xref: /linux/drivers/input/input.c (revision 0d6ccfe6b319d56da63b7d7cfbcecd92780a680d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static const unsigned int input_max_code[EV_CNT] = {
54 	[EV_KEY] = KEY_MAX,
55 	[EV_REL] = REL_MAX,
56 	[EV_ABS] = ABS_MAX,
57 	[EV_MSC] = MSC_MAX,
58 	[EV_SW] = SW_MAX,
59 	[EV_LED] = LED_MAX,
60 	[EV_SND] = SND_MAX,
61 	[EV_FF] = FF_MAX,
62 };
63 
64 static inline int is_event_supported(unsigned int code,
65 				     unsigned long *bm, unsigned int max)
66 {
67 	return code <= max && test_bit(code, bm);
68 }
69 
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 	if (fuzz) {
73 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 			return old_val;
75 
76 		if (value > old_val - fuzz && value < old_val + fuzz)
77 			return (old_val * 3 + value) / 4;
78 
79 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 			return (old_val + value) / 2;
81 	}
82 
83 	return value;
84 }
85 
86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 	if (test_bit(EV_REP, dev->evbit) &&
89 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 	    dev->timer.function) {
91 		dev->repeat_key = code;
92 		mod_timer(&dev->timer,
93 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 	}
95 }
96 
97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 	del_timer(&dev->timer);
100 }
101 
102 /*
103  * Pass values first through all filters and then, if event has not been
104  * filtered out, through all open handles. This order is achieved by placing
105  * filters at the head of the list of handles attached to the device, and
106  * placing regular handles at the tail of the list.
107  *
108  * This function is called with dev->event_lock held and interrupts disabled.
109  */
110 static void input_pass_values(struct input_dev *dev,
111 			      struct input_value *vals, unsigned int count)
112 {
113 	struct input_handle *handle;
114 	struct input_value *v;
115 
116 	lockdep_assert_held(&dev->event_lock);
117 
118 	rcu_read_lock();
119 
120 	handle = rcu_dereference(dev->grab);
121 	if (handle) {
122 		count = handle->handler->events(handle, vals, count);
123 	} else {
124 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
125 			if (handle->open) {
126 				count = handle->handler->events(handle, vals,
127 								count);
128 				if (!count)
129 					break;
130 			}
131 	}
132 
133 	rcu_read_unlock();
134 
135 	/* trigger auto repeat for key events */
136 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 		for (v = vals; v != vals + count; v++) {
138 			if (v->type == EV_KEY && v->value != 2) {
139 				if (v->value)
140 					input_start_autorepeat(dev, v->code);
141 				else
142 					input_stop_autorepeat(dev);
143 			}
144 		}
145 	}
146 }
147 
148 #define INPUT_IGNORE_EVENT	0
149 #define INPUT_PASS_TO_HANDLERS	1
150 #define INPUT_PASS_TO_DEVICE	2
151 #define INPUT_SLOT		4
152 #define INPUT_FLUSH		8
153 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
154 
155 static int input_handle_abs_event(struct input_dev *dev,
156 				  unsigned int code, int *pval)
157 {
158 	struct input_mt *mt = dev->mt;
159 	bool is_new_slot = false;
160 	bool is_mt_event;
161 	int *pold;
162 
163 	if (code == ABS_MT_SLOT) {
164 		/*
165 		 * "Stage" the event; we'll flush it later, when we
166 		 * get actual touch data.
167 		 */
168 		if (mt && *pval >= 0 && *pval < mt->num_slots)
169 			mt->slot = *pval;
170 
171 		return INPUT_IGNORE_EVENT;
172 	}
173 
174 	is_mt_event = input_is_mt_value(code);
175 
176 	if (!is_mt_event) {
177 		pold = &dev->absinfo[code].value;
178 	} else if (mt) {
179 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
181 	} else {
182 		/*
183 		 * Bypass filtering for multi-touch events when
184 		 * not employing slots.
185 		 */
186 		pold = NULL;
187 	}
188 
189 	if (pold) {
190 		*pval = input_defuzz_abs_event(*pval, *pold,
191 						dev->absinfo[code].fuzz);
192 		if (*pold == *pval)
193 			return INPUT_IGNORE_EVENT;
194 
195 		*pold = *pval;
196 	}
197 
198 	/* Flush pending "slot" event */
199 	if (is_new_slot) {
200 		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
202 	}
203 
204 	return INPUT_PASS_TO_HANDLERS;
205 }
206 
207 static int input_get_disposition(struct input_dev *dev,
208 			  unsigned int type, unsigned int code, int *pval)
209 {
210 	int disposition = INPUT_IGNORE_EVENT;
211 	int value = *pval;
212 
213 	/* filter-out events from inhibited devices */
214 	if (dev->inhibited)
215 		return INPUT_IGNORE_EVENT;
216 
217 	switch (type) {
218 
219 	case EV_SYN:
220 		switch (code) {
221 		case SYN_CONFIG:
222 			disposition = INPUT_PASS_TO_ALL;
223 			break;
224 
225 		case SYN_REPORT:
226 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
227 			break;
228 		case SYN_MT_REPORT:
229 			disposition = INPUT_PASS_TO_HANDLERS;
230 			break;
231 		}
232 		break;
233 
234 	case EV_KEY:
235 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
236 
237 			/* auto-repeat bypasses state updates */
238 			if (value == 2) {
239 				disposition = INPUT_PASS_TO_HANDLERS;
240 				break;
241 			}
242 
243 			if (!!test_bit(code, dev->key) != !!value) {
244 
245 				__change_bit(code, dev->key);
246 				disposition = INPUT_PASS_TO_HANDLERS;
247 			}
248 		}
249 		break;
250 
251 	case EV_SW:
252 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 		    !!test_bit(code, dev->sw) != !!value) {
254 
255 			__change_bit(code, dev->sw);
256 			disposition = INPUT_PASS_TO_HANDLERS;
257 		}
258 		break;
259 
260 	case EV_ABS:
261 		if (is_event_supported(code, dev->absbit, ABS_MAX))
262 			disposition = input_handle_abs_event(dev, code, &value);
263 
264 		break;
265 
266 	case EV_REL:
267 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 			disposition = INPUT_PASS_TO_HANDLERS;
269 
270 		break;
271 
272 	case EV_MSC:
273 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 			disposition = INPUT_PASS_TO_ALL;
275 
276 		break;
277 
278 	case EV_LED:
279 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 		    !!test_bit(code, dev->led) != !!value) {
281 
282 			__change_bit(code, dev->led);
283 			disposition = INPUT_PASS_TO_ALL;
284 		}
285 		break;
286 
287 	case EV_SND:
288 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
289 
290 			if (!!test_bit(code, dev->snd) != !!value)
291 				__change_bit(code, dev->snd);
292 			disposition = INPUT_PASS_TO_ALL;
293 		}
294 		break;
295 
296 	case EV_REP:
297 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 			dev->rep[code] = value;
299 			disposition = INPUT_PASS_TO_ALL;
300 		}
301 		break;
302 
303 	case EV_FF:
304 		if (value >= 0)
305 			disposition = INPUT_PASS_TO_ALL;
306 		break;
307 
308 	case EV_PWR:
309 		disposition = INPUT_PASS_TO_ALL;
310 		break;
311 	}
312 
313 	*pval = value;
314 	return disposition;
315 }
316 
317 static void input_event_dispose(struct input_dev *dev, int disposition,
318 				unsigned int type, unsigned int code, int value)
319 {
320 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 		dev->event(dev, type, code, value);
322 
323 	if (disposition & INPUT_PASS_TO_HANDLERS) {
324 		struct input_value *v;
325 
326 		if (disposition & INPUT_SLOT) {
327 			v = &dev->vals[dev->num_vals++];
328 			v->type = EV_ABS;
329 			v->code = ABS_MT_SLOT;
330 			v->value = dev->mt->slot;
331 		}
332 
333 		v = &dev->vals[dev->num_vals++];
334 		v->type = type;
335 		v->code = code;
336 		v->value = value;
337 	}
338 
339 	if (disposition & INPUT_FLUSH) {
340 		if (dev->num_vals >= 2)
341 			input_pass_values(dev, dev->vals, dev->num_vals);
342 		dev->num_vals = 0;
343 		/*
344 		 * Reset the timestamp on flush so we won't end up
345 		 * with a stale one. Note we only need to reset the
346 		 * monolithic one as we use its presence when deciding
347 		 * whether to generate a synthetic timestamp.
348 		 */
349 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 	} else if (dev->num_vals >= dev->max_vals - 2) {
351 		dev->vals[dev->num_vals++] = input_value_sync;
352 		input_pass_values(dev, dev->vals, dev->num_vals);
353 		dev->num_vals = 0;
354 	}
355 }
356 
357 void input_handle_event(struct input_dev *dev,
358 			unsigned int type, unsigned int code, int value)
359 {
360 	int disposition;
361 
362 	lockdep_assert_held(&dev->event_lock);
363 
364 	disposition = input_get_disposition(dev, type, code, &value);
365 	if (disposition != INPUT_IGNORE_EVENT) {
366 		if (type != EV_SYN)
367 			add_input_randomness(type, code, value);
368 
369 		input_event_dispose(dev, disposition, type, code, value);
370 	}
371 }
372 
373 /**
374  * input_event() - report new input event
375  * @dev: device that generated the event
376  * @type: type of the event
377  * @code: event code
378  * @value: value of the event
379  *
380  * This function should be used by drivers implementing various input
381  * devices to report input events. See also input_inject_event().
382  *
383  * NOTE: input_event() may be safely used right after input device was
384  * allocated with input_allocate_device(), even before it is registered
385  * with input_register_device(), but the event will not reach any of the
386  * input handlers. Such early invocation of input_event() may be used
387  * to 'seed' initial state of a switch or initial position of absolute
388  * axis, etc.
389  */
390 void input_event(struct input_dev *dev,
391 		 unsigned int type, unsigned int code, int value)
392 {
393 	unsigned long flags;
394 
395 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
396 
397 		spin_lock_irqsave(&dev->event_lock, flags);
398 		input_handle_event(dev, type, code, value);
399 		spin_unlock_irqrestore(&dev->event_lock, flags);
400 	}
401 }
402 EXPORT_SYMBOL(input_event);
403 
404 /**
405  * input_inject_event() - send input event from input handler
406  * @handle: input handle to send event through
407  * @type: type of the event
408  * @code: event code
409  * @value: value of the event
410  *
411  * Similar to input_event() but will ignore event if device is
412  * "grabbed" and handle injecting event is not the one that owns
413  * the device.
