xref: /linux/drivers/input/input.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static inline int is_event_supported(unsigned int code,
54 				     unsigned long *bm, unsigned int max)
55 {
56 	return code <= max && test_bit(code, bm);
57 }
58 
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 	if (fuzz) {
62 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 			return old_val;
64 
65 		if (value > old_val - fuzz && value < old_val + fuzz)
66 			return (old_val * 3 + value) / 4;
67 
68 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 			return (old_val + value) / 2;
70 	}
71 
72 	return value;
73 }
74 
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 	if (test_bit(EV_REP, dev->evbit) &&
78 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 	    dev->timer.data) {
80 		dev->repeat_key = code;
81 		mod_timer(&dev->timer,
82 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 	}
84 }
85 
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 	del_timer(&dev->timer);
89 }
90 
91 /*
92  * Pass event first through all filters and then, if event has not been
93  * filtered out, through all open handles. This function is called with
94  * dev->event_lock held and interrupts disabled.
95  */
96 static unsigned int input_to_handler(struct input_handle *handle,
97 			struct input_value *vals, unsigned int count)
98 {
99 	struct input_handler *handler = handle->handler;
100 	struct input_value *end = vals;
101 	struct input_value *v;
102 
103 	if (handler->filter) {
104 		for (v = vals; v != vals + count; v++) {
105 			if (handler->filter(handle, v->type, v->code, v->value))
106 				continue;
107 			if (end != v)
108 				*end = *v;
109 			end++;
110 		}
111 		count = end - vals;
112 	}
113 
114 	if (!count)
115 		return 0;
116 
117 	if (handler->events)
118 		handler->events(handle, vals, count);
119 	else if (handler->event)
120 		for (v = vals; v != vals + count; v++)
121 			handler->event(handle, v->type, v->code, v->value);
122 
123 	return count;
124 }
125 
126 /*
127  * Pass values first through all filters and then, if event has not been
128  * filtered out, through all open handles. This function is called with
129  * dev->event_lock held and interrupts disabled.
130  */
131 static void input_pass_values(struct input_dev *dev,
132 			      struct input_value *vals, unsigned int count)
133 {
134 	struct input_handle *handle;
135 	struct input_value *v;
136 
137 	if (!count)
138 		return;
139 
140 	rcu_read_lock();
141 
142 	handle = rcu_dereference(dev->grab);
143 	if (handle) {
144 		count = input_to_handler(handle, vals, count);
145 	} else {
146 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 			if (handle->open) {
148 				count = input_to_handler(handle, vals, count);
149 				if (!count)
150 					break;
151 			}
152 	}
153 
154 	rcu_read_unlock();
155 
156 	add_input_randomness(vals->type, vals->code, vals->value);
157 
158 	/* trigger auto repeat for key events */
159 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
160 		for (v = vals; v != vals + count; v++) {
161 			if (v->type == EV_KEY && v->value != 2) {
162 				if (v->value)
163 					input_start_autorepeat(dev, v->code);
164 				else
165 					input_stop_autorepeat(dev);
166 			}
167 		}
168 	}
169 }
170 
171 static void input_pass_event(struct input_dev *dev,
172 			     unsigned int type, unsigned int code, int value)
173 {
174 	struct input_value vals[] = { { type, code, value } };
175 
176 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
177 }
178 
179 /*
180  * Generate software autorepeat event. Note that we take
181  * dev->event_lock here to avoid racing with input_event
182  * which may cause keys get "stuck".
183  */
184 static void input_repeat_key(unsigned long data)
185 {
186 	struct input_dev *dev = (void *) data;
187 	unsigned long flags;
188 
189 	spin_lock_irqsave(&dev->event_lock, flags);
190 
191 	if (test_bit(dev->repeat_key, dev->key) &&
192 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
193 		struct input_value vals[] =  {
194 			{ EV_KEY, dev->repeat_key, 2 },
195 			input_value_sync
196 		};
197 
198 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
199 
200 		if (dev->rep[REP_PERIOD])
201 			mod_timer(&dev->timer, jiffies +
202 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
203 	}
204 
205 	spin_unlock_irqrestore(&dev->event_lock, flags);
206 }
207 
208 #define INPUT_IGNORE_EVENT	0
209 #define INPUT_PASS_TO_HANDLERS	1
210 #define INPUT_PASS_TO_DEVICE	2
211 #define INPUT_SLOT		4
212 #define INPUT_FLUSH		8
213 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
214 
215 static int input_handle_abs_event(struct input_dev *dev,
216 				  unsigned int code, int *pval)
217 {
218 	struct input_mt *mt = dev->mt;
219 	bool is_mt_event;
220 	int *pold;
221 
222 	if (code == ABS_MT_SLOT) {
223 		/*
224 		 * "Stage" the event; we'll flush it later, when we
225 		 * get actual touch data.
226 		 */
227 		if (mt && *pval >= 0 && *pval < mt->num_slots)
228 			mt->slot = *pval;
229 
230 		return INPUT_IGNORE_EVENT;
231 	}
232 
233 	is_mt_event = input_is_mt_value(code);
234 
235 	if (!is_mt_event) {
236 		pold = &dev->absinfo[code].value;
237 	} else if (mt) {
238 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
239 	} else {
240 		/*
241 		 * Bypass filtering for multi-touch events when
242 		 * not employing slots.
243 		 */
244 		pold = NULL;
245 	}
246 
247 	if (pold) {
248 		*pval = input_defuzz_abs_event(*pval, *pold,
249 						dev->absinfo[code].fuzz);
250 		if (*pold == *pval)
251 			return INPUT_IGNORE_EVENT;
252 
253 		*pold = *pval;
254 	}
255 
256 	/* Flush pending "slot" event */
257 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
258 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
259 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
260 	}
261 
262 	return INPUT_PASS_TO_HANDLERS;
263 }
264 
265 static int input_get_disposition(struct input_dev *dev,
266 			  unsigned int type, unsigned int code, int *pval)
267 {
268 	int disposition = INPUT_IGNORE_EVENT;
269 	int value = *pval;
270 
271 	switch (type) {
272 
273 	case EV_SYN:
274 		switch (code) {
275 		case SYN_CONFIG:
276 			disposition = INPUT_PASS_TO_ALL;
277 			break;
278 
279 		case SYN_REPORT:
280 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
281 			break;
282 		case SYN_MT_REPORT:
283 			disposition = INPUT_PASS_TO_HANDLERS;
284 			break;
285 		}
286 		break;
287 
288 	case EV_KEY:
289 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
290 
291 			/* auto-repeat bypasses state updates */
292 			if (value == 2) {
293 				disposition = INPUT_PASS_TO_HANDLERS;
294 				break;
295 			}
296 
297 			if (!!test_bit(code, dev->key) != !!value) {
298 
299 				__change_bit(code, dev->key);
300 				disposition = INPUT_PASS_TO_HANDLERS;
301 			}
302 		}
303 		break;
304 
305 	case EV_SW:
306 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
307 		    !!test_bit(code, dev->sw) != !!value) {
308 
309 			__change_bit(code, dev->sw);
310 			disposition = INPUT_PASS_TO_HANDLERS;
311 		}
312 		break;
313 
314 	case EV_ABS:
315 		if (is_event_supported(code, dev->absbit, ABS_MAX))
316 			disposition = input_handle_abs_event(dev, code, &value);
317 
318 		break;
319 
320 	case EV_REL:
321 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
322 			disposition = INPUT_PASS_TO_HANDLERS;
323 
324 		break;
325 
326 	case EV_MSC:
327 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
328 			disposition = INPUT_PASS_TO_ALL;
329 
330 		break;
331 
332 	case EV_LED:
333 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
334 		    !!test_bit(code, dev->led) != !!value) {
335 
336 			__change_bit(code, dev->led);
337 			disposition = INPUT_PASS_TO_ALL;
338 		}
339 		break;
340 
341 	case EV_SND:
342 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
343 
344 			if (!!test_bit(code, dev->snd) != !!value)
345 				__change_bit(code, dev->snd);
346 			disposition = INPUT_PASS_TO_ALL;
347 		}
348 		break;
349 
350 	case EV_REP:
351 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
352 			dev->rep[code] = value;
353 			disposition = INPUT_PASS_TO_ALL;
354 		}
355 		break;
356 
357 	case EV_FF:
358 		if (value >= 0)
359 			disposition = INPUT_PASS_TO_ALL;
360 		break;
361 
362 	case EV_PWR:
363 		disposition = INPUT_PASS_TO_ALL;
364 		break;
365 	}
366 
367 	*pval = value;
368 	return disposition;
369 }
370 
371 static void input_handle_event(struct input_dev *dev,
372 			       unsigned int type, unsigned int code, int value)
373 {
374 	int disposition;
375 
376 	disposition = input_get_disposition(dev, type, code, &value);
377 
378 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
379 		dev->event(dev, type, code, value);
380 
381 	if (!dev->vals)
382 		return;
383 
384 	if (disposition & INPUT_PASS_TO_HANDLERS) {
385 		struct input_value *v;
386 
387 		if (disposition & INPUT_SLOT) {
388 			v = &dev->vals[dev->num_vals++];
389 			v->type = EV_ABS;
390 			v->code = ABS_MT_SLOT;
391 			v->value = dev->mt->slot;
392 		}
393 
394 		v = &dev->vals[dev->num_vals++];
395 		v->type = type;
396 		v->code = code;
397 		v->value = value;
398 	}
399 
400 	if (disposition & INPUT_FLUSH) {
401 		if (dev->num_vals >= 2)
402 			input_pass_values(dev, dev->vals, dev->num_vals);
403 		dev->num_vals = 0;
404 	} else if (dev->num_vals >= dev->max_vals - 2) {
405 		dev->vals[dev->num_vals++] = input_value_sync;
406 		input_pass_values(dev, dev->vals, dev->num_vals);
407 		dev->num_vals = 0;
408 	}
409 
410 }
411 
412 /**
413  * input_event() - report new input event
414  * @dev: device that generated the event
415  * @type: type of the event
416  * @code: event code
417  * @value: value of the event
418  *
419  * This function should be used by drivers implementing various input
420  * devices to report input events. See also input_inject_event().
