1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #include <linux/init.h> 14 #include <linux/types.h> 15 #include <linux/input.h> 16 #include <linux/module.h> 17 #include <linux/random.h> 18 #include <linux/major.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/poll.h> 23 #include <linux/device.h> 24 #include <linux/mutex.h> 25 #include <linux/rcupdate.h> 26 #include <linux/smp_lock.h> 27 #include "input-compat.h" 28 29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 30 MODULE_DESCRIPTION("Input core"); 31 MODULE_LICENSE("GPL"); 32 33 #define INPUT_DEVICES 256 34 35 /* 36 * EV_ABS events which should not be cached are listed here. 37 */ 38 static unsigned int input_abs_bypass_init_data[] __initdata = { 39 ABS_MT_TOUCH_MAJOR, 40 ABS_MT_TOUCH_MINOR, 41 ABS_MT_WIDTH_MAJOR, 42 ABS_MT_WIDTH_MINOR, 43 ABS_MT_ORIENTATION, 44 ABS_MT_POSITION_X, 45 ABS_MT_POSITION_Y, 46 ABS_MT_TOOL_TYPE, 47 ABS_MT_BLOB_ID, 48 ABS_MT_TRACKING_ID, 49 0 50 }; 51 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)]; 52 53 static LIST_HEAD(input_dev_list); 54 static LIST_HEAD(input_handler_list); 55 56 /* 57 * input_mutex protects access to both input_dev_list and input_handler_list. 58 * This also causes input_[un]register_device and input_[un]register_handler 59 * be mutually exclusive which simplifies locking in drivers implementing 60 * input handlers. 61 */ 62 static DEFINE_MUTEX(input_mutex); 63 64 static struct input_handler *input_table[8]; 65 66 static inline int is_event_supported(unsigned int code, 67 unsigned long *bm, unsigned int max) 68 { 69 return code <= max && test_bit(code, bm); 70 } 71 72 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 73 { 74 if (fuzz) { 75 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 76 return old_val; 77 78 if (value > old_val - fuzz && value < old_val + fuzz) 79 return (old_val * 3 + value) / 4; 80 81 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 82 return (old_val + value) / 2; 83 } 84 85 return value; 86 } 87 88 /* 89 * Pass event through all open handles. This function is called with 90 * dev->event_lock held and interrupts disabled. 91 */ 92 static void input_pass_event(struct input_dev *dev, 93 unsigned int type, unsigned int code, int value) 94 { 95 struct input_handle *handle; 96 97 rcu_read_lock(); 98 99 handle = rcu_dereference(dev->grab); 100 if (handle) 101 handle->handler->event(handle, type, code, value); 102 else 103 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 104 if (handle->open) 105 handle->handler->event(handle, 106 type, code, value); 107 rcu_read_unlock(); 108 } 109 110 /* 111 * Generate software autorepeat event. Note that we take 112 * dev->event_lock here to avoid racing with input_event 113 * which may cause keys get "stuck". 114 */ 115 static void input_repeat_key(unsigned long data) 116 { 117 struct input_dev *dev = (void *) data; 118 unsigned long flags; 119 120 spin_lock_irqsave(&dev->event_lock, flags); 121 122 if (test_bit(dev->repeat_key, dev->key) && 123 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 124 125 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 126 127 if (dev->sync) { 128 /* 129 * Only send SYN_REPORT if we are not in a middle 130 * of driver parsing a new hardware packet. 131 * Otherwise assume that the driver will send 132 * SYN_REPORT once it's done. 133 */ 134 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 135 } 136 137 if (dev->rep[REP_PERIOD]) 138 mod_timer(&dev->timer, jiffies + 139 msecs_to_jiffies(dev->rep[REP_PERIOD])); 140 } 141 142 spin_unlock_irqrestore(&dev->event_lock, flags); 143 } 144 145 static void input_start_autorepeat(struct input_dev *dev, int code) 146 { 147 if (test_bit(EV_REP, dev->evbit) && 148 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 149 dev->timer.data) { 150 dev->repeat_key = code; 151 mod_timer(&dev->timer, 152 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 153 } 154 } 155 156 static void input_stop_autorepeat(struct input_dev *dev) 157 { 158 del_timer(&dev->timer); 159 } 160 161 #define INPUT_IGNORE_EVENT 0 162 #define INPUT_PASS_TO_HANDLERS 1 163 #define INPUT_PASS_TO_DEVICE 2 164 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 165 166 static void input_handle_event(struct input_dev *dev, 167 unsigned int type, unsigned int code, int value) 168 { 169 int disposition = INPUT_IGNORE_EVENT; 170 171 switch (type) { 172 173 case EV_SYN: 174 switch (code) { 175 case SYN_CONFIG: 176 disposition = INPUT_PASS_TO_ALL; 177 break; 178 179 case SYN_REPORT: 180 if (!dev->sync) { 181 dev->sync = 1; 182 disposition = INPUT_PASS_TO_HANDLERS; 183 } 184 break; 185 case SYN_MT_REPORT: 186 dev->sync = 0; 187 disposition = INPUT_PASS_TO_HANDLERS; 188 break; 189 } 190 break; 191 192 case EV_KEY: 193 if (is_event_supported(code, dev->keybit, KEY_MAX) && 194 !!test_bit(code, dev->key) != value) { 195 196 if (value != 2) { 197 __change_bit(code, dev->key); 198 if (value) 199 input_start_autorepeat(dev, code); 200 else 201 input_stop_autorepeat(dev); 202 } 203 204 disposition = INPUT_PASS_TO_HANDLERS; 205 } 206 break; 207 208 case EV_SW: 209 if (is_event_supported(code, dev->swbit, SW_MAX) && 210 !!test_bit(code, dev->sw) != value) { 211 212 __change_bit(code, dev->sw); 213 disposition = INPUT_PASS_TO_HANDLERS; 214 } 215 break; 216 217 case EV_ABS: 218 if (is_event_supported(code, dev->absbit, ABS_MAX)) { 219 220 if (test_bit(code, input_abs_bypass)) { 221 disposition = INPUT_PASS_TO_HANDLERS; 222 break; 223 } 224 225 value = input_defuzz_abs_event(value, 226 dev->abs[code], dev->absfuzz[code]); 227 228 if (dev->abs[code] != value) { 229 dev->abs[code] = value; 230 disposition = INPUT_PASS_TO_HANDLERS; 231 } 232 } 233 break; 234 235 case EV_REL: 236 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 237 disposition = INPUT_PASS_TO_HANDLERS; 238 239 break; 240 241 case EV_MSC: 242 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 243 disposition = INPUT_PASS_TO_ALL; 244 245 break; 246 247 case EV_LED: 248 if (is_event_supported(code, dev->ledbit, LED_MAX) && 249 !!test_bit(code, dev->led) != value) { 250 251 __change_bit(code, dev->led); 252 disposition = INPUT_PASS_TO_ALL; 253 } 254 break; 255 256 case EV_SND: 257 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 258 259 if (!!test_bit(code, dev->snd) != !!value) 260 __change_bit(code, dev->snd); 261 disposition = INPUT_PASS_TO_ALL; 262 } 263 break; 264 265 case EV_REP: 266 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 267 dev->rep[code] = value; 268 disposition = INPUT_PASS_TO_ALL; 269 } 270 break; 271 272 case EV_FF: 273 if (value >= 0) 274 disposition = INPUT_PASS_TO_ALL; 275 break; 276 277 case EV_PWR: 278 disposition = INPUT_PASS_TO_ALL; 279 break; 280 } 281 282 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 283 dev->sync = 0; 284 285 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 286 dev->event(dev, type, code, value); 287 288 if (disposition & INPUT_PASS_TO_HANDLERS) 289 input_pass_event(dev, type, code, value); 290 } 291 292 /** 293 * input_event() - report new input event 294 * @dev: device that generated the event 295 * @type: type of the event 296 * @code: event code 297 * @value: value of the event 298 * 299 * This function should be used by drivers implementing various input 300 * devices to report input events. See also input_inject_event(). 