xref: /linux/drivers/input/input.c (revision 3e51108c72e8adbcf3180ed40527a2a9d2d0123b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static const unsigned int input_max_code[EV_CNT] = {
54 	[EV_KEY] = KEY_MAX,
55 	[EV_REL] = REL_MAX,
56 	[EV_ABS] = ABS_MAX,
57 	[EV_MSC] = MSC_MAX,
58 	[EV_SW] = SW_MAX,
59 	[EV_LED] = LED_MAX,
60 	[EV_SND] = SND_MAX,
61 	[EV_FF] = FF_MAX,
62 };
63 
64 static inline int is_event_supported(unsigned int code,
65 				     unsigned long *bm, unsigned int max)
66 {
67 	return code <= max && test_bit(code, bm);
68 }
69 
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 	if (fuzz) {
73 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 			return old_val;
75 
76 		if (value > old_val - fuzz && value < old_val + fuzz)
77 			return (old_val * 3 + value) / 4;
78 
79 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 			return (old_val + value) / 2;
81 	}
82 
83 	return value;
84 }
85 
86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 	if (test_bit(EV_REP, dev->evbit) &&
89 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 	    dev->timer.function) {
91 		dev->repeat_key = code;
92 		mod_timer(&dev->timer,
93 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 	}
95 }
96 
97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 	del_timer(&dev->timer);
100 }
101 
102 /*
103  * Pass values first through all filters and then, if event has not been
104  * filtered out, through all open handles. This order is achieved by placing
105  * filters at the head of the list of handles attached to the device, and
106  * placing regular handles at the tail of the list.
107  *
108  * This function is called with dev->event_lock held and interrupts disabled.
109  */
110 static void input_pass_values(struct input_dev *dev,
111 			      struct input_value *vals, unsigned int count)
112 {
113 	struct input_handle *handle;
114 	struct input_value *v;
115 
116 	lockdep_assert_held(&dev->event_lock);
117 
118 	rcu_read_lock();
119 
120 	handle = rcu_dereference(dev->grab);
121 	if (handle) {
122 		count = handle->handle_events(handle, vals, count);
123 	} else {
124 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
125 			if (handle->open) {
126 				count = handle->handle_events(handle, vals,
127 							      count);
128 				if (!count)
129 					break;
130 			}
131 	}
132 
133 	rcu_read_unlock();
134 
135 	/* trigger auto repeat for key events */
136 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 		for (v = vals; v != vals + count; v++) {
138 			if (v->type == EV_KEY && v->value != 2) {
139 				if (v->value)
140 					input_start_autorepeat(dev, v->code);
141 				else
142 					input_stop_autorepeat(dev);
143 			}
144 		}
145 	}
146 }
147 
148 #define INPUT_IGNORE_EVENT	0
149 #define INPUT_PASS_TO_HANDLERS	1
150 #define INPUT_PASS_TO_DEVICE	2
151 #define INPUT_SLOT		4
152 #define INPUT_FLUSH		8
153 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
154 
155 static int input_handle_abs_event(struct input_dev *dev,
156 				  unsigned int code, int *pval)
157 {
158 	struct input_mt *mt = dev->mt;
159 	bool is_new_slot = false;
160 	bool is_mt_event;
161 	int *pold;
162 
163 	if (code == ABS_MT_SLOT) {
164 		/*
165 		 * "Stage" the event; we'll flush it later, when we
166 		 * get actual touch data.
167 		 */
168 		if (mt && *pval >= 0 && *pval < mt->num_slots)
169 			mt->slot = *pval;
170 
171 		return INPUT_IGNORE_EVENT;
172 	}
173 
174 	is_mt_event = input_is_mt_value(code);
175 
176 	if (!is_mt_event) {
177 		pold = &dev->absinfo[code].value;
178 	} else if (mt) {
179 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
181 	} else {
182 		/*
183 		 * Bypass filtering for multi-touch events when
184 		 * not employing slots.