414  */
415 void input_inject_event(struct input_handle *handle,
416 			unsigned int type, unsigned int code, int value)
417 {
418 	struct input_dev *dev = handle->dev;
419 	struct input_handle *grab;
420 	unsigned long flags;
421 
422 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
423 		spin_lock_irqsave(&dev->event_lock, flags);
424 
425 		rcu_read_lock();
426 		grab = rcu_dereference(dev->grab);
427 		if (!grab || grab == handle)
428 			input_handle_event(dev, type, code, value);
429 		rcu_read_unlock();
430 
431 		spin_unlock_irqrestore(&dev->event_lock, flags);
432 	}
433 }
434 EXPORT_SYMBOL(input_inject_event);
435 
436 /**
437  * input_alloc_absinfo - allocates array of input_absinfo structs
438  * @dev: the input device emitting absolute events
439  *
440  * If the absinfo struct the caller asked for is already allocated, this
441  * functions will not do anything.
442  */
443 void input_alloc_absinfo(struct input_dev *dev)
444 {
445 	if (dev->absinfo)
446 		return;
447 
448 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
449 	if (!dev->absinfo) {
450 		dev_err(dev->dev.parent ?: &dev->dev,
451 			"%s: unable to allocate memory\n", __func__);
452 		/*
453 		 * We will handle this allocation failure in
454 		 * input_register_device() when we refuse to register input
455 		 * device with ABS bits but without absinfo.
456 		 */
457 	}
458 }
459 EXPORT_SYMBOL(input_alloc_absinfo);
460 
461 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462 			  int min, int max, int fuzz, int flat)
463 {
464 	struct input_absinfo *absinfo;
465 
466 	__set_bit(EV_ABS, dev->evbit);
467 	__set_bit(axis, dev->absbit);
468 
469 	input_alloc_absinfo(dev);
470 	if (!dev->absinfo)
471 		return;
472 
473 	absinfo = &dev->absinfo[axis];
474 	absinfo->minimum = min;
475 	absinfo->maximum = max;
476 	absinfo->fuzz = fuzz;
477 	absinfo->flat = flat;
478 }
479 EXPORT_SYMBOL(input_set_abs_params);
480 
481 /**
482  * input_copy_abs - Copy absinfo from one input_dev to another
483  * @dst: Destination input device to copy the abs settings to
484  * @dst_axis: ABS_* value selecting the destination axis
485  * @src: Source input device to copy the abs settings from
486  * @src_axis: ABS_* value selecting the source axis
487  *
488  * Set absinfo for the selected destination axis by copying it from
489  * the specified source input device's source axis.
490  * This is useful to e.g. setup a pen/stylus input-device for combined
491  * touchscreen/pen hardware where the pen uses the same coordinates as
492  * the touchscreen.
493  */
494 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495 		    const struct input_dev *src, unsigned int src_axis)
496 {
497 	/* src must have EV_ABS and src_axis set */
498 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499 		      test_bit(src_axis, src->absbit))))
500 		return;
501 
502 	/*
503 	 * input_alloc_absinfo() may have failed for the source. Our caller is
504 	 * expected to catch this when registering the input devices, which may
505 	 * happen after the input_copy_abs() call.
506 	 */
507 	if (!src->absinfo)
508 		return;
509 
510 	input_set_capability(dst, EV_ABS, dst_axis);
511 	if (!dst->absinfo)
512 		return;
513 
514 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
515 }
516 EXPORT_SYMBOL(input_copy_abs);
517 
518 /**
519  * input_grab_device - grabs device for exclusive use
520  * @handle: input handle that wants to own the device
521  *
522  * When a device is grabbed by an input handle all events generated by
523  * the device are delivered only to this handle. Also events injected
524  * by other input handles are ignored while device is grabbed.
525  */
526 int input_grab_device(struct input_handle *handle)
527 {
528 	struct input_dev *dev = handle->dev;
529 	int retval;
530 
531 	retval = mutex_lock_interruptible(&dev->mutex);
532 	if (retval)
533 		return retval;
534 
535 	if (dev->grab) {
536 		retval = -EBUSY;
537 		goto out;
538 	}
539 
540 	rcu_assign_pointer(dev->grab, handle);
541 
542  out:
543 	mutex_unlock(&dev->mutex);
544 	return retval;
545 }
546 EXPORT_SYMBOL(input_grab_device);
547 
548 static void __input_release_device(struct input_handle *handle)
549 {
550 	struct input_dev *dev = handle->dev;
551 	struct input_handle *grabber;
552 
553 	grabber = rcu_dereference_protected(dev->grab,
554 					    lockdep_is_held(&dev->mutex));
555 	if (grabber == handle) {
556 		rcu_assign_pointer(dev->grab, NULL);
557 		/* Make sure input_pass_values() notices that grab is gone */
558 		synchronize_rcu();
559 
560 		list_for_each_entry(handle, &dev->h_list, d_node)
561 			if (handle->open && handle->handler->start)
562 				handle->handler->start(handle);
563 	}
564 }
565 
566 /**
567  * input_release_device - release previously grabbed device
568  * @handle: input handle that owns the device
569  *
570  * Releases previously grabbed device so that other input handles can
571  * start receiving input events. Upon release all handlers attached
572  * to the device have their start() method called so they have a change
573  * to synchronize device state with the rest of the system.
574  */
575 void input_release_device(struct input_handle *handle)
576 {
577 	struct input_dev *dev = handle->dev;
578 
579 	mutex_lock(&dev->mutex);
580 	__input_release_device(handle);
581 	mutex_unlock(&dev->mutex);
582 }
583 EXPORT_SYMBOL(input_release_device);
584 
585 /**
586  * input_open_device - open input device
587  * @handle: handle through which device is being accessed
588  *
589  * This function should be called by input handlers when they
590  * want to start receive events from given input device.
591  */
592 int input_open_device(struct input_handle *handle)
593 {
594 	struct input_dev *dev = handle->dev;
595 	int retval;
596 
597 	retval = mutex_lock_interruptible(&dev->mutex);
598 	if (retval)
599 		return retval;
600 
601 	if (dev->going_away) {
602 		retval = -ENODEV;
603 		goto out;
604 	}
605 
606 	handle->open++;
607 
608 	if (dev->users++ || dev->inhibited) {
609 		/*
610 		 * Device is already opened and/or inhibited,
611 		 * so we can exit immediately and report success.
612 		 */
613 		goto out;
614 	}
615 
616 	if (dev->open) {
617 		retval = dev->open(dev);
618 		if (retval) {
619 			dev->users--;
620 			handle->open--;
621 			/*
622 			 * Make sure we are not delivering any more events
623 			 * through this handle
624 			 */
625 			synchronize_rcu();
626 			goto out;
627 		}
628 	}
629 
630 	if (dev->poller)
631 		input_dev_poller_start(dev->poller);
632 
633  out:
634 	mutex_unlock(&dev->mutex);
635 	return retval;
636 }
637 EXPORT_SYMBOL(input_open_device);
638 
639 int input_flush_device(struct input_handle *handle, struct file *file)
640 {
641 	struct input_dev *dev = handle->dev;
642 	int retval;
643 
644 	retval = mutex_lock_interruptible(&dev->mutex);
645 	if (retval)
646 		return retval;
647 
648 	if (dev->flush)
649 		retval = dev->flush(dev, file);
650 
651 	mutex_unlock(&dev->mutex);
652 	return retval;
653 }
654 EXPORT_SYMBOL(input_flush_device);
655 
656 /**
657  * input_close_device - close input device
658  * @handle: handle through which device is being accessed
659  *
660  * This function should be called by input handlers when they
661  * want to stop receive events from given input device.
662  */
663 void input_close_device(struct input_handle *handle)
664 {
665 	struct input_dev *dev = handle->dev;
666 
667 	mutex_lock(&dev->mutex);
668 
669 	__input_release_device(handle);
670 
671 	if (!--dev->users && !dev->inhibited) {
672 		if (dev->poller)
673 			input_dev_poller_stop(dev->poller);
674 		if (dev->close)
675 			dev->close(dev);
676 	}
677 
678 	if (!--handle->open) {
679 		/*
680 		 * synchronize_rcu() makes sure that input_pass_values()
681 		 * completed and that no more input events are delivered
682 		 * through this handle
683 		 */
684 		synchronize_rcu();
685 	}
686 
687 	mutex_unlock(&dev->mutex);
688 }
689 EXPORT_SYMBOL(input_close_device);
690 
691 /*
692  * Simulate keyup events for all keys that are marked as pressed.
693  * The function must be called with dev->event_lock held.
694  */
695 static bool input_dev_release_keys(struct input_dev *dev)
696 {
697 	bool need_sync = false;
698 	int code;
699 
700 	lockdep_assert_held(&dev->event_lock);
701 
702 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
703 		for_each_set_bit(code, dev->key, KEY_CNT) {
704 			input_handle_event(dev, EV_KEY, code, 0);
705 			need_sync = true;
706 		}
707 	}
708 
709 	return need_sync;
710 }
711 
712 /*
713  * Prepare device for unregistering
714  */
715 static void input_disconnect_device(struct input_dev *dev)
716 {
717 	struct input_handle *handle;
718 
719 	/*
720 	 * Mark device as going away. Note that we take dev->mutex here
721 	 * not to protect access to dev->going_away but rather to ensure
722 	 * that there are no threads in the middle of input_open_device()
723 	 */
724 	mutex_lock(&dev->mutex);
725 	dev->going_away = true;
726 	mutex_unlock(&dev->mutex);
727 
728 	spin_lock_irq(&dev->event_lock);
729 
730 	/*
731 	 * Simulate keyup events for all pressed keys so that handlers
732 	 * are not left with "stuck" keys. The driver may continue
733 	 * generate events even after we done here but they will not
734 	 * reach any handlers.
735 	 */
736 	if (input_dev_release_keys(dev))
737 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
738 
739 	list_for_each_entry(handle, &dev->h_list, d_node)
740 		handle->open = 0;
741 
742 	spin_unlock_irq(&dev->event_lock);
743 }
744 
745 /**
746  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
747  * @ke: keymap entry containing scancode to be converted.
748  * @scancode: pointer to the location where converted scancode should
749  *	be stored.
750  *
751  * This function is used to convert scancode stored in &struct keymap_entry
752  * into scalar form understood by legacy keymap handling methods. These
753  * methods expect scancodes to be represented as 'unsigned int'.
754  */
755 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
756 			     unsigned int *scancode)
757 {
758 	switch (ke->len) {
759 	case 1:
760 		*scancode = *((u8 *)ke->scancode);
761 		break;
762 
763 	case 2:
764 		*scancode = *((u16 *)ke->scancode);
765 		break;
766 
767 	case 4:
768 		*scancode = *((u32 *)ke->scancode);
769 		break;
770 
771 	default:
772 		return -EINVAL;
773 	}
774 
775 	return 0;
776 }
777 EXPORT_SYMBOL(input_scancode_to_scalar);
778 
779 /*
780  * Those routines handle the default case where no [gs]etkeycode() is
781  * defined. In this case, an array indexed by the scancode is used.
