xref: /linux/drivers/input/input.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static inline int is_event_supported(unsigned int code,
54 				     unsigned long *bm, unsigned int max)
55 {
56 	return code <= max && test_bit(code, bm);
57 }
58 
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 	if (fuzz) {
62 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 			return old_val;
64 
65 		if (value > old_val - fuzz && value < old_val + fuzz)
66 			return (old_val * 3 + value) / 4;
67 
68 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 			return (old_val + value) / 2;
70 	}
71 
72 	return value;
73 }
74 
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 	if (test_bit(EV_REP, dev->evbit) &&
78 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 	    dev->timer.data) {
80 		dev->repeat_key = code;
81 		mod_timer(&dev->timer,
82 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 	}
84 }
85 
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 	del_timer(&dev->timer);
89 }
90 
91 /*
92  * Pass event first through all filters and then, if event has not been
93  * filtered out, through all open handles. This function is called with
94  * dev->event_lock held and interrupts disabled.
95  */
96 static unsigned int input_to_handler(struct input_handle *handle,
97 			struct input_value *vals, unsigned int count)
98 {
99 	struct input_handler *handler = handle->handler;
100 	struct input_value *end = vals;
101 	struct input_value *v;
102 
103 	for (v = vals; v != vals + count; v++) {
104 		if (handler->filter &&
105 		    handler->filter(handle, v->type, v->code, v->value))
106 			continue;
107 		if (end != v)
108 			*end = *v;
109 		end++;
110 	}
111 
112 	count = end - vals;
113 	if (!count)
114 		return 0;
115 
116 	if (handler->events)
117 		handler->events(handle, vals, count);
118 	else if (handler->event)
119 		for (v = vals; v != end; v++)
120 			handler->event(handle, v->type, v->code, v->value);
121 
122 	return count;
123 }
124 
125 /*
126  * Pass values first through all filters and then, if event has not been
127  * filtered out, through all open handles. This function is called with
128  * dev->event_lock held and interrupts disabled.
129  */
130 static void input_pass_values(struct input_dev *dev,
131 			      struct input_value *vals, unsigned int count)
132 {
133 	struct input_handle *handle;
134 	struct input_value *v;
135 
136 	if (!count)
137 		return;
138 
139 	rcu_read_lock();
140 
141 	handle = rcu_dereference(dev->grab);
142 	if (handle) {
143 		count = input_to_handler(handle, vals, count);
144 	} else {
145 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
146 			if (handle->open)
147 				count = input_to_handler(handle, vals, count);
148 	}
149 
150 	rcu_read_unlock();
151 
152 	add_input_randomness(vals->type, vals->code, vals->value);
153 
154 	/* trigger auto repeat for key events */
155 	for (v = vals; v != vals + count; v++) {
156 		if (v->type == EV_KEY && v->value != 2) {
157 			if (v->value)
158 				input_start_autorepeat(dev, v->code);
159 			else
160 				input_stop_autorepeat(dev);
161 		}
162 	}
163 }
164 
165 static void input_pass_event(struct input_dev *dev,
166 			     unsigned int type, unsigned int code, int value)
167 {
168 	struct input_value vals[] = { { type, code, value } };
169 
170 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
171 }
172 
173 /*
174  * Generate software autorepeat event. Note that we take
175  * dev->event_lock here to avoid racing with input_event
176  * which may cause keys get "stuck".
177  */
178 static void input_repeat_key(unsigned long data)
179 {
180 	struct input_dev *dev = (void *) data;
181 	unsigned long flags;
182 
183 	spin_lock_irqsave(&dev->event_lock, flags);
184 
185 	if (test_bit(dev->repeat_key, dev->key) &&
186 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
187 		struct input_value vals[] =  {
188 			{ EV_KEY, dev->repeat_key, 2 },
189 			input_value_sync
190 		};
191 
192 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
193 
194 		if (dev->rep[REP_PERIOD])
195 			mod_timer(&dev->timer, jiffies +
196 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
197 	}
198 
199 	spin_unlock_irqrestore(&dev->event_lock, flags);
200 }
201 
202 #define INPUT_IGNORE_EVENT	0
203 #define INPUT_PASS_TO_HANDLERS	1
204 #define INPUT_PASS_TO_DEVICE	2
205 #define INPUT_SLOT		4
206 #define INPUT_FLUSH		8
207 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
208 
209 static int input_handle_abs_event(struct input_dev *dev,
210 				  unsigned int code, int *pval)
211 {
212 	struct input_mt *mt = dev->mt;
213 	bool is_mt_event;
214 	int *pold;
215 
216 	if (code == ABS_MT_SLOT) {
217 		/*
218 		 * "Stage" the event; we'll flush it later, when we
219 		 * get actual touch data.
220 		 */
221 		if (mt && *pval >= 0 && *pval < mt->num_slots)
222 			mt->slot = *pval;
223 
224 		return INPUT_IGNORE_EVENT;
225 	}
226 
227 	is_mt_event = input_is_mt_value(code);
228 
229 	if (!is_mt_event) {
230 		pold = &dev->absinfo[code].value;
231 	} else if (mt) {
232 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
233 	} else {
234 		/*
235 		 * Bypass filtering for multi-touch events when
236 		 * not employing slots.
237 		 */
238 		pold = NULL;
239 	}
240 
241 	if (pold) {
242 		*pval = input_defuzz_abs_event(*pval, *pold,
243 						dev->absinfo[code].fuzz);
244 		if (*pold == *pval)
245 			return INPUT_IGNORE_EVENT;
246 
247 		*pold = *pval;
248 	}
249 
250 	/* Flush pending "slot" event */
251 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
252 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
253 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
254 	}
255 
256 	return INPUT_PASS_TO_HANDLERS;
257 }
258 
259 static int input_get_disposition(struct input_dev *dev,
260 			  unsigned int type, unsigned int code, int value)
261 {
262 	int disposition = INPUT_IGNORE_EVENT;
263 
264 	switch (type) {
265 
266 	case EV_SYN:
267 		switch (code) {
268 		case SYN_CONFIG:
269 			disposition = INPUT_PASS_TO_ALL;
270 			break;
271 
272 		case SYN_REPORT:
273 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
274 			break;
275 		case SYN_MT_REPORT:
276 			disposition = INPUT_PASS_TO_HANDLERS;
277 			break;
278 		}
279 		break;
280 
281 	case EV_KEY:
282 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
283 
284 			/* auto-repeat bypasses state updates */
285 			if (value == 2) {
286 				disposition = INPUT_PASS_TO_HANDLERS;
287 				break;
288 			}
289 
290 			if (!!test_bit(code, dev->key) != !!value) {
291 
292 				__change_bit(code, dev->key);
293 				disposition = INPUT_PASS_TO_HANDLERS;
294 			}
295 		}
296 		break;
297 
298 	case EV_SW:
299 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
300 		    !!test_bit(code, dev->sw) != !!value) {
301 
302 			__change_bit(code, dev->sw);
303 			disposition = INPUT_PASS_TO_HANDLERS;
304 		}
305 		break;
306 
307 	case EV_ABS:
308 		if (is_event_supported(code, dev->absbit, ABS_MAX))
309 			disposition = input_handle_abs_event(dev, code, &value);
310 
311 		break;
312 
313 	case EV_REL:
314 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
315 			disposition = INPUT_PASS_TO_HANDLERS;
316 
317 		break;
318 
319 	case EV_MSC:
320 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
321 			disposition = INPUT_PASS_TO_ALL;
322 
323 		break;
324 
325 	case EV_LED:
326 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
327 		    !!test_bit(code, dev->led) != !!value) {
328 
329 			__change_bit(code, dev->led);
330 			disposition = INPUT_PASS_TO_ALL;
331 		}
332 		break;
333 
334 	case EV_SND:
335 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
336 
337 			if (!!test_bit(code, dev->snd) != !!value)
338 				__change_bit(code, dev->snd);
339 			disposition = INPUT_PASS_TO_ALL;
340 		}
341 		break;
342 
343 	case EV_REP:
344 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
345 			dev->rep[code] = value;
346 			disposition = INPUT_PASS_TO_ALL;
347 		}
348 		break;
349 
350 	case EV_FF:
351 		if (value >= 0)
352 			disposition = INPUT_PASS_TO_ALL;
353 		break;
354 
355 	case EV_PWR:
356 		disposition = INPUT_PASS_TO_ALL;
357 		break;
358 	}
359 
360 	return disposition;
361 }
362 
363 static void input_handle_event(struct input_dev *dev,
364 			       unsigned int type, unsigned int code, int value)
365 {
366 	int disposition;
367 
368 	disposition = input_get_disposition(dev, type, code, value);
369 
370 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
371 		dev->event(dev, type, code, value);
372 
373 	if (!dev->vals)
374 		return;
375 
376 	if (disposition & INPUT_PASS_TO_HANDLERS) {
377 		struct input_value *v;
378 
379 		if (disposition & INPUT_SLOT) {
380 			v = &dev->vals[dev->num_vals++];
381 			v->type = EV_ABS;
382 			v->code = ABS_MT_SLOT;
383 			v->value = dev->mt->slot;
384 		}
385 
386 		v = &dev->vals[dev->num_vals++];
387 		v->type = type;
388 		v->code = code;
389 		v->value = value;
390 	}
391 
392 	if (disposition & INPUT_FLUSH) {
393 		if (dev->num_vals >= 2)
394 			input_pass_values(dev, dev->vals, dev->num_vals);
395 		dev->num_vals = 0;
396 	} else if (dev->num_vals >= dev->max_vals - 2) {
397 		dev->vals[dev->num_vals++] = input_value_sync;
398 		input_pass_values(dev, dev->vals, dev->num_vals);
399 		dev->num_vals = 0;
400 	}
401 
402 }
403 
404 /**
405  * input_event() - report new input event
406  * @dev: device that generated the event
407  * @type: type of the event
408  * @code: event code
409  * @value: value of the event
410  *
411  * This function should be used by drivers implementing various input
412  * devices to report input events. See also input_inject_event().