185 		 */
186 		pold = NULL;
187 	}
188 
189 	if (pold) {
190 		*pval = input_defuzz_abs_event(*pval, *pold,
191 						dev->absinfo[code].fuzz);
192 		if (*pold == *pval)
193 			return INPUT_IGNORE_EVENT;
194 
195 		*pold = *pval;
196 	}
197 
198 	/* Flush pending "slot" event */
199 	if (is_new_slot) {
200 		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
202 	}
203 
204 	return INPUT_PASS_TO_HANDLERS;
205 }
206 
207 static int input_get_disposition(struct input_dev *dev,
208 			  unsigned int type, unsigned int code, int *pval)
209 {
210 	int disposition = INPUT_IGNORE_EVENT;
211 	int value = *pval;
212 
213 	/* filter-out events from inhibited devices */
214 	if (dev->inhibited)
215 		return INPUT_IGNORE_EVENT;
216 
217 	switch (type) {
218 
219 	case EV_SYN:
220 		switch (code) {
221 		case SYN_CONFIG:
222 			disposition = INPUT_PASS_TO_ALL;
223 			break;
224 
225 		case SYN_REPORT:
226 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
227 			break;
228 		case SYN_MT_REPORT:
229 			disposition = INPUT_PASS_TO_HANDLERS;
230 			break;
231 		}
232 		break;
233 
234 	case EV_KEY:
235 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
236 
237 			/* auto-repeat bypasses state updates */
238 			if (value == 2) {
239 				disposition = INPUT_PASS_TO_HANDLERS;
240 				break;
241 			}
242 
243 			if (!!test_bit(code, dev->key) != !!value) {
244 
245 				__change_bit(code, dev->key);
246 				disposition = INPUT_PASS_TO_HANDLERS;
247 			}
248 		}
249 		break;
250 
251 	case EV_SW:
252 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 		    !!test_bit(code, dev->sw) != !!value) {
254 
255 			__change_bit(code, dev->sw);
256 			disposition = INPUT_PASS_TO_HANDLERS;
257 		}
258 		break;
259 
260 	case EV_ABS:
261 		if (is_event_supported(code, dev->absbit, ABS_MAX))
262 			disposition = input_handle_abs_event(dev, code, &value);
263 
264 		break;
265 
266 	case EV_REL:
267 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 			disposition = INPUT_PASS_TO_HANDLERS;
269 
270 		break;
271 
272 	case EV_MSC:
273 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 			disposition = INPUT_PASS_TO_ALL;
275 
276 		break;
277 
278 	case EV_LED:
279 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 		    !!test_bit(code, dev->led) != !!value) {
281 
282 			__change_bit(code, dev->led);
283 			disposition = INPUT_PASS_TO_ALL;
284 		}
285 		break;
286 
287 	case EV_SND:
288 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
289 
290 			if (!!test_bit(code, dev->snd) != !!value)
291 				__change_bit(code, dev->snd);
292 			disposition = INPUT_PASS_TO_ALL;
293 		}
294 		break;
295 
296 	case EV_REP:
297 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 			dev->rep[code] = value;
299 			disposition = INPUT_PASS_TO_ALL;
300 		}
301 		break;
302 
303 	case EV_FF:
304 		if (value >= 0)
305 			disposition = INPUT_PASS_TO_ALL;
306 		break;
307 
308 	case EV_PWR:
309 		disposition = INPUT_PASS_TO_ALL;
310 		break;
311 	}
312 
313 	*pval = value;
314 	return disposition;
315 }
316 
317 static void input_event_dispose(struct input_dev *dev, int disposition,
318 				unsigned int type, unsigned int code, int value)
319 {
320 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 		dev->event(dev, type, code, value);
322 
323 	if (disposition & INPUT_PASS_TO_HANDLERS) {
324 		struct input_value *v;
325 
326 		if (disposition & INPUT_SLOT) {
327 			v = &dev->vals[dev->num_vals++];
328 			v->type = EV_ABS;
329 			v->code = ABS_MT_SLOT;
330 			v->value = dev->mt->slot;
331 		}
332 
333 		v = &dev->vals[dev->num_vals++];
334 		v->type = type;
335 		v->code = code;
336 		v->value = value;
337 	}
338 
339 	if (disposition & INPUT_FLUSH) {
340 		if (dev->num_vals >= 2)
341 			input_pass_values(dev, dev->vals, dev->num_vals);
342 		dev->num_vals = 0;
343 		/*
344 		 * Reset the timestamp on flush so we won't end up
345 		 * with a stale one. Note we only need to reset the
346 		 * monolithic one as we use its presence when deciding
347 		 * whether to generate a synthetic timestamp.