782  */
783 
784 static unsigned int input_fetch_keycode(struct input_dev *dev,
785 					unsigned int index)
786 {
787 	switch (dev->keycodesize) {
788 	case 1:
789 		return ((u8 *)dev->keycode)[index];
790 
791 	case 2:
792 		return ((u16 *)dev->keycode)[index];
793 
794 	default:
795 		return ((u32 *)dev->keycode)[index];
796 	}
797 }
798 
799 static int input_default_getkeycode(struct input_dev *dev,
800 				    struct input_keymap_entry *ke)
801 {
802 	unsigned int index;
803 	int error;
804 
805 	if (!dev->keycodesize)
806 		return -EINVAL;
807 
808 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
809 		index = ke->index;
810 	else {
811 		error = input_scancode_to_scalar(ke, &index);
812 		if (error)
813 			return error;
814 	}
815 
816 	if (index >= dev->keycodemax)
817 		return -EINVAL;
818 
819 	ke->keycode = input_fetch_keycode(dev, index);
820 	ke->index = index;
821 	ke->len = sizeof(index);
822 	memcpy(ke->scancode, &index, sizeof(index));
823 
824 	return 0;
825 }
826 
827 static int input_default_setkeycode(struct input_dev *dev,
828 				    const struct input_keymap_entry *ke,
829 				    unsigned int *old_keycode)
830 {
831 	unsigned int index;
832 	int error;
833 	int i;
834 
835 	if (!dev->keycodesize)
836 		return -EINVAL;
837 
838 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
839 		index = ke->index;
840 	} else {
841 		error = input_scancode_to_scalar(ke, &index);
842 		if (error)
843 			return error;
844 	}
845 
846 	if (index >= dev->keycodemax)
847 		return -EINVAL;
848 
849 	if (dev->keycodesize < sizeof(ke->keycode) &&
850 			(ke->keycode >> (dev->keycodesize * 8)))
851 		return -EINVAL;
852 
853 	switch (dev->keycodesize) {
854 		case 1: {
855 			u8 *k = (u8 *)dev->keycode;
856 			*old_keycode = k[index];
857 			k[index] = ke->keycode;
858 			break;
859 		}
860 		case 2: {
861 			u16 *k = (u16 *)dev->keycode;
862 			*old_keycode = k[index];
863 			k[index] = ke->keycode;
864 			break;
865 		}
866 		default: {
867 			u32 *k = (u32 *)dev->keycode;
868 			*old_keycode = k[index];
869 			k[index] = ke->keycode;
870 			break;
871 		}
872 	}
873 
874 	if (*old_keycode <= KEY_MAX) {
875 		__clear_bit(*old_keycode, dev->keybit);
876 		for (i = 0; i < dev->keycodemax; i++) {
877 			if (input_fetch_keycode(dev, i) == *old_keycode) {
878 				__set_bit(*old_keycode, dev->keybit);
879 				/* Setting the bit twice is useless, so break */
880 				break;
881 			}
882 		}
883 	}
884 
885 	__set_bit(ke->keycode, dev->keybit);
886 	return 0;
887 }
888 
889 /**
890  * input_get_keycode - retrieve keycode currently mapped to a given scancode
891  * @dev: input device which keymap is being queried
892  * @ke: keymap entry
893  *
894  * This function should be called by anyone interested in retrieving current
895  * keymap. Presently evdev handlers use it.
896  */
897 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
898 {
899 	unsigned long flags;
900 	int retval;
901 
902 	spin_lock_irqsave(&dev->event_lock, flags);
903 	retval = dev->getkeycode(dev, ke);
904 	spin_unlock_irqrestore(&dev->event_lock, flags);
905 
906 	return retval;
907 }
908 EXPORT_SYMBOL(input_get_keycode);
909 
910 /**
911  * input_set_keycode - attribute a keycode to a given scancode
912  * @dev: input device which keymap is being updated
913  * @ke: new keymap entry
914  *
915  * This function should be called by anyone needing to update current
916  * keymap. Presently keyboard and evdev handlers use it.
917  */
918 int input_set_keycode(struct input_dev *dev,
919 		      const struct input_keymap_entry *ke)
920 {
921 	unsigned long flags;
922 	unsigned int old_keycode;
923 	int retval;
924 
925 	if (ke->keycode > KEY_MAX)
926 		return -EINVAL;
927 
928 	spin_lock_irqsave(&dev->event_lock, flags);
929 
930 	retval = dev->setkeycode(dev, ke, &old_keycode);
931 	if (retval)
932 		goto out;
933 
934 	/* Make sure KEY_RESERVED did not get enabled. */
935 	__clear_bit(KEY_RESERVED, dev->keybit);
936 
937 	/*
938 	 * Simulate keyup event if keycode is not present
939 	 * in the keymap anymore
940 	 */
941 	if (old_keycode > KEY_MAX) {
942 		dev_warn(dev->dev.parent ?: &dev->dev,
943 			 "%s: got too big old keycode %#x\n",
944 			 __func__, old_keycode);
945 	} else if (test_bit(EV_KEY, dev->evbit) &&
946 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
947 		   __test_and_clear_bit(old_keycode, dev->key)) {
948 		/*
949 		 * We have to use input_event_dispose() here directly instead
950 		 * of input_handle_event() because the key we want to release
951 		 * here is considered no longer supported by the device and
952 		 * input_handle_event() will ignore it.
953 		 */
954 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
955 				    EV_KEY, old_keycode, 0);
956 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
957 				    EV_SYN, SYN_REPORT, 1);
958 	}
959 
960  out:
961 	spin_unlock_irqrestore(&dev->event_lock, flags);
962 
963 	return retval;
964 }
965 EXPORT_SYMBOL(input_set_keycode);
966 
967 bool input_match_device_id(const struct input_dev *dev,
968 			   const struct input_device_id *id)
969 {
970 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
971 		if (id->bustype != dev->id.bustype)
972 			return false;
973 
974 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
975 		if (id->vendor != dev->id.vendor)
976 			return false;
977 
978 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
979 		if (id->product != dev->id.product)
980 			return false;
981 
982 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
983 		if (id->version != dev->id.version)
984 			return false;
985 
986 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
987 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
988 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
989 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
990 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
991 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
992 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
993 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
994 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
995 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
996 		return false;
997 	}
998 
999 	return true;
1000 }
1001 EXPORT_SYMBOL(input_match_device_id);
1002 
1003 static const struct input_device_id *input_match_device(struct input_handler *handler,
1004 							struct input_dev *dev)
1005 {
1006 	const struct input_device_id *id;
1007 
1008 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1009 		if (input_match_device_id(dev, id) &&
1010 		    (!handler->match || handler->match(handler, dev))) {
1011 			return id;
1012 		}
1013 	}
1014 
1015 	return NULL;
1016 }
1017 
1018 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1019 {
1020 	const struct input_device_id *id;
1021 	int error;
1022 
1023 	id = input_match_device(handler, dev);
1024 	if (!id)
1025 		return -ENODEV;
1026 
1027 	error = handler->connect(handler, dev, id);
1028 	if (error && error != -ENODEV)
1029 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1030 		       handler->name, kobject_name(&dev->dev.kobj), error);
1031 
1032 	return error;
1033 }
1034 
1035 #ifdef CONFIG_COMPAT
1036 
1037 static int input_bits_to_string(char *buf, int buf_size,
1038 				unsigned long bits, bool skip_empty)
1039 {
1040 	int len = 0;
1041 
1042 	if (in_compat_syscall()) {
1043 		u32 dword = bits >> 32;
1044 		if (dword || !skip_empty)
1045 			len += snprintf(buf, buf_size, "%x ", dword);
1046 
1047 		dword = bits & 0xffffffffUL;
1048 		if (dword || !skip_empty || len)
1049 			len += snprintf(buf + len, max(buf_size - len, 0),
1050 					"%x", dword);
1051 	} else {
1052 		if (bits || !skip_empty)
1053 			len += snprintf(buf, buf_size, "%lx", bits);
1054 	}
1055 
1056 	return len;
1057 }
1058 
1059 #else /* !CONFIG_COMPAT */
1060 
1061 static int input_bits_to_string(char *buf, int buf_size,
1062 				unsigned long bits, bool skip_empty)
1063 {
1064 	return bits || !skip_empty ?
1065 		snprintf(buf, buf_size, "%lx", bits) : 0;
1066 }
1067 
1068 #endif
1069 
1070 #ifdef CONFIG_PROC_FS
1071 
1072 static struct proc_dir_entry *proc_bus_input_dir;
1073 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1074 static int input_devices_state;
1075 
1076 static inline void input_wakeup_procfs_readers(void)
1077 {
1078 	input_devices_state++;
1079 	wake_up(&input_devices_poll_wait);
1080 }
1081 
1082 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1083 {
1084 	poll_wait(file, &input_devices_poll_wait, wait);
1085 	if (file->f_version != input_devices_state) {
1086 		file->f_version = input_devices_state;
1087 		return EPOLLIN | EPOLLRDNORM;
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 union input_seq_state {
1094 	struct {
1095 		unsigned short pos;
1096 		bool mutex_acquired;
1097 	};
1098 	void *p;
1099 };
1100 
1101 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1102 {
1103 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1104 	int error;
1105 
1106 	/* We need to fit into seq->private pointer */
1107 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1108 
1109 	error = mutex_lock_interruptible(&input_mutex);
1110 	if (error) {
1111 		state->mutex_acquired = false;
1112 		return ERR_PTR(error);
1113 	}
1114 
1115 	state->mutex_acquired = true;
1116 
1117 	return seq_list_start(&input_dev_list, *pos);
1118 }
1119 
1120 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1121 {
1122 	return seq_list_next(v, &input_dev_list, pos);
1123 }
1124 
1125 static void input_seq_stop(struct seq_file *seq, void *v)
1126 {
1127 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1128 
1129 	if (state->mutex_acquired)
1130 		mutex_unlock(&input_mutex);
1131 }
1132 
1133 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1134 				   unsigned long *bitmap, int max)
1135 {
1136 	int i;
1137 	bool skip_empty = true;
1138 	char buf[18];
1139 
1140 	seq_printf(seq, "B: %s=", name);
1141 
1142 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1143 		if (input_bits_to_string(buf, sizeof(buf),
1144 					 bitmap[i], skip_empty)) {
1145 			skip_empty = false;
1146 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1147 		}
1148 	}
1149 
1150 	/*
1151 	 * If no output was produced print a single 0.