301 * 302 * NOTE: input_event() may be safely used right after input device was 303 * allocated with input_allocate_device(), even before it is registered 304 * with input_register_device(), but the event will not reach any of the 305 * input handlers. Such early invocation of input_event() may be used 306 * to 'seed' initial state of a switch or initial position of absolute 307 * axis, etc. 308 */ 309 void input_event(struct input_dev *dev, 310 unsigned int type, unsigned int code, int value) 311 { 312 unsigned long flags; 313 314 if (is_event_supported(type, dev->evbit, EV_MAX)) { 315 316 spin_lock_irqsave(&dev->event_lock, flags); 317 add_input_randomness(type, code, value); 318 input_handle_event(dev, type, code, value); 319 spin_unlock_irqrestore(&dev->event_lock, flags); 320 } 321 } 322 EXPORT_SYMBOL(input_event); 323 324 /** 325 * input_inject_event() - send input event from input handler 326 * @handle: input handle to send event through 327 * @type: type of the event 328 * @code: event code 329 * @value: value of the event 330 * 331 * Similar to input_event() but will ignore event if device is 332 * "grabbed" and handle injecting event is not the one that owns 333 * the device. 334 */ 335 void input_inject_event(struct input_handle *handle, 336 unsigned int type, unsigned int code, int value) 337 { 338 struct input_dev *dev = handle->dev; 339 struct input_handle *grab; 340 unsigned long flags; 341 342 if (is_event_supported(type, dev->evbit, EV_MAX)) { 343 spin_lock_irqsave(&dev->event_lock, flags); 344 345 rcu_read_lock(); 346 grab = rcu_dereference(dev->grab); 347 if (!grab || grab == handle) 348 input_handle_event(dev, type, code, value); 349 rcu_read_unlock(); 350 351 spin_unlock_irqrestore(&dev->event_lock, flags); 352 } 353 } 354 EXPORT_SYMBOL(input_inject_event); 355 356 /** 357 * input_grab_device - grabs device for exclusive use 358 * @handle: input handle that wants to own the device 359 * 360 * When a device is grabbed by an input handle all events generated by 361 * the device are delivered only to this handle. Also events injected 362 * by other input handles are ignored while device is grabbed. 363 */ 364 int input_grab_device(struct input_handle *handle) 365 { 366 struct input_dev *dev = handle->dev; 367 int retval; 368 369 retval = mutex_lock_interruptible(&dev->mutex); 370 if (retval) 371 return retval; 372 373 if (dev->grab) { 374 retval = -EBUSY; 375 goto out; 376 } 377 378 rcu_assign_pointer(dev->grab, handle); 379 synchronize_rcu(); 380 381 out: 382 mutex_unlock(&dev->mutex); 383 return retval; 384 } 385 EXPORT_SYMBOL(input_grab_device); 386 387 static void __input_release_device(struct input_handle *handle) 388 { 389 struct input_dev *dev = handle->dev; 390 391 if (dev->grab == handle) { 392 rcu_assign_pointer(dev->grab, NULL); 393 /* Make sure input_pass_event() notices that grab is gone */ 394 synchronize_rcu(); 395 396 list_for_each_entry(handle, &dev->h_list, d_node) 397 if (handle->open && handle->handler->start) 398 handle->handler->start(handle); 399 } 400 } 401 402 /** 403 * input_release_device - release previously grabbed device 404 * @handle: input handle that owns the device 405 * 406 * Releases previously grabbed device so that other input handles can 407 * start receiving input events. Upon release all handlers attached 408 * to the device have their start() method called so they have a change 409 * to synchronize device state with the rest of the system. 410 */ 411 void input_release_device(struct input_handle *handle) 412 { 413 struct input_dev *dev = handle->dev; 414 415 mutex_lock(&dev->mutex); 416 __input_release_device(handle); 417 mutex_unlock(&dev->mutex); 418 } 419 EXPORT_SYMBOL(input_release_device); 420 421 /** 422 * input_open_device - open input device 423 * @handle: handle through which device is being accessed 424 * 425 * This function should be called by input handlers when they 426 * want to start receive events from given input device. 427 */ 428 int input_open_device(struct input_handle *handle) 429 { 430 struct input_dev *dev = handle->dev; 431 int retval; 432 433 retval = mutex_lock_interruptible(&dev->mutex); 434 if (retval) 435 return retval; 436 437 if (dev->going_away) { 438 retval = -ENODEV; 439 goto out; 440 } 441 442 handle->open++; 443 444 if (!dev->users++ && dev->open) 445 retval = dev->open(dev); 446 447 if (retval) { 448 dev->users--; 449 if (!--handle->open) { 450 /* 451 * Make sure we are not delivering any more events 452 * through this handle 453 */ 454 synchronize_rcu(); 455 } 456 } 457 458 out: 459 mutex_unlock(&dev->mutex); 460 return retval; 461 } 462 EXPORT_SYMBOL(input_open_device); 463 464 int input_flush_device(struct input_handle *handle, struct file *file) 465 { 466 struct input_dev *dev = handle->dev; 467 int retval; 468 469 retval = mutex_lock_interruptible(&dev->mutex); 470 if (retval) 471 return retval; 472 473 if (dev->flush) 474 retval = dev->flush(dev, file); 475 476 mutex_unlock(&dev->mutex); 477 return retval; 478 } 479 EXPORT_SYMBOL(input_flush_device); 480 481 /** 482 * input_close_device - close input device 483 * @handle: handle through which device is being accessed 484 * 485 * This function should be called by input handlers when they 486 * want to stop receive events from given input device. 487 */ 488 void input_close_device(struct input_handle *handle) 489 { 490 struct input_dev *dev = handle->dev; 491 492 mutex_lock(&dev->mutex); 493 494 __input_release_device(handle); 495 496 if (!--dev->users && dev->close) 497 dev->close(dev); 498 499 if (!