348 		 */
349 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 	} else if (dev->num_vals >= dev->max_vals - 2) {
351 		dev->vals[dev->num_vals++] = input_value_sync;
352 		input_pass_values(dev, dev->vals, dev->num_vals);
353 		dev->num_vals = 0;
354 	}
355 }
356 
357 void input_handle_event(struct input_dev *dev,
358 			unsigned int type, unsigned int code, int value)
359 {
360 	int disposition;
361 
362 	lockdep_assert_held(&dev->event_lock);
363 
364 	disposition = input_get_disposition(dev, type, code, &value);
365 	if (disposition != INPUT_IGNORE_EVENT) {
366 		if (type != EV_SYN)
367 			add_input_randomness(type, code, value);
368 
369 		input_event_dispose(dev, disposition, type, code, value);
370 	}
371 }
372 
373 /**
374  * input_event() - report new input event
375  * @dev: device that generated the event
376  * @type: type of the event
377  * @code: event code
378  * @value: value of the event
379  *
380  * This function should be used by drivers implementing various input
381  * devices to report input events. See also input_inject_event().
382  *
383  * NOTE: input_event() may be safely used right after input device was
384  * allocated with input_allocate_device(), even before it is registered
385  * with input_register_device(), but the event will not reach any of the
386  * input handlers. Such early invocation of input_event() may be used
387  * to 'seed' initial state of a switch or initial position of absolute
388  * axis, etc.
389  */
390 void input_event(struct input_dev *dev,
391 		 unsigned int type, unsigned int code, int value)
392 {
393 	unsigned long flags;
394 
395 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
396 
397 		spin_lock_irqsave(&dev->event_lock, flags);
398 		input_handle_event(dev, type, code, value);
399 		spin_unlock_irqrestore(&dev->event_lock, flags);
400 	}
401 }
402 EXPORT_SYMBOL(input_event);
403 
404 /**
405  * input_inject_event() - send input event from input handler
406  * @handle: input handle to send event through
407  * @type: type of the event
408  * @code: event code
409  * @value: value of the event
410  *
411  * Similar to input_event() but will ignore event if device is
412  * "grabbed" and handle injecting event is not the one that owns
413  * the device.
414  */
415 void input_inject_event(struct input_handle *handle,
416 			unsigned int type, unsigned int code, int value)
417 {
418 	struct input_dev *dev = handle->dev;
419 	struct input_handle *grab;
420 	unsigned long flags;
421 
422 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
423 		spin_lock_irqsave(&dev->event_lock, flags);
424 
425 		rcu_read_lock();
426 		grab = rcu_dereference(dev->grab);
427 		if (!grab || grab == handle)
428 			input_handle_event(dev, type, code, value);
429 		rcu_read_unlock();
430 
431 		spin_unlock_irqrestore(&dev->event_lock, flags);
432 	}
433 }
434 EXPORT_SYMBOL(input_inject_event);
435 
436 /**
437  * input_alloc_absinfo - allocates array of input_absinfo structs
438  * @dev: the input device emitting absolute events
439  *
440  * If the absinfo struct the caller asked for is already allocated, this
441  * functions will not do anything.
442  */
443 void input_alloc_absinfo(struct input_dev *dev)
444 {
445 	if (dev->absinfo)
446 		return;
447 
448 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
449 	if (!dev->absinfo) {
450 		dev_err(dev->dev.parent ?: &dev->dev,
451 			"%s: unable to allocate memory\n", __func__);
452 		/*
453 		 * We will handle this allocation failure in
454 		 * input_register_device() when we refuse to register input
455 		 * device with ABS bits but without absinfo.
456 		 */
457 	}
458 }
459 EXPORT_SYMBOL(input_alloc_absinfo);
460 
461 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462 			  int min, int max, int fuzz, int flat)
463 {
464 	struct input_absinfo *absinfo;
465 
466 	__set_bit(EV_ABS, dev->evbit);
467 	__set_bit(axis, dev->absbit);
468 
469 	input_alloc_absinfo(dev);
470 	if (!dev->absinfo)
471 		return;
472 
473 	absinfo = &dev->absinfo[axis];
474 	absinfo->minimum = min;
475 	absinfo->maximum = max;
476 	absinfo->fuzz = fuzz;
477 	absinfo->flat = flat;
478 }
479 EXPORT_SYMBOL(input_set_abs_params);
480 
481 /**
482  * input_copy_abs - Copy absinfo from one input_dev to another
483  * @dst: Destination input device to copy the abs settings to
484  * @dst_axis: ABS_* value selecting the destination axis
485  * @src: Source input device to copy the abs settings from
486  * @src_axis: ABS_* value selecting the source axis
487  *
488  * Set absinfo for the selected destination axis by copying it from
489  * the specified source input device's source axis.
490  * This is useful to e.g. setup a pen/stylus input-device for combined
491  * touchscreen/pen hardware where the pen uses the same coordinates as
492  * the touchscreen.