1152 	 */
1153 	if (skip_empty)
1154 		seq_putc(seq, '0');
1155 
1156 	seq_putc(seq, '\n');
1157 }
1158 
1159 static int input_devices_seq_show(struct seq_file *seq, void *v)
1160 {
1161 	struct input_dev *dev = container_of(v, struct input_dev, node);
1162 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1163 	struct input_handle *handle;
1164 
1165 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1166 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1167 
1168 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1169 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1170 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1171 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1172 	seq_puts(seq, "H: Handlers=");
1173 
1174 	list_for_each_entry(handle, &dev->h_list, d_node)
1175 		seq_printf(seq, "%s ", handle->name);
1176 	seq_putc(seq, '\n');
1177 
1178 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1179 
1180 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1181 	if (test_bit(EV_KEY, dev->evbit))
1182 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1183 	if (test_bit(EV_REL, dev->evbit))
1184 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1185 	if (test_bit(EV_ABS, dev->evbit))
1186 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1187 	if (test_bit(EV_MSC, dev->evbit))
1188 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1189 	if (test_bit(EV_LED, dev->evbit))
1190 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1191 	if (test_bit(EV_SND, dev->evbit))
1192 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1193 	if (test_bit(EV_FF, dev->evbit))
1194 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1195 	if (test_bit(EV_SW, dev->evbit))
1196 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1197 
1198 	seq_putc(seq, '\n');
1199 
1200 	kfree(path);
1201 	return 0;
1202 }
1203 
1204 static const struct seq_operations input_devices_seq_ops = {
1205 	.start	= input_devices_seq_start,
1206 	.next	= input_devices_seq_next,
1207 	.stop	= input_seq_stop,
1208 	.show	= input_devices_seq_show,
1209 };
1210 
1211 static int input_proc_devices_open(struct inode *inode, struct file *file)
1212 {
1213 	return seq_open(file, &input_devices_seq_ops);
1214 }
1215 
1216 static const struct proc_ops input_devices_proc_ops = {
1217 	.proc_open	= input_proc_devices_open,
1218 	.proc_poll	= input_proc_devices_poll,
1219 	.proc_read	= seq_read,
1220 	.proc_lseek	= seq_lseek,
1221 	.proc_release	= seq_release,
1222 };
1223 
1224 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1225 {
1226 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1227 	int error;
1228 
1229 	/* We need to fit into seq->private pointer */
1230 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1231 
1232 	error = mutex_lock_interruptible(&input_mutex);
1233 	if (error) {
1234 		state->mutex_acquired = false;
1235 		return ERR_PTR(error);
1236 	}
1237 
1238 	state->mutex_acquired = true;
1239 	state->pos = *pos;
1240 
1241 	return seq_list_start(&input_handler_list, *pos);
1242 }
1243 
1244 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1245 {
1246 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1247 
1248 	state->pos = *pos + 1;
1249 	return seq_list_next(v, &input_handler_list, pos);
1250 }
1251 
1252 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1253 {
1254 	struct input_handler *handler = container_of(v, struct input_handler, node);
1255 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1256 
1257 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1258 	if (handler->filter)
1259 		seq_puts(seq, " (filter)");
1260 	if (handler->legacy_minors)
1261 		seq_printf(seq, " Minor=%d", handler->minor);
1262 	seq_putc(seq, '\n');
1263 
1264 	return 0;
1265 }
1266 
1267 static const struct seq_operations input_handlers_seq_ops = {
1268 	.start	= input_handlers_seq_start,
1269 	.next	= input_handlers_seq_next,
1270 	.stop	= input_seq_stop,
1271 	.show	= input_handlers_seq_show,
1272 };
1273 
1274 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1275 {
1276 	return seq_open(file, &input_handlers_seq_ops);
1277 }
1278 
1279 static const struct proc_ops input_handlers_proc_ops = {
1280 	.proc_open	= input_proc_handlers_open,
1281 	.proc_read	= seq_read,
1282 	.proc_lseek	= seq_lseek,
1283 	.proc_release	= seq_release,
1284 };
1285 
1286 static int __init input_proc_init(void)
1287 {
1288 	struct proc_dir_entry *entry;
1289 
1290 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1291 	if (!proc_bus_input_dir)
1292 		return -ENOMEM;
1293 
1294 	entry = proc_create("devices", 0, proc_bus_input_dir,
1295 			    &input_devices_proc_ops);
1296 	if (!entry)
1297 		goto fail1;
1298 
1299 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1300 			    &input_handlers_proc_ops);
1301 	if (!entry)
1302 		goto fail2;
1303 
1304 	return 0;
1305 
1306  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1307  fail1: remove_proc_entry("bus/input", NULL);
1308 	return -ENOMEM;
1309 }
1310 
1311 static void input_proc_exit(void)
1312 {
1313 	remove_proc_entry("devices", proc_bus_input_dir);
1314 	remove_proc_entry("handlers", proc_bus_input_dir);
1315 	remove_proc_entry("bus/input", NULL);
1316 }
1317 
1318 #else /* !CONFIG_PROC_FS */
1319 static inline void input_wakeup_procfs_readers(void) { }
1320 static inline int input_proc_init(void) { return 0; }
1321 static inline void input_proc_exit(void) { }
1322 #endif
1323 
1324 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1325 static ssize_t input_dev_show_##name(struct device *dev,		\
1326 				     struct device_attribute *attr,	\
1327 				     char *buf)				\
1328 {									\
1329 	struct input_dev *input_dev = to_input_dev(dev);		\
1330 									\
1331 	return sysfs_emit(buf, "%s\n",					\
1332 			  input_dev->name ? input_dev->name : "");	\
1333 }									\
1334 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1335 
1336 INPUT_DEV_STRING_ATTR_SHOW(name);
1337 INPUT_DEV_STRING_ATTR_SHOW(phys);
1338 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1339 
1340 static int input_print_modalias_bits(char *buf, int size,
1341 				     char name, const unsigned long *bm,
1342 				     unsigned int min_bit, unsigned int max_bit)
1343 {
1344 	int bit = min_bit;
1345 	int len = 0;
1346 
1347 	len += snprintf(buf, max(size, 0), "%c", name);
1348 	for_each_set_bit_from(bit, bm, max_bit)
1349 		len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1350 	return len;
1351 }
1352 
1353 static int input_print_modalias_parts(char *buf, int size, int full_len,
1354 				      const struct input_dev *id)
1355 {
1356 	int len, klen, remainder, space;
1357 
1358 	len = snprintf(buf, max(size, 0),
1359 		       "input:b%04Xv%04Xp%04Xe%04X-",
1360 		       id->id.bustype, id->id.vendor,
1361 		       id->id.product, id->id.version);
1362 
1363 	len += input_print_modalias_bits(buf + len, size - len,
1364 				'e', id->evbit, 0, EV_MAX);
1365 
1366 	/*
1367 	 * Calculate the remaining space in the buffer making sure we
1368 	 * have place for the terminating 0.
1369 	 */
1370 	space = max(size - (len + 1), 0);
1371 
1372 	klen = input_print_modalias_bits(buf + len, size - len,
1373 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1374 	len += klen;
1375 
1376 	/*
1377 	 * If we have more data than we can fit in the buffer, check
1378 	 * if we can trim key data to fit in the rest. We will indicate
1379 	 * that key data is incomplete by adding "+" sign at the end, like
1380 	 * this: * "k1,2,3,45,+,".
1381 	 *
1382 	 * Note that we shortest key info (if present) is "k+," so we
1383 	 * can only try to trim if key data is longer than that.
1384 	 */
1385 	if (full_len && size < full_len + 1 && klen > 3) {
1386 		remainder = full_len - len;
1387 		/*
1388 		 * We can only trim if we have space for the remainder
1389 		 * and also for at least "k+," which is 3 more characters.
1390 		 */
1391 		if (remainder <= space - 3) {
1392 			/*
1393 			 * We are guaranteed to have 'k' in the buffer, so
1394 			 * we need at least 3 additional bytes for storing
1395 			 * "+," in addition to the remainder.
1396 			 */
1397 			for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1398 				if (buf[i] == 'k' || buf[i] == ',') {
1399 					strcpy(buf + i + 1, "+,");
1400 					len = i + 3; /* Not counting '\0' */
1401 					break;
1402 				}
1403 			}
1404 		}
1405 	}
1406 
1407 	len += input_print_modalias_bits(buf + len, size - len,
1408 				'r', id->relbit, 0, REL_MAX);
1409 	len += input_print_modalias_bits(buf + len, size - len,
1410 				'a', id->absbit, 0, ABS_MAX);
1411 	len += input_print_modalias_bits(buf + len, size - len,
1412 				'm', id->mscbit, 0, MSC_MAX);
1413 	len += input_print_modalias_bits(buf + len, size - len,
1414 				'l', id->ledbit, 0, LED_MAX);
1415 	len += input_print_modalias_bits(buf + len, size - len,
1416 				's', id->sndbit, 0, SND_MAX);
1417 	len += input_print_modalias_bits(buf + len, size - len,
1418 				'f', id->ffbit, 0, FF_MAX);
1419 	len += input_print_modalias_bits(buf + len, size - len,
1420 				'w', id->swbit, 0, SW_MAX);
1421 
1422 	return len;
1423 }
1424 
1425 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1426 {
1427 	int full_len;
1428 
1429 	/*
1430 	 * Printing is done in 2 passes: first one figures out total length
1431 	 * needed for the modalias string, second one will try to trim key
1432 	 * data in case when buffer is too small for the entire modalias.
1433 	 * If the buffer is too small regardless, it will fill as much as it
1434 	 * can (without trimming key data) into the buffer and leave it to
1435 	 * the caller to figure out what to do with the result.