413  *
414  * NOTE: input_event() may be safely used right after input device was
415  * allocated with input_allocate_device(), even before it is registered
416  * with input_register_device(), but the event will not reach any of the
417  * input handlers. Such early invocation of input_event() may be used
418  * to 'seed' initial state of a switch or initial position of absolute
419  * axis, etc.
420  */
421 void input_event(struct input_dev *dev,
422 		 unsigned int type, unsigned int code, int value)
423 {
424 	unsigned long flags;
425 
426 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
427 
428 		spin_lock_irqsave(&dev->event_lock, flags);
429 		input_handle_event(dev, type, code, value);
430 		spin_unlock_irqrestore(&dev->event_lock, flags);
431 	}
432 }
433 EXPORT_SYMBOL(input_event);
434 
435 /**
436  * input_inject_event() - send input event from input handler
437  * @handle: input handle to send event through
438  * @type: type of the event
439  * @code: event code
440  * @value: value of the event
441  *
442  * Similar to input_event() but will ignore event if device is
443  * "grabbed" and handle injecting event is not the one that owns
444  * the device.
445  */
446 void input_inject_event(struct input_handle *handle,
447 			unsigned int type, unsigned int code, int value)
448 {
449 	struct input_dev *dev = handle->dev;
450 	struct input_handle *grab;
451 	unsigned long flags;
452 
453 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
454 		spin_lock_irqsave(&dev->event_lock, flags);
455 
456 		rcu_read_lock();
457 		grab = rcu_dereference(dev->grab);
458 		if (!grab || grab == handle)
459 			input_handle_event(dev, type, code, value);
460 		rcu_read_unlock();
461 
462 		spin_unlock_irqrestore(&dev->event_lock, flags);
463 	}
464 }
465 EXPORT_SYMBOL(input_inject_event);
466 
467 /**
468  * input_alloc_absinfo - allocates array of input_absinfo structs
469  * @dev: the input device emitting absolute events
470  *
471  * If the absinfo struct the caller asked for is already allocated, this
472  * functions will not do anything.
473  */
474 void input_alloc_absinfo(struct input_dev *dev)
475 {
476 	if (!dev->absinfo)
477 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
478 					GFP_KERNEL);
479 
480 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
481 }
482 EXPORT_SYMBOL(input_alloc_absinfo);
483 
484 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
485 			  int min, int max, int fuzz, int flat)
486 {
487 	struct input_absinfo *absinfo;
488 
489 	input_alloc_absinfo(dev);
490 	if (!dev->absinfo)
491 		return;
492 
493 	absinfo = &dev->absinfo[axis];
494 	absinfo->minimum = min;
495 	absinfo->maximum = max;
496 	absinfo->fuzz = fuzz;
497 	absinfo->flat = flat;
498 
499 	dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
500 }
501 EXPORT_SYMBOL(input_set_abs_params);
502 
503 
504 /**
505  * input_grab_device - grabs device for exclusive use
506  * @handle: input handle that wants to own the device
507  *
508  * When a device is grabbed by an input handle all events generated by
509  * the device are delivered only to this handle. Also events injected
510  * by other input handles are ignored while device is grabbed.
511  */
512 int input_grab_device(struct input_handle *handle)
513 {
514 	struct input_dev *dev = handle->dev;
515 	int retval;
516 
517 	retval = mutex_lock_interruptible(&dev->mutex);
518 	if (retval)
519 		return retval;
520 
521 	if (dev->grab) {
522 		retval = -EBUSY;
523 		goto out;
524 	}
525 
526 	rcu_assign_pointer(dev->grab, handle);
527 
528  out:
529 	mutex_unlock(&dev->mutex);
530 	return retval;
531 }
532 EXPORT_SYMBOL(input_grab_device);
533 
534 static void __input_release_device(struct input_handle *handle)
535 {
536 	struct input_dev *dev = handle->dev;
537 
538 	if (dev->grab == handle) {
539 		rcu_assign_pointer(dev->grab, NULL);
540 		/* Make sure input_pass_event() notices that grab is gone */
541 		synchronize_rcu();
542 
543 		list_for_each_entry(handle, &dev->h_list, d_node)
544 			if (handle->open && handle->handler->start)
545 				handle->handler->start(handle);
546 	}
547 }
548 
549 /**
550  * input_release_device - release previously grabbed device
551  * @handle: input handle that owns the device
552  *
553  * Releases previously grabbed device so that other input handles can
554  * start receiving input events. Upon release all handlers attached
555  * to the device have their start() method called so they have a change
556  * to synchronize device state with the rest of the system.
557  */
558 void input_release_device(struct input_handle *handle)
559 {
560 	struct input_dev *dev = handle->dev;
561 
562 	mutex_lock(&dev->mutex);
563 	__input_release_device(handle);
564 	mutex_unlock(&dev->mutex);
565 }
566 EXPORT_SYMBOL(input_release_device);
567 
568 /**
569  * input_open_device - open input device
570  * @handle: handle through which device is being accessed
571  *
572  * This function should be called by input handlers when they
573  * want to start receive events from given input device.
574  */
575 int input_open_device(struct input_handle *handle)
576 {
577 	struct input_dev *dev = handle->dev;
578 	int retval;
579 
580 	retval = mutex_lock_interruptible(&dev->mutex);
581 	if (retval)
582 		return retval;
583 
584 	if (dev->going_away) {
585 		retval = -ENODEV;
586 		goto out;
587 	}
588 
589 	handle->open++;
590 
591 	if (!dev->users++ && dev->open)
592 		retval = dev->open(dev);
593 
594 	if (retval) {
595 		dev->users--;
596 		if (!--handle->open) {
597 			/*
598 			 * Make sure we are not delivering any more events
599 			 * through this handle
600 			 */
601 			synchronize_rcu();
602 		}
603 	}
604 
605  out:
606 	mutex_unlock(&dev->mutex);
607 	return retval;
608 }
609 EXPORT_SYMBOL(input_open_device);
610 
611 int input_flush_device(struct input_handle *handle, struct file *file)
612 {
613 	struct input_dev *dev = handle->dev;
614 	int retval;
615 
616 	retval = mutex_lock_interruptible(&dev->mutex);
617 	if (retval)
618 		return retval;
619 
620 	if (dev->flush)
621 		retval = dev->flush(dev, file);
622 
623 	mutex_unlock(&dev->mutex);
624 	return retval;
625 }
626 EXPORT_SYMBOL(input_flush_device);
627 
628 /**
629  * input_close_device - close input device
630  * @handle: handle through which device is being accessed
631  *
632  * This function should be called by input handlers when they
633  * want to stop receive events from given input device.