421  *
422  * NOTE: input_event() may be safely used right after input device was
423  * allocated with input_allocate_device(), even before it is registered
424  * with input_register_device(), but the event will not reach any of the
425  * input handlers. Such early invocation of input_event() may be used
426  * to 'seed' initial state of a switch or initial position of absolute
427  * axis, etc.
428  */
429 void input_event(struct input_dev *dev,
430 		 unsigned int type, unsigned int code, int value)
431 {
432 	unsigned long flags;
433 
434 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
435 
436 		spin_lock_irqsave(&dev->event_lock, flags);
437 		input_handle_event(dev, type, code, value);
438 		spin_unlock_irqrestore(&dev->event_lock, flags);
439 	}
440 }
441 EXPORT_SYMBOL(input_event);
442 
443 /**
444  * input_inject_event() - send input event from input handler
445  * @handle: input handle to send event through
446  * @type: type of the event
447  * @code: event code
448  * @value: value of the event
449  *
450  * Similar to input_event() but will ignore event if device is
451  * "grabbed" and handle injecting event is not the one that owns
452  * the device.
453  */
454 void input_inject_event(struct input_handle *handle,
455 			unsigned int type, unsigned int code, int value)
456 {
457 	struct input_dev *dev = handle->dev;
458 	struct input_handle *grab;
459 	unsigned long flags;
460 
461 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
462 		spin_lock_irqsave(&dev->event_lock, flags);
463 
464 		rcu_read_lock();
465 		grab = rcu_dereference(dev->grab);
466 		if (!grab || grab == handle)
467 			input_handle_event(dev, type, code, value);
468 		rcu_read_unlock();
469 
470 		spin_unlock_irqrestore(&dev->event_lock, flags);
471 	}
472 }
473 EXPORT_SYMBOL(input_inject_event);
474 
475 /**
476  * input_alloc_absinfo - allocates array of input_absinfo structs
477  * @dev: the input device emitting absolute events
478  *
479  * If the absinfo struct the caller asked for is already allocated, this
480  * functions will not do anything.
481  */
482 void input_alloc_absinfo(struct input_dev *dev)
483 {
484 	if (!dev->absinfo)
485 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
486 					GFP_KERNEL);
487 
488 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
489 }
490 EXPORT_SYMBOL(input_alloc_absinfo);
491 
492 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
493 			  int min, int max, int fuzz, int flat)
494 {
495 	struct input_absinfo *absinfo;
496 
497 	input_alloc_absinfo(dev);
498 	if (!dev->absinfo)
499 		return;
500 
501 	absinfo = &dev->absinfo[axis];
502 	absinfo->minimum = min;
503 	absinfo->maximum = max;
504 	absinfo->fuzz = fuzz;
505 	absinfo->flat = flat;
506 
507 	__set_bit(EV_ABS, dev->evbit);
508 	__set_bit(axis, dev->absbit);
509 }
510 EXPORT_SYMBOL(input_set_abs_params);
511 
512 
513 /**
514  * input_grab_device - grabs device for exclusive use
515  * @handle: input handle that wants to own the device
516  *
517  * When a device is grabbed by an input handle all events generated by
518  * the device are delivered only to this handle. Also events injected
519  * by other input handles are ignored while device is grabbed.
520  */
521 int input_grab_device(struct input_handle *handle)
522 {
523 	struct input_dev *dev = handle->dev;
524 	int retval;
525 
526 	retval = mutex_lock_interruptible(&dev->mutex);
527 	if (retval)
528 		return retval;
529 
530 	if (dev->grab) {
531 		retval = -EBUSY;
532 		goto out;
533 	}
534 
535 	rcu_assign_pointer(dev->grab, handle);
536 
537  out:
538 	mutex_unlock(&dev->mutex);
539 	return retval;
540 }
541 EXPORT_SYMBOL(input_grab_device);
542 
543 static void __input_release_device(struct input_handle *handle)
544 {
545 	struct input_dev *dev = handle->dev;
546 	struct input_handle *grabber;
547 
548 	grabber = rcu_dereference_protected(dev->grab,
549 					    lockdep_is_held(&dev->mutex));
550 	if (grabber == handle) {
551 		rcu_assign_pointer(dev->grab, NULL);
552 		/* Make sure input_pass_event() notices that grab is gone */
553 		synchronize_rcu();
554 
555 		list_for_each_entry(handle, &dev->h_list, d_node)
556 			if (handle->open && handle->handler->start)
557 				handle->handler->start(handle);
558 	}
559 }
560 
561 /**
562  * input_release_device - release previously grabbed device
563  * @handle: input handle that owns the device
564  *
565  * Releases previously grabbed device so that other input handles can
566  * start receiving input events. Upon release all handlers attached
567  * to the device have their start() method called so they have a change
568  * to synchronize device state with the rest of the system.
569  */
570 void input_release_device(struct input_handle *handle)
571 {
572 	struct input_dev *dev = handle->dev;
573 
574 	mutex_lock(&dev->mutex);
575 	__input_release_device(handle);
576 	mutex_unlock(&dev->mutex);
577 }
578 EXPORT_SYMBOL(input_release_device);
579 
580 /**
581  * input_open_device - open input device
582  * @handle: handle through which device is being accessed
583  *
584  * This function should be called by input handlers when they
585  * want to start receive events from given input device.
586  */
587 int input_open_device(struct input_handle *handle)
588 {
589 	struct input_dev *dev = handle->dev;
590 	int retval;
591 
592 	retval = mutex_lock_interruptible(&dev->mutex);
593 	if (retval)
594 		return retval;
595 
596 	if (dev->going_away) {
597 		retval = -ENODEV;
598 		goto out;
599 	}
600 
601 	handle->open++;
602 
603 	if (!dev->users++ && dev->open)
604 		retval = dev->open(dev);
605 
606 	if (retval) {
607 		dev->users--;
608 		if (!--handle->open) {
609 			/*
610 			 * Make sure we are not delivering any more events
611 			 * through this handle
612 			 */
613 			synchronize_rcu();
614 		}
615 	}
616 
617  out:
618 	mutex_unlock(&dev->mutex);
619 	return retval;
620 }
621 EXPORT_SYMBOL(input_open_device);
622 
623 int input_flush_device(struct input_handle *handle, struct file *file)
624 {
625 	struct input_dev *dev = handle->dev;
626 	int retval;
627 
628 	retval = mutex_lock_interruptible(&dev->mutex);
629 	if (retval)
630 		return retval;
631 
632 	if (dev->flush)
633 		retval = dev->flush(dev, file);
634 
635 	mutex_unlock(&dev->mutex);
636 	return retval;
637 }
638 EXPORT_SYMBOL(input_flush_device);
639 
640 /**
641  * input_close_device - close input device
642  * @handle: handle through which device is being accessed
643  *
644  * This function should be called by input handlers when they
645  * want to stop receive events from given input device.
646  */
647 void input_close_device(struct input_handle *handle)
648 {
649 	struct input_dev *dev = handle->dev;
650 
651 	mutex_lock(&dev->mutex);
652 
653 	__input_release_device(handle);
654 
655 	if (!--dev->users && dev->close)
656 		dev->close(dev);
657 
658 	if (!--handle->open) {
659 		/*
660 		 * synchronize_rcu() makes sure that input_pass_event()
661 		 * completed and that no more input events are delivered
662 		 * through this handle
663 		 */
664 		synchronize_rcu();
665 	}
666 
667 	mutex_unlock(&dev->mutex);
668 }
669 EXPORT_SYMBOL(input_close_device);
670 
671 /*
672  * Simulate keyup events for all keys that are marked as pressed.
673  * The function must be called with dev->event_lock held.
