 * the caller should not try to access it as it may get freed at any moment. 2500 */ 2501 void input_unregister_device(struct input_dev *dev) 2502 { 2503 if (dev->devres_managed) { 2504 WARN_ON(devres_destroy(dev->dev.parent, 2505 devm_input_device_unregister, 2506 devm_input_device_match, 2507 dev)); 2508 __input_unregister_device(dev); 2509 /* 2510 * We do not do input_put_device() here because it will be done 2511 * when 2nd devres fires up. 2512 */ 2513 } else { 2514 __input_unregister_device(dev); 2515 input_put_device(dev); 2516 } 2517 } 2518 EXPORT_SYMBOL(input_unregister_device); 2519 2520 static int input_handler_check_methods(const struct input_handler *handler) 2521 { 2522 int count = 0; 2523 2524 if (handler->filter) 2525 count++; 2526 if (handler->events) 2527 count++; 2528 if (handler->event) 2529 count++; 2530 2531 if (count > 1) { 2532 pr_err("%s: only one event processing method can be defined (%s)\n", 2533 __func__, handler->name); 2534 return -EINVAL; 2535 } 2536 2537 return 0; 2538 } 2539 2540 /* 2541 * An implementation of input_handler's events() method that simply 2542 * invokes handler->event() method for each event one by one. 2543 */ 2544 static unsigned int input_handler_events_default(struct input_handle *handle, 2545 struct input_value *vals, 2546 unsigned int count) 2547 { 2548 struct input_handler *handler = handle->handler; 2549 struct input_value *v; 2550 2551 for (v = vals; v != vals + count; v++) 2552 handler->event(handle, v->type, v->code, v->value); 2553 2554 return count; 2555 } 2556 2557 /* 2558 * An implementation of input_handler's events() method that invokes 2559 * handler->filter() method for each event one by one and removes events 2560 * that were filtered out from the "vals" array. 2561 */ 2562 static unsigned int input_handler_events_filter(struct input_handle *handle, 2563 struct input_value *vals, 2564 unsigned int count) 2565 { 2566 struct input_handler *handler = handle->handler; 2567 struct input_value *end = vals; 2568 struct input_value *v; 2569 2570 for (v = vals; v != vals + count; v++) { 2571 if (handler->filter(handle, v->type, v->code, v->value)) 2572 continue; 2573 if (end != v) 2574 *end = *v; 2575 end++; 2576 } 2577 2578 return end - vals; 2579 } 2580 2581 /* 2582 * An implementation of input_handler's events() method that does nothing. 2583 */ 2584 static unsigned int input_handler_events_null(struct input_handle *handle, 2585 struct input_value *vals, 2586 unsigned int count) 2587 { 2588 return count; 2589 } 2590 2591 /** 2592 * input_register_handler - register a new input handler 2593 * @handler: handler to be registered 2594 * 2595 * This function registers a new input handler (interface) for input 2596 * devices in the system and attaches it to all input devices that 2597 * are compatible with the handler. 2598 */ 2599 int input_register_handler(struct input_handler *handler) 2600 { 2601 struct input_dev *dev; 2602 int error; 2603 2604 error = input_handler_check_methods(handler); 2605 if (error) 2606 return error; 2607 2608 INIT_LIST_HEAD(&handler->h_list); 2609 2610 if (handler->filter) 2611 handler->events = input_handler_events_filter; 2612 else if (handler->event) 2613 handler->events = input_handler_events_default; 2614 else if (!handler->events) 2615 handler->events = input_handler_events_null; 2616 2617 error = mutex_lock_interruptible(&input_mutex); 2618 if (error) 2619 return error; 2620 2621 list_add_tail(&handler->node, &input_handler_list); 2622 2623 list_for_each_entry(dev, &input_dev_list, node) 2624 input_attach_handler(dev, handler); 2625 2626 input_wakeup_procfs_readers(); 2627 2628 mutex_unlock(&input_mutex); 2629 return 0; 2630 } 2631 EXPORT_SYMBOL(input_register_handler); 2632 2633 /** 2634 * input_unregister_handler - unregisters an input handler 2635 * @handler: handler to be unregistered 2636 * 2637 * This function disconnects a handler from its input devices and 2638 * removes it from lists of known handlers. 2639 */ 2640 void input_unregister_handler(struct input_handler *handler) 2641 { 2642 struct input_handle *handle, *next; 2643 2644 mutex_lock(&input_mutex); 2645 2646 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2647 handler->disconnect(handle); 2648 WARN_ON(!list_empty(&handler->h_list)); 2649 2650 list_del_init(&handler->node); 2651 2652 input_wakeup_procfs_readers(); 2653 2654 mutex_unlock(&input_mutex); 2655 } 2656 EXPORT_SYMBOL(input_unregister_handler); 2657 2658 /** 2659 * input_handler_for_each_handle - handle iterator 2660 * @handler: input handler to iterate 2661 * @data: data for the callback 2662 * @fn: function to be called for each handle 2663 * 2664 * Iterate over @bus's list of devices, and call @fn for each, passing 2665 * it @data and stop when @fn returns a non-zero value. The function is 2666 * using RCU to traverse the list and therefore may be using in atomic 2667 * contexts. The @fn callback is invoked from RCU critical section and 2668 * thus must not sleep. 