634  */
635 void input_close_device(struct input_handle *handle)
636 {
637 	struct input_dev *dev = handle->dev;
638 
639 	mutex_lock(&dev->mutex);
640 
641 	__input_release_device(handle);
642 
643 	if (!--dev->users && dev->close)
644 		dev->close(dev);
645 
646 	if (!--handle->open) {
647 		/*
648 		 * synchronize_rcu() makes sure that input_pass_event()
649 		 * completed and that no more input events are delivered
650 		 * through this handle
651 		 */
652 		synchronize_rcu();
653 	}
654 
655 	mutex_unlock(&dev->mutex);
656 }
657 EXPORT_SYMBOL(input_close_device);
658 
659 /*
660  * Simulate keyup events for all keys that are marked as pressed.
661  * The function must be called with dev->event_lock held.
662  */
663 static void input_dev_release_keys(struct input_dev *dev)
664 {
665 	int code;
666 
667 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
668 		for (code = 0; code <= KEY_MAX; code++) {
669 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
670 			    __test_and_clear_bit(code, dev->key)) {
671 				input_pass_event(dev, EV_KEY, code, 0);
672 			}
673 		}
674 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
675 	}
676 }
677 
678 /*
679  * Prepare device for unregistering
680  */
681 static void input_disconnect_device(struct input_dev *dev)
682 {
683 	struct input_handle *handle;
684 
685 	/*
686 	 * Mark device as going away. Note that we take dev->mutex here
687 	 * not to protect access to dev->going_away but rather to ensure
688 	 * that there are no threads in the middle of input_open_device()
689 	 */
690 	mutex_lock(&dev->mutex);
691 	dev->going_away = true;
692 	mutex_unlock(&dev->mutex);
693 
694 	spin_lock_irq(&dev->event_lock);
695 
696 	/*
697 	 * Simulate keyup events for all pressed keys so that handlers
698 	 * are not left with "stuck" keys. The driver may continue
699 	 * generate events even after we done here but they will not
700 	 * reach any handlers.
701 	 */
702 	input_dev_release_keys(dev);
703 
704 	list_for_each_entry(handle, &dev->h_list, d_node)
705 		handle->open = 0;
706 
707 	spin_unlock_irq(&dev->event_lock);
708 }
709 
710 /**
711  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
712  * @ke: keymap entry containing scancode to be converted.
713  * @scancode: pointer to the location where converted scancode should
714  *	be stored.
715  *
716  * This function is used to convert scancode stored in &struct keymap_entry
717  * into scalar form understood by legacy keymap handling methods. These
718  * methods expect scancodes to be represented as 'unsigned int'.
719  */
720 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
721 			     unsigned int *scancode)
722 {
723 	switch (ke->len) {
724 	case 1:
725 		*scancode = *((u8 *)ke->scancode);
726 		break;
727 
728 	case 2:
729 		*scancode = *((u16 *)ke->scancode);
730 		break;
731 
732 	case 4:
733 		*scancode = *((u32 *)ke->scancode);
734 		break;
735 
736 	default:
737 		return -EINVAL;
738 	}
739 
740 	return 0;
741 }
742 EXPORT_SYMBOL(input_scancode_to_scalar);
743 
744 /*
745  * Those routines handle the default case where no [gs]etkeycode() is
746  * defined. In this case, an array indexed by the scancode is used.
747  */
748 
749 static unsigned int input_fetch_keycode(struct input_dev *dev,
750 					unsigned int index)
751 {
752 	switch (dev->keycodesize) {
753 	case 1:
754 		return ((u8 *)dev->keycode)[index];
755 
756 	case 2:
757 		return ((u16 *)dev->keycode)[index];
758 
759 	default:
760 		return ((u32 *)dev->keycode)[index];
761 	}
762 }
763 
764 static int input_default_getkeycode(struct input_dev *dev,
765 				    struct input_keymap_entry *ke)
766 {
767 	unsigned int index;
768 	int error;
769 
770 	if (!dev->keycodesize)
771 		return -EINVAL;
772 
773 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
774 		index = ke->index;
775 	else {
776 		error = input_scancode_to_scalar(ke, &index);
777 		if (error)
778 			return error;
779 	}
780 
781 	if (index >= dev->keycodemax)
782 		return -EINVAL;
783 
784 	ke->keycode = input_fetch_keycode(dev, index);
785 	ke->index = index;
786 	ke->len = sizeof(index);
787 	memcpy(ke->scancode, &index, sizeof(index));
788 
789 	return 0;
790 }
791 
792 static int input_default_setkeycode(struct input_dev *dev,
793 				    const struct input_keymap_entry *ke,
794 				    unsigned int *old_keycode)
795 {
796 	unsigned int index;
797 	int error;
798 	int i;
799 
800 	if (!dev->keycodesize)
801 		return -EINVAL;
802 
803 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
804 		index = ke->index;
805 	} else {
806 		error = input_scancode_to_scalar(ke, &index);
807 		if (error)
808 			return error;
809 	}
810 
811 	if (index >= dev->keycodemax)
812 		return -EINVAL;
813 
814 	if (dev->keycodesize < sizeof(ke->keycode) &&
815 			(ke->keycode >> (dev->keycodesize * 8)))
816 		return -EINVAL;
817 
818 	switch (dev->keycodesize) {
819 		case 1: {
820 			u8 *k = (u8 *)dev->keycode;
821 			*old_keycode = k[index];
822 			k[index] = ke->keycode;
823 			break;
824 		}
825 		case 2: {
826 			u16 *k = (u16 *)dev->keycode;
827 			*old_keycode = k[index];
828 			k[index] = ke->keycode;
829 			break;
830 		}
831 		default: {
832 			u32 *k = (u32 *)dev->keycode;
833 			*old_keycode = k[index];
834 			k[index] = ke->keycode;
835 			break;
836 		}
837 	}
838 
839 	__clear_bit(*old_keycode, dev->keybit);
840 	__set_bit(ke->keycode, dev->keybit);
841 
842 	for (i = 0; i < dev->keycodemax; i++) {
843 		if (input_fetch_keycode(dev, i) == *old_keycode) {
844 			__set_bit(*old_keycode, dev->keybit);
845 			break; /* Setting the bit twice is useless, so break */
846 		}
847 	}
848 
849 	return 0;
850 }
851 
852 /**
853  * input_get_keycode - retrieve keycode currently mapped to a given scancode
854  * @dev: input device which keymap is being queried
855  * @ke: keymap entry
856  *
857  * This function should be called by anyone interested in retrieving current
858  * keymap. Presently evdev handlers use it.
859  */
860 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
861 {
862 	unsigned long flags;
863 	int retval;
864 
865 	spin_lock_irqsave(&dev->event_lock, flags);
866 	retval = dev->getkeycode(dev, ke);
867 	spin_unlock_irqrestore(&dev->event_lock, flags);
868 
869 	return retval;
870 }
871 EXPORT_SYMBOL(input_get_keycode);
872 
873 /**
874  * input_set_keycode - attribute a keycode to a given scancode
875  * @dev: input device which keymap is being updated
876  * @ke: new keymap entry
877  *
878  * This function should be called by anyone needing to update current
879  * keymap. Presently keyboard and evdev handlers use it.