493  */
494 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495 		    const struct input_dev *src, unsigned int src_axis)
496 {
497 	/* src must have EV_ABS and src_axis set */
498 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499 		      test_bit(src_axis, src->absbit))))
500 		return;
501 
502 	/*
503 	 * input_alloc_absinfo() may have failed for the source. Our caller is
504 	 * expected to catch this when registering the input devices, which may
505 	 * happen after the input_copy_abs() call.
506 	 */
507 	if (!src->absinfo)
508 		return;
509 
510 	input_set_capability(dst, EV_ABS, dst_axis);
511 	if (!dst->absinfo)
512 		return;
513 
514 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
515 }
516 EXPORT_SYMBOL(input_copy_abs);
517 
518 /**
519  * input_grab_device - grabs device for exclusive use
520  * @handle: input handle that wants to own the device
521  *
522  * When a device is grabbed by an input handle all events generated by
523  * the device are delivered only to this handle. Also events injected
524  * by other input handles are ignored while device is grabbed.
525  */
526 int input_grab_device(struct input_handle *handle)
527 {
528 	struct input_dev *dev = handle->dev;
529 	int retval;
530 
531 	retval = mutex_lock_interruptible(&dev->mutex);
532 	if (retval)
533 		return retval;
534 
535 	if (dev->grab) {
536 		retval = -EBUSY;
537 		goto out;
538 	}
539 
540 	rcu_assign_pointer(dev->grab, handle);
541 
542  out:
543 	mutex_unlock(&dev->mutex);
544 	return retval;
545 }
546 EXPORT_SYMBOL(input_grab_device);
547 
548 static void __input_release_device(struct input_handle *handle)
549 {
550 	struct input_dev *dev = handle->dev;
551 	struct input_handle *grabber;
552 
553 	grabber = rcu_dereference_protected(dev->grab,
554 					    lockdep_is_held(&dev->mutex));
555 	if (grabber == handle) {
556 		rcu_assign_pointer(dev->grab, NULL);
557 		/* Make sure input_pass_values() notices that grab is gone */
558 		synchronize_rcu();
559 
560 		list_for_each_entry(handle, &dev->h_list, d_node)
561 			if (handle->open && handle->handler->start)
562 				handle->handler->start(handle);
563 	}
564 }
565 
566 /**
567  * input_release_device - release previously grabbed device
568  * @handle: input handle that owns the device
569  *
570  * Releases previously grabbed device so that other input handles can
571  * start receiving input events. Upon release all handlers attached
572  * to the device have their start() method called so they have a change
573  * to synchronize device state with the rest of the system.
574  */
575 void input_release_device(struct input_handle *handle)
576 {
577 	struct input_dev *dev = handle->dev;
578 
579 	mutex_lock(&dev->mutex);
580 	__input_release_device(handle);
581 	mutex_unlock(&dev->mutex);
582 }
583 EXPORT_SYMBOL(input_release_device);
584 
585 /**
586  * input_open_device - open input device
587  * @handle: handle through which device is being accessed
588  *
589  * This function should be called by input handlers when they
590  * want to start receive events from given input device.
591  */
592 int input_open_device(struct input_handle *handle)
593 {
594 	struct input_dev *dev = handle->dev;
595 	int retval;
596 
597 	retval = mutex_lock_interruptible(&dev->mutex);
598 	if (retval)
599 		return retval;
600 
601 	if (dev->going_away) {
602 		retval = -ENODEV;
603 		goto out;
604 	}
605 
606 	handle->open++;
607 
608 	if (handle->handler->passive_observer)
609 		goto out;
610 
611 	if (dev->users++ || dev->inhibited) {
612 		/*
613 		 * Device is already opened and/or inhibited,
614 		 * so we can exit immediately and report success.
615 		 */
616 		goto out;
617 	}
618 
619 	if (dev->open) {
620 		retval = dev->open(dev);
621 		if (retval) {
622 			dev->users--;
623 			handle->open--;
624 			/*
625 			 * Make sure we are not delivering any more events
626 			 * through this handle
627 			 */
628 			synchronize_rcu();
629 			goto out;
630 		}
631 	}
632 
633 	if (dev->poller)
634 		input_dev_poller_start(dev->poller);
635 
636  out:
637 	mutex_unlock(&dev->mutex);
638 	return retval;
639 }
640 EXPORT_SYMBOL(input_open_device);
641 
642 int input_flush_device(struct input_handle *handle, struct file *file)
643 {
644 	struct input_dev *dev = handle->dev;
645 	int retval;
646 
647 	retval = mutex_lock_interruptible(&dev->mutex);
648 	if (retval)
649 		return retval;
650 
651 	if (dev->flush)
652 		retval = dev->flush(dev, file);
653 
654 	mutex_unlock(&dev->mutex);
655 	return retval;
656 }
657 EXPORT_SYMBOL(input_flush_device);
658 
659 /**
660  * input_close_device - close input device
661  * @handle: handle through which device is being accessed
662  *
663  * This function should be called by input handlers when they
664  * want to stop receive events from given input device.