1436 	 */
1437 	full_len = input_print_modalias_parts(NULL, 0, 0, id);
1438 	return input_print_modalias_parts(buf, size, full_len, id);
1439 }
1440 
1441 static ssize_t input_dev_show_modalias(struct device *dev,
1442 				       struct device_attribute *attr,
1443 				       char *buf)
1444 {
1445 	struct input_dev *id = to_input_dev(dev);
1446 	ssize_t len;
1447 
1448 	len = input_print_modalias(buf, PAGE_SIZE, id);
1449 	if (len < PAGE_SIZE - 2)
1450 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1451 
1452 	return min_t(int, len, PAGE_SIZE);
1453 }
1454 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1455 
1456 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1457 			      int max, int add_cr);
1458 
1459 static ssize_t input_dev_show_properties(struct device *dev,
1460 					 struct device_attribute *attr,
1461 					 char *buf)
1462 {
1463 	struct input_dev *input_dev = to_input_dev(dev);
1464 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1465 				     INPUT_PROP_MAX, true);
1466 	return min_t(int, len, PAGE_SIZE);
1467 }
1468 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1469 
1470 static int input_inhibit_device(struct input_dev *dev);
1471 static int input_uninhibit_device(struct input_dev *dev);
1472 
1473 static ssize_t inhibited_show(struct device *dev,
1474 			      struct device_attribute *attr,
1475 			      char *buf)
1476 {
1477 	struct input_dev *input_dev = to_input_dev(dev);
1478 
1479 	return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1480 }
1481 
1482 static ssize_t inhibited_store(struct device *dev,
1483 			       struct device_attribute *attr, const char *buf,
1484 			       size_t len)
1485 {
1486 	struct input_dev *input_dev = to_input_dev(dev);
1487 	ssize_t rv;
1488 	bool inhibited;
1489 
1490 	if (kstrtobool(buf, &inhibited))
1491 		return -EINVAL;
1492 
1493 	if (inhibited)
1494 		rv = input_inhibit_device(input_dev);
1495 	else
1496 		rv = input_uninhibit_device(input_dev);
1497 
1498 	if (rv != 0)
1499 		return rv;
1500 
1501 	return len;
1502 }
1503 
1504 static DEVICE_ATTR_RW(inhibited);
1505 
1506 static struct attribute *input_dev_attrs[] = {
1507 	&dev_attr_name.attr,
1508 	&dev_attr_phys.attr,
1509 	&dev_attr_uniq.attr,
1510 	&dev_attr_modalias.attr,
1511 	&dev_attr_properties.attr,
1512 	&dev_attr_inhibited.attr,
1513 	NULL
1514 };
1515 
1516 static const struct attribute_group input_dev_attr_group = {
1517 	.attrs	= input_dev_attrs,
1518 };
1519 
1520 #define INPUT_DEV_ID_ATTR(name)						\
1521 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1522 					struct device_attribute *attr,	\
1523 					char *buf)			\
1524 {									\
1525 	struct input_dev *input_dev = to_input_dev(dev);		\
1526 	return sysfs_emit(buf, "%04x\n", input_dev->id.name);		\
1527 }									\
1528 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1529 
1530 INPUT_DEV_ID_ATTR(bustype);
1531 INPUT_DEV_ID_ATTR(vendor);
1532 INPUT_DEV_ID_ATTR(product);
1533 INPUT_DEV_ID_ATTR(version);
1534 
1535 static struct attribute *input_dev_id_attrs[] = {
1536 	&dev_attr_bustype.attr,
1537 	&dev_attr_vendor.attr,
1538 	&dev_attr_product.attr,
1539 	&dev_attr_version.attr,
1540 	NULL
1541 };
1542 
1543 static const struct attribute_group input_dev_id_attr_group = {
1544 	.name	= "id",
1545 	.attrs	= input_dev_id_attrs,
1546 };
1547 
1548 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1549 			      int max, int add_cr)
1550 {
1551 	int i;
1552 	int len = 0;
1553 	bool skip_empty = true;
1554 
1555 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1556 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1557 					    bitmap[i], skip_empty);
1558 		if (len) {
1559 			skip_empty = false;
1560 			if (i > 0)
1561 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1562 		}
1563 	}
1564 
1565 	/*
1566 	 * If no output was produced print a single 0.
1567 	 */
1568 	if (len == 0)
1569 		len = snprintf(buf, buf_size, "%d", 0);
1570 
1571 	if (add_cr)
1572 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1573 
1574 	return len;
1575 }
1576 
1577 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1578 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1579 				       struct device_attribute *attr,	\
1580 				       char *buf)			\
1581 {									\
1582 	struct input_dev *input_dev = to_input_dev(dev);		\
1583 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1584 				     input_dev->bm##bit, ev##_MAX,	\
1585 				     true);				\
1586 	return min_t(int, len, PAGE_SIZE);				\
1587 }									\
1588 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1589 
1590 INPUT_DEV_CAP_ATTR(EV, ev);
1591 INPUT_DEV_CAP_ATTR(KEY, key);
1592 INPUT_DEV_CAP_ATTR(REL, rel);
1593 INPUT_DEV_CAP_ATTR(ABS, abs);
1594 INPUT_DEV_CAP_ATTR(MSC, msc);
1595 INPUT_DEV_CAP_ATTR(LED, led);
1596 INPUT_DEV_CAP_ATTR(SND, snd);
1597 INPUT_DEV_CAP_ATTR(FF, ff);
1598 INPUT_DEV_CAP_ATTR(SW, sw);
1599 
1600 static struct attribute *input_dev_caps_attrs[] = {
1601 	&dev_attr_ev.attr,
1602 	&dev_attr_key.attr,
1603 	&dev_attr_rel.attr,
1604 	&dev_attr_abs.attr,
1605 	&dev_attr_msc.attr,
1606 	&dev_attr_led.attr,
1607 	&dev_attr_snd.attr,
1608 	&dev_attr_ff.attr,
1609 	&dev_attr_sw.attr,
1610 	NULL
1611 };
1612 
1613 static const struct attribute_group input_dev_caps_attr_group = {
1614 	.name	= "capabilities",
1615 	.attrs	= input_dev_caps_attrs,
1616 };
1617 
1618 static const struct attribute_group *input_dev_attr_groups[] = {
1619 	&input_dev_attr_group,
1620 	&input_dev_id_attr_group,
1621 	&input_dev_caps_attr_group,
1622 	&input_poller_attribute_group,
1623 	NULL
1624 };
1625 
1626 static void input_dev_release(struct device *device)
1627 {
1628 	struct input_dev *dev = to_input_dev(device);
1629 
1630 	input_ff_destroy(dev);
1631 	input_mt_destroy_slots(dev);
1632 	kfree(dev->poller);
1633 	kfree(dev->absinfo);
1634 	kfree(dev->vals);
1635 	kfree(dev);
1636 
1637 	module_put(THIS_MODULE);
1638 }
1639 
1640 /*
1641  * Input uevent interface - loading event handlers based on
1642  * device bitfields.
1643  */
1644 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1645 				   const char *name, const unsigned long *bitmap, int max)
1646 {
1647 	int len;
1648 
1649 	if (add_uevent_var(env, "%s", name))
1650 		return -ENOMEM;
1651 
1652 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1653 				 sizeof(env->buf) - env->buflen,
1654 				 bitmap, max, false);
1655 	if (len >= (sizeof(env->buf) - env->buflen))
1656 		return -ENOMEM;
1657 
1658 	env->buflen += len;
1659 	return 0;
1660 }
1661 
1662 /*
1663  * This is a pretty gross hack. When building uevent data the driver core
1664  * may try adding more environment variables to kobj_uevent_env without
1665  * telling us, so we have no idea how much of the buffer we can use to
1666  * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1667  * reduce amount of memory we will use for the modalias environment variable.
1668  *
1669  * The potential additions are:
1670  *
1671  * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1672  * HOME=/ (6 bytes)
1673  * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1674  *
1675  * 68 bytes total. Allow extra buffer - 96 bytes
1676  */
1677 #define UEVENT_ENV_EXTRA_LEN	96
1678 
1679 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1680 					 const struct input_dev *dev)
1681 {
1682 	int len;
1683 
1684 	if (add_uevent_var(env, "MODALIAS="))
1685 		return -ENOMEM;
1686 
1687 	len = input_print_modalias(&env->buf[env->buflen - 1],
1688 				   (int)sizeof(env->buf) - env->buflen -
1689 					UEVENT_ENV_EXTRA_LEN,
1690 				   dev);
1691 	if (len >= ((int)sizeof(env->buf) - env->buflen -
1692 					UEVENT_ENV_EXTRA_LEN))
1693 		return -ENOMEM;
1694 
1695 	env->buflen += len;
1696 	return 0;
1697 }
1698 
1699 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1700 	do {								\
1701 		int err = add_uevent_var(env, fmt, val);		\
1702 		if (err)						\
1703 			return err;					\
1704 	} while (0)
1705 
1706 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1707 	do {								\
1708 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1709 		if (err)						\
1710 			return err;					\
1711 	} while (0)
1712 
1713 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1714 	do {								\
1715 		int err = input_add_uevent_modalias_var(env, dev);	\
1716 		if (err)						\
1717 			return err;					\
1718 	} while (0)
1719 
1720 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1721 {
1722 	const struct input_dev *dev = to_input_dev(device);
1723 
1724 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1725 				dev->id.bustype, dev->id.vendor,
1726 				dev->id.product, dev->id.version);
1727 	if (dev->name)
1728 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1729 	if (dev->phys)
1730 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1731 	if (dev->uniq)
1732 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1733 
1734 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1735 
1736 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1737 	if (test_bit(EV_KEY, dev->evbit))
1738 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1739 	if (test_bit(EV_REL, dev->evbit))
1740 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1741 	if (test_bit(EV_ABS, dev->evbit))
1742 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1743 	if (test_bit(EV_MSC, dev->evbit))
1744 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1745 	if (test_bit(EV_LED, dev->evbit))
1746 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1747 	if (test_bit(EV_SND, dev->evbit))
1748 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1749 	if (test_bit(EV_FF, dev->evbit))
1750 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1751 	if (test_bit(EV_SW, dev->evbit))
1752 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1753 
1754 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1755 
1756 	return 0;
1757 }
1758 
1759 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1760 	do {								\
1761 		int i;							\
1762 		bool active;						\
1763 									\
1764 		if (!test_bit(EV_##type, dev->evbit))			\
1765 			break;						\
1766 									\
1767 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1768 			active = test_bit(i, dev->bits);		\
1769 			if (!active && !on)				\
1770 				continue;				\
1771 									\
1772 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1773 		}							\
1774 	} while (0)
1775 
1776 static void input_dev_toggle(struct input_dev *dev, bool activate)
1777 {
1778 	if (!dev->event)
1779 		return;
1780 
1781 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1782 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1783 
1784 	if (activate && test_bit(EV_REP, dev->evbit)) {
1785 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1786 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1787 	}
1788 }
1789 
1790 /**
1791  * input_reset_device() - reset/restore the state of input device
1792  * @dev: input device whose state needs to be reset
1793  *
1794  * This function tries to reset the state of an opened input device and
1795  * bring internal state and state if the hardware in sync with each other.
1796  * We mark all keys as released, restore LED state, repeat rate, etc.