880  */
881 int input_set_keycode(struct input_dev *dev,
882 		      const struct input_keymap_entry *ke)
883 {
884 	unsigned long flags;
885 	unsigned int old_keycode;
886 	int retval;
887 
888 	if (ke->keycode > KEY_MAX)
889 		return -EINVAL;
890 
891 	spin_lock_irqsave(&dev->event_lock, flags);
892 
893 	retval = dev->setkeycode(dev, ke, &old_keycode);
894 	if (retval)
895 		goto out;
896 
897 	/* Make sure KEY_RESERVED did not get enabled. */
898 	__clear_bit(KEY_RESERVED, dev->keybit);
899 
900 	/*
901 	 * Simulate keyup event if keycode is not present
902 	 * in the keymap anymore
903 	 */
904 	if (test_bit(EV_KEY, dev->evbit) &&
905 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
906 	    __test_and_clear_bit(old_keycode, dev->key)) {
907 		struct input_value vals[] =  {
908 			{ EV_KEY, old_keycode, 0 },
909 			input_value_sync
910 		};
911 
912 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
913 	}
914 
915  out:
916 	spin_unlock_irqrestore(&dev->event_lock, flags);
917 
918 	return retval;
919 }
920 EXPORT_SYMBOL(input_set_keycode);
921 
922 static const struct input_device_id *input_match_device(struct input_handler *handler,
923 							struct input_dev *dev)
924 {
925 	const struct input_device_id *id;
926 
927 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
928 
929 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
930 			if (id->bustype != dev->id.bustype)
931 				continue;
932 
933 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
934 			if (id->vendor != dev->id.vendor)
935 				continue;
936 
937 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
938 			if (id->product != dev->id.product)
939 				continue;
940 
941 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
942 			if (id->version != dev->id.version)
943 				continue;
944 
945 		if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
946 			continue;
947 
948 		if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
949 			continue;
950 
951 		if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
952 			continue;
953 
954 		if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
955 			continue;
956 
957 		if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
958 			continue;
959 
960 		if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
961 			continue;
962 
963 		if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
964 			continue;
965 
966 		if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
967 			continue;
968 
969 		if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
970 			continue;
971 
972 		if (!handler->match || handler->match(handler, dev))
973 			return id;
974 	}
975 
976 	return NULL;
977 }
978 
979 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
980 {
981 	const struct input_device_id *id;
982 	int error;
983 
984 	id = input_match_device(handler, dev);
985 	if (!id)
986 		return -ENODEV;
987 
988 	error = handler->connect(handler, dev, id);
989 	if (error && error != -ENODEV)
990 		pr_err("failed to attach handler %s to device %s, error: %d\n",
991 		       handler->name, kobject_name(&dev->dev.kobj), error);
992 
993 	return error;
994 }
995 
996 #ifdef CONFIG_COMPAT
997 
998 static int input_bits_to_string(char *buf, int buf_size,
999 				unsigned long bits, bool skip_empty)
1000 {
1001 	int len = 0;
1002 
1003 	if (INPUT_COMPAT_TEST) {
1004 		u32 dword = bits >> 32;
1005 		if (dword || !skip_empty)
1006 			len += snprintf(buf, buf_size, "%x ", dword);
1007 
1008 		dword = bits & 0xffffffffUL;
1009 		if (dword || !skip_empty || len)
1010 			len += snprintf(buf + len, max(buf_size - len, 0),
1011 					"%x", dword);
1012 	} else {
1013 		if (bits || !skip_empty)
1014 			len += snprintf(buf, buf_size, "%lx", bits);
1015 	}
1016 
1017 	return len;
1018 }
1019 
1020 #else /* !CONFIG_COMPAT */
1021 
1022 static int input_bits_to_string(char *buf, int buf_size,
1023 				unsigned long bits, bool skip_empty)
1024 {
1025 	return bits || !skip_empty ?
1026 		snprintf(buf, buf_size, "%lx", bits) : 0;
1027 }
1028 
1029 #endif
1030 
1031 #ifdef CONFIG_PROC_FS
1032 
1033 static struct proc_dir_entry *proc_bus_input_dir;
1034 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1035 static int input_devices_state;
1036 
1037 static inline void input_wakeup_procfs_readers(void)
1038 {
1039 	input_devices_state++;
1040 	wake_up(&input_devices_poll_wait);
1041 }
1042 
1043 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1044 {
1045 	poll_wait(file, &input_devices_poll_wait, wait);
1046 	if (file->f_version != input_devices_state) {
1047 		file->f_version = input_devices_state;
1048 		return POLLIN | POLLRDNORM;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 union input_seq_state {
1055 	struct {
1056 		unsigned short pos;
1057 		bool mutex_acquired;
1058 	};
1059 	void *p;
1060 };
1061 
1062 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1063 {
1064 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1065 	int error;
1066 
1067 	/* We need to fit into seq->private pointer */
1068 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1069 
1070 	error = mutex_lock_interruptible(&input_mutex);
1071 	if (error) {
1072 		state->mutex_acquired = false;
1073 		return ERR_PTR(error);
1074 	}
1075 
1076 	state->mutex_acquired = true;
1077 
1078 	return seq_list_start(&input_dev_list, *pos);
1079 }
1080 
1081 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1082 {
1083 	return seq_list_next(v, &input_dev_list, pos);
1084 }
1085 
1086 static void input_seq_stop(struct seq_file *seq, void *v)
1087 {
1088 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1089 
1090 	if (state->mutex_acquired)
1091 		mutex_unlock(&input_mutex);
1092 }
1093 
1094 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1095 				   unsigned long *bitmap, int max)
1096 {
1097 	int i;
1098 	bool skip_empty = true;
1099 	char buf[18];
1100 
1101 	seq_printf(seq, "B: %s=", name);
1102 
1103 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1104 		if (input_bits_to_string(buf, sizeof(buf),
1105 					 bitmap[i], skip_empty)) {
1106 			skip_empty = false;
1107 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * If no output was produced print a single 0.
1113 	 */
1114 	if (skip_empty)
1115 		seq_puts(seq, "0");
1116 
1117 	seq_putc(seq, '\n');
1118 }
1119 
1120 static int input_devices_seq_show(struct seq_file *seq, void *v)
1121 {
1122 	struct input_dev *dev = container_of(v, struct input_dev, node);
1123 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1124 	struct input_handle *handle;
1125 
1126 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1127 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1128 
1129 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1130 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1131 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1132 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1133 	seq_printf(seq, "H: Handlers=");
1134 
1135 	list_for_each_entry(handle, &dev->h_list, d_node)
1136 		seq_printf(seq, "%s ", handle->name);
1137 	seq_putc(seq, '\n');
1138 
1139 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1140 
1141 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1142 	if (test_bit(EV_KEY, dev->evbit))
1143 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1144 	if (test_bit(EV_REL, dev->evbit))
1145 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1146 	if (test_bit(EV_ABS, dev->evbit))
1147 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1148 	if (test_bit(EV_MSC, dev->evbit))
1149 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1150 	if (test_bit(EV_LED, dev->evbit))
1151 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1152 	if (test_bit(EV_SND, dev->evbit))
1153 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1154 	if (test_bit(EV_FF, dev->evbit))
1155 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1156 	if (test_bit(EV_SW, dev->evbit))
1157 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1158 
1159 	seq_putc(seq, '\n');
1160 
1161 	kfree(path);
1162 	return 0;
1163 }
1164 
1165 static const struct seq_operations input_devices_seq_ops = {
1166 	.start	= input_devices_seq_start,
1167 	.next	= input_devices_seq_next,
1168 	.stop	= input_seq_stop,
1169 	.show	= input_devices_seq_show,
1170 };
1171 
1172 static int input_proc_devices_open(struct inode *inode, struct file *file)