665  */
666 void input_close_device(struct input_handle *handle)
667 {
668 	struct input_dev *dev = handle->dev;
669 
670 	mutex_lock(&dev->mutex);
671 
672 	__input_release_device(handle);
673 
674 	if (!handle->handler->passive_observer) {
675 		if (!--dev->users && !dev->inhibited) {
676 			if (dev->poller)
677 				input_dev_poller_stop(dev->poller);
678 			if (dev->close)
679 				dev->close(dev);
680 		}
681 	}
682 
683 	if (!--handle->open) {
684 		/*
685 		 * synchronize_rcu() makes sure that input_pass_values()
686 		 * completed and that no more input events are delivered
687 		 * through this handle
688 		 */
689 		synchronize_rcu();
690 	}
691 
692 	mutex_unlock(&dev->mutex);
693 }
694 EXPORT_SYMBOL(input_close_device);
695 
696 /*
697  * Simulate keyup events for all keys that are marked as pressed.
698  * The function must be called with dev->event_lock held.
699  */
700 static bool input_dev_release_keys(struct input_dev *dev)
701 {
702 	bool need_sync = false;
703 	int code;
704 
705 	lockdep_assert_held(&dev->event_lock);
706 
707 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
708 		for_each_set_bit(code, dev->key, KEY_CNT) {
709 			input_handle_event(dev, EV_KEY, code, 0);
710 			need_sync = true;
711 		}
712 	}
713 
714 	return need_sync;
715 }
716 
717 /*
718  * Prepare device for unregistering
719  */
720 static void input_disconnect_device(struct input_dev *dev)
721 {
722 	struct input_handle *handle;
723 
724 	/*
725 	 * Mark device as going away. Note that we take dev->mutex here
726 	 * not to protect access to dev->going_away but rather to ensure
727 	 * that there are no threads in the middle of input_open_device()
728 	 */
729 	mutex_lock(&dev->mutex);
730 	dev->going_away = true;
731 	mutex_unlock(&dev->mutex);
732 
733 	spin_lock_irq(&dev->event_lock);
734 
735 	/*
736 	 * Simulate keyup events for all pressed keys so that handlers
737 	 * are not left with "stuck" keys. The driver may continue
738 	 * generate events even after we done here but they will not
739 	 * reach any handlers.
740 	 */
741 	if (input_dev_release_keys(dev))
742 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
743 
744 	list_for_each_entry(handle, &dev->h_list, d_node)
745 		handle->open = 0;
746 
747 	spin_unlock_irq(&dev->event_lock);
748 }
749 
750 /**
751  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
752  * @ke: keymap entry containing scancode to be converted.
753  * @scancode: pointer to the location where converted scancode should
754  *	be stored.
755  *
756  * This function is used to convert scancode stored in &struct keymap_entry
757  * into scalar form understood by legacy keymap handling methods. These
758  * methods expect scancodes to be represented as 'unsigned int'.
759  */
760 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
761 			     unsigned int *scancode)
762 {
763 	switch (ke->len) {
764 	case 1:
765 		*scancode = *((u8 *)ke->scancode);
766 		break;
767 
768 	case 2:
769 		*scancode = *((u16 *)ke->scancode);
770 		break;
771 
772 	case 4:
773 		*scancode = *((u32 *)ke->scancode);
774 		break;
775 
776 	default:
777 		return -EINVAL;
778 	}
779 
780 	return 0;
781 }
782 EXPORT_SYMBOL(input_scancode_to_scalar);
783 
784 /*
785  * Those routines handle the default case where no [gs]etkeycode() is
786  * defined. In this case, an array indexed by the scancode is used.