1797  */
1798 void input_reset_device(struct input_dev *dev)
1799 {
1800 	unsigned long flags;
1801 
1802 	mutex_lock(&dev->mutex);
1803 	spin_lock_irqsave(&dev->event_lock, flags);
1804 
1805 	input_dev_toggle(dev, true);
1806 	if (input_dev_release_keys(dev))
1807 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1808 
1809 	spin_unlock_irqrestore(&dev->event_lock, flags);
1810 	mutex_unlock(&dev->mutex);
1811 }
1812 EXPORT_SYMBOL(input_reset_device);
1813 
1814 static int input_inhibit_device(struct input_dev *dev)
1815 {
1816 	mutex_lock(&dev->mutex);
1817 
1818 	if (dev->inhibited)
1819 		goto out;
1820 
1821 	if (dev->users) {
1822 		if (dev->close)
1823 			dev->close(dev);
1824 		if (dev->poller)
1825 			input_dev_poller_stop(dev->poller);
1826 	}
1827 
1828 	spin_lock_irq(&dev->event_lock);
1829 	input_mt_release_slots(dev);
1830 	input_dev_release_keys(dev);
1831 	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1832 	input_dev_toggle(dev, false);
1833 	spin_unlock_irq(&dev->event_lock);
1834 
1835 	dev->inhibited = true;
1836 
1837 out:
1838 	mutex_unlock(&dev->mutex);
1839 	return 0;
1840 }
1841 
1842 static int input_uninhibit_device(struct input_dev *dev)
1843 {
1844 	int ret = 0;
1845 
1846 	mutex_lock(&dev->mutex);
1847 
1848 	if (!dev->inhibited)
1849 		goto out;
1850 
1851 	if (dev->users) {
1852 		if (dev->open) {
1853 			ret = dev->open(dev);
1854 			if (ret)
1855 				goto out;
1856 		}
1857 		if (dev->poller)
1858 			input_dev_poller_start(dev->poller);
1859 	}
1860 
1861 	dev->inhibited = false;
1862 	spin_lock_irq(&dev->event_lock);
1863 	input_dev_toggle(dev, true);
1864 	spin_unlock_irq(&dev->event_lock);
1865 
1866 out:
1867 	mutex_unlock(&dev->mutex);
1868 	return ret;
1869 }
1870 
1871 static int input_dev_suspend(struct device *dev)
1872 {
1873 	struct input_dev *input_dev = to_input_dev(dev);
1874 
1875 	spin_lock_irq(&input_dev->event_lock);
1876 
1877 	/*
1878 	 * Keys that are pressed now are unlikely to be
1879 	 * still pressed when we resume.
1880 	 */
1881 	if (input_dev_release_keys(input_dev))
1882 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1883 
1884 	/* Turn off LEDs and sounds, if any are active. */
1885 	input_dev_toggle(input_dev, false);
1886 
1887 	spin_unlock_irq(&input_dev->event_lock);
1888 
1889 	return 0;
1890 }
1891 
1892 static int input_dev_resume(struct device *dev)
1893 {
1894 	struct input_dev *input_dev = to_input_dev(dev);
1895 
1896 	spin_lock_irq(&input_dev->event_lock);
1897 
1898 	/* Restore state of LEDs and sounds, if any were active. */
1899 	input_dev_toggle(input_dev, true);
1900 
1901 	spin_unlock_irq(&input_dev->event_lock);
1902 
1903 	return 0;
1904 }
1905 
1906 static int input_dev_freeze(struct device *dev)
1907 {
1908 	struct input_dev *input_dev = to_input_dev(dev);
1909 
1910 	spin_lock_irq(&input_dev->event_lock);
1911 
1912 	/*
1913 	 * Keys that are pressed now are unlikely to be
1914 	 * still pressed when we resume.
1915 	 */
1916 	if (input_dev_release_keys(input_dev))
1917 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1918 
1919 	spin_unlock_irq(&input_dev->event_lock);
1920 
1921 	return 0;
1922 }
1923 
1924 static int input_dev_poweroff(struct device *dev)
1925 {
1926 	struct input_dev *input_dev = to_input_dev(dev);
1927 
1928 	spin_lock_irq(&input_dev->event_lock);
1929 
1930 	/* Turn off LEDs and sounds, if any are active. */
1931 	input_dev_toggle(input_dev, false);
1932 
1933 	spin_unlock_irq(&input_dev->event_lock);
1934 
1935 	return 0;
1936 }
1937 
1938 static const struct dev_pm_ops input_dev_pm_ops = {
1939 	.suspend	= input_dev_suspend,
1940 	.resume		= input_dev_resume,
1941 	.freeze		= input_dev_freeze,
1942 	.poweroff	= input_dev_poweroff,
1943 	.restore	= input_dev_resume,
1944 };
1945 
1946 static const struct device_type input_dev_type = {
1947 	.groups		= input_dev_attr_groups,
1948 	.release	= input_dev_release,
1949 	.uevent		= input_dev_uevent,
1950 	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1951 };
1952 
1953 static char *input_devnode(const struct device *dev, umode_t *mode)
1954 {
1955 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1956 }
1957 
1958 const struct class input_class = {
1959 	.name		= "input",
1960 	.devnode	= input_devnode,
1961 };
1962 EXPORT_SYMBOL_GPL(input_class);
1963 
1964 /**
1965  * input_allocate_device - allocate memory for new input device
1966  *
1967  * Returns prepared struct input_dev or %NULL.
1968  *
1969  * NOTE: Use input_free_device() to free devices that have not been
1970  * registered; input_unregister_device() should be used for already
1971  * registered devices.
1972  */
1973 struct input_dev *input_allocate_device(void)
1974 {
1975 	static atomic_t input_no = ATOMIC_INIT(-1);
1976 	struct input_dev *dev;
1977 
1978 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1979 	if (!dev)
1980 		return NULL;
1981 
1982 	/*
1983 	 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1984 	 * see input_estimate_events_per_packet(). We will tune the number
1985 	 * when we register the device.
1986 	 */
1987 	dev->max_vals = 10;
1988 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1989 	if (!dev->vals) {
1990 		kfree(dev);
1991 		return NULL;
1992 	}
1993 
1994 	mutex_init(&dev->mutex);
1995 	spin_lock_init(&dev->event_lock);
1996 	timer_setup(&dev->timer, NULL, 0);
1997 	INIT_LIST_HEAD(&dev->h_list);
1998 	INIT_LIST_HEAD(&dev->node);
1999 
2000 	dev->dev.type = &input_dev_type;
2001 	dev->dev.class = &input_class;
2002 	device_initialize(&dev->dev);
2003 	/*
2004 	 * From this point on we can no longer simply "kfree(dev)", we need
2005 	 * to use input_free_device() so that device core properly frees its
2006 	 * resources associated with the input device.
2007 	 */
2008 
2009 	dev_set_name(&dev->dev, "input%lu",
2010 		     (unsigned long)atomic_inc_return(&input_no));
2011 
2012 	__module_get(THIS_MODULE);
2013 
2014 	return dev;
2015 }
2016 EXPORT_SYMBOL(input_allocate_device);
2017 
2018 struct input_devres {
2019 	struct input_dev *input;
2020 };
2021 
2022 static int devm_input_device_match(struct device *dev, void *res, void *data)
2023 {
2024 	struct input_devres *devres = res;
2025 
2026 	return devres->input == data;
2027 }
2028 
2029 static void devm_input_device_release(struct device *dev, void *res)
2030 {
2031 	struct input_devres *devres = res;
2032 	struct input_dev *input = devres->input;
2033 
2034 	dev_dbg(dev, "%s: dropping reference to %s\n",
2035 		__func__, dev_name(&input->dev));
2036 	input_put_device(input);
2037 }
2038 
2039 /**
2040  * devm_input_allocate_device - allocate managed input device
2041  * @dev: device owning the input device being created
2042  *
2043  * Returns prepared struct input_dev or %NULL.
2044  *
2045  * Managed input devices do not need to be explicitly unregistered or
2046  * freed as it will be done automatically when owner device unbinds from
2047  * its driver (or binding fails). Once managed input device is allocated,
2048  * it is ready to be set up and registered in the same fashion as regular
2049  * input device. There are no special devm_input_device_[un]register()
2050  * variants, regular ones work with both managed and unmanaged devices,
2051  * should you need them. In most cases however, managed input device need
2052  * not be explicitly unregistered or freed.
2053  *
2054  * NOTE: the owner device is set up as parent of input device and users
2055  * should not override it.
2056  */
2057 struct input_dev *devm_input_allocate_device(struct device *dev)
2058 {
2059 	struct input_dev *input;
2060 	struct input_devres *devres;
2061 
2062 	devres = devres_alloc(devm_input_device_release,
2063 			      sizeof(*devres), GFP_KERNEL);
2064 	if (!devres)
2065 		return NULL;
2066 
2067 	input = input_allocate_device();
2068 	if (!input) {
2069 		devres_free(devres);
2070 		return NULL;
2071 	}
2072 
2073 	input->dev.parent = dev;
2074 	input->devres_managed = true;
2075 
2076 	devres->input = input;
2077 	devres_add(dev, devres);
2078 
2079 	return input;
2080 }
2081 EXPORT_SYMBOL(devm_input_allocate_device);
2082 
2083 /**
2084  * input_free_device - free memory occupied by input_dev structure
2085  * @dev: input device to free
2086  *
2087  * This function should only be used if input_register_device()
2088  * was not called yet or if it failed. Once device was registered
2089  * use input_unregister_device() and memory will be freed once last
2090  * reference to the device is dropped.
2091  *
2092  * Device should be allocated by input_allocate_device().
2093  *
2094  * NOTE: If there are references to the input device then memory
2095  * will not be freed until last reference is dropped.
2096  */
2097 void input_free_device(struct input_dev *dev)
2098 {
2099 	if (dev) {
2100 		if (dev->devres_managed)
2101 			WARN_ON(devres_destroy(dev->dev.parent,
2102 						devm_input_device_release,
2103 						devm_input_device_match,
2104 						dev));
2105 		input_put_device(dev);
2106 	}
2107 }
2108 EXPORT_SYMBOL(input_free_device);
2109 
2110 /**
2111  * input_set_timestamp - set timestamp for input events
2112  * @dev: input device to set timestamp for
2113  * @timestamp: the time at which the event has occurred
2114  *   in CLOCK_MONOTONIC
2115  *
2116  * This function is intended to provide to the input system a more
2117  * accurate time of when an event actually occurred. The driver should
2118  * call this function as soon as a timestamp is acquired ensuring
2119  * clock conversions in input_set_timestamp are done correctly.
2120  *
2121  * The system entering suspend state between timestamp acquisition and
2122  * calling input_set_timestamp can result in inaccurate conversions.
2123  */
2124 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2125 {
2126 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2127 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2128 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2129 							   TK_OFFS_BOOT);
2130 }
2131 EXPORT_SYMBOL(input_set_timestamp);
2132 
2133 /**
2134  * input_get_timestamp - get timestamp for input events
2135  * @dev: input device to get timestamp from
2136  *
2137  * A valid timestamp is a timestamp of non-zero value.
2138  */
2139 ktime_t *input_get_timestamp(struct input_dev *dev)
2140 {
2141 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2142 
2143 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2144 		input_set_timestamp(dev, ktime_get());
2145 
2146 	return dev->timestamp;
2147 }
2148 EXPORT_SYMBOL(input_get_timestamp);
2149 
2150 /**
2151  * input_set_capability - mark device as capable of a certain event
2152  * @dev: device that is capable of emitting or accepting event
2153  * @type: type of the event (EV_KEY, EV_REL, etc...)