1173 {
1174 	return seq_open(file, &input_devices_seq_ops);
1175 }
1176 
1177 static const struct file_operations input_devices_fileops = {
1178 	.owner		= THIS_MODULE,
1179 	.open		= input_proc_devices_open,
1180 	.poll		= input_proc_devices_poll,
1181 	.read		= seq_read,
1182 	.llseek		= seq_lseek,
1183 	.release	= seq_release,
1184 };
1185 
1186 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1187 {
1188 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1189 	int error;
1190 
1191 	/* We need to fit into seq->private pointer */
1192 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1193 
1194 	error = mutex_lock_interruptible(&input_mutex);
1195 	if (error) {
1196 		state->mutex_acquired = false;
1197 		return ERR_PTR(error);
1198 	}
1199 
1200 	state->mutex_acquired = true;
1201 	state->pos = *pos;
1202 
1203 	return seq_list_start(&input_handler_list, *pos);
1204 }
1205 
1206 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1207 {
1208 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1209 
1210 	state->pos = *pos + 1;
1211 	return seq_list_next(v, &input_handler_list, pos);
1212 }
1213 
1214 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1215 {
1216 	struct input_handler *handler = container_of(v, struct input_handler, node);
1217 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1218 
1219 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1220 	if (handler->filter)
1221 		seq_puts(seq, " (filter)");
1222 	if (handler->legacy_minors)
1223 		seq_printf(seq, " Minor=%d", handler->minor);
1224 	seq_putc(seq, '\n');
1225 
1226 	return 0;
1227 }
1228 
1229 static const struct seq_operations input_handlers_seq_ops = {
1230 	.start	= input_handlers_seq_start,
1231 	.next	= input_handlers_seq_next,
1232 	.stop	= input_seq_stop,
1233 	.show	= input_handlers_seq_show,
1234 };
1235 
1236 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1237 {
1238 	return seq_open(file, &input_handlers_seq_ops);
1239 }
1240 
1241 static const struct file_operations input_handlers_fileops = {
1242 	.owner		= THIS_MODULE,
1243 	.open		= input_proc_handlers_open,
1244 	.read		= seq_read,
1245 	.llseek		= seq_lseek,
1246 	.release	= seq_release,
1247 };
1248 
1249 static int __init input_proc_init(void)
1250 {
1251 	struct proc_dir_entry *entry;
1252 
1253 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1254 	if (!proc_bus_input_dir)
1255 		return -ENOMEM;
1256 
1257 	entry = proc_create("devices", 0, proc_bus_input_dir,
1258 			    &input_devices_fileops);
1259 	if (!entry)
1260 		goto fail1;
1261 
1262 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1263 			    &input_handlers_fileops);
1264 	if (!entry)
1265 		goto fail2;
1266 
1267 	return 0;
1268 
1269  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1270  fail1: remove_proc_entry("bus/input", NULL);
1271 	return -ENOMEM;
1272 }
1273 
1274 static void input_proc_exit(void)
1275 {
1276 	remove_proc_entry("devices", proc_bus_input_dir);
1277 	remove_proc_entry("handlers", proc_bus_input_dir);
1278 	remove_proc_entry("bus/input", NULL);
1279 }
1280 
1281 #else /* !CONFIG_PROC_FS */
1282 static inline void input_wakeup_procfs_readers(void) { }
1283 static inline int input_proc_init(void) { return 0; }
1284 static inline void input_proc_exit(void) { }
1285 #endif
1286 
1287 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1288 static ssize_t input_dev_show_##name(struct device *dev,		\
1289 				     struct device_attribute *attr,	\
1290 				     char *buf)				\
1291 {									\
1292 	struct input_dev *input_dev = to_input_dev(dev);		\
1293 									\
1294 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1295 			 input_dev->name ? input_dev->name : "");	\
1296 }									\
1297 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1298 
1299 INPUT_DEV_STRING_ATTR_SHOW(name);
1300 INPUT_DEV_STRING_ATTR_SHOW(phys);
1301 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1302 
1303 static int input_print_modalias_bits(char *buf, int size,
1304 				     char name, unsigned long *bm,
1305 				     unsigned int min_bit, unsigned int max_bit)
1306 {
1307 	int len = 0, i;
1308 
1309 	len += snprintf(buf, max(size, 0), "%c", name);
1310 	for (i = min_bit; i < max_bit; i++)
1311 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1312 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1313 	return len;
1314 }
1315 
1316 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1317 				int add_cr)
1318 {
1319 	int len;
1320 
1321 	len = snprintf(buf, max(size, 0),
1322 		       "input:b%04Xv%04Xp%04Xe%04X-",
1323 		       id->id.bustype, id->id.vendor,
1324 		       id->id.product, id->id.version);
1325 
1326 	len += input_print_modalias_bits(buf + len, size - len,
1327 				'e', id->evbit, 0, EV_MAX);
1328 	len += input_print_modalias_bits(buf + len, size - len,
1329 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1330 	len += input_print_modalias_bits(buf + len, size - len,
1331 				'r', id->relbit, 0, REL_MAX);
1332 	len += input_print_modalias_bits(buf + len, size - len,
1333 				'a', id->absbit, 0, ABS_MAX);
1334 	len += input_print_modalias_bits(buf + len, size - len,
1335 				'm', id->mscbit, 0, MSC_MAX);
1336 	len += input_print_modalias_bits(buf + len, size - len,
1337 				'l', id->ledbit, 0, LED_MAX);
1338 	len += input_print_modalias_bits(buf + len, size - len,
1339 				's', id->sndbit, 0, SND_MAX);
1340 	len += input_print_modalias_bits(buf + len, size - len,
1341 				'f', id->ffbit, 0, FF_MAX);
1342 	len += input_print_modalias_bits(buf + len, size - len,
1343 				'w', id->swbit, 0, SW_MAX);
1344 
1345 	if (add_cr)
1346 		len += snprintf(buf + len, max(size - len, 0), "\n");
1347 
1348 	return len;
1349 }
1350 
1351 static ssize_t input_dev_show_modalias(struct device *dev,
1352 				       struct device_attribute *attr,
1353 				       char *buf)
1354 {
1355 	struct input_dev *id = to_input_dev(dev);
1356 	ssize_t len;
1357 
1358 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1359 
1360 	return min_t(int, len, PAGE_SIZE);
1361 }
1362 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1363 
1364 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1365 			      int max, int add_cr);
1366 
1367 static ssize_t input_dev_show_properties(struct device *dev,
1368 					 struct device_attribute *attr,
1369 					 char *buf)
1370 {
1371 	struct input_dev *input_dev = to_input_dev(dev);
1372 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1373 				     INPUT_PROP_MAX, true);
1374 	return min_t(int, len, PAGE_SIZE);
1375 }
1376 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1377 
1378 static struct attribute *input_dev_attrs[] = {
1379 	&dev_attr_name.attr,
1380 	&dev_attr_phys.attr,
1381 	&dev_attr_uniq.attr,
1382 	&dev_attr_modalias.attr,
1383 	&dev_attr_properties.attr,
1384 	NULL
1385 };
1386 
1387 static struct attribute_group input_dev_attr_group = {
1388 	.attrs	= input_dev_attrs,
1389 };
1390 
1391 #define INPUT_DEV_ID_ATTR(name)						\
1392 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1393 					struct device_attribute *attr,	\
1394 					char *buf)			\
1395 {									\
1396 	struct input_dev *input_dev = to_input_dev(dev);		\
1397 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1398 }									\
1399 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1400 
1401 INPUT_DEV_ID_ATTR(bustype);
1402 INPUT_DEV_ID_ATTR(vendor);
1403 INPUT_DEV_ID_ATTR(product);
1404 INPUT_DEV_ID_ATTR(version);
1405 
1406 static struct attribute *input_dev_id_attrs[] = {
1407 	&dev_attr_bustype.attr,
1408 	&dev_attr_vendor.attr,
1409 	&dev_attr_product.attr,
1410 	&dev_attr_version.attr,
1411 	NULL
1412 };
1413 
1414 static struct attribute_group input_dev_id_attr_group = {
1415 	.name	= "id",
1416 	.attrs	= input_dev_id_attrs,
1417 };
1418 
1419 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1420 			      int max, int add_cr)
1421 {
1422 	int i;
1423 	int len = 0;
1424 	bool skip_empty = true;
1425 
1426 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1427 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1428 					    bitmap[i], skip_empty);
1429 		if (len) {
1430 			skip_empty = false;
1431 			if (i > 0)
1432 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1433 		}
1434 	}
1435 
1436 	/*
1437 	 * If no output was produced print a single 0.