787  */
788 
789 static unsigned int input_fetch_keycode(struct input_dev *dev,
790 					unsigned int index)
791 {
792 	switch (dev->keycodesize) {
793 	case 1:
794 		return ((u8 *)dev->keycode)[index];
795 
796 	case 2:
797 		return ((u16 *)dev->keycode)[index];
798 
799 	default:
800 		return ((u32 *)dev->keycode)[index];
801 	}
802 }
803 
804 static int input_default_getkeycode(struct input_dev *dev,
805 				    struct input_keymap_entry *ke)
806 {
807 	unsigned int index;
808 	int error;
809 
810 	if (!dev->keycodesize)
811 		return -EINVAL;
812 
813 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
814 		index = ke->index;
815 	else {
816 		error = input_scancode_to_scalar(ke, &index);
817 		if (error)
818 			return error;
819 	}
820 
821 	if (index >= dev->keycodemax)
822 		return -EINVAL;
823 
824 	ke->keycode = input_fetch_keycode(dev, index);
825 	ke->index = index;
826 	ke->len = sizeof(index);
827 	memcpy(ke->scancode, &index, sizeof(index));
828 
829 	return 0;
830 }
831 
832 static int input_default_setkeycode(struct input_dev *dev,
833 				    const struct input_keymap_entry *ke,
834 				    unsigned int *old_keycode)
835 {
836 	unsigned int index;
837 	int error;
838 	int i;
839 
840 	if (!dev->keycodesize)
841 		return -EINVAL;
842 
843 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
844 		index = ke->index;
845 	} else {
846 		error = input_scancode_to_scalar(ke, &index);
847 		if (error)
848 			return error;
849 	}
850 
851 	if (index >= dev->keycodemax)
852 		return -EINVAL;
853 
854 	if (dev->keycodesize < sizeof(ke->keycode) &&
855 			(ke->keycode >> (dev->keycodesize * 8)))
856 		return -EINVAL;
857 
858 	switch (dev->keycodesize) {
859 		case 1: {
860 			u8 *k = (u8 *)dev->keycode;
861 			*old_keycode = k[index];
862 			k[index] = ke->keycode;
863 			break;
864 		}
865 		case 2: {
866 			u16 *k = (u16 *)dev->keycode;
867 			*old_keycode = k[index];
868 			k[index] = ke->keycode;
869 			break;
870 		}
871 		default: {
872 			u32 *k = (u32 *)dev->keycode;
873 			*old_keycode = k[index];
874 			k[index] = ke->keycode;
875 			break;
876 		}
877 	}
878 
879 	if (*old_keycode <= KEY_MAX) {
880 		__clear_bit(*old_keycode, dev->keybit);
881 		for (i = 0; i < dev->keycodemax; i++) {
882 			if (input_fetch_keycode(dev, i) == *old_keycode) {
883 				__set_bit(*old_keycode, dev->keybit);
884 				/* Setting the bit twice is useless, so break */
885 				break;
886 			}
887 		}
888 	}
889 
890 	__set_bit(ke->keycode, dev->keybit);
891 	return 0;
892 }
893 
894 /**
895  * input_get_keycode - retrieve keycode currently mapped to a given scancode
896  * @dev: input device which keymap is being queried
897  * @ke: keymap entry
898  *
899  * This function should be called by anyone interested in retrieving current
900  * keymap. Presently evdev handlers use it.
901  */
902 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
903 {
904 	unsigned long flags;
905 	int retval;
906 
907 	spin_lock_irqsave(&dev->event_lock, flags);
908 	retval = dev->getkeycode(dev, ke);
909 	spin_unlock_irqrestore(&dev->event_lock, flags);
910 
911 	return retval;
912 }
913 EXPORT_SYMBOL(input_get_keycode);
914 
915 /**
916  * input_set_keycode - attribute a keycode to a given scancode
917  * @dev: input device which keymap is being updated
918  * @ke: new keymap entry
919  *
920  * This function should be called by anyone needing to update current
921  * keymap. Presently keyboard and evdev handlers use it.
922  */
923 int input_set_keycode(struct input_dev *dev,
924 		      const struct input_keymap_entry *ke)
925 {
926 	unsigned long flags;
927 	unsigned int old_keycode;
928 	int retval;
929 
930 	if (ke->keycode > KEY_MAX)
931 		return -EINVAL;
932 
933 	spin_lock_irqsave(&dev->event_lock, flags);
934 
935 	retval = dev->setkeycode(dev, ke, &old_keycode);
936 	if (retval)
937 		goto out;
938 
939 	/* Make sure KEY_RESERVED did not get enabled. */
940 	__clear_bit(KEY_RESERVED, dev->keybit);
941 
942 	/*
943 	 * Simulate keyup event if keycode is not present
944 	 * in the keymap anymore
945 	 */
946 	if (old_keycode > KEY_MAX) {
947 		dev_warn(dev->dev.parent ?: &dev->dev,
948 			 "%s: got too big old keycode %#x\n",
949 			 __func__, old_keycode);
950 	} else if (test_bit(EV_KEY, dev->evbit) &&
951 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
952 		   __test_and_clear_bit(old_keycode, dev->key)) {
953 		/*
954 		 * We have to use input_event_dispose() here directly instead
955 		 * of input_handle_event() because the key we want to release
956 		 * here is considered no longer supported by the device and
957 		 * input_handle_event() will ignore it.