674  */
675 static void input_dev_release_keys(struct input_dev *dev)
676 {
677 	int code;
678 
679 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
680 		for_each_set_bit(code, dev->key, KEY_CNT)
681 			input_pass_event(dev, EV_KEY, code, 0);
682 		memset(dev->key, 0, sizeof(dev->key));
683 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
684 	}
685 }
686 
687 /*
688  * Prepare device for unregistering
689  */
690 static void input_disconnect_device(struct input_dev *dev)
691 {
692 	struct input_handle *handle;
693 
694 	/*
695 	 * Mark device as going away. Note that we take dev->mutex here
696 	 * not to protect access to dev->going_away but rather to ensure
697 	 * that there are no threads in the middle of input_open_device()
698 	 */
699 	mutex_lock(&dev->mutex);
700 	dev->going_away = true;
701 	mutex_unlock(&dev->mutex);
702 
703 	spin_lock_irq(&dev->event_lock);
704 
705 	/*
706 	 * Simulate keyup events for all pressed keys so that handlers
707 	 * are not left with "stuck" keys. The driver may continue
708 	 * generate events even after we done here but they will not
709 	 * reach any handlers.
710 	 */
711 	input_dev_release_keys(dev);
712 
713 	list_for_each_entry(handle, &dev->h_list, d_node)
714 		handle->open = 0;
715 
716 	spin_unlock_irq(&dev->event_lock);
717 }
718 
719 /**
720  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
721  * @ke: keymap entry containing scancode to be converted.
722  * @scancode: pointer to the location where converted scancode should
723  *	be stored.
724  *
725  * This function is used to convert scancode stored in &struct keymap_entry
726  * into scalar form understood by legacy keymap handling methods. These
727  * methods expect scancodes to be represented as 'unsigned int'.
728  */
729 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
730 			     unsigned int *scancode)
731 {
732 	switch (ke->len) {
733 	case 1:
734 		*scancode = *((u8 *)ke->scancode);
735 		break;
736 
737 	case 2:
738 		*scancode = *((u16 *)ke->scancode);
739 		break;
740 
741 	case 4:
742 		*scancode = *((u32 *)ke->scancode);
743 		break;
744 
745 	default:
746 		return -EINVAL;
747 	}
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL(input_scancode_to_scalar);
752 
753 /*
754  * Those routines handle the default case where no [gs]etkeycode() is
755  * defined. In this case, an array indexed by the scancode is used.
756  */
757 
758 static unsigned int input_fetch_keycode(struct input_dev *dev,
759 					unsigned int index)
760 {
761 	switch (dev->keycodesize) {
762 	case 1:
763 		return ((u8 *)dev->keycode)[index];
764 
765 	case 2:
766 		return ((u16 *)dev->keycode)[index];
767 
768 	default:
769 		return ((u32 *)dev->keycode)[index];
770 	}
771 }
772 
773 static int input_default_getkeycode(struct input_dev *dev,
774 				    struct input_keymap_entry *ke)
775 {
776 	unsigned int index;
777 	int error;
778 
779 	if (!dev->keycodesize)
780 		return -EINVAL;
781 
782 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
783 		index = ke->index;
784 	else {
785 		error = input_scancode_to_scalar(ke, &index);
786 		if (error)
787 			return error;
788 	}
789 
790 	if (index >= dev->keycodemax)
791 		return -EINVAL;
792 
793 	ke->keycode = input_fetch_keycode(dev, index);
794 	ke->index = index;
795 	ke->len = sizeof(index);
796 	memcpy(ke->scancode, &index, sizeof(index));
797 
798 	return 0;
799 }
800 
801 static int input_default_setkeycode(struct input_dev *dev,
802 				    const struct input_keymap_entry *ke,
803 				    unsigned int *old_keycode)
804 {
805 	unsigned int index;
806 	int error;
807 	int i;
808 
809 	if (!dev->keycodesize)
810 		return -EINVAL;
811 
812 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
813 		index = ke->index;
814 	} else {
815 		error = input_scancode_to_scalar(ke, &index);
816 		if (error)
817 			return error;
818 	}
819 
820 	if (index >= dev->keycodemax)
821 		return -EINVAL;
822 
823 	if (dev->keycodesize < sizeof(ke->keycode) &&
824 			(ke->keycode >> (dev->keycodesize * 8)))
825 		return -EINVAL;
826 
827 	switch (dev->keycodesize) {
828 		case 1: {
829 			u8 *k = (u8 *)dev->keycode;
830 			*old_keycode = k[index];
831 			k[index] = ke->keycode;
832 			break;
833 		}
834 		case 2: {
835 			u16 *k = (u16 *)dev->keycode;
836 			*old_keycode = k[index];
837 			k[index] = ke->keycode;
838 			break;
839 		}
840 		default: {
841 			u32 *k = (u32 *)dev->keycode;
842 			*old_keycode = k[index];
843 			k[index] = ke->keycode;
844 			break;
845 		}
846 	}
847 
848 	__clear_bit(*old_keycode, dev->keybit);
849 	__set_bit(ke->keycode, dev->keybit);
850 
851 	for (i = 0; i < dev->keycodemax; i++) {
852 		if (input_fetch_keycode(dev, i) == *old_keycode) {
853 			__set_bit(*old_keycode, dev->keybit);
854 			break; /* Setting the bit twice is useless, so break */
855 		}
856 	}
857 
858 	return 0;
859 }
860 
861 /**
862  * input_get_keycode - retrieve keycode currently mapped to a given scancode
863  * @dev: input device which keymap is being queried
864  * @ke: keymap entry
865  *
866  * This function should be called by anyone interested in retrieving current
867  * keymap. Presently evdev handlers use it.
868  */
869 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
870 {
871 	unsigned long flags;
872 	int retval;
873 
874 	spin_lock_irqsave(&dev->event_lock, flags);
875 	retval = dev->getkeycode(dev, ke);
876 	spin_unlock_irqrestore(&dev->event_lock, flags);
877 
878 	return retval;
879 }
880 EXPORT_SYMBOL(input_get_keycode);
881 
882 /**
883  * input_set_keycode - attribute a keycode to a given scancode
884  * @dev: input device which keymap is being updated
885  * @ke: new keymap entry
886  *
887  * This function should be called by anyone needing to update current
888  * keymap. Presently keyboard and evdev handlers use it.
889  */
890 int input_set_keycode(struct input_dev *dev,
891 		      const struct input_keymap_entry *ke)
892 {
893 	unsigned long flags;
894 	unsigned int old_keycode;
895 	int retval;
896 
897 	if (ke->keycode > KEY_MAX)
898 		return -EINVAL;
899 
900 	spin_lock_irqsave(&dev->event_lock, flags);
901 
902 	retval = dev->setkeycode(dev, ke, &old_keycode);
903 	if (retval)
904 		goto out;
905 
906 	/* Make sure KEY_RESERVED did not get enabled. */
907 	__clear_bit(KEY_RESERVED, dev->keybit);
908 
909 	/*
910 	 * Simulate keyup event if keycode is not present
911 	 * in the keymap anymore
912 	 */
913 	if (test_bit(EV_KEY, dev->evbit) &&
914 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
915 	    __test_and_clear_bit(old_keycode, dev->key)) {
916 		struct input_value vals[] =  {
917 			{ EV_KEY, old_keycode, 0 },
918 			input_value_sync
919 		};
920 
921 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
922 	}
923 
924  out:
925 	spin_unlock_irqrestore(&dev->event_lock, flags);
926 
927 	return retval;
928 }
929 EXPORT_SYMBOL(input_set_keycode);
930 
931 static const struct input_device_id *input_match_device(struct input_handler *handler,
932 							struct input_dev *dev)
933 {
934 	const struct input_device_id *id;
935 
936 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
937 
938 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
939 			if (id->bustype != dev->id.bustype)
940 				continue;
941 
942 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
943 			if (id->vendor != dev->id.vendor)
944 				continue;
945 
946 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
947 			if (id->product != dev->id.product)
948 				continue;
949 
950 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
951 			if (id->version != dev->id.version)
952 				continue;
953 
954 		if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
955 			continue;
956 
957 		if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
958 			continue;
959 
960 		if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
961 			continue;
962 
963 		if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
964 			continue;
965 
966 		if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
967 			continue;
968 
969 		if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
970 			continue;
971 
972 		if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
973 			continue;
974 
975 		if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
976 			continue;
977 
978 		if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
979 			continue;
980 
981 		if (!handler->match || handler->match(handler, dev))
982 			return id;
983 	}
984 
985 	return NULL;
986 }
987 
988 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
989 {
990 	const struct input_device_id *id;
991 	int error;
992 
993 	id = input_match_device(handler, dev);
994 	if (!id)
995 		return -ENODEV;
996 
997 	error = handler->connect(handler, dev, id);
998 	if (error && error != -ENODEV)
999 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1000 		       handler->name, kobject_name(&dev->dev.kobj), error);
1001 
1002 	return error;
1003 }
1004 
1005 #ifdef CONFIG_COMPAT
1006 
1007 static int input_bits_to_string(char *buf, int buf_size,
1008 				unsigned long bits, bool skip_empty)
1009 {
1010 	int len = 0;
1011 
1012 	if (INPUT_COMPAT_TEST) {
1013 		u32 dword = bits >> 32;
1014 		if (dword || !skip_empty)
1015 			len += snprintf(buf, buf_size, "%x ", dword);
1016 
1017 		dword = bits & 0xffffffffUL;
1018 		if (dword || !skip_empty || len)
1019 			len += snprintf(buf + len, max(buf_size - len, 0),
1020 					"%x", dword);
1021 	} else {
1022 		if (bits || !skip_empty)
1023 			len += snprintf(buf, buf_size, "%lx", bits);
1024 	}
1025 
1026 	return len;
1027 }
1028 
1029 #else /* !CONFIG_COMPAT */
1030 
1031 static int input_bits_to_string(char *buf, int buf_size,
1032 				unsigned long bits, bool skip_empty)
1033 {
1034 	return bits || !skip_empty ?