--handle->open) { 500 /* 501 * synchronize_rcu() makes sure that input_pass_event() 502 * completed and that no more input events are delivered 503 * through this handle 504 */ 505 synchronize_rcu(); 506 } 507 508 mutex_unlock(&dev->mutex); 509 } 510 EXPORT_SYMBOL(input_close_device); 511 512 /* 513 * Prepare device for unregistering 514 */ 515 static void input_disconnect_device(struct input_dev *dev) 516 { 517 struct input_handle *handle; 518 int code; 519 520 /* 521 * Mark device as going away. Note that we take dev->mutex here 522 * not to protect access to dev->going_away but rather to ensure 523 * that there are no threads in the middle of input_open_device() 524 */ 525 mutex_lock(&dev->mutex); 526 dev->going_away = true; 527 mutex_unlock(&dev->mutex); 528 529 spin_lock_irq(&dev->event_lock); 530 531 /* 532 * Simulate keyup events for all pressed keys so that handlers 533 * are not left with "stuck" keys. The driver may continue 534 * generate events even after we done here but they will not 535 * reach any handlers. 536 */ 537 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 538 for (code = 0; code <= KEY_MAX; code++) { 539 if (is_event_supported(code, dev->keybit, KEY_MAX) && 540 __test_and_clear_bit(code, dev->key)) { 541 input_pass_event(dev, EV_KEY, code, 0); 542 } 543 } 544 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 545 } 546 547 list_for_each_entry(handle, &dev->h_list, d_node) 548 handle->open = 0; 549 550 spin_unlock_irq(&dev->event_lock); 551 } 552 553 static int input_fetch_keycode(struct input_dev *dev, int scancode) 554 { 555 switch (dev->keycodesize) { 556 case 1: 557 return ((u8 *)dev->keycode)[scancode]; 558 559 case 2: 560 return ((u16 *)dev->keycode)[scancode]; 561 562 default: 563 return ((u32 *)dev->keycode)[scancode]; 564 } 565 } 566 567 static int input_default_getkeycode(struct input_dev *dev, 568 int scancode, int *keycode) 569 { 570 if (!dev->keycodesize) 571 return -EINVAL; 572 573 if (scancode >= dev->keycodemax) 574 return -EINVAL; 575 576 *keycode = input_fetch_keycode(dev, scancode); 577 578 return 0; 579 } 580 581 static int input_default_setkeycode(struct input_dev *dev, 582 int scancode, int keycode) 583 { 584 int old_keycode; 585 int i; 586 587 if (scancode >= dev->keycodemax) 588 return -EINVAL; 589 590 if (!dev->keycodesize) 591 return -EINVAL; 592 593 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 594 return -EINVAL; 595 596 switch (dev->keycodesize) { 597 case 1: { 598 u8 *k = (u8 *)dev->keycode; 599 old_keycode = k[scancode]; 600 k[scancode] = keycode; 601 break; 602 } 603 case 2: { 604 u16 *k = (u16 *)dev->keycode; 605 old_keycode = k[scancode]; 606 k[scancode] = keycode; 607 break; 608 } 609 default: { 610 u32 *k = (u32 *)dev->keycode; 611 old_keycode = k[scancode]; 612 k[scancode] = keycode; 613 break; 614 } 615 } 616 617 clear_bit(old_keycode, dev->keybit); 618 set_bit(keycode, dev->keybit); 619 620 for (i = 0; i < dev->keycodemax; i++) { 621 if (input_fetch_keycode(dev, i) == old_keycode) { 622 set_bit(old_keycode, dev->keybit); 623 break; /* Setting the bit twice is useless, so break */ 624 } 625 } 626 627 return 0; 628 } 629 630 /** 631 * input_get_keycode - retrieve keycode currently mapped to a given scancode 632 * @dev: input device which keymap is being queried 633 * @scancode: scancode (or its equivalent for device in question) for which 634 * keycode is needed 635 * @keycode: result 636 * 637 * This function should be called by anyone interested in retrieving current 638 * keymap. Presently keyboard and evdev handlers use it. 639 */ 640 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode) 641 { 642 if (scancode < 0) 643 return -EINVAL; 644 645 return dev->getkeycode(dev, scancode, keycode); 646 } 647 EXPORT_SYMBOL(input_get_keycode); 648 649 /** 650 * input_get_keycode - assign new keycode to a given scancode 651 * @dev: input device which keymap is being updated 652 * @scancode: scancode (or its equivalent for device in question) 653 * @keycode: new keycode to be assigned to the scancode 654 * 655 * This function should be called by anyone needing to update current 656 * keymap. Presently keyboard and evdev handlers use it. 657 */ 658 int input_set_keycode(struct input_dev *dev, int scancode, int keycode) 659 { 660 unsigned long flags; 661 int old_keycode; 662 int retval; 663 664 if (scancode < 0) 665 return -EINVAL; 666 667 if (keycode < 0 || keycode > KEY_MAX) 668 return -EINVAL; 669 670 spin_lock_irqsave(&dev->event_lock, flags); 671 672 retval = dev->getkeycode(dev, scancode, &old_keycode); 673 if (retval) 674 goto out; 675 676 retval = dev->setkeycode(dev, scancode, keycode); 677 if (retval) 678 goto out; 679 680 /* 681 * Simulate keyup event if keycode is not present 682 * in the keymap anymore 683 */ 684 if (test_bit(EV_KEY, dev->evbit) && 685 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 686 __test_and_clear_bit(old_keycode, dev->key)) { 687 688 input_pass_event(dev, EV_KEY, old_keycode, 0); 689 if (dev->sync) 690 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 691 } 692 693 out: 694 spin_unlock_irqrestore(&dev->event_lock, flags); 695 696 return retval; 697 } 698 EXPORT_SYMBOL(input_set_keycode); 699 700 #define MATCH_BIT(bit, max) \ 701 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 702 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 703 break; \ 704 if (i != BITS_TO_LONGS(max)) \ 705 continue; 706 707 static const struct input_device_id *input_match_device(const struct input_device_id *id, 708 struct input_dev *dev) 709 { 710 int i; 711 712 for (; id->flags || id->driver_info; id++) { 713 714 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 715 if (id->bustype != dev->id.bustype) 716 continue; 717 718 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 719 if (id->vendor != dev->id.vendor) 720 continue; 721 722 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 723 if (id->product != dev->id.product) 724 continue; 725 726 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 727 if (id->version != dev->id.version) 728 continue; 729 730 MATCH_BIT(evbit, EV_MAX); 731 MATCH_BIT(keybit, KEY_MAX); 732 MATCH_BIT(relbit, REL_MAX); 733 MATCH_BIT(absbit, ABS_MAX); 734 MATCH_BIT(mscbit, MSC_MAX); 735 MATCH_BIT(ledbit, LED_MAX); 736 MATCH_BIT(sndbit, SND_MAX); 737 MATCH_BIT(ffbit, FF_MAX); 738 MATCH_BIT(swbit, SW_MAX); 739 740 return id; 741 } 742 743 return NULL; 744 } 745 746 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 747 { 748 const struct input_device_id *id; 749 int error; 750 751 if (handler->blacklist && input_match_device(handler->blacklist, dev)) 