2154  * @code: event code
2155  *
2156  * In addition to setting up corresponding bit in appropriate capability
2157  * bitmap the function also adjusts dev->evbit.
2158  */
2159 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2160 {
2161 	if (type < EV_CNT && input_max_code[type] &&
2162 	    code > input_max_code[type]) {
2163 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2164 		       type);
2165 		dump_stack();
2166 		return;
2167 	}
2168 
2169 	switch (type) {
2170 	case EV_KEY:
2171 		__set_bit(code, dev->keybit);
2172 		break;
2173 
2174 	case EV_REL:
2175 		__set_bit(code, dev->relbit);
2176 		break;
2177 
2178 	case EV_ABS:
2179 		input_alloc_absinfo(dev);
2180 		__set_bit(code, dev->absbit);
2181 		break;
2182 
2183 	case EV_MSC:
2184 		__set_bit(code, dev->mscbit);
2185 		break;
2186 
2187 	case EV_SW:
2188 		__set_bit(code, dev->swbit);
2189 		break;
2190 
2191 	case EV_LED:
2192 		__set_bit(code, dev->ledbit);
2193 		break;
2194 
2195 	case EV_SND:
2196 		__set_bit(code, dev->sndbit);
2197 		break;
2198 
2199 	case EV_FF:
2200 		__set_bit(code, dev->ffbit);
2201 		break;
2202 
2203 	case EV_PWR:
2204 		/* do nothing */
2205 		break;
2206 
2207 	default:
2208 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2209 		dump_stack();
2210 		return;
2211 	}
2212 
2213 	__set_bit(type, dev->evbit);
2214 }
2215 EXPORT_SYMBOL(input_set_capability);
2216 
2217 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2218 {
2219 	int mt_slots;
2220 	int i;
2221 	unsigned int events;
2222 
2223 	if (dev->mt) {
2224 		mt_slots = dev->mt->num_slots;
2225 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2226 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2227 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2228 		mt_slots = clamp(mt_slots, 2, 32);
2229 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2230 		mt_slots = 2;
2231 	} else {
2232 		mt_slots = 0;
2233 	}
2234 
2235 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2236 
2237 	if (test_bit(EV_ABS, dev->evbit))
2238 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2239 			events += input_is_mt_axis(i) ? mt_slots : 1;
2240 
2241 	if (test_bit(EV_REL, dev->evbit))
2242 		events += bitmap_weight(dev->relbit, REL_CNT);
2243 
2244 	/* Make room for KEY and MSC events */
2245 	events += 7;
2246 
2247 	return events;
2248 }
2249 
2250 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2251 	do {								\
2252 		if (!test_bit(EV_##type, dev->evbit))			\
2253 			memset(dev->bits##bit, 0,			\
2254 				sizeof(dev->bits##bit));		\
2255 	} while (0)
2256 
2257 static void input_cleanse_bitmasks(struct input_dev *dev)
2258 {
2259 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2260 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2261 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2262 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2263 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2264 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2265 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2266 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2267 }
2268 
2269 static void __input_unregister_device(struct input_dev *dev)
2270 {
2271 	struct input_handle *handle, *next;
2272 
2273 	input_disconnect_device(dev);
2274 
2275 	mutex_lock(&input_mutex);
2276 
2277 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2278 		handle->handler->disconnect(handle);
2279 	WARN_ON(!list_empty(&dev->h_list));
2280 
2281 	del_timer_sync(&dev->timer);
2282 	list_del_init(&dev->node);
2283 
2284 	input_wakeup_procfs_readers();
2285 
2286 	mutex_unlock(&input_mutex);
2287 
2288 	device_del(&dev->dev);
2289 }
2290 
2291 static void devm_input_device_unregister(struct device *dev, void *res)
2292 {
2293 	struct input_devres *devres = res;
2294 	struct input_dev *input = devres->input;
2295 
2296 	dev_dbg(dev, "%s: unregistering device %s\n",
2297 		__func__, dev_name(&input->dev));
2298 	__input_unregister_device(input);
2299 }
2300 
2301 /*
2302  * Generate software autorepeat event. Note that we take
2303  * dev->event_lock here to avoid racing with input_event
2304  * which may cause keys get "stuck".
2305  */
2306 static void input_repeat_key(struct timer_list *t)
2307 {
2308 	struct input_dev *dev = from_timer(dev, t, timer);
2309 	unsigned long flags;
2310 
2311 	spin_lock_irqsave(&dev->event_lock, flags);
2312 
2313 	if (!dev->inhibited &&
2314 	    test_bit(dev->repeat_key, dev->key) &&
2315 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2316 
2317 		input_set_timestamp(dev, ktime_get());
2318 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2319 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2320 
2321 		if (dev->rep[REP_PERIOD])
2322 			mod_timer(&dev->timer, jiffies +
2323 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2324 	}
2325 
2326 	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 }
2328 
2329 /**
2330  * input_enable_softrepeat - enable software autorepeat
2331  * @dev: input device
2332  * @delay: repeat delay
2333  * @period: repeat period
2334  *
2335  * Enable software autorepeat on the input device.
2336  */
2337 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2338 {
2339 	dev->timer.function = input_repeat_key;
2340 	dev->rep[REP_DELAY] = delay;
2341 	dev->rep[REP_PERIOD] = period;
2342 }
2343 EXPORT_SYMBOL(input_enable_softrepeat);
2344 
2345 bool input_device_enabled(struct input_dev *dev)
2346 {
2347 	lockdep_assert_held(&dev->mutex);
2348 
2349 	return !dev->inhibited && dev->users > 0;
2350 }
2351 EXPORT_SYMBOL_GPL(input_device_enabled);
2352 
2353 static int input_device_tune_vals(struct input_dev *dev)
2354 {
2355 	struct input_value *vals;
2356 	unsigned int packet_size;
2357 	unsigned int max_vals;
2358 
2359 	packet_size = input_estimate_events_per_packet(dev);
2360 	if (dev->hint_events_per_packet < packet_size)
2361 		dev->hint_events_per_packet = packet_size;
2362 
2363 	max_vals = dev->hint_events_per_packet + 2;
2364 	if (dev->max_vals >= max_vals)
2365 		return 0;
2366 
2367 	vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2368 	if (!vals)
2369 		return -ENOMEM;
2370 
2371 	spin_lock_irq(&dev->event_lock);
2372 	dev->max_vals = max_vals;
2373 	swap(dev->vals, vals);
2374 	spin_unlock_irq(&dev->event_lock);
2375 
2376 	/* Because of swap() above, this frees the old vals memory */
2377 	kfree(vals);
2378 
2379 	return 0;
2380 }
2381 
2382 /**
2383  * input_register_device - register device with input core
2384  * @dev: device to be registered
2385  *
2386  * This function registers device with input core. The device must be
2387  * allocated with input_allocate_device() and all it's capabilities
2388  * set up before registering.
2389  * If function fails the device must be freed with input_free_device().
2390  * Once device has been successfully registered it can be unregistered
2391  * with input_unregister_device(); input_free_device() should not be
2392  * called in this case.
2393  *
2394  * Note that this function is also used to register managed input devices
2395  * (ones allocated with devm_input_allocate_device()). Such managed input
2396  * devices need not be explicitly unregistered or freed, their tear down
2397  * is controlled by the devres infrastructure. It is also worth noting
2398  * that tear down of managed input devices is internally a 2-step process:
2399  * registered managed input device is first unregistered, but stays in
2400  * memory and can still handle input_event() calls (although events will
2401  * not be delivered anywhere). The freeing of managed input device will
2402  * happen later, when devres stack is unwound to the point where device
2403  * allocation was made.
2404  */
2405 int input_register_device(struct input_dev *dev)
2406 {
2407 	struct input_devres *devres = NULL;
2408 	struct input_handler *handler;
2409 	const char *path;
2410 	int error;
2411 
2412 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2413 		dev_err(&dev->dev,
2414 			"Absolute device without dev->absinfo, refusing to register\n");
2415 		return -EINVAL;
2416 	}
2417 
2418 	if (dev->devres_managed) {
2419 		devres = devres_alloc(devm_input_device_unregister,
2420 				      sizeof(*devres), GFP_KERNEL);
2421 		if (!devres)
2422 			return -ENOMEM;
2423 
2424 		devres->input = dev;
2425 	}
2426 
2427 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2428 	__set_bit(EV_SYN, dev->evbit);
2429 
2430 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2431 	__clear_bit(KEY_RESERVED, dev->keybit);
2432 
2433 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2434 	input_cleanse_bitmasks(dev);
2435 
2436 	error = input_device_tune_vals(dev);
2437 	if (error)
2438 		goto err_devres_free;
2439 
2440 	/*
2441 	 * If delay and period are pre-set by the driver, then autorepeating
2442 	 * is handled by the driver itself and we don't do it in input.c.
2443 	 */
2444 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2445 		input_enable_softrepeat(dev, 250, 33);
2446 
2447 	if (!dev->getkeycode)
2448 		dev->getkeycode = input_default_getkeycode;
2449 
2450 	if (!dev->setkeycode)
2451 		dev->setkeycode = input_default_setkeycode;
2452 
2453 	if (dev->poller)
2454 		input_dev_poller_finalize(dev->poller);
2455 
2456 	error = device_add(&dev->dev);
2457 	if (error)
2458 		goto err_devres_free;
2459 
2460 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2461 	pr_info("%s as %s\n",
2462 		dev->name ? dev->name : "Unspecified device",
2463 		path ? path : "N/A");
2464 	kfree(path);
2465 
2466 	error = mutex_lock_interruptible(&input_mutex);
2467 	if (error)
2468 		goto err_device_del;
2469 
2470 	list_add_tail(&dev->node, &input_dev_list);
2471 
2472 	list_for_each_entry(handler, &input_handler_list, node)
2473 		input_attach_handler(dev, handler);
2474 
2475 	input_wakeup_procfs_readers();
2476 
2477 	mutex_unlock(&input_mutex);
2478 
2479 	if (dev->devres_managed) {
2480 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2481 			__func__, dev_name(&dev->dev));
2482 		devres_add(dev->dev.parent, devres);
2483 	}
2484 	return 0;
2485 
2486 err_device_del:
2487 	device_del(&dev->dev);
2488 err_devres_free:
2489 	devres_free(devres);
2490 	return error;
2491 }
2492 EXPORT_SYMBOL(input_register_device);
2493 
2494 /**
2495  * input_unregister_device - unregister previously registered device
2496  * @dev: device to be unregistered
2497  *
2498  * This function unregisters an input device. Once device is unregistered
2499  * the caller should not try to access it as it may get freed at any moment.