958 		 */
959 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
960 				    EV_KEY, old_keycode, 0);
961 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
962 				    EV_SYN, SYN_REPORT, 1);
963 	}
964 
965  out:
966 	spin_unlock_irqrestore(&dev->event_lock, flags);
967 
968 	return retval;
969 }
970 EXPORT_SYMBOL(input_set_keycode);
971 
972 bool input_match_device_id(const struct input_dev *dev,
973 			   const struct input_device_id *id)
974 {
975 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
976 		if (id->bustype != dev->id.bustype)
977 			return false;
978 
979 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
980 		if (id->vendor != dev->id.vendor)
981 			return false;
982 
983 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
984 		if (id->product != dev->id.product)
985 			return false;
986 
987 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
988 		if (id->version != dev->id.version)
989 			return false;
990 
991 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
992 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
993 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
994 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
995 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
996 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
997 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
998 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
999 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1000 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1001 		return false;
1002 	}
1003 
1004 	return true;
1005 }
1006 EXPORT_SYMBOL(input_match_device_id);
1007 
1008 static const struct input_device_id *input_match_device(struct input_handler *handler,
1009 							struct input_dev *dev)
1010 {
1011 	const struct input_device_id *id;
1012 
1013 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1014 		if (input_match_device_id(dev, id) &&
1015 		    (!handler->match || handler->match(handler, dev))) {
1016 			return id;
1017 		}
1018 	}
1019 
1020 	return NULL;
1021 }
1022 
1023 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1024 {
1025 	const struct input_device_id *id;
1026 	int error;
1027 
1028 	id = input_match_device(handler, dev);
1029 	if (!id)
1030 		return -ENODEV;
1031 
1032 	error = handler->connect(handler, dev, id);
1033 	if (error && error != -ENODEV)
1034 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1035 		       handler->name, kobject_name(&dev->dev.kobj), error);
1036 
1037 	return error;
1038 }
1039 
1040 #ifdef CONFIG_COMPAT
1041 
1042 static int input_bits_to_string(char *buf, int buf_size,
1043 				unsigned long bits, bool skip_empty)
1044 {
1045 	int len = 0;
1046 
1047 	if (in_compat_syscall()) {
1048 		u32 dword = bits >> 32;
1049 		if (dword || !skip_empty)
1050 			len += snprintf(buf, buf_size, "%x ", dword);
1051 
1052 		dword = bits & 0xffffffffUL;
1053 		if (dword || !skip_empty || len)
1054 			len += snprintf(buf + len, max(buf_size - len, 0),
1055 					"%x", dword);
1056 	} else {
1057 		if (bits || !skip_empty)
1058 			len += snprintf(buf, buf_size, "%lx", bits);
1059 	}
1060 
1061 	return len;
1062 }
1063 
1064 #else /* !CONFIG_COMPAT */
1065 
1066 static int input_bits_to_string(char *buf, int buf_size,
1067 				unsigned long bits, bool skip_empty)
1068 {
1069 	return bits || !skip_empty ?