1438 	 */
1439 	if (len == 0)
1440 		len = snprintf(buf, buf_size, "%d", 0);
1441 
1442 	if (add_cr)
1443 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1444 
1445 	return len;
1446 }
1447 
1448 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1449 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1450 				       struct device_attribute *attr,	\
1451 				       char *buf)			\
1452 {									\
1453 	struct input_dev *input_dev = to_input_dev(dev);		\
1454 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1455 				     input_dev->bm##bit, ev##_MAX,	\
1456 				     true);				\
1457 	return min_t(int, len, PAGE_SIZE);				\
1458 }									\
1459 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1460 
1461 INPUT_DEV_CAP_ATTR(EV, ev);
1462 INPUT_DEV_CAP_ATTR(KEY, key);
1463 INPUT_DEV_CAP_ATTR(REL, rel);
1464 INPUT_DEV_CAP_ATTR(ABS, abs);
1465 INPUT_DEV_CAP_ATTR(MSC, msc);
1466 INPUT_DEV_CAP_ATTR(LED, led);
1467 INPUT_DEV_CAP_ATTR(SND, snd);
1468 INPUT_DEV_CAP_ATTR(FF, ff);
1469 INPUT_DEV_CAP_ATTR(SW, sw);
1470 
1471 static struct attribute *input_dev_caps_attrs[] = {
1472 	&dev_attr_ev.attr,
1473 	&dev_attr_key.attr,
1474 	&dev_attr_rel.attr,
1475 	&dev_attr_abs.attr,
1476 	&dev_attr_msc.attr,
1477 	&dev_attr_led.attr,
1478 	&dev_attr_snd.attr,
1479 	&dev_attr_ff.attr,
1480 	&dev_attr_sw.attr,
1481 	NULL
1482 };
1483 
1484 static struct attribute_group input_dev_caps_attr_group = {
1485 	.name	= "capabilities",
1486 	.attrs	= input_dev_caps_attrs,
1487 };
1488 
1489 static const struct attribute_group *input_dev_attr_groups[] = {
1490 	&input_dev_attr_group,
1491 	&input_dev_id_attr_group,
1492 	&input_dev_caps_attr_group,
1493 	NULL
1494 };
1495 
1496 static void input_dev_release(struct device *device)
1497 {
1498 	struct input_dev *dev = to_input_dev(device);
1499 
1500 	input_ff_destroy(dev);
1501 	input_mt_destroy_slots(dev);
1502 	kfree(dev->absinfo);
1503 	kfree(dev->vals);
1504 	kfree(dev);
1505 
1506 	module_put(THIS_MODULE);
1507 }
1508 
1509 /*
1510  * Input uevent interface - loading event handlers based on
1511  * device bitfields.
1512  */
1513 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1514 				   const char *name, unsigned long *bitmap, int max)
1515 {
1516 	int len;
1517 
1518 	if (add_uevent_var(env, "%s", name))
1519 		return -ENOMEM;
1520 
1521 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1522 				 sizeof(env->buf) - env->buflen,
1523 				 bitmap, max, false);
1524 	if (len >= (sizeof(env->buf) - env->buflen))
1525 		return -ENOMEM;
1526 
1527 	env->buflen += len;
1528 	return 0;
1529 }
1530 
1531 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1532 					 struct input_dev *dev)
1533 {
1534 	int len;
1535 
1536 	if (add_uevent_var(env, "MODALIAS="))
1537 		return -ENOMEM;
1538 
1539 	len = input_print_modalias(&env->buf[env->buflen - 1],
1540 				   sizeof(env->buf) - env->buflen,
1541 				   dev, 0);
1542 	if (len >= (sizeof(env->buf) - env->buflen))
1543 		return -ENOMEM;
1544 
1545 	env->buflen += len;
1546 	return 0;
1547 }
1548 
1549 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1550 	do {								\
1551 		int err = add_uevent_var(env, fmt, val);		\
1552 		if (err)						\
1553 			return err;					\
1554 	} while (0)
1555 
1556 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1557 	do {								\
1558 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1559 		if (err)						\
1560 			return err;					\
1561 	} while (0)
1562 
1563 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1564 	do {								\
1565 		int err = input_add_uevent_modalias_var(env, dev);	\
1566 		if (err)						\
1567 			return err;					\
1568 	} while (0)
1569 
1570 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1571 {
1572 	struct input_dev *dev = to_input_dev(device);
1573 
1574 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1575 				dev->id.bustype, dev->id.vendor,
1576 				dev->id.product, dev->id.version);
1577 	if (dev->name)
1578 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1579 	if (dev->phys)
1580 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1581 	if (dev->uniq)
1582 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1583 
1584 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1585 
1586 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1587 	if (test_bit(EV_KEY, dev->evbit))
1588 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1589 	if (test_bit(EV_REL, dev->evbit))
1590 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1591 	if (test_bit(EV_ABS, dev->evbit))
1592 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1593 	if (test_bit(EV_MSC, dev->evbit))
1594 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1595 	if (test_bit(EV_LED, dev->evbit))
1596 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1597 	if (test_bit(EV_SND, dev->evbit))
1598 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1599 	if (test_bit(EV_FF, dev->evbit))
1600 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1601 	if (test_bit(EV_SW, dev->evbit))
1602 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1603 
1604 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1605 
1606 	return 0;
1607 }
1608 
1609 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1610 	do {								\
1611 		int i;							\
1612 		bool active;						\
1613 									\
1614 		if (!test_bit(EV_##type, dev->evbit))			\
1615 			break;						\
1616 									\
1617 		for (i = 0; i < type##_MAX; i++) {			\
1618 			if (!test_bit(i, dev->bits##bit))		\
1619 				continue;				\
1620 									\
1621 			active = test_bit(i, dev->bits);		\
1622 			if (!active && !on)				\
1623 				continue;				\
1624 									\
1625 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1626 		}							\
1627 	} while (0)
1628 
1629 static void input_dev_toggle(struct input_dev *dev, bool activate)
1630 {
1631 	if (!dev->event)
1632 		return;
1633 
1634 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1635 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1636 
1637 	if (activate && test_bit(EV_REP, dev->evbit)) {
1638 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1639 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1640 	}
1641 }
1642 
1643 /**
1644  * input_reset_device() - reset/restore the state of input device
1645  * @dev: input device whose state needs to be reset
1646  *
1647  * This function tries to reset the state of an opened input device and
1648  * bring internal state and state if the hardware in sync with each other.
1649  * We mark all keys as released, restore LED state, repeat rate, etc.
1650  */
1651 void input_reset_device(struct input_dev *dev)
1652 {
1653 	mutex_lock(&dev->mutex);
1654 
1655 	if (dev->users) {
1656 		input_dev_toggle(dev, true);
1657 
1658 		/*
1659 		 * Keys that have been pressed at suspend time are unlikely
1660 		 * to be still pressed when we resume.
1661 		 */
1662 		spin_lock_irq(&dev->event_lock);
1663 		input_dev_release_keys(dev);
1664 		spin_unlock_irq(&dev->event_lock);
1665 	}
1666 
1667 	mutex_unlock(&dev->mutex);
1668 }
1669 EXPORT_SYMBOL(input_reset_device);
1670 
1671 #ifdef CONFIG_PM
1672 static int input_dev_suspend(struct device *dev)
1673 {
1674 	struct input_dev *input_dev = to_input_dev(dev);
1675 
1676 	mutex_lock(&input_dev->mutex);
1677 
1678 	if (input_dev->users)
1679 		input_dev_toggle(input_dev, false);
1680 
1681 	mutex_unlock(&input_dev->mutex);
1682 
1683 	return 0;
1684 }
1685 
1686 static int input_dev_resume(struct device *dev)
1687 {
1688 	struct input_dev *input_dev = to_input_dev(dev);
1689 
1690 	input_reset_device(input_dev);
1691 
1692 	return 0;
1693 }
1694 
1695 static const struct dev_pm_ops input_dev_pm_ops = {
1696 	.suspend	= input_dev_suspend,
1697 	.resume		= input_dev_resume,
1698 	.poweroff	= input_dev_suspend,
1699 	.restore	= input_dev_resume,
1700 };
1701 #endif /* CONFIG_PM */
1702 
1703 static struct device_type input_dev_type = {
1704 	.groups		= input_dev_attr_groups,
1705 	.release	= input_dev_release,
1706 	.uevent		= input_dev_uevent,
1707 #ifdef CONFIG_PM
1708 	.pm		= &input_dev_pm_ops,
1709 #endif
1710 };
1711 
1712 static char *input_devnode(struct device *dev, umode_t *mode)
1713 {
1714 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1715 }
1716 
1717 struct class input_class = {
1718 	.name		= "input",
1719 	.devnode	= input_devnode,
1720 };
1721 EXPORT_SYMBOL_GPL(input_class);
1722 
1723 /**
1724  * input_allocate_device - allocate memory for new input device
1725  *
1726  * Returns prepared struct input_dev or NULL.