1035 		snprintf(buf, buf_size, "%lx", bits) : 0;
1036 }
1037 
1038 #endif
1039 
1040 #ifdef CONFIG_PROC_FS
1041 
1042 static struct proc_dir_entry *proc_bus_input_dir;
1043 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1044 static int input_devices_state;
1045 
1046 static inline void input_wakeup_procfs_readers(void)
1047 {
1048 	input_devices_state++;
1049 	wake_up(&input_devices_poll_wait);
1050 }
1051 
1052 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1053 {
1054 	poll_wait(file, &input_devices_poll_wait, wait);
1055 	if (file->f_version != input_devices_state) {
1056 		file->f_version = input_devices_state;
1057 		return POLLIN | POLLRDNORM;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 union input_seq_state {
1064 	struct {
1065 		unsigned short pos;
1066 		bool mutex_acquired;
1067 	};
1068 	void *p;
1069 };
1070 
1071 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1072 {
1073 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1074 	int error;
1075 
1076 	/* We need to fit into seq->private pointer */
1077 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1078 
1079 	error = mutex_lock_interruptible(&input_mutex);
1080 	if (error) {
1081 		state->mutex_acquired = false;
1082 		return ERR_PTR(error);
1083 	}
1084 
1085 	state->mutex_acquired = true;
1086 
1087 	return seq_list_start(&input_dev_list, *pos);
1088 }
1089 
1090 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1091 {
1092 	return seq_list_next(v, &input_dev_list, pos);
1093 }
1094 
1095 static void input_seq_stop(struct seq_file *seq, void *v)
1096 {
1097 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1098 
1099 	if (state->mutex_acquired)
1100 		mutex_unlock(&input_mutex);
1101 }
1102 
1103 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1104 				   unsigned long *bitmap, int max)
1105 {
1106 	int i;
1107 	bool skip_empty = true;
1108 	char buf[18];
1109 
1110 	seq_printf(seq, "B: %s=", name);
1111 
1112 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1113 		if (input_bits_to_string(buf, sizeof(buf),
1114 					 bitmap[i], skip_empty)) {
1115 			skip_empty = false;
1116 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1117 		}
1118 	}
1119 
1120 	/*
1121 	 * If no output was produced print a single 0.
1122 	 */
1123 	if (skip_empty)
1124 		seq_puts(seq, "0");
1125 
1126 	seq_putc(seq, '\n');
1127 }
1128 
1129 static int input_devices_seq_show(struct seq_file *seq, void *v)
1130 {
1131 	struct input_dev *dev = container_of(v, struct input_dev, node);
1132 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1133 	struct input_handle *handle;
1134 
1135 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1136 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1137 
1138 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1139 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1140 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1141 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1142 	seq_printf(seq, "H: Handlers=");
1143 
1144 	list_for_each_entry(handle, &dev->h_list, d_node)
1145 		seq_printf(seq, "%s ", handle->name);
1146 	seq_putc(seq, '\n');
1147 
1148 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1149 
1150 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1151 	if (test_bit(EV_KEY, dev->evbit))
1152 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1153 	if (test_bit(EV_REL, dev->evbit))
1154 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1155 	if (test_bit(EV_ABS, dev->evbit))
1156 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1157 	if (test_bit(EV_MSC, dev->evbit))
1158 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1159 	if (test_bit(EV_LED, dev->evbit))
1160 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1161 	if (test_bit(EV_SND, dev->evbit))
1162 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1163 	if (test_bit(EV_FF, dev->evbit))
1164 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1165 	if (test_bit(EV_SW, dev->evbit))
1166 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1167 
1168 	seq_putc(seq, '\n');
1169 
1170 	kfree(path);
1171 	return 0;
1172 }
1173 
1174 static const struct seq_operations input_devices_seq_ops = {
1175 	.start	= input_devices_seq_start,
1176 	.next	= input_devices_seq_next,
1177 	.stop	= input_seq_stop,
1178 	.show	= input_devices_seq_show,
1179 };
1180 
1181 static int input_proc_devices_open(struct inode *inode, struct file *file)
1182 {
1183 	return seq_open(file, &input_devices_seq_ops);
1184 }
1185 
1186 static const struct file_operations input_devices_fileops = {
1187 	.owner		= THIS_MODULE,
1188 	.open		= input_proc_devices_open,
1189 	.poll		= input_proc_devices_poll,
1190 	.read		= seq_read,
1191 	.llseek		= seq_lseek,
1192 	.release	= seq_release,
1193 };
1194 
1195 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1196 {
1197 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1198 	int error;
1199 
1200 	/* We need to fit into seq->private pointer */
1201 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1202 
1203 	error = mutex_lock_interruptible(&input_mutex);
1204 	if (error) {
1205 		state->mutex_acquired = false;
1206 		return ERR_PTR(error);
1207 	}
1208 
1209 	state->mutex_acquired = true;
1210 	state->pos = *pos;
1211 
1212 	return seq_list_start(&input_handler_list, *pos);
1213 }
1214 
1215 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1216 {
1217 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1218 
1219 	state->pos = *pos + 1;
1220 	return seq_list_next(v, &input_handler_list, pos);
1221 }
1222 
1223 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1224 {
1225 	struct input_handler *handler = container_of(v, struct input_handler, node);
1226 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1227 
1228 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1229 	if (handler->filter)
1230 		seq_puts(seq, " (filter)");
1231 	if (handler->legacy_minors)
1232 		seq_printf(seq, " Minor=%d", handler->minor);
1233 	seq_putc(seq, '\n');
1234 
1235 	return 0;
1236 }
1237 
1238 static const struct seq_operations input_handlers_seq_ops = {
1239 	.start	= input_handlers_seq_start,
1240 	.next	= input_handlers_seq_next,
1241 	.stop	= input_seq_stop,
1242 	.show	= input_handlers_seq_show,
1243 };
1244 
1245 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1246 {
1247 	return seq_open(file, &input_handlers_seq_ops);
1248 }
1249 
1250 static const struct file_operations input_handlers_fileops = {
1251 	.owner		= THIS_MODULE,
1252 	.open		= input_proc_handlers_open,
1253 	.read		= seq_read,
1254 	.llseek		= seq_lseek,
1255 	.release	= seq_release,
1256 };
1257 
1258 static int __init input_proc_init(void)
1259 {
1260 	struct proc_dir_entry *entry;
1261 
1262 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1263 	if (!proc_bus_input_dir)
1264 		return -ENOMEM;
1265 
1266 	entry = proc_create("devices", 0, proc_bus_input_dir,
1267 			    &input_devices_fileops);
1268 	if (!entry)
1269 		goto fail1;
1270 
1271 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1272 			    &input_handlers_fileops);
1273 	if (!entry)
1274 		goto fail2;
1275 
1276 	return 0;
1277 
1278  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1279  fail1: remove_proc_entry("bus/input", NULL);
1280 	return -ENOMEM;
1281 }
1282 
1283 static void input_proc_exit(void)
1284 {
1285 	remove_proc_entry("devices", proc_bus_input_dir);
1286 	remove_proc_entry("handlers", proc_bus_input_dir);
1287 	remove_proc_entry("bus/input", NULL);
1288 }
1289 
1290 #else /* !CONFIG_PROC_FS */
1291 static inline void input_wakeup_procfs_readers(void) { }
1292 static inline int input_proc_init(void) { return 0; }
1293 static inline void input_proc_exit(void) { }
1294 #endif
1295 
1296 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1297 static ssize_t input_dev_show_##name(struct device *dev,		\
1298 				     struct device_attribute *attr,	\
1299 				     char *buf)				\
1300 {									\
1301 	struct input_dev *input_dev = to_input_dev(dev);		\
1302 									\
1303 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1304 			 input_dev->name ? input_dev->name : "");	\
1305 }									\
1306 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1307 
1308 INPUT_DEV_STRING_ATTR_SHOW(name);
1309 INPUT_DEV_STRING_ATTR_SHOW(phys);
1310 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1311 
1312 static int input_print_modalias_bits(char *buf, int size,
1313 				     char name, unsigned long *bm,
1314 				     unsigned int min_bit, unsigned int max_bit)
1315 {
1316 	int len = 0, i;
1317 
1318 	len += snprintf(buf, max(size, 0), "%c", name);
1319 	for (i = min_bit; i < max_bit; i++)
1320 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1321 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1322 	return len;
1323 }
1324 
1325 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1326 				int add_cr)
1327 {
1328 	int len;
1329 
1330 	len = snprintf(buf, max(size, 0),
1331 		       "input:b%04Xv%04Xp%04Xe%04X-",
1332 		       id->id.bustype, id->id.vendor,
1333 		       id->id.product, id->id.version);
1334 
1335 	len += input_print_modalias_bits(buf + len, size - len,
1336 				'e', id->evbit, 0, EV_MAX);
1337 	len += input_print_modalias_bits(buf + len, size - len,
1338 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1339 	len += input_print_modalias_bits(buf + len, size - len,
1340 				'r', id->relbit, 0, REL_MAX);
1341 	len += input_print_modalias_bits(buf + len, size - len,
1342 				'a', id->absbit, 0, ABS_MAX);
1343 	len += input_print_modalias_bits(buf + len, size - len,