2669 */ 2670 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2671 int (*fn)(struct input_handle *, void *)) 2672 { 2673 struct input_handle *handle; 2674 int retval = 0; 2675 2676 rcu_read_lock(); 2677 2678 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2679 retval = fn(handle, data); 2680 if (retval) 2681 break; 2682 } 2683 2684 rcu_read_unlock(); 2685 2686 return retval; 2687 } 2688 EXPORT_SYMBOL(input_handler_for_each_handle); 2689 2690 /** 2691 * input_register_handle - register a new input handle 2692 * @handle: handle to register 2693 * 2694 * This function puts a new input handle onto device's 2695 * and handler's lists so that events can flow through 2696 * it once it is opened using input_open_device(). 2697 * 2698 * This function is supposed to be called from handler's 2699 * connect() method. 2700 */ 2701 int input_register_handle(struct input_handle *handle) 2702 { 2703 struct input_handler *handler = handle->handler; 2704 struct input_dev *dev = handle->dev; 2705 int error; 2706 2707 /* 2708 * We take dev->mutex here to prevent race with 2709 * input_release_device(). 2710 */ 2711 error = mutex_lock_interruptible(&dev->mutex); 2712 if (error) 2713 return error; 2714 2715 /* 2716 * Filters go to the head of the list, normal handlers 2717 * to the tail. 2718 */ 2719 if (handler->filter) 2720 list_add_rcu(&handle->d_node, &dev->h_list); 2721 else 2722 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2723 2724 mutex_unlock(&dev->mutex); 2725 2726 /* 2727 * Since we are supposed to be called from ->connect() 2728 * which is mutually exclusive with ->disconnect() 2729 * we can't be racing with input_unregister_handle() 2730 * and so separate lock is not needed here. 2731 */ 2732 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2733 2734 if (handler->start) 2735 handler->start(handle); 2736 2737 return 0; 2738 } 2739 EXPORT_SYMBOL(input_register_handle); 2740 2741 /** 2742 * input_unregister_handle - unregister an input handle 2743 * @handle: handle to unregister 2744 * 2745 * This function removes input handle from device's 2746 * and handler's lists. 2747 * 2748 * This function is supposed to be called from handler's 2749 * disconnect() method. 2750 */ 2751 void input_unregister_handle(struct input_handle *handle) 2752 { 2753 struct input_dev *dev = handle->dev; 2754 2755 list_del_rcu(&handle->h_node); 2756 2757 /* 2758 * Take dev->mutex to prevent race with input_release_device(). 2759 */ 2760 mutex_lock(&dev->mutex); 2761 list_del_rcu(&handle->d_node); 2762 mutex_unlock(&dev->mutex); 2763 2764 synchronize_rcu(); 2765 } 2766 EXPORT_SYMBOL(input_unregister_handle); 2767 2768 /** 2769 * input_get_new_minor - allocates a new input minor number 2770 * @legacy_base: beginning or the legacy range to be searched 2771 * @legacy_num: size of legacy range 2772 * @allow_dynamic: whether we can also take ID from the dynamic range 2773 * 2774 * This function allocates a new device minor for from input major namespace. 2775 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2776 * parameters and whether ID can be allocated from dynamic range if there are 2777 * no free IDs in legacy range. 2778 */ 2779 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2780 bool allow_dynamic) 2781 { 2782 /* 2783 * This function should be called from input handler's ->connect() 2784 * methods, which are serialized with input_mutex, so no additional 2785 * locking is needed here. 2786 */ 2787 if (legacy_base >= 0) { 2788 int minor = ida_alloc_range(&input_ida, legacy_base, 2789 legacy_base + legacy_num - 1, 2790 GFP_KERNEL); 2791 if (minor >= 0 || !allow_dynamic) 2792 return minor; 2793 } 2794 2795 return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV, 2796 INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL); 2797 } 2798 EXPORT_SYMBOL(input_get_new_minor); 2799 2800 /** 2801 * input_free_minor - release previously allocated minor 2802 * @minor: minor to be released 2803 * 2804 * This function releases previously allocated input minor so that it can be 2805 * reused later. 2806 */ 2807 void input_free_minor(unsigned int minor) 2808 { 2809 ida_free(&input_ida, minor); 2810 } 2811 EXPORT_SYMBOL(input_free_minor); 2812 2813 static int __init input_init(void) 2814 { 2815 int err; 2816 2817 err = class_register(&input_class); 2818 if (err) { 2819 pr_err("unable to register input_dev class\n"); 2820 return err; 2821 } 2822 2823 err = input_proc_init(); 2824 if (err) 2825 goto fail1; 2826 2827 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2828 INPUT_MAX_CHAR_DEVICES, "input"); 2829 if (err) { 2830 pr_err("unable to register char major %d", INPUT_MAJOR); 2831 goto fail2; 2832 } 2833 2834 return 0; 2835 2836 fail2: input_proc_exit(); 2837 fail1: class_unregister(&input_class); 2838 return err; 2839 } 2840 2841 static void __exit input_exit(void) 2842 { 2843 input_proc_exit(); 2844 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2845 INPUT_MAX_CHAR_DEVICES); 2846 class_unregister(&input_class); 2847 } 2848 2849 subsys_initcall(input_init); 2850 module_exit(input_exit); 2851