1727  *
1728  * NOTE: Use input_free_device() to free devices that have not been
1729  * registered; input_unregister_device() should be used for already
1730  * registered devices.
1731  */
1732 struct input_dev *input_allocate_device(void)
1733 {
1734 	struct input_dev *dev;
1735 
1736 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1737 	if (dev) {
1738 		dev->dev.type = &input_dev_type;
1739 		dev->dev.class = &input_class;
1740 		device_initialize(&dev->dev);
1741 		mutex_init(&dev->mutex);
1742 		spin_lock_init(&dev->event_lock);
1743 		INIT_LIST_HEAD(&dev->h_list);
1744 		INIT_LIST_HEAD(&dev->node);
1745 
1746 		__module_get(THIS_MODULE);
1747 	}
1748 
1749 	return dev;
1750 }
1751 EXPORT_SYMBOL(input_allocate_device);
1752 
1753 /**
1754  * input_free_device - free memory occupied by input_dev structure
1755  * @dev: input device to free
1756  *
1757  * This function should only be used if input_register_device()
1758  * was not called yet or if it failed. Once device was registered
1759  * use input_unregister_device() and memory will be freed once last
1760  * reference to the device is dropped.
1761  *
1762  * Device should be allocated by input_allocate_device().
1763  *
1764  * NOTE: If there are references to the input device then memory
1765  * will not be freed until last reference is dropped.
1766  */
1767 void input_free_device(struct input_dev *dev)
1768 {
1769 	if (dev)
1770 		input_put_device(dev);
1771 }
1772 EXPORT_SYMBOL(input_free_device);
1773 
1774 /**
1775  * input_set_capability - mark device as capable of a certain event
1776  * @dev: device that is capable of emitting or accepting event
1777  * @type: type of the event (EV_KEY, EV_REL, etc...)
1778  * @code: event code
1779  *
1780  * In addition to setting up corresponding bit in appropriate capability
1781  * bitmap the function also adjusts dev->evbit.
1782  */
1783 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1784 {
1785 	switch (type) {
1786 	case EV_KEY:
1787 		__set_bit(code, dev->keybit);
1788 		break;
1789 
1790 	case EV_REL:
1791 		__set_bit(code, dev->relbit);
1792 		break;
1793 
1794 	case EV_ABS:
1795 		__set_bit(code, dev->absbit);
1796 		break;
1797 
1798 	case EV_MSC:
1799 		__set_bit(code, dev->mscbit);
1800 		break;
1801 
1802 	case EV_SW:
1803 		__set_bit(code, dev->swbit);
1804 		break;
1805 
1806 	case EV_LED:
1807 		__set_bit(code, dev->ledbit);
1808 		break;
1809 
1810 	case EV_SND:
1811 		__set_bit(code, dev->sndbit);
1812 		break;
1813 
1814 	case EV_FF:
1815 		__set_bit(code, dev->ffbit);
1816 		break;
1817 
1818 	case EV_PWR:
1819 		/* do nothing */
1820 		break;
1821 
1822 	default:
1823 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1824 		       type, code);
1825 		dump_stack();
1826 		return;
1827 	}
1828 
1829 	__set_bit(type, dev->evbit);
1830 }
1831 EXPORT_SYMBOL(input_set_capability);
1832 
1833 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1834 {
1835 	int mt_slots;
1836 	int i;
1837 	unsigned int events;
1838 
1839 	if (dev->mt) {
1840 		mt_slots = dev->mt->num_slots;
1841 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1842 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1843 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1844 		mt_slots = clamp(mt_slots, 2, 32);
1845 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1846 		mt_slots = 2;
1847 	} else {
1848 		mt_slots = 0;
1849 	}
1850 
1851 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1852 
1853 	for (i = 0; i < ABS_CNT; i++) {
1854 		if (test_bit(i, dev->absbit)) {
1855 			if (input_is_mt_axis(i))
1856 				events += mt_slots;
1857 			else
1858 				events++;
1859 		}
1860 	}
1861 
1862 	for (i = 0; i < REL_CNT; i++)
1863 		if (test_bit(i, dev->relbit))
1864 			events++;
1865 
1866 	/* Make room for KEY and MSC events */
1867 	events += 7;
1868 
1869 	return events;
1870 }
1871 
1872 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1873 	do {								\
1874 		if (!test_bit(EV_##type, dev->evbit))			\
1875 			memset(dev->bits##bit, 0,			\
1876 				sizeof(dev->bits##bit));		\
1877 	} while (0)
1878 
1879 static void input_cleanse_bitmasks(struct input_dev *dev)
1880 {
1881 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1882 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1883 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1884 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1885 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1886 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1887 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1888 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1889 }
1890 
1891 /**
1892  * input_register_device - register device with input core
1893  * @dev: device to be registered
1894  *
1895  * This function registers device with input core. The device must be
1896  * allocated with input_allocate_device() and all it's capabilities
1897  * set up before registering.
1898  * If function fails the device must be freed with input_free_device().
1899  * Once device has been successfully registered it can be unregistered
1900  * with input_unregister_device(); input_free_device() should not be
1901  * called in this case.
1902  */
1903 int input_register_device(struct input_dev *dev)
1904 {
1905 	static atomic_t input_no = ATOMIC_INIT(0);
1906 	struct input_handler *handler;
1907 	unsigned int packet_size;
1908 	const char *path;
1909 	int error;
1910 
1911 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1912 	__set_bit(EV_SYN, dev->evbit);
1913 
1914 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1915 	__clear_bit(KEY_RESERVED, dev->keybit);
1916 
1917 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1918 	input_cleanse_bitmasks(dev);
1919 
1920 	packet_size = input_estimate_events_per_packet(dev);
1921 	if (dev->hint_events_per_packet < packet_size)
1922 		dev->hint_events_per_packet = packet_size;
1923 
1924 	dev->max_vals = max(dev->hint_events_per_packet, packet_size) + 2;
1925 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1926 	if (!dev->vals)
1927 		return -ENOMEM;
1928 
1929 	/*
1930 	 * If delay and period are pre-set by the driver, then autorepeating
1931 	 * is handled by the driver itself and we don't do it in input.c.
1932 	 */
1933 	init_timer(&dev->timer);
1934 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1935 		dev->timer.data = (long) dev;
1936 		dev->timer.function = input_repeat_key;
1937 		dev->rep[REP_DELAY] = 250;
1938 		dev->rep[REP_PERIOD] = 33;
1939 	}
1940 
1941 	if (!dev->getkeycode)
1942 		dev->getkeycode = input_default_getkeycode;
1943 
1944 	if (!dev->setkeycode)
1945 		dev->setkeycode = input_default_setkeycode;
1946 
1947 	dev_set_name(&dev->dev, "input%ld",
1948 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1949 
1950 	error = device_add(&dev->dev);
1951 	if (error)
1952 		return error;
1953 
1954 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1955 	pr_info("%s as %s\n",
1956 		dev->name ? dev->name : "Unspecified device",
1957 		path ? path : "N/A");
1958 	kfree(path);
1959 
1960 	error = mutex_lock_interruptible(&input_mutex);
1961 	if (error) {
1962 		device_del(&dev->dev);
1963 		return error;
1964 	}
1965 
1966 	list_add_tail(&dev->node, &input_dev_list);
1967 
1968 	list_for_each_entry(handler, &input_handler_list, node)
1969 		input_attach_handler(dev, handler);
1970 
1971 	input_wakeup_procfs_readers();
1972 
1973 	mutex_unlock(&input_mutex);
1974 
1975 	return 0;
1976 }
1977 EXPORT_SYMBOL(input_register_device);
1978 
1979 /**
1980  * input_unregister_device - unregister previously registered device
1981  * @dev: device to be unregistered
1982  *
1983  * This function unregisters an input device. Once device is unregistered
1984  * the caller should not try to access it as it may get freed at any moment.