752 return -ENODEV; 753 754 id = input_match_device(handler->id_table, dev); 755 if (!id) 756 return -ENODEV; 757 758 error = handler->connect(handler, dev, id); 759 if (error && error != -ENODEV) 760 printk(KERN_ERR 761 "input: failed to attach handler %s to device %s, " 762 "error: %d\n", 763 handler->name, kobject_name(&dev->dev.kobj), error); 764 765 return error; 766 } 767 768 #ifdef CONFIG_COMPAT 769 770 static int input_bits_to_string(char *buf, int buf_size, 771 unsigned long bits, bool skip_empty) 772 { 773 int len = 0; 774 775 if (INPUT_COMPAT_TEST) { 776 u32 dword = bits >> 32; 777 if (dword || !skip_empty) 778 len += snprintf(buf, buf_size, "%x ", dword); 779 780 dword = bits & 0xffffffffUL; 781 if (dword || !skip_empty || len) 782 len += snprintf(buf + len, max(buf_size - len, 0), 783 "%x", dword); 784 } else { 785 if (bits || !skip_empty) 786 len += snprintf(buf, buf_size, "%lx", bits); 787 } 788 789 return len; 790 } 791 792 #else /* !CONFIG_COMPAT */ 793 794 static int input_bits_to_string(char *buf, int buf_size, 795 unsigned long bits, bool skip_empty) 796 { 797 return bits || !skip_empty ? 798 snprintf(buf, buf_size, "%lx", bits) : 0; 799 } 800 801 #endif 802 803 #ifdef CONFIG_PROC_FS 804 805 static struct proc_dir_entry *proc_bus_input_dir; 806 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 807 static int input_devices_state; 808 809 static inline void input_wakeup_procfs_readers(void) 810 { 811 input_devices_state++; 812 wake_up(&input_devices_poll_wait); 813 } 814 815 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 816 { 817 poll_wait(file, &input_devices_poll_wait, wait); 818 if (file->f_version != input_devices_state) { 819 file->f_version = input_devices_state; 820 return POLLIN | POLLRDNORM; 821 } 822 823 return 0; 824 } 825 826 union input_seq_state { 827 struct { 828 unsigned short pos; 829 bool mutex_acquired; 830 }; 831 void *p; 832 }; 833 834 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 835 { 836 union input_seq_state *state = (union input_seq_state *)&seq->private; 837 int error; 838 839 /* We need to fit into seq->private pointer */ 840 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 841 842 error = mutex_lock_interruptible(&input_mutex); 843 if (error) { 844 state->mutex_acquired = false; 845 return ERR_PTR(error); 846 } 847 848 state->mutex_acquired = true; 849 850 return seq_list_start(&input_dev_list, *pos); 851 } 852 853 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 854 { 855 return seq_list_next(v, &input_dev_list, pos); 856 } 857 858 static void input_seq_stop(struct seq_file *seq, void *v) 859 { 860 union input_seq_state *state = (union input_seq_state *)&seq->private; 861 862 if (state->mutex_acquired) 863 mutex_unlock(&input_mutex); 864 } 865 866 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 867 unsigned long *bitmap, int max) 868 { 869 int i; 870 bool skip_empty = true; 871 char buf[18]; 872 873 seq_printf(seq, "B: %s=", name); 874 875 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 876 if (input_bits_to_string(buf, sizeof(buf), 877 bitmap[i], skip_empty)) { 878 skip_empty = false; 879 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 880 } 881 } 882 883 /* 884 * If no output was produced print a single 0. 885 */ 886 if (skip_empty) 887 seq_puts(seq, "0"); 888 889 seq_putc(seq, '\n'); 890 } 891 892 static int input_devices_seq_show(struct seq_file *seq, void *v) 893 { 894 struct input_dev *dev = container_of(v, struct input_dev, node); 895 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 896 struct input_handle *handle; 897 898 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 899 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 900 901 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 902 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 903 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 904 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 905 seq_printf(seq, "H: Handlers="); 906 907 list_for_each_entry(handle, &dev->h_list, d_node) 908 seq_printf(seq, "%s ", handle->name); 909 seq_putc(seq, '\n'); 910 911 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 912 if (test_bit(EV_KEY, dev->evbit)) 913 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 914 if (test_bit(EV_REL, dev->evbit)) 915 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 916 if (test_bit(EV_ABS, dev->evbit)) 917 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 918 if (test_bit(EV_MSC, dev->evbit)) 919 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 920 if (test_bit(EV_LED, dev->evbit)) 921 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 922 if (test_bit(EV_SND, dev->evbit)) 923 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 924 if (test_bit(EV_FF, dev->evbit)) 925 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 926 if (test_bit(EV_SW, dev->evbit)) 927 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 928 929 seq_putc(seq, '\n'); 930 931 kfree(path); 932 return 0; 933 } 934 935 static const struct seq_operations input_devices_seq_ops = { 936 .start = input_devices_seq_start, 937 .next = input_devices_seq_next, 938 .stop = input_seq_stop, 939 .show = input_devices_seq_show, 940 }; 941 942 static int input_proc_devices_open(struct inode *inode, struct file *file) 943 { 944 return seq_open(file, &input_devices_seq_ops); 945 } 946 947 static const struct file_operations input_devices_fileops = { 948 .owner = THIS_MODULE, 949 .open = input_proc_devices_open, 950 .poll = input_proc_devices_poll, 951 .read = seq_read, 952 .llseek = seq_lseek, 953 .release = seq_release, 954 }; 955 956 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 957 { 958 union input_seq_state *state = (union input_seq_state *)&seq->private; 959 int error; 960 961 /* We need to fit into seq->private pointer */ 962 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 963 964 error = mutex_lock_interruptible(&input_mutex); 965 if (error) { 966 state->mutex_acquired = false; 967 return ERR_PTR(error); 968 } 969 970 state->mutex_acquired = true; 971 state->pos = *pos; 972 973 return seq_list_start(&input_handler_list, *pos); 974 } 975 976 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 977 { 978 union input_seq_state *state = (union input_seq_state *)&seq->private; 979 980 state->pos = *pos + 1; 981 return seq_list_next(v, &input_handler_list, pos); 982 } 983 984 static int input_handlers_seq_show(struct seq_file *seq, void *v) 985 { 986 struct input_handler *handler = container_of(v, struct input_handler, node); 987 union input_seq_state *state = (union input_seq_state *)&seq->private; 988 989 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 990 if (handler->fops) 991 seq_printf(seq, " Minor=%d", handler->minor); 992 seq_putc(seq, '\n'); 993 994 return 0; 995 } 996 997 static const struct seq_operations input_handlers_seq_ops = { 998 .start = input_handlers_seq_start, 999 .next = input_handlers_seq_next, 1000 .stop = input_seq_stop, 1001 .show = input_handlers_seq_show, 1002 }; 1003 1004 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1005 { 1006 return seq_open(file, &input_handlers_seq_ops); 1007 } 1008 1009 static const struct file_operations input_handlers_fileops = { 1010 .owner = THIS_MODULE, 1011 .open = input_proc_handlers_open, 1012 .read = seq_read, 1013 .llseek = seq_lseek, 1014 .release = seq_release, 1015 }; 1016 1017 static int __init input_proc_init(void) 1018 { 1019 struct proc_dir_entry *entry; 1020 1021 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1022 if (!proc_bus_input_dir) 1023 return -ENOMEM; 1024 1025 entry = proc_create("devices", 0, proc_bus_input_dir, 1026 &input_devices_fileops); 1027 if (!entry) 1028 goto fail1; 1029 1030 entry = proc_create("handlers", 0, proc_bus_input_dir, 1031 &input_handlers_fileops); 1032 if (!entry) 1033 goto fail2; 1034 1035 return 0; 1036 1037 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1038 fail1: remove_proc_entry("bus/input", NULL); 1039 return -ENOMEM; 1040 } 1041 1042 static void input_proc_exit(void) 1043 { 1044 remove_proc_entry("devices", proc_bus_input_dir); 1045 remove_proc_entry("handlers", proc_bus_input_dir); 1046 remove_proc_entry("bus/input", NULL); 1047 } 1048 1049 #else /* !CONFIG_PROC_FS */ 1050 static inline void input_wakeup_procfs_readers(void) { } 1051 static inline int input_proc_init(void) { return 0; } 1052 static inline void input_proc_exit(void) { } 1053 #endif 1054 1055 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1056 static ssize_t input_dev_show_##name(struct device *dev, \ 1057 struct device_attribute *attr, \ 1058 char *buf) \ 1059 { \ 1060 struct input_dev *input_dev = to_input_dev(dev); \ 1061 \ 1062 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1063 input_dev->name ? input_dev->name : ""); \ 1064 } \ 1065 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1066 1067 INPUT_DEV_STRING_ATTR_SHOW(name); 1068 INPUT_DEV_STRING_ATTR_SHOW(phys); 1069 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1070 1071 static int input_print_modalias_bits(char *buf, int size, 1072 char name, unsigned long *bm, 1073 unsigned int min_bit, unsigned int max_bit) 1074 { 1075 int len = 0, i; 1076 1077 len += snprintf(buf, max(size, 0), "%c", name); 1078 for (i = min_bit; i < max_bit; i++) 1079 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1080 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1081 return len; 1082 } 1083 1084 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1085 int add_cr) 1086 { 1087 int len; 1088 1089 len = snprintf(buf, max(size, 0), 1090 "input:b%04Xv%04Xp%04Xe%04X-", 1091 id->id.bustype, id->id.vendor, 1092 id->id.product, id->id.version); 1093 1094 len += input_print_modalias_bits(buf + len, size - len, 1095 'e', id->evbit, 0, EV_MAX); 1096 len += input_print_modalias_bits(buf + len, size - len, 1097 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1098 len += input_print_modalias_bits(buf + len, size - len, 1099 'r', id->relbit, 0, REL_MAX); 1100 len += input_print_modalias_bits(buf + len, size - len, 1101 'a', id->absbit, 0, ABS_MAX); 1102 len += input_print_modalias_bits(buf + len, size - len, 1103 'm', id->mscbit, 0, MSC_MAX); 1104 len += input_print_modalias_bits(buf + len, size - len, 1105 'l', id->ledbit, 0, LED_MAX); 1106 len += input_print_modalias_bits(buf + len, size - len, 1107 's', id->sndbit, 0, SND_MAX); 1108 len += input_print_modalias_bits(buf + len, size - len, 1109 'f', id->ffbit, 0, FF_MAX); 1110 len += input_print_modalias_bits(buf + len, size - len, 1111 'w', id->swbit, 0, SW_MAX); 1112 1113 if (add_cr) 1114 len += snprintf(buf + len, max(size - len, 0), "\n"); 1115 1116 return len; 1117 } 1118 1119 static ssize_t input_dev_show_modalias(struct device *dev, 1120 struct device_attribute *attr, 1121 char *buf) 1122 { 1123 struct input_dev *id = to_input_dev(dev); 1124 ssize_t len; 1125 1126 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1127 1128 return min_t(int, len, PAGE_SIZE); 1129 } 1130 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1131 1132 static struct attribute *input_dev_attrs[] = { 1133 &dev_attr_name.attr, 1134 &dev_attr_phys.attr, 1135 &dev_attr_uniq.attr, 1136 &dev_attr_modalias.attr, 1137 NULL 1138 }; 1139 1140 static struct attribute_group input_dev_attr_group = { 1141 .attrs = input_dev_attrs, 1142 }; 1143 1144 #define INPUT_DEV_ID_ATTR(name) \ 1145 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1146 struct device_attribute *attr, \ 1147 char *buf) \ 1148 { \ 1149 struct input_dev *input_dev = to_input_dev(dev); \ 1150 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1151 } \ 1152 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1153 1154 INPUT_DEV_ID_ATTR(bustype); 1155 INPUT_DEV_ID_ATTR(vendor); 1156 INPUT_DEV_ID_ATTR(product); 1157 INPUT_DEV_ID_ATTR(version); 1158 1159 static struct attribute *input_dev_id_attrs[] = { 1160 &dev_attr_bustype.attr, 1161 &dev_attr_vendor.attr, 1162 &dev_attr_product.attr, 1163 &dev_attr_version.attr, 1164 NULL 1165 }; 1166 1167 static struct attribute_group input_dev_id_attr_group = { 1168 .name = "id", 1169 .attrs = input_dev_id_attrs, 1170 }; 1171 1172 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1173 int max, int add_cr) 1174 { 1175 int i; 1176 int len = 0; 1177 bool skip_empty = true; 1178 1179 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1180 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1181 bitmap[i], skip_empty); 1182 if (len) { 1183 skip_empty = false; 1184 if (i > 0) 1185 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1186 } 1187 } 1188 1189 /* 1190 * If no output was produced print a single 0. 