1344 				'm', id->mscbit, 0, MSC_MAX);
1345 	len += input_print_modalias_bits(buf + len, size - len,
1346 				'l', id->ledbit, 0, LED_MAX);
1347 	len += input_print_modalias_bits(buf + len, size - len,
1348 				's', id->sndbit, 0, SND_MAX);
1349 	len += input_print_modalias_bits(buf + len, size - len,
1350 				'f', id->ffbit, 0, FF_MAX);
1351 	len += input_print_modalias_bits(buf + len, size - len,
1352 				'w', id->swbit, 0, SW_MAX);
1353 
1354 	if (add_cr)
1355 		len += snprintf(buf + len, max(size - len, 0), "\n");
1356 
1357 	return len;
1358 }
1359 
1360 static ssize_t input_dev_show_modalias(struct device *dev,
1361 				       struct device_attribute *attr,
1362 				       char *buf)
1363 {
1364 	struct input_dev *id = to_input_dev(dev);
1365 	ssize_t len;
1366 
1367 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1368 
1369 	return min_t(int, len, PAGE_SIZE);
1370 }
1371 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1372 
1373 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1374 			      int max, int add_cr);
1375 
1376 static ssize_t input_dev_show_properties(struct device *dev,
1377 					 struct device_attribute *attr,
1378 					 char *buf)
1379 {
1380 	struct input_dev *input_dev = to_input_dev(dev);
1381 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1382 				     INPUT_PROP_MAX, true);
1383 	return min_t(int, len, PAGE_SIZE);
1384 }
1385 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1386 
1387 static struct attribute *input_dev_attrs[] = {
1388 	&dev_attr_name.attr,
1389 	&dev_attr_phys.attr,
1390 	&dev_attr_uniq.attr,
1391 	&dev_attr_modalias.attr,
1392 	&dev_attr_properties.attr,
1393 	NULL
1394 };
1395 
1396 static struct attribute_group input_dev_attr_group = {
1397 	.attrs	= input_dev_attrs,
1398 };
1399 
1400 #define INPUT_DEV_ID_ATTR(name)						\
1401 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1402 					struct device_attribute *attr,	\
1403 					char *buf)			\
1404 {									\
1405 	struct input_dev *input_dev = to_input_dev(dev);		\
1406 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1407 }									\
1408 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1409 
1410 INPUT_DEV_ID_ATTR(bustype);
1411 INPUT_DEV_ID_ATTR(vendor);
1412 INPUT_DEV_ID_ATTR(product);
1413 INPUT_DEV_ID_ATTR(version);
1414 
1415 static struct attribute *input_dev_id_attrs[] = {
1416 	&dev_attr_bustype.attr,
1417 	&dev_attr_vendor.attr,
1418 	&dev_attr_product.attr,
1419 	&dev_attr_version.attr,
1420 	NULL
1421 };
1422 
1423 static struct attribute_group input_dev_id_attr_group = {
1424 	.name	= "id",
1425 	.attrs	= input_dev_id_attrs,
1426 };
1427 
1428 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1429 			      int max, int add_cr)
1430 {
1431 	int i;
1432 	int len = 0;
1433 	bool skip_empty = true;
1434 
1435 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1436 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1437 					    bitmap[i], skip_empty);
1438 		if (len) {
1439 			skip_empty = false;
1440 			if (i > 0)
1441 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * If no output was produced print a single 0.
1447 	 */
1448 	if (len == 0)
1449 		len = snprintf(buf, buf_size, "%d", 0);
1450 
1451 	if (add_cr)
1452 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1453 
1454 	return len;
1455 }
1456 
1457 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1458 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1459 				       struct device_attribute *attr,	\
1460 				       char *buf)			\
1461 {									\
1462 	struct input_dev *input_dev = to_input_dev(dev);		\
1463 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1464 				     input_dev->bm##bit, ev##_MAX,	\
1465 				     true);				\
1466 	return min_t(int, len, PAGE_SIZE);				\
1467 }									\
1468 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1469 
1470 INPUT_DEV_CAP_ATTR(EV, ev);
1471 INPUT_DEV_CAP_ATTR(KEY, key);
1472 INPUT_DEV_CAP_ATTR(REL, rel);
1473 INPUT_DEV_CAP_ATTR(ABS, abs);
1474 INPUT_DEV_CAP_ATTR(MSC, msc);
1475 INPUT_DEV_CAP_ATTR(LED, led);
1476 INPUT_DEV_CAP_ATTR(SND, snd);
1477 INPUT_DEV_CAP_ATTR(FF, ff);
1478 INPUT_DEV_CAP_ATTR(SW, sw);
1479 
1480 static struct attribute *input_dev_caps_attrs[] = {
1481 	&dev_attr_ev.attr,
1482 	&dev_attr_key.attr,
1483 	&dev_attr_rel.attr,
1484 	&dev_attr_abs.attr,
1485 	&dev_attr_msc.attr,
1486 	&dev_attr_led.attr,
1487 	&dev_attr_snd.attr,
1488 	&dev_attr_ff.attr,
1489 	&dev_attr_sw.attr,
1490 	NULL
1491 };
1492 
1493 static struct attribute_group input_dev_caps_attr_group = {
1494 	.name	= "capabilities",
1495 	.attrs	= input_dev_caps_attrs,
1496 };
1497 
1498 static const struct attribute_group *input_dev_attr_groups[] = {
1499 	&input_dev_attr_group,
1500 	&input_dev_id_attr_group,
1501 	&input_dev_caps_attr_group,
1502 	NULL
1503 };
1504 
1505 static void input_dev_release(struct device *device)
1506 {
1507 	struct input_dev *dev = to_input_dev(device);
1508 
1509 	input_ff_destroy(dev);
1510 	input_mt_destroy_slots(dev);
1511 	kfree(dev->absinfo);
1512 	kfree(dev->vals);
1513 	kfree(dev);
1514 
1515 	module_put(THIS_MODULE);
1516 }
1517 
1518 /*
1519  * Input uevent interface - loading event handlers based on
1520  * device bitfields.
1521  */
1522 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1523 				   const char *name, unsigned long *bitmap, int max)
1524 {
1525 	int len;
1526 
1527 	if (add_uevent_var(env, "%s", name))
1528 		return -ENOMEM;
1529 
1530 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1531 				 sizeof(env->buf) - env->buflen,
1532 				 bitmap, max, false);
1533 	if (len >= (sizeof(env->buf) - env->buflen))
1534 		return -ENOMEM;
1535 
1536 	env->buflen += len;
1537 	return 0;
1538 }
1539 
1540 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1541 					 struct input_dev *dev)
1542 {
1543 	int len;
1544 
1545 	if (add_uevent_var(env, "MODALIAS="))
1546 		return -ENOMEM;
1547 
1548 	len = input_print_modalias(&env->buf[env->buflen - 1],
1549 				   sizeof(env->buf) - env->buflen,
1550 				   dev, 0);
1551 	if (len >= (sizeof(env->buf) - env->buflen))
1552 		return -ENOMEM;
1553 
1554 	env->buflen += len;
1555 	return 0;
1556 }
1557 
1558 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1559 	do {								\
1560 		int err = add_uevent_var(env, fmt, val);		\
1561 		if (err)						\
1562 			return err;					\
1563 	} while (0)
1564 
1565 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1566 	do {								\
1567 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1568 		if (err)						\
1569 			return err;					\
1570 	} while (0)
1571 
1572 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1573 	do {								\
1574 		int err = input_add_uevent_modalias_var(env, dev);	\
1575 		if (err)						\
1576 			return err;					\
1577 	} while (0)
1578 
1579 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1580 {
1581 	struct input_dev *dev = to_input_dev(device);
1582 
1583 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1584 				dev->id.bustype, dev->id.vendor,
1585 				dev->id.product, dev->id.version);
1586 	if (dev->name)
1587 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1588 	if (dev->phys)
1589 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1590 	if (dev->uniq)
1591 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1592 
1593 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1594 
1595 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1596 	if (test_bit(EV_KEY, dev->evbit))
1597 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1598 	if (test_bit(EV_REL, dev->evbit))
1599 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1600 	if (test_bit(EV_ABS, dev->evbit))
1601 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1602 	if (test_bit(EV_MSC, dev->evbit))
1603 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1604 	if (test_bit(EV_LED, dev->evbit))
1605 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1606 	if (test_bit(EV_SND, dev->evbit))
1607 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1608 	if (test_bit(EV_FF, dev->evbit))
1609 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1610 	if (test_bit(EV_SW, dev->evbit))
1611 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1612 
1613 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1614 
1615 	return 0;
1616 }
1617 
1618 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1619 	do {								\
1620 		int i;							\
1621 		bool active;						\
1622 									\
1623 		if (!test_bit(EV_##type, dev->evbit))			\
1624 			break;						\
1625 									\
1626 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1627 			active = test_bit(i, dev->bits);		\
1628 			if (!active && !on)				\
1629 				continue;				\
1630 									\
1631 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1632 		}							\
1633 	} while (0)
1634 
1635 static void input_dev_toggle(struct input_dev *dev, bool activate)
1636 {
1637 	if (!dev->event)
1638 		return;
1639 
1640 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1641 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1642 
1643 	if (activate && test_bit(EV_REP, dev->evbit)) {
1644 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1645 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1646 	}
1647 }
1648 
1649 /**
1650  * input_reset_device() - reset/restore the state of input device
1651  * @dev: input device whose state needs to be reset
1652  *
1653  * This function tries to reset the state of an opened input device and
1654  * bring internal state and state if the hardware in sync with each other.