1985  */
1986 void input_unregister_device(struct input_dev *dev)
1987 {
1988 	struct input_handle *handle, *next;
1989 
1990 	input_disconnect_device(dev);
1991 
1992 	mutex_lock(&input_mutex);
1993 
1994 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1995 		handle->handler->disconnect(handle);
1996 	WARN_ON(!list_empty(&dev->h_list));
1997 
1998 	del_timer_sync(&dev->timer);
1999 	list_del_init(&dev->node);
2000 
2001 	input_wakeup_procfs_readers();
2002 
2003 	mutex_unlock(&input_mutex);
2004 
2005 	device_unregister(&dev->dev);
2006 }
2007 EXPORT_SYMBOL(input_unregister_device);
2008 
2009 /**
2010  * input_register_handler - register a new input handler
2011  * @handler: handler to be registered
2012  *
2013  * This function registers a new input handler (interface) for input
2014  * devices in the system and attaches it to all input devices that
2015  * are compatible with the handler.
2016  */
2017 int input_register_handler(struct input_handler *handler)
2018 {
2019 	struct input_dev *dev;
2020 	int error;
2021 
2022 	error = mutex_lock_interruptible(&input_mutex);
2023 	if (error)
2024 		return error;
2025 
2026 	INIT_LIST_HEAD(&handler->h_list);
2027 
2028 	list_add_tail(&handler->node, &input_handler_list);
2029 
2030 	list_for_each_entry(dev, &input_dev_list, node)
2031 		input_attach_handler(dev, handler);
2032 
2033 	input_wakeup_procfs_readers();
2034 
2035 	mutex_unlock(&input_mutex);
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL(input_register_handler);
2039 
2040 /**
2041  * input_unregister_handler - unregisters an input handler
2042  * @handler: handler to be unregistered
2043  *
2044  * This function disconnects a handler from its input devices and
2045  * removes it from lists of known handlers.
2046  */
2047 void input_unregister_handler(struct input_handler *handler)
2048 {
2049 	struct input_handle *handle, *next;
2050 
2051 	mutex_lock(&input_mutex);
2052 
2053 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2054 		handler->disconnect(handle);
2055 	WARN_ON(!list_empty(&handler->h_list));
2056 
2057 	list_del_init(&handler->node);
2058 
2059 	input_wakeup_procfs_readers();
2060 
2061 	mutex_unlock(&input_mutex);
2062 }
2063 EXPORT_SYMBOL(input_unregister_handler);
2064 
2065 /**
2066  * input_handler_for_each_handle - handle iterator
2067  * @handler: input handler to iterate
2068  * @data: data for the callback
2069  * @fn: function to be called for each handle
2070  *
2071  * Iterate over @bus's list of devices, and call @fn for each, passing
2072  * it @data and stop when @fn returns a non-zero value. The function is
2073  * using RCU to traverse the list and therefore may be usind in atonic
2074  * contexts. The @fn callback is invoked from RCU critical section and
2075  * thus must not sleep.
2076  */
2077 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2078 				  int (*fn)(struct input_handle *, void *))
2079 {
2080 	struct input_handle *handle;
2081 	int retval = 0;
2082 
2083 	rcu_read_lock();
2084 
2085 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2086 		retval = fn(handle, data);
2087 		if (retval)
2088 			break;
2089 	}
2090 
2091 	rcu_read_unlock();
2092 
2093 	return retval;
2094 }
2095 EXPORT_SYMBOL(input_handler_for_each_handle);
2096 
2097 /**
2098  * input_register_handle - register a new input handle
2099  * @handle: handle to register
2100  *
2101  * This function puts a new input handle onto device's
2102  * and handler's lists so that events can flow through
2103  * it once it is opened using input_open_device().
2104  *
2105  * This function is supposed to be called from handler's
2106  * connect() method.
2107  */
2108 int input_register_handle(struct input_handle *handle)
2109 {
2110 	struct input_handler *handler = handle->handler;
2111 	struct input_dev *dev = handle->dev;
2112 	int error;
2113 
2114 	/*
2115 	 * We take dev->mutex here to prevent race with
2116 	 * input_release_device().
2117 	 */
2118 	error = mutex_lock_interruptible(&dev->mutex);
2119 	if (error)
2120 		return error;
2121 
2122 	/*
2123 	 * Filters go to the head of the list, normal handlers
2124 	 * to the tail.
2125 	 */
2126 	if (handler->filter)
2127 		list_add_rcu(&handle->d_node, &dev->h_list);
2128 	else
2129 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2130 
2131 	mutex_unlock(&dev->mutex);
2132 
2133 	/*
2134 	 * Since we are supposed to be called from ->connect()
2135 	 * which is mutually exclusive with ->disconnect()
2136 	 * we can't be racing with input_unregister_handle()
2137 	 * and so separate lock is not needed here.
2138 	 */
2139 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2140 
2141 	if (handler->start)
2142 		handler->start(handle);
2143 
2144 	return 0;
2145 }
2146 EXPORT_SYMBOL(input_register_handle);
2147 
2148 /**
2149  * input_unregister_handle - unregister an input handle
2150  * @handle: handle to unregister
2151  *
2152  * This function removes input handle from device's
2153  * and handler's lists.
2154  *
2155  * This function is supposed to be called from handler's
2156  * disconnect() method.
2157  */
2158 void input_unregister_handle(struct input_handle *handle)
2159 {
2160 	struct input_dev *dev = handle->dev;
2161 
2162 	list_del_rcu(&handle->h_node);
2163 
2164 	/*
2165 	 * Take dev->mutex to prevent race with input_release_device().
2166 	 */
2167 	mutex_lock(&dev->mutex);
2168 	list_del_rcu(&handle->d_node);
2169 	mutex_unlock(&dev->mutex);
2170 
2171 	synchronize_rcu();
2172 }
2173 EXPORT_SYMBOL(input_unregister_handle);
2174 
2175 /**
2176  * input_get_new_minor - allocates a new input minor number
2177  * @legacy_base: beginning or the legacy range to be searched
2178  * @legacy_num: size of legacy range
2179  * @allow_dynamic: whether we can also take ID from the dynamic range
2180  *
2181  * This function allocates a new device minor for from input major namespace.
2182  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2183  * parameters and whether ID can be allocated from dynamic range if there are
2184  * no free IDs in legacy range.
2185  */
2186 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2187 			bool allow_dynamic)
2188 {
2189 	/*
2190 	 * This function should be called from input handler's ->connect()
2191 	 * methods, which are serialized with input_mutex, so no additional
2192 	 * locking is needed here.
2193 	 */
2194 	if (legacy_base >= 0) {
2195 		int minor = ida_simple_get(&input_ida,
2196 					   legacy_base,
2197 					   legacy_base + legacy_num,
2198 					   GFP_KERNEL);
2199 		if (minor >= 0 || !allow_dynamic)
2200 			return minor;
2201 	}
2202 
2203 	return ida_simple_get(&input_ida,
2204 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2205 			      GFP_KERNEL);
2206 }
2207 EXPORT_SYMBOL(input_get_new_minor);
2208 
2209 /**
2210  * input_free_minor - release previously allocated minor
2211  * @minor: minor to be released
2212  *
2213  * This function releases previously allocated input minor so that it can be
2214  * reused later.
2215  */
2216 void input_free_minor(unsigned int minor)
2217 {
2218 	ida_simple_remove(&input_ida, minor);
2219 }
2220 EXPORT_SYMBOL(input_free_minor);
2221 
2222 static int __init input_init(void)
2223 {
2224 	int err;
2225 
2226 	err = class_register(&input_class);
2227 	if (err) {
2228 		pr_err("unable to register input_dev class\n");
2229 		return err;
2230 	}
2231 
2232 	err = input_proc_init();
2233 	if (err)
2234 		goto fail1;
2235 
2236 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2237 				     INPUT_MAX_CHAR_DEVICES, "input");
2238 	if (err) {
2239 		pr_err("unable to register char major %d", INPUT_MAJOR);
2240 		goto fail2;
2241 	}
2242 
2243 	return 0;
2244 
2245  fail2:	input_proc_exit();
2246  fail1:	class_unregister(&input_class);
2247 	return err;
2248 }
2249 
2250 static void __exit input_exit(void)
2251 {
2252 	input_proc_exit();
2253 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2254 				 INPUT_MAX_CHAR_DEVICES);
2255 	class_unregister(&input_class);
2256 }
2257 
2258 subsys_initcall(input_init);
2259 module_exit(input_exit);
2260