1191 */ 1192 if (len == 0) 1193 len = snprintf(buf, buf_size, "%d", 0); 1194 1195 if (add_cr) 1196 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1197 1198 return len; 1199 } 1200 1201 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1202 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1203 struct device_attribute *attr, \ 1204 char *buf) \ 1205 { \ 1206 struct input_dev *input_dev = to_input_dev(dev); \ 1207 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1208 input_dev->bm##bit, ev##_MAX, \ 1209 true); \ 1210 return min_t(int, len, PAGE_SIZE); \ 1211 } \ 1212 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1213 1214 INPUT_DEV_CAP_ATTR(EV, ev); 1215 INPUT_DEV_CAP_ATTR(KEY, key); 1216 INPUT_DEV_CAP_ATTR(REL, rel); 1217 INPUT_DEV_CAP_ATTR(ABS, abs); 1218 INPUT_DEV_CAP_ATTR(MSC, msc); 1219 INPUT_DEV_CAP_ATTR(LED, led); 1220 INPUT_DEV_CAP_ATTR(SND, snd); 1221 INPUT_DEV_CAP_ATTR(FF, ff); 1222 INPUT_DEV_CAP_ATTR(SW, sw); 1223 1224 static struct attribute *input_dev_caps_attrs[] = { 1225 &dev_attr_ev.attr, 1226 &dev_attr_key.attr, 1227 &dev_attr_rel.attr, 1228 &dev_attr_abs.attr, 1229 &dev_attr_msc.attr, 1230 &dev_attr_led.attr, 1231 &dev_attr_snd.attr, 1232 &dev_attr_ff.attr, 1233 &dev_attr_sw.attr, 1234 NULL 1235 }; 1236 1237 static struct attribute_group input_dev_caps_attr_group = { 1238 .name = "capabilities", 1239 .attrs = input_dev_caps_attrs, 1240 }; 1241 1242 static const struct attribute_group *input_dev_attr_groups[] = { 1243 &input_dev_attr_group, 1244 &input_dev_id_attr_group, 1245 &input_dev_caps_attr_group, 1246 NULL 1247 }; 1248 1249 static void input_dev_release(struct device *device) 1250 { 1251 struct input_dev *dev = to_input_dev(device); 1252 1253 input_ff_destroy(dev); 1254 kfree(dev); 1255 1256 module_put(THIS_MODULE); 1257 } 1258 1259 /* 1260 * Input uevent interface - loading event handlers based on 1261 * device bitfields. 1262 */ 1263 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1264 const char *name, unsigned long *bitmap, int max) 1265 { 1266 int len; 1267 1268 if (add_uevent_var(env, "%s=", name)) 1269 return -ENOMEM; 1270 1271 len = input_print_bitmap(&env->buf[env->buflen - 1], 1272 sizeof(env->buf) - env->buflen, 1273 bitmap, max, false); 1274 if (len >= (sizeof(env->buf) - env->buflen)) 1275 return -ENOMEM; 1276 1277 env->buflen += len; 1278 return 0; 1279 } 1280 1281 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1282 struct input_dev *dev) 1283 { 1284 int len; 1285 1286 if (add_uevent_var(env, "MODALIAS=")) 1287 return -ENOMEM; 1288 1289 len = input_print_modalias(&env->buf[env->buflen - 1], 1290 sizeof(env->buf) - env->buflen, 1291 dev, 0); 1292 if (len >= (sizeof(env->buf) - env->buflen)) 1293 return -ENOMEM; 1294 1295 env->buflen += len; 1296 return 0; 1297 } 1298 1299 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1300 do { \ 1301 int err = add_uevent_var(env, fmt, val); \ 1302 if (err) \ 1303 return err; \ 1304 } while (0) 1305 1306 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1307 do { \ 1308 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1309 if (err) \ 1310 return err; \ 1311 } while (0) 1312 1313 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1314 do { \ 1315 int err = input_add_uevent_modalias_var(env, dev); \ 1316 if (err) \ 1317 return err; \ 1318 } while (0) 1319 1320 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1321 { 1322 struct input_dev *dev = to_input_dev(device); 1323 1324 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1325 dev->id.bustype, dev->id.vendor, 1326 dev->id.product, dev->id.version); 1327 if (dev->name) 1328 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1329 if (dev->phys) 1330 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1331 if (dev->uniq) 1332 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1333 1334 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1335 if (test_bit(EV_KEY, dev->evbit)) 1336 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1337 if (test_bit(EV_REL, dev->evbit)) 1338 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1339 if (test_bit(EV_ABS, dev->evbit)) 1340 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1341 if (test_bit(EV_MSC, dev->evbit)) 1342 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1343 if (test_bit(EV_LED, dev->evbit)) 1344 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1345 if (test_bit(EV_SND, dev->evbit)) 1346 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1347 if (test_bit(EV_FF, dev->evbit)) 1348 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1349 if (test_bit(EV_SW, dev->evbit)) 1350 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1351 1352 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1353 1354 return 0; 1355 } 1356 1357 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1358 do { \ 1359 int i; \ 1360 bool active; \ 1361 \ 1362 if (!test_bit(EV_##type, dev->evbit)) \ 1363 break; \ 1364 \ 1365 for (i = 0; i < type##_MAX; i++) { \ 1366 if (!test_bit(i, dev->bits##bit)) \ 1367 continue; \ 1368 \ 1369 active = test_bit(i, dev->bits); \ 1370 if (!active && !on) \ 1371 continue; \ 1372 \ 1373 dev->event(dev, EV_##type, i, on ? active : 0); \ 1374 } \ 1375 } while (0) 1376 1377 #ifdef CONFIG_PM 1378 static void input_dev_reset(struct input_dev *dev, bool activate) 1379 { 1380 if (!dev->event) 1381 return; 1382 1383 INPUT_DO_TOGGLE(dev, LED, led, activate); 1384 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1385 1386 if (activate && test_bit(EV_REP, dev->evbit)) { 1387 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1388 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1389 } 1390 } 1391 1392 static int input_dev_suspend(struct device *dev) 1393 { 1394 struct input_dev *input_dev = to_input_dev(dev); 1395 1396 mutex_lock(&input_dev->mutex); 1397 input_dev_reset(input_dev, false); 1398 mutex_unlock(&input_dev->mutex); 1399 1400 return 0; 1401 } 1402 1403 static int input_dev_resume(struct device *dev) 1404 { 1405 struct input_dev *input_dev = to_input_dev(dev); 1406 1407 mutex_lock(&input_dev->mutex); 1408 input_dev_reset(input_dev, true); 1409 mutex_unlock(&input_dev->mutex); 1410 1411 return 0; 1412 } 1413 1414 static const struct dev_pm_ops input_dev_pm_ops = { 1415 .suspend = input_dev_suspend, 1416 .resume = input_dev_resume, 1417 .poweroff = input_dev_suspend, 1418 .restore = input_dev_resume, 1419 }; 1420 #endif /* CONFIG_PM */ 1421 1422 static struct device_type input_dev_type = { 1423 .groups = input_dev_attr_groups, 1424 .release = input_dev_release, 1425 .uevent = input_dev_uevent, 1426 #ifdef CONFIG_PM 1427 .pm = &input_dev_pm_ops, 1428 #endif 1429 }; 1430 1431 static char *input_devnode(struct device *dev, mode_t *mode) 1432 { 1433 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1434 } 1435 1436 struct class input_class = { 1437 .name = "input", 1438 .devnode = input_devnode, 1439 }; 1440 EXPORT_SYMBOL_GPL(input_class); 1441 1442 /** 1443 * input_allocate_device - allocate memory for new input device 1444 * 1445 * Returns prepared struct input_dev or NULL. 1446 * 1447 * NOTE: Use input_free_device() to free devices that have not been 1448 * registered; input_unregister_device() should be used for already 1449 * registered devices. 