1655  * We mark all keys as released, restore LED state, repeat rate, etc.
1656  */
1657 void input_reset_device(struct input_dev *dev)
1658 {
1659 	unsigned long flags;
1660 
1661 	mutex_lock(&dev->mutex);
1662 	spin_lock_irqsave(&dev->event_lock, flags);
1663 
1664 	input_dev_toggle(dev, true);
1665 	input_dev_release_keys(dev);
1666 
1667 	spin_unlock_irqrestore(&dev->event_lock, flags);
1668 	mutex_unlock(&dev->mutex);
1669 }
1670 EXPORT_SYMBOL(input_reset_device);
1671 
1672 #ifdef CONFIG_PM_SLEEP
1673 static int input_dev_suspend(struct device *dev)
1674 {
1675 	struct input_dev *input_dev = to_input_dev(dev);
1676 
1677 	spin_lock_irq(&input_dev->event_lock);
1678 
1679 	/*
1680 	 * Keys that are pressed now are unlikely to be
1681 	 * still pressed when we resume.
1682 	 */
1683 	input_dev_release_keys(input_dev);
1684 
1685 	/* Turn off LEDs and sounds, if any are active. */
1686 	input_dev_toggle(input_dev, false);
1687 
1688 	spin_unlock_irq(&input_dev->event_lock);
1689 
1690 	return 0;
1691 }
1692 
1693 static int input_dev_resume(struct device *dev)
1694 {
1695 	struct input_dev *input_dev = to_input_dev(dev);
1696 
1697 	spin_lock_irq(&input_dev->event_lock);
1698 
1699 	/* Restore state of LEDs and sounds, if any were active. */
1700 	input_dev_toggle(input_dev, true);
1701 
1702 	spin_unlock_irq(&input_dev->event_lock);
1703 
1704 	return 0;
1705 }
1706 
1707 static int input_dev_freeze(struct device *dev)
1708 {
1709 	struct input_dev *input_dev = to_input_dev(dev);
1710 
1711 	spin_lock_irq(&input_dev->event_lock);
1712 
1713 	/*
1714 	 * Keys that are pressed now are unlikely to be
1715 	 * still pressed when we resume.
1716 	 */
1717 	input_dev_release_keys(input_dev);
1718 
1719 	spin_unlock_irq(&input_dev->event_lock);
1720 
1721 	return 0;
1722 }
1723 
1724 static int input_dev_poweroff(struct device *dev)
1725 {
1726 	struct input_dev *input_dev = to_input_dev(dev);
1727 
1728 	spin_lock_irq(&input_dev->event_lock);
1729 
1730 	/* Turn off LEDs and sounds, if any are active. */
1731 	input_dev_toggle(input_dev, false);
1732 
1733 	spin_unlock_irq(&input_dev->event_lock);
1734 
1735 	return 0;
1736 }
1737 
1738 static const struct dev_pm_ops input_dev_pm_ops = {
1739 	.suspend	= input_dev_suspend,
1740 	.resume		= input_dev_resume,
1741 	.freeze		= input_dev_freeze,
1742 	.poweroff	= input_dev_poweroff,
1743 	.restore	= input_dev_resume,
1744 };
1745 #endif /* CONFIG_PM */
1746 
1747 static struct device_type input_dev_type = {
1748 	.groups		= input_dev_attr_groups,
1749 	.release	= input_dev_release,
1750 	.uevent		= input_dev_uevent,
1751 #ifdef CONFIG_PM_SLEEP
1752 	.pm		= &input_dev_pm_ops,
1753 #endif
1754 };
1755 
1756 static char *input_devnode(struct device *dev, umode_t *mode)
1757 {
1758 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1759 }
1760 
1761 struct class input_class = {
1762 	.name		= "input",
1763 	.devnode	= input_devnode,
1764 };
1765 EXPORT_SYMBOL_GPL(input_class);
1766 
1767 /**
1768  * input_allocate_device - allocate memory for new input device
1769  *
1770  * Returns prepared struct input_dev or %NULL.
1771  *
1772  * NOTE: Use input_free_device() to free devices that have not been
1773  * registered; input_unregister_device() should be used for already
1774  * registered devices.
1775  */
1776 struct input_dev *input_allocate_device(void)
1777 {
1778 	static atomic_t input_no = ATOMIC_INIT(-1);
1779 	struct input_dev *dev;
1780 
1781 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1782 	if (dev) {
1783 		dev->dev.type = &input_dev_type;
1784 		dev->dev.class = &input_class;
1785 		device_initialize(&dev->dev);
1786 		mutex_init(&dev->mutex);
1787 		spin_lock_init(&dev->event_lock);
1788 		init_timer(&dev->timer);
1789 		INIT_LIST_HEAD(&dev->h_list);
1790 		INIT_LIST_HEAD(&dev->node);
1791 
1792 		dev_set_name(&dev->dev, "input%lu",
1793 			     (unsigned long)atomic_inc_return(&input_no));
1794 
1795 		__module_get(THIS_MODULE);
1796 	}
1797 
1798 	return dev;
1799 }
1800 EXPORT_SYMBOL(input_allocate_device);
1801 
1802 struct input_devres {
1803 	struct input_dev *input;
1804 };
1805 
1806 static int devm_input_device_match(struct device *dev, void *res, void *data)
1807 {
1808 	struct input_devres *devres = res;
1809 
1810 	return devres->input == data;
1811 }
1812 
1813 static void devm_input_device_release(struct device *dev, void *res)
1814 {
1815 	struct input_devres *devres = res;
1816 	struct input_dev *input = devres->input;
1817 
1818 	dev_dbg(dev, "%s: dropping reference to %s\n",
1819 		__func__, dev_name(&input->dev));
1820 	input_put_device(input);
1821 }
1822 
1823 /**
1824  * devm_input_allocate_device - allocate managed input device
1825  * @dev: device owning the input device being created
1826  *
1827  * Returns prepared struct input_dev or %NULL.
1828  *
1829  * Managed input devices do not need to be explicitly unregistered or
1830  * freed as it will be done automatically when owner device unbinds from
1831  * its driver (or binding fails). Once managed input device is allocated,
1832  * it is ready to be set up and registered in the same fashion as regular
1833  * input device. There are no special devm_input_device_[un]register()
1834  * variants, regular ones work with both managed and unmanaged devices,
1835  * should you need them. In most cases however, managed input device need
1836  * not be explicitly unregistered or freed.
1837  *
1838  * NOTE: the owner device is set up as parent of input device and users
1839  * should not override it.
1840  */
1841 struct input_dev *devm_input_allocate_device(struct device *dev)
1842 {
1843 	struct input_dev *input;
1844 	struct input_devres *devres;
1845 
1846 	devres = devres_alloc(devm_input_device_release,
1847 			      sizeof(struct input_devres), GFP_KERNEL);
1848 	if (!devres)
1849 		return NULL;
1850 
1851 	input = input_allocate_device();
1852 	if (!input) {
1853 		devres_free(devres);
1854 		return NULL;
1855 	}
1856 
1857 	input->dev.parent = dev;
1858 	input->devres_managed = true;
1859 
1860 	devres->input = input;
1861 	devres_add(dev, devres);
1862 
1863 	return input;
1864 }
1865 EXPORT_SYMBOL(devm_input_allocate_device);
1866 
1867 /**
1868  * input_free_device - free memory occupied by input_dev structure
1869  * @dev: input device to free
1870  *
1871  * This function should only be used if input_register_device()
1872  * was not called yet or if it failed. Once device was registered
1873  * use input_unregister_device() and memory will be freed once last
1874  * reference to the device is dropped.