2500  */
2501 void input_unregister_device(struct input_dev *dev)
2502 {
2503 	if (dev->devres_managed) {
2504 		WARN_ON(devres_destroy(dev->dev.parent,
2505 					devm_input_device_unregister,
2506 					devm_input_device_match,
2507 					dev));
2508 		__input_unregister_device(dev);
2509 		/*
2510 		 * We do not do input_put_device() here because it will be done
2511 		 * when 2nd devres fires up.
2512 		 */
2513 	} else {
2514 		__input_unregister_device(dev);
2515 		input_put_device(dev);
2516 	}
2517 }
2518 EXPORT_SYMBOL(input_unregister_device);
2519 
2520 static int input_handler_check_methods(const struct input_handler *handler)
2521 {
2522 	int count = 0;
2523 
2524 	if (handler->filter)
2525 		count++;
2526 	if (handler->events)
2527 		count++;
2528 	if (handler->event)
2529 		count++;
2530 
2531 	if (count > 1) {
2532 		pr_err("%s: only one event processing method can be defined (%s)\n",
2533 		       __func__, handler->name);
2534 		return -EINVAL;
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 /*
2541  * An implementation of input_handler's events() method that simply
2542  * invokes handler->event() method for each event one by one.
2543  */
2544 static unsigned int input_handler_events_default(struct input_handle *handle,
2545 						 struct input_value *vals,
2546 						 unsigned int count)
2547 {
2548 	struct input_handler *handler = handle->handler;
2549 	struct input_value *v;
2550 
2551 	for (v = vals; v != vals + count; v++)
2552 		handler->event(handle, v->type, v->code, v->value);
2553 
2554 	return count;
2555 }
2556 
2557 /*
2558  * An implementation of input_handler's events() method that invokes
2559  * handler->filter() method for each event one by one and removes events
2560  * that were filtered out from the "vals" array.
2561  */
2562 static unsigned int input_handler_events_filter(struct input_handle *handle,
2563 						struct input_value *vals,
2564 						unsigned int count)
2565 {
2566 	struct input_handler *handler = handle->handler;
2567 	struct input_value *end = vals;
2568 	struct input_value *v;
2569 
2570 	for (v = vals; v != vals + count; v++) {
2571 		if (handler->filter(handle, v->type, v->code, v->value))
2572 			continue;
2573 		if (end != v)
2574 			*end = *v;
2575 		end++;
2576 	}
2577 
2578 	return end - vals;
2579 }
2580 
2581 /*
2582  * An implementation of input_handler's events() method that does nothing.
2583  */
2584 static unsigned int input_handler_events_null(struct input_handle *handle,
2585 					      struct input_value *vals,
2586 					      unsigned int count)
2587 {
2588 	return count;
2589 }
2590 
2591 /**
2592  * input_register_handler - register a new input handler
2593  * @handler: handler to be registered
2594  *
2595  * This function registers a new input handler (interface) for input
2596  * devices in the system and attaches it to all input devices that
2597  * are compatible with the handler.
2598  */
2599 int input_register_handler(struct input_handler *handler)
2600 {
2601 	struct input_dev *dev;
2602 	int error;
2603 
2604 	error = input_handler_check_methods(handler);
2605 	if (error)
2606 		return error;
2607 
2608 	INIT_LIST_HEAD(&handler->h_list);
2609 
2610 	if (handler->filter)
2611 		handler->events = input_handler_events_filter;
2612 	else if (handler->event)
2613 		handler->events = input_handler_events_default;
2614 	else if (!handler->events)
2615 		handler->events = input_handler_events_null;
2616 
2617 	error = mutex_lock_interruptible(&input_mutex);
2618 	if (error)
2619 		return error;
2620 
2621 	list_add_tail(&handler->node, &input_handler_list);
2622 
2623 	list_for_each_entry(dev, &input_dev_list, node)
2624 		input_attach_handler(dev, handler);
2625 
2626 	input_wakeup_procfs_readers();
2627 
2628 	mutex_unlock(&input_mutex);
2629 	return 0;
2630 }
2631 EXPORT_SYMBOL(input_register_handler);
2632 
2633 /**
2634  * input_unregister_handler - unregisters an input handler
2635  * @handler: handler to be unregistered
2636  *
2637  * This function disconnects a handler from its input devices and
2638  * removes it from lists of known handlers.
2639  */
2640 void input_unregister_handler(struct input_handler *handler)
2641 {
2642 	struct input_handle *handle, *next;
2643 
2644 	mutex_lock(&input_mutex);
2645 
2646 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2647 		handler->disconnect(handle);
2648 	WARN_ON(!list_empty(&handler->h_list));
2649 
2650 	list_del_init(&handler->node);
2651 
2652 	input_wakeup_procfs_readers();
2653 
2654 	mutex_unlock(&input_mutex);
2655 }
2656 EXPORT_SYMBOL(input_unregister_handler);
2657 
2658 /**
2659  * input_handler_for_each_handle - handle iterator
2660  * @handler: input handler to iterate
2661  * @data: data for the callback
2662  * @fn: function to be called for each handle
2663  *
2664  * Iterate over @bus's list of devices, and call @fn for each, passing
2665  * it @data and stop when @fn returns a non-zero value. The function is
2666  * using RCU to traverse the list and therefore may be using in atomic
2667  * contexts. The @fn callback is invoked from RCU critical section and
2668  * thus must not sleep.
2669  */
2670 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2671 				  int (*fn)(struct input_handle *, void *))
2672 {
2673 	struct input_handle *handle;
2674 	int retval = 0;
2675 
2676 	rcu_read_lock();
2677 
2678 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2679 		retval = fn(handle, data);
2680 		if (retval)
2681 			break;
2682 	}
2683 
2684 	rcu_read_unlock();
2685 
2686 	return retval;
2687 }
2688 EXPORT_SYMBOL(input_handler_for_each_handle);
2689 
2690 /**
2691  * input_register_handle - register a new input handle
2692  * @handle: handle to register
2693  *
2694  * This function puts a new input handle onto device's
2695  * and handler's lists so that events can flow through
2696  * it once it is opened using input_open_device().
2697  *
2698  * This function is supposed to be called from handler's
2699  * connect() method.
2700  */
2701 int input_register_handle(struct input_handle *handle)
2702 {
2703 	struct input_handler *handler = handle->handler;
2704 	struct input_dev *dev = handle->dev;
2705 	int error;
2706 
2707 	/*
2708 	 * We take dev->mutex here to prevent race with
2709 	 * input_release_device().
2710 	 */
2711 	error = mutex_lock_interruptible(&dev->mutex);
2712 	if (error)
2713 		return error;
2714 
2715 	/*
2716 	 * Filters go to the head of the list, normal handlers
2717 	 * to the tail.
2718 	 */
2719 	if (handler->filter)
2720 		list_add_rcu(&handle->d_node, &dev->h_list);
2721 	else
2722 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2723 
2724 	mutex_unlock(&dev->mutex);
2725 
2726 	/*
2727 	 * Since we are supposed to be called from ->connect()
2728 	 * which is mutually exclusive with ->disconnect()
2729 	 * we can't be racing with input_unregister_handle()
2730 	 * and so separate lock is not needed here.
2731 	 */
2732 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2733 
2734 	if (handler->start)
2735 		handler->start(handle);
2736 
2737 	return 0;
2738 }
2739 EXPORT_SYMBOL(input_register_handle);
2740 
2741 /**
2742  * input_unregister_handle - unregister an input handle
2743  * @handle: handle to unregister
2744  *
2745  * This function removes input handle from device's
2746  * and handler's lists.
2747  *
2748  * This function is supposed to be called from handler's
2749  * disconnect() method.
2750  */
2751 void input_unregister_handle(struct input_handle *handle)
2752 {
2753 	struct input_dev *dev = handle->dev;
2754 
2755 	list_del_rcu(&handle->h_node);
2756 
2757 	/*
2758 	 * Take dev->mutex to prevent race with input_release_device().
2759 	 */
2760 	mutex_lock(&dev->mutex);
2761 	list_del_rcu(&handle->d_node);
2762 	mutex_unlock(&dev->mutex);
2763 
2764 	synchronize_rcu();
2765 }
2766 EXPORT_SYMBOL(input_unregister_handle);
2767 
2768 /**
2769  * input_get_new_minor - allocates a new input minor number
2770  * @legacy_base: beginning or the legacy range to be searched
2771  * @legacy_num: size of legacy range
2772  * @allow_dynamic: whether we can also take ID from the dynamic range
2773  *
2774  * This function allocates a new device minor for from input major namespace.
2775  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2776  * parameters and whether ID can be allocated from dynamic range if there are
2777  * no free IDs in legacy range.
2778  */
2779 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2780 			bool allow_dynamic)
2781 {
2782 	/*
2783 	 * This function should be called from input handler's ->connect()
2784 	 * methods, which are serialized with input_mutex, so no additional
2785 	 * locking is needed here.
2786 	 */
2787 	if (legacy_base >= 0) {
2788 		int minor = ida_alloc_range(&input_ida, legacy_base,
2789 					    legacy_base + legacy_num - 1,
2790 					    GFP_KERNEL);
2791 		if (minor >= 0 || !allow_dynamic)
2792 			return minor;
2793 	}
2794 
2795 	return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2796 			       INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2797 }
2798 EXPORT_SYMBOL(input_get_new_minor);
2799 
2800 /**
2801  * input_free_minor - release previously allocated minor
2802  * @minor: minor to be released
2803  *
2804  * This function releases previously allocated input minor so that it can be
2805  * reused later.
2806  */
2807 void input_free_minor(unsigned int minor)
2808 {
2809 	ida_free(&input_ida, minor);
2810 }
2811 EXPORT_SYMBOL(input_free_minor);
2812 
2813 static int __init input_init(void)
2814 {
2815 	int err;
2816 
2817 	err = class_register(&input_class);
2818 	if (err) {
2819 		pr_err("unable to register input_dev class\n");
2820 		return err;
2821 	}
2822 
2823 	err = input_proc_init();
2824 	if (err)
2825 		goto fail1;
2826 
2827 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2828 				     INPUT_MAX_CHAR_DEVICES, "input");
2829 	if (err) {
2830 		pr_err("unable to register char major %d", INPUT_MAJOR);
2831 		goto fail2;
2832 	}
2833 
2834 	return 0;
2835 
2836  fail2:	input_proc_exit();
2837  fail1:	class_unregister(&input_class);
2838 	return err;
2839 }
2840 
2841 static void __exit input_exit(void)
2842 {
2843 	input_proc_exit();
2844 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2845 				 INPUT_MAX_CHAR_DEVICES);
2846 	class_unregister(&input_class);
2847 }
2848 
2849 subsys_initcall(input_init);
2850 module_exit(input_exit);
2851