1450 */ 1451 struct input_dev *input_allocate_device(void) 1452 { 1453 struct input_dev *dev; 1454 1455 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1456 if (dev) { 1457 dev->dev.type = &input_dev_type; 1458 dev->dev.class = &input_class; 1459 device_initialize(&dev->dev); 1460 mutex_init(&dev->mutex); 1461 spin_lock_init(&dev->event_lock); 1462 INIT_LIST_HEAD(&dev->h_list); 1463 INIT_LIST_HEAD(&dev->node); 1464 1465 __module_get(THIS_MODULE); 1466 } 1467 1468 return dev; 1469 } 1470 EXPORT_SYMBOL(input_allocate_device); 1471 1472 /** 1473 * input_free_device - free memory occupied by input_dev structure 1474 * @dev: input device to free 1475 * 1476 * This function should only be used if input_register_device() 1477 * was not called yet or if it failed. Once device was registered 1478 * use input_unregister_device() and memory will be freed once last 1479 * reference to the device is dropped. 1480 * 1481 * Device should be allocated by input_allocate_device(). 1482 * 1483 * NOTE: If there are references to the input device then memory 1484 * will not be freed until last reference is dropped. 1485 */ 1486 void input_free_device(struct input_dev *dev) 1487 { 1488 if (dev) 1489 input_put_device(dev); 1490 } 1491 EXPORT_SYMBOL(input_free_device); 1492 1493 /** 1494 * input_set_capability - mark device as capable of a certain event 1495 * @dev: device that is capable of emitting or accepting event 1496 * @type: type of the event (EV_KEY, EV_REL, etc...) 1497 * @code: event code 1498 * 1499 * In addition to setting up corresponding bit in appropriate capability 1500 * bitmap the function also adjusts dev->evbit. 1501 */ 1502 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1503 { 1504 switch (type) { 1505 case EV_KEY: 1506 __set_bit(code, dev->keybit); 1507 break; 1508 1509 case EV_REL: 1510 __set_bit(code, dev->relbit); 1511 break; 1512 1513 case EV_ABS: 1514 __set_bit(code, dev->absbit); 1515 break; 1516 1517 case EV_MSC: 1518 __set_bit(code, dev->mscbit); 1519 break; 1520 1521 case EV_SW: 1522 __set_bit(code, dev->swbit); 1523 break; 1524 1525 case EV_LED: 1526 __set_bit(code, dev->ledbit); 1527 break; 1528 1529 case EV_SND: 1530 __set_bit(code, dev->sndbit); 1531 break; 1532 1533 case EV_FF: 1534 __set_bit(code, dev->ffbit); 1535 break; 1536 1537 case EV_PWR: 1538 /* do nothing */ 1539 break; 1540 1541 default: 1542 printk(KERN_ERR 1543 "input_set_capability: unknown type %u (code %u)\n", 1544 type, code); 1545 dump_stack(); 1546 return; 1547 } 1548 1549 __set_bit(type, dev->evbit); 1550 } 1551 EXPORT_SYMBOL(input_set_capability); 1552 1553 /** 1554 * input_register_device - register device with input core 1555 * @dev: device to be registered 1556 * 1557 * This function registers device with input core. The device must be 1558 * allocated with input_allocate_device() and all it's capabilities 1559 * set up before registering. 1560 * If function fails the device must be freed with input_free_device(). 1561 * Once device has been successfully registered it can be unregistered 1562 * with input_unregister_device(); input_free_device() should not be 1563 * called in this case. 1564 */ 1565 int input_register_device(struct input_dev *dev) 1566 { 1567 static atomic_t input_no = ATOMIC_INIT(0); 1568 struct input_handler *handler; 1569 const char *path; 1570 int error; 1571 1572 __set_bit(EV_SYN, dev->evbit); 1573 1574 /* 1575 * If delay and period are pre-set by the driver, then autorepeating 1576 * is handled by the driver itself and we don't do it in input.c. 1577 */ 1578 1579 init_timer(&dev->timer); 1580 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1581 dev->timer.data = (long) dev; 1582 dev->timer.function = input_repeat_key; 1583 dev->rep[REP_DELAY] = 250; 1584 dev->rep[REP_PERIOD] = 33; 1585 } 1586 1587 if (!dev->getkeycode) 1588 dev->getkeycode = input_default_getkeycode; 1589 1590 if (!dev->setkeycode) 1591 dev->setkeycode = input_default_setkeycode; 1592 1593 dev_set_name(&dev->dev, "input%ld", 1594 (unsigned long) atomic_inc_return(&input_no) - 1); 1595 1596 error = device_add(&dev->dev); 1597 if (error) 1598 return error; 1599 1600 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1601 printk(KERN_INFO "input: %s as %s\n", 1602 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1603 kfree(path); 1604 1605 error = mutex_lock_interruptible(&input_mutex); 1606 if (error) { 1607 device_del(&dev->dev); 1608 return error; 1609 } 1610 1611 list_add_tail(&dev->node, &input_dev_list); 1612 1613 list_for_each_entry(handler, &input_handler_list, node) 1614 input_attach_handler(dev, handler); 1615 1616 input_wakeup_procfs_readers(); 1617 1618 mutex_unlock(&input_mutex); 1619 1620 return 0; 1621 } 1622 EXPORT_SYMBOL(input_register_device); 1623 1624 /** 1625 * input_unregister_device - unregister previously registered device 1626 * @dev: device to be unregistered 1627 * 1628 * This function unregisters an input device. Once device is unregistered 1629 * the caller should not try to access it as it may get freed at any moment. 1630 */ 1631 void input_unregister_device(struct input_dev *dev) 1632 { 1633 struct input_handle *handle, *next; 1634 1635 input_disconnect_device(dev); 1636 1637 mutex_lock(&input_mutex); 1638 1639 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1640 handle->handler->disconnect(handle); 1641 WARN_ON(!list_empty(&dev->h_list)); 1642 1643 del_timer_sync(&dev->timer); 1644 list_del_init(&dev->node); 1645 1646 input_wakeup_procfs_readers(); 1647 1648 mutex_unlock(&input_mutex); 1649 1650 device_unregister(&dev->dev); 1651 } 1652 EXPORT_SYMBOL(input_unregister_device); 1653 1654 /** 1655 * input_register_handler - register a new input handler 1656 * @handler: handler to be registered 1657 * 1658 * This function registers a new input handler (interface) for input 1659 * devices in the system and attaches it to all input devices that 1660 * are compatible with the handler. 