1875  *
1876  * Device should be allocated by input_allocate_device().
1877  *
1878  * NOTE: If there are references to the input device then memory
1879  * will not be freed until last reference is dropped.
1880  */
1881 void input_free_device(struct input_dev *dev)
1882 {
1883 	if (dev) {
1884 		if (dev->devres_managed)
1885 			WARN_ON(devres_destroy(dev->dev.parent,
1886 						devm_input_device_release,
1887 						devm_input_device_match,
1888 						dev));
1889 		input_put_device(dev);
1890 	}
1891 }
1892 EXPORT_SYMBOL(input_free_device);
1893 
1894 /**
1895  * input_set_capability - mark device as capable of a certain event
1896  * @dev: device that is capable of emitting or accepting event
1897  * @type: type of the event (EV_KEY, EV_REL, etc...)
1898  * @code: event code
1899  *
1900  * In addition to setting up corresponding bit in appropriate capability
1901  * bitmap the function also adjusts dev->evbit.
1902  */
1903 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1904 {
1905 	switch (type) {
1906 	case EV_KEY:
1907 		__set_bit(code, dev->keybit);
1908 		break;
1909 
1910 	case EV_REL:
1911 		__set_bit(code, dev->relbit);
1912 		break;
1913 
1914 	case EV_ABS:
1915 		input_alloc_absinfo(dev);
1916 		if (!dev->absinfo)
1917 			return;
1918 
1919 		__set_bit(code, dev->absbit);
1920 		break;
1921 
1922 	case EV_MSC:
1923 		__set_bit(code, dev->mscbit);
1924 		break;
1925 
1926 	case EV_SW:
1927 		__set_bit(code, dev->swbit);
1928 		break;
1929 
1930 	case EV_LED:
1931 		__set_bit(code, dev->ledbit);
1932 		break;
1933 
1934 	case EV_SND:
1935 		__set_bit(code, dev->sndbit);
1936 		break;
1937 
1938 	case EV_FF:
1939 		__set_bit(code, dev->ffbit);
1940 		break;
1941 
1942 	case EV_PWR:
1943 		/* do nothing */
1944 		break;
1945 
1946 	default:
1947 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1948 		       type, code);
1949 		dump_stack();
1950 		return;
1951 	}
1952 
1953 	__set_bit(type, dev->evbit);
1954 }
1955 EXPORT_SYMBOL(input_set_capability);
1956 
1957 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1958 {
1959 	int mt_slots;
1960 	int i;
1961 	unsigned int events;
1962 
1963 	if (dev->mt) {
1964 		mt_slots = dev->mt->num_slots;
1965 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1966 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1967 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1968 		mt_slots = clamp(mt_slots, 2, 32);
1969 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1970 		mt_slots = 2;
1971 	} else {
1972 		mt_slots = 0;
1973 	}
1974 
1975 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1976 
1977 	if (test_bit(EV_ABS, dev->evbit))
1978 		for_each_set_bit(i, dev->absbit, ABS_CNT)
1979 			events += input_is_mt_axis(i) ? mt_slots : 1;
1980 
1981 	if (test_bit(EV_REL, dev->evbit))
1982 		events += bitmap_weight(dev->relbit, REL_CNT);
1983 
1984 	/* Make room for KEY and MSC events */
1985 	events += 7;
1986 
1987 	return events;
1988 }
1989 
1990 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1991 	do {								\
1992 		if (!test_bit(EV_##type, dev->evbit))			\
1993 			memset(dev->bits##bit, 0,			\
1994 				sizeof(dev->bits##bit));		\
1995 	} while (0)
1996 
1997 static void input_cleanse_bitmasks(struct input_dev *dev)
1998 {
1999 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2000 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2001 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2002 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2003 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2004 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2005 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2006 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2007 }
2008 
2009 static void __input_unregister_device(struct input_dev *dev)
2010 {
2011 	struct input_handle *handle, *next;
2012 
2013 	input_disconnect_device(dev);
2014 
2015 	mutex_lock(&input_mutex);
2016 
2017 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2018 		handle->handler->disconnect(handle);
2019 	WARN_ON(!list_empty(&dev->h_list));
2020 
2021 	del_timer_sync(&dev->timer);
2022 	list_del_init(&dev->node);
2023 
2024 	input_wakeup_procfs_readers();
2025 
2026 	mutex_unlock(&input_mutex);
2027 
2028 	device_del(&dev->dev);
2029 }
2030 
2031 static void devm_input_device_unregister(struct device *dev, void *res)
2032 {
2033 	struct input_devres *devres = res;
2034 	struct input_dev *input = devres->input;
2035 
2036 	dev_dbg(dev, "%s: unregistering device %s\n",
2037 		__func__, dev_name(&input->dev));
2038 	__input_unregister_device(input);
2039 }
2040 
2041 /**
2042  * input_register_device - register device with input core
2043  * @dev: device to be registered
2044  *
2045  * This function registers device with input core. The device must be
2046  * allocated with input_allocate_device() and all it's capabilities
2047  * set up before registering.
2048  * If function fails the device must be freed with input_free_device().
2049  * Once device has been successfully registered it can be unregistered
2050  * with input_unregister_device(); input_free_device() should not be
2051  * called in this case.
2052  *
2053  * Note that this function is also used to register managed input devices
2054  * (ones allocated with devm_input_allocate_device()). Such managed input
2055  * devices need not be explicitly unregistered or freed, their tear down
2056  * is controlled by the devres infrastructure. It is also worth noting
2057  * that tear down of managed input devices is internally a 2-step process:
2058  * registered managed input device is first unregistered, but stays in
2059  * memory and can still handle input_event() calls (although events will
2060  * not be delivered anywhere). The freeing of managed input device will
2061  * happen later, when devres stack is unwound to the point where device
2062  * allocation was made.
2063  */
2064 int input_register_device(struct input_dev *dev)
2065 {
2066 	struct input_devres *devres = NULL;
2067 	struct input_handler *handler;
2068 	unsigned int packet_size;
2069 	const char *path;
2070 	int error;
2071 
2072 	if (dev->devres_managed) {
2073 		devres = devres_alloc(devm_input_device_unregister,
2074 				      sizeof(struct input_devres), GFP_KERNEL);
2075 		if (!devres)
2076 			return -ENOMEM;
2077 
2078 		devres->input = dev;
2079 	}
2080 
2081 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2082 	__set_bit(EV_SYN, dev->evbit);
2083 
2084 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2085 	__clear_bit(KEY_RESERVED, dev->keybit);
2086 
2087 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2088 	input_cleanse_bitmasks(dev);
2089 
2090 	packet_size = input_estimate_events_per_packet(dev);
2091 	if (dev->hint_events_per_packet < packet_size)
2092 		dev->hint_events_per_packet = packet_size;
2093 
2094 	dev->max_vals = dev->hint_events_per_packet + 2;
2095 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2096 	if (!dev->vals) {
2097 		error = -ENOMEM;
2098 		goto err_devres_free;
2099 	}
2100 
2101 	/*
2102 	 * If delay and period are pre-set by the driver, then autorepeating
2103 	 * is handled by the driver itself and we don't do it in input.c.
2104 	 */
2105 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2106 		dev->timer.data = (long) dev;
2107 		dev->timer.function = input_repeat_key;
2108 		dev->rep[REP_DELAY] = 250;
2109 		dev->rep[REP_PERIOD] = 33;
2110 	}
2111 
2112 	if (!dev->getkeycode)
2113 		dev->getkeycode = input_default_getkeycode;
2114 
2115 	if (!dev->setkeycode)
2116 		dev->setkeycode = input_default_setkeycode;
2117 
2118 	error = device_add(&dev->dev);
2119 	if (error)
2120 		goto err_free_vals;
2121 
2122 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2123 	pr_info("%s as %s\n",
2124 		dev->name ? dev->name : "Unspecified device",
2125 		path ? path : "N/A");
2126 	kfree(path);
2127 
2128 	error = mutex_lock_interruptible(&input_mutex);
2129 	if (error)
2130 		goto err_device_del;
2131 
2132 	list_add_tail(&dev->node, &input_dev_list);
2133 
2134 	list_for_each_entry(handler, &input_handler_list, node)
2135 		input_attach_handler(dev, handler);
2136 
2137 	input_wakeup_procfs_readers();
2138 
2139 	mutex_unlock(&input_mutex);
2140 
2141 	if (dev->devres_managed) {
2142 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2143 			__func__, dev_name(&dev->dev));
2144 		devres_add(dev->dev.parent, devres);
2145 	}
2146 	return 0;
2147 
2148 err_device_del:
2149 	device_del(&dev->dev);
2150 err_free_vals:
2151 	kfree(dev->vals);
2152 	dev->vals = NULL;
2153 err_devres_free:
2154 	devres_free(devres);
2155 	return error;
2156 }
2157 EXPORT_SYMBOL(input_register_device);
2158 
2159 /**
2160  * input_unregister_device - unregister previously registered device
2161  * @dev: device to be unregistered
2162  *
2163  * This function unregisters an input device. Once device is unregistered
2164  * the caller should not try to access it as it may get freed at any moment.