1661 */ 1662 int input_register_handler(struct input_handler *handler) 1663 { 1664 struct input_dev *dev; 1665 int retval; 1666 1667 retval = mutex_lock_interruptible(&input_mutex); 1668 if (retval) 1669 return retval; 1670 1671 INIT_LIST_HEAD(&handler->h_list); 1672 1673 if (handler->fops != NULL) { 1674 if (input_table[handler->minor >> 5]) { 1675 retval = -EBUSY; 1676 goto out; 1677 } 1678 input_table[handler->minor >> 5] = handler; 1679 } 1680 1681 list_add_tail(&handler->node, &input_handler_list); 1682 1683 list_for_each_entry(dev, &input_dev_list, node) 1684 input_attach_handler(dev, handler); 1685 1686 input_wakeup_procfs_readers(); 1687 1688 out: 1689 mutex_unlock(&input_mutex); 1690 return retval; 1691 } 1692 EXPORT_SYMBOL(input_register_handler); 1693 1694 /** 1695 * input_unregister_handler - unregisters an input handler 1696 * @handler: handler to be unregistered 1697 * 1698 * This function disconnects a handler from its input devices and 1699 * removes it from lists of known handlers. 1700 */ 1701 void input_unregister_handler(struct input_handler *handler) 1702 { 1703 struct input_handle *handle, *next; 1704 1705 mutex_lock(&input_mutex); 1706 1707 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1708 handler->disconnect(handle); 1709 WARN_ON(!list_empty(&handler->h_list)); 1710 1711 list_del_init(&handler->node); 1712 1713 if (handler->fops != NULL) 1714 input_table[handler->minor >> 5] = NULL; 1715 1716 input_wakeup_procfs_readers(); 1717 1718 mutex_unlock(&input_mutex); 1719 } 1720 EXPORT_SYMBOL(input_unregister_handler); 1721 1722 /** 1723 * input_handler_for_each_handle - handle iterator 1724 * @handler: input handler to iterate 1725 * @data: data for the callback 1726 * @fn: function to be called for each handle 1727 * 1728 * Iterate over @bus's list of devices, and call @fn for each, passing 1729 * it @data and stop when @fn returns a non-zero value. The function is 1730 * using RCU to traverse the list and therefore may be usind in atonic 1731 * contexts. The @fn callback is invoked from RCU critical section and 1732 * thus must not sleep. 1733 */ 1734 int input_handler_for_each_handle(struct input_handler *handler, void *data, 1735 int (*fn)(struct input_handle *, void *)) 1736 { 1737 struct input_handle *handle; 1738 int retval = 0; 1739 1740 rcu_read_lock(); 1741 1742 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 1743 retval = fn(handle, data); 1744 if (retval) 1745 break; 1746 } 1747 1748 rcu_read_unlock(); 1749 1750 return retval; 1751 } 1752 EXPORT_SYMBOL(input_handler_for_each_handle); 1753 1754 /** 1755 * input_register_handle - register a new input handle 1756 * @handle: handle to register 1757 * 1758 * This function puts a new input handle onto device's 1759 * and handler's lists so that events can flow through 1760 * it once it is opened using input_open_device(). 1761 * 1762 * This function is supposed to be called from handler's 1763 * connect() method. 1764 */ 1765 int input_register_handle(struct input_handle *handle) 1766 { 1767 struct input_handler *handler = handle->handler; 1768 struct input_dev *dev = handle->dev; 1769 int error; 1770 1771 /* 1772 * We take dev->mutex here to prevent race with 1773 * input_release_device(). 1774 */ 1775 error = mutex_lock_interruptible(&dev->mutex); 1776 if (error) 1777 return error; 1778 list_add_tail_rcu(&handle->d_node, &dev->h_list); 1779 mutex_unlock(&dev->mutex); 1780 1781 /* 1782 * Since we are supposed to be called from ->connect() 1783 * which is mutually exclusive with ->disconnect() 1784 * we can't be racing with input_unregister_handle() 1785 * and so separate lock is not needed here. 1786 */ 1787 list_add_tail_rcu(&handle->h_node, &handler->h_list); 1788 1789 if (handler->start) 1790 handler->start(handle); 1791 1792 return 0; 1793 } 1794 EXPORT_SYMBOL(input_register_handle); 1795 1796 /** 1797 * input_unregister_handle - unregister an input handle 1798 * @handle: handle to unregister 1799 * 1800 * This function removes input handle from device's 1801 * and handler's lists. 1802 * 1803 * This function is supposed to be called from handler's 1804 * disconnect() method. 1805 */ 1806 void input_unregister_handle(struct input_handle *handle) 1807 { 1808 struct input_dev *dev = handle->dev; 1809 1810 list_del_rcu(&handle->h_node); 1811 1812 /* 1813 * Take dev->mutex to prevent race with input_release_device(). 1814 */ 1815 mutex_lock(&dev->mutex); 1816 list_del_rcu(&handle->d_node); 1817 mutex_unlock(&dev->mutex); 1818 1819 synchronize_rcu(); 1820 } 1821 EXPORT_SYMBOL(input_unregister_handle); 1822 1823 static int input_open_file(struct inode *inode, struct file *file) 1824 { 1825 struct input_handler *handler; 1826 const struct file_operations *old_fops, *new_fops = NULL; 1827 int err; 1828 1829 lock_kernel(); 1830 /* No load-on-demand here? */ 1831 handler = input_table[iminor(inode) >> 5]; 1832 if (!handler || !(new_fops = fops_get(handler->fops))) { 1833 err = -ENODEV; 1834 goto out; 1835 } 1836 1837 /* 1838 * That's _really_ odd. Usually NULL ->open means "nothing special", 1839 * not "no device". Oh, well... 1840 */ 1841 if (!new_fops->open) { 1842 fops_put(new_fops); 1843 err = -ENODEV; 1844 goto out; 1845 } 1846 old_fops = file->f_op; 1847 file->f_op = new_fops; 1848 1849 err = new_fops->open(inode, file); 1850 1851 if (err) { 1852 fops_put(file->f_op); 1853 file->f_op = fops_get(old_fops); 1854 } 1855 fops_put(old_fops); 1856 out: 1857 unlock_kernel(); 1858 return err; 1859 } 1860 1861 static const struct file_operations input_fops = { 1862 .owner = THIS_MODULE, 1863 .open = input_open_file, 1864 }; 1865 1866 static void __init input_init_abs_bypass(void) 1867 { 1868 const unsigned int *p; 1869 1870 for (p = input_abs_bypass_init_data; *p; p++) 1871 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p); 1872 } 1873 1874 static int __init input_init(void) 1875 { 1876 int err; 1877 1878 input_init_abs_bypass(); 1879 1880 err = class_register(&input_class); 1881 if (err) { 1882 printk(KERN_ERR "input: unable to register input_dev class\n"); 1883 return err; 1884 } 1885 1886 err = input_proc_init(); 1887 if (err) 1888 goto fail1; 1889 1890 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 1891 if (err) { 1892 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 1893 goto fail2; 1894 } 1895 1896 return 0; 1897 1898 fail2: input_proc_exit(); 1899 fail1: class_unregister(&input_class); 1900 return err; 1901 } 1902 1903 static void __exit input_exit(void) 1904 { 1905 input_proc_exit(); 1906 unregister_chrdev(INPUT_MAJOR, "input"); 1907 class_unregister(&input_class); 1908 } 1909 1910 subsys_initcall(input_init); 1911 module_exit(input_exit); 1912