2165  */
2166 void input_unregister_device(struct input_dev *dev)
2167 {
2168 	if (dev->devres_managed) {
2169 		WARN_ON(devres_destroy(dev->dev.parent,
2170 					devm_input_device_unregister,
2171 					devm_input_device_match,
2172 					dev));
2173 		__input_unregister_device(dev);
2174 		/*
2175 		 * We do not do input_put_device() here because it will be done
2176 		 * when 2nd devres fires up.
2177 		 */
2178 	} else {
2179 		__input_unregister_device(dev);
2180 		input_put_device(dev);
2181 	}
2182 }
2183 EXPORT_SYMBOL(input_unregister_device);
2184 
2185 /**
2186  * input_register_handler - register a new input handler
2187  * @handler: handler to be registered
2188  *
2189  * This function registers a new input handler (interface) for input
2190  * devices in the system and attaches it to all input devices that
2191  * are compatible with the handler.
2192  */
2193 int input_register_handler(struct input_handler *handler)
2194 {
2195 	struct input_dev *dev;
2196 	int error;
2197 
2198 	error = mutex_lock_interruptible(&input_mutex);
2199 	if (error)
2200 		return error;
2201 
2202 	INIT_LIST_HEAD(&handler->h_list);
2203 
2204 	list_add_tail(&handler->node, &input_handler_list);
2205 
2206 	list_for_each_entry(dev, &input_dev_list, node)
2207 		input_attach_handler(dev, handler);
2208 
2209 	input_wakeup_procfs_readers();
2210 
2211 	mutex_unlock(&input_mutex);
2212 	return 0;
2213 }
2214 EXPORT_SYMBOL(input_register_handler);
2215 
2216 /**
2217  * input_unregister_handler - unregisters an input handler
2218  * @handler: handler to be unregistered
2219  *
2220  * This function disconnects a handler from its input devices and
2221  * removes it from lists of known handlers.
2222  */
2223 void input_unregister_handler(struct input_handler *handler)
2224 {
2225 	struct input_handle *handle, *next;
2226 
2227 	mutex_lock(&input_mutex);
2228 
2229 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2230 		handler->disconnect(handle);
2231 	WARN_ON(!list_empty(&handler->h_list));
2232 
2233 	list_del_init(&handler->node);
2234 
2235 	input_wakeup_procfs_readers();
2236 
2237 	mutex_unlock(&input_mutex);
2238 }
2239 EXPORT_SYMBOL(input_unregister_handler);
2240 
2241 /**
2242  * input_handler_for_each_handle - handle iterator
2243  * @handler: input handler to iterate
2244  * @data: data for the callback
2245  * @fn: function to be called for each handle
2246  *
2247  * Iterate over @bus's list of devices, and call @fn for each, passing
2248  * it @data and stop when @fn returns a non-zero value. The function is
2249  * using RCU to traverse the list and therefore may be using in atomic
2250  * contexts. The @fn callback is invoked from RCU critical section and
2251  * thus must not sleep.
2252  */
2253 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2254 				  int (*fn)(struct input_handle *, void *))
2255 {
2256 	struct input_handle *handle;
2257 	int retval = 0;
2258 
2259 	rcu_read_lock();
2260 
2261 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2262 		retval = fn(handle, data);
2263 		if (retval)
2264 			break;
2265 	}
2266 
2267 	rcu_read_unlock();
2268 
2269 	return retval;
2270 }
2271 EXPORT_SYMBOL(input_handler_for_each_handle);
2272 
2273 /**
2274  * input_register_handle - register a new input handle
2275  * @handle: handle to register
2276  *
2277  * This function puts a new input handle onto device's
2278  * and handler's lists so that events can flow through
2279  * it once it is opened using input_open_device().
2280  *
2281  * This function is supposed to be called from handler's
2282  * connect() method.
2283  */
2284 int input_register_handle(struct input_handle *handle)
2285 {
2286 	struct input_handler *handler = handle->handler;
2287 	struct input_dev *dev = handle->dev;
2288 	int error;
2289 
2290 	/*
2291 	 * We take dev->mutex here to prevent race with
2292 	 * input_release_device().
2293 	 */
2294 	error = mutex_lock_interruptible(&dev->mutex);
2295 	if (error)
2296 		return error;
2297 
2298 	/*
2299 	 * Filters go to the head of the list, normal handlers
2300 	 * to the tail.
2301 	 */
2302 	if (handler->filter)
2303 		list_add_rcu(&handle->d_node, &dev->h_list);
2304 	else
2305 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2306 
2307 	mutex_unlock(&dev->mutex);
2308 
2309 	/*
2310 	 * Since we are supposed to be called from ->connect()
2311 	 * which is mutually exclusive with ->disconnect()
2312 	 * we can't be racing with input_unregister_handle()
2313 	 * and so separate lock is not needed here.
2314 	 */
2315 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2316 
2317 	if (handler->start)
2318 		handler->start(handle);
2319 
2320 	return 0;
2321 }
2322 EXPORT_SYMBOL(input_register_handle);
2323 
2324 /**
2325  * input_unregister_handle - unregister an input handle
2326  * @handle: handle to unregister
2327  *
2328  * This function removes input handle from device's
2329  * and handler's lists.
2330  *
2331  * This function is supposed to be called from handler's
2332  * disconnect() method.
2333  */
2334 void input_unregister_handle(struct input_handle *handle)
2335 {
2336 	struct input_dev *dev = handle->dev;
2337 
2338 	list_del_rcu(&handle->h_node);
2339 
2340 	/*
2341 	 * Take dev->mutex to prevent race with input_release_device().
2342 	 */
2343 	mutex_lock(&dev->mutex);
2344 	list_del_rcu(&handle->d_node);
2345 	mutex_unlock(&dev->mutex);
2346 
2347 	synchronize_rcu();
2348 }
2349 EXPORT_SYMBOL(input_unregister_handle);
2350 
2351 /**
2352  * input_get_new_minor - allocates a new input minor number
2353  * @legacy_base: beginning or the legacy range to be searched
2354  * @legacy_num: size of legacy range
2355  * @allow_dynamic: whether we can also take ID from the dynamic range
2356  *
2357  * This function allocates a new device minor for from input major namespace.
2358  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2359  * parameters and whether ID can be allocated from dynamic range if there are
2360  * no free IDs in legacy range.
2361  */
2362 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2363 			bool allow_dynamic)
2364 {
2365 	/*
2366 	 * This function should be called from input handler's ->connect()
2367 	 * methods, which are serialized with input_mutex, so no additional
2368 	 * locking is needed here.
2369 	 */
2370 	if (legacy_base >= 0) {
2371 		int minor = ida_simple_get(&input_ida,
2372 					   legacy_base,
2373 					   legacy_base + legacy_num,
2374 					   GFP_KERNEL);
2375 		if (minor >= 0 || !allow_dynamic)
2376 			return minor;
2377 	}
2378 
2379 	return ida_simple_get(&input_ida,
2380 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2381 			      GFP_KERNEL);
2382 }
2383 EXPORT_SYMBOL(input_get_new_minor);
2384 
2385 /**
2386  * input_free_minor - release previously allocated minor
2387  * @minor: minor to be released
2388  *
2389  * This function releases previously allocated input minor so that it can be
2390  * reused later.
2391  */
2392 void input_free_minor(unsigned int minor)
2393 {
2394 	ida_simple_remove(&input_ida, minor);
2395 }
2396 EXPORT_SYMBOL(input_free_minor);
2397 
2398 static int __init input_init(void)
2399 {
2400 	int err;
2401 
2402 	err = class_register(&input_class);
2403 	if (err) {
2404 		pr_err("unable to register input_dev class\n");
2405 		return err;
2406 	}
2407 
2408 	err = input_proc_init();
2409 	if (err)
2410 		goto fail1;
2411 
2412 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2413 				     INPUT_MAX_CHAR_DEVICES, "input");
2414 	if (err) {
2415 		pr_err("unable to register char major %d", INPUT_MAJOR);
2416 		goto fail2;
2417 	}
2418 
2419 	return 0;
2420 
2421  fail2:	input_proc_exit();
2422  fail1:	class_unregister(&input_class);
2423 	return err;
2424 }
2425 
2426 static void __exit input_exit(void)
2427 {
2428 	input_proc_exit();
2429 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2430 				 INPUT_MAX_CHAR_DEVICES);
2431 	class_unregister(&input_class);
2432 }
2433 
2434 subsys_initcall(input_init);
2435 module_exit(input_exit);
2436