1070 		snprintf(buf, buf_size, "%lx", bits) : 0;
1071 }
1072 
1073 #endif
1074 
1075 #ifdef CONFIG_PROC_FS
1076 
1077 static struct proc_dir_entry *proc_bus_input_dir;
1078 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1079 static int input_devices_state;
1080 
1081 static inline void input_wakeup_procfs_readers(void)
1082 {
1083 	input_devices_state++;
1084 	wake_up(&input_devices_poll_wait);
1085 }
1086 
1087 struct input_seq_state {
1088 	unsigned short pos;
1089 	bool mutex_acquired;
1090 	int input_devices_state;
1091 };
1092 
1093 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1094 {
1095 	struct seq_file *seq = file->private_data;
1096 	struct input_seq_state *state = seq->private;
1097 
1098 	poll_wait(file, &input_devices_poll_wait, wait);
1099 	if (state->input_devices_state != input_devices_state) {
1100 		state->input_devices_state = input_devices_state;
1101 		return EPOLLIN | EPOLLRDNORM;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1108 {
1109 	struct input_seq_state *state = seq->private;
1110 	int error;
1111 
1112 	error = mutex_lock_interruptible(&input_mutex);
1113 	if (error) {
1114 		state->mutex_acquired = false;
1115 		return ERR_PTR(error);
1116 	}
1117 
1118 	state->mutex_acquired = true;
1119 
1120 	return seq_list_start(&input_dev_list, *pos);
1121 }
1122 
1123 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1124 {
1125 	return seq_list_next(v, &input_dev_list, pos);
1126 }
1127 
1128 static void input_seq_stop(struct seq_file *seq, void *v)
1129 {
1130 	struct input_seq_state *state = seq->private;
1131 
1132 	if (state->mutex_acquired)
1133 		mutex_unlock(&input_mutex);
1134 }
1135 
1136 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1137 				   unsigned long *bitmap, int max)
1138 {
1139 	int i;
1140 	bool skip_empty = true;
1141 	char buf[18];
1142 
1143 	seq_printf(seq, "B: %s=", name);
1144 
1145 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1146 		if (input_bits_to_string(buf, sizeof(buf),
1147 					 bitmap[i], skip_empty)) {
1148 			skip_empty = false;
1149 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1150 		}
1151 	}
1152 
1153 	/*
1154 	 * If no output was produced print a single 0.
1155 	 */
1156 	if (skip_empty)
1157 		seq_putc(seq, '0');
1158 
1159 	seq_putc(seq, '\n');
1160 }
1161 
1162 static int input_devices_seq_show(struct seq_file *seq, void *v)
1163 {
1164 	struct input_dev *dev = container_of(v, struct input_dev, node);
1165 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1166 	struct input_handle *handle;
1167 
1168 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1169 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1170 
1171 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1172 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1173 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1174 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1175 	seq_puts(seq, "H: Handlers=");
1176 
1177 	list_for_each_entry(handle, &dev->h_list, d_node)
1178 		seq_printf(seq, "%s ", handle->name);
1179 	seq_putc(seq, '\n');
1180 
1181 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1182 
1183 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1184 	if (test_bit(EV_KEY, dev->evbit))
1185 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1186 	if (test_bit(EV_REL, dev->evbit))
1187 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1188 	if (test_bit(EV_ABS, dev->evbit))
1189 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1190 	if (test_bit(EV_MSC, dev->evbit))
1191 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1192 	if (test_bit(EV_LED, dev->evbit))
1193 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1194 	if (test_bit(EV_SND, dev->evbit))
1195 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1196 	if (test_bit(EV_FF, dev->evbit))
1197 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1198 	if (test_bit(EV_SW, dev->evbit))
1199 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1200 
1201 	seq_putc(seq, '\n');
1202 
1203 	kfree(path);
1204 	return 0;
1205 }
1206 
1207 static const struct seq_operations input_devices_seq_ops = {
1208 	.start	= input_devices_seq_start,
1209 	.next	= input_devices_seq_next,
1210 	.stop	= input_seq_stop,
1211 	.show	= input_devices_seq_show,
1212 };
1213 
1214 static int input_proc_devices_open(struct inode *inode, struct file *file)
1215 {
1216 	return seq_open_private(file, &input_devices_seq_ops,
1217 				sizeof(struct input_seq_state));
1218 }
1219 
1220 static const struct proc_ops input_devices_proc_ops = {
1221 	.proc_open	= input_proc_devices_open,
1222 	.proc_poll	= input_proc_devices_poll,
1223 	.proc_read	= seq_read,
1224 	.proc_lseek	= seq_lseek,
1225 	.proc_release	= seq_release_private,
1226 };
1227 
1228 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1229 {
1230 	struct input_seq_state *state = seq->private;
1231 	int error;
1232 
1233 	error = mutex_lock_interruptible(&input_mutex);
1234 	if (error) {
1235 		state->mutex_acquired = false;
1236 		return ERR_PTR(error);
1237 	}
1238 
1239 	state->mutex_acquired = true;
1240 	state->pos = *pos;
1241 
1242 	return seq_list_start(&input_handler_list, *pos);
1243 }
1244 
1245 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1246 {
1247 	struct input_seq_state *state = seq->private;
1248 
1249 	state->pos = *pos + 1;
1250 	return seq_list_next(v, &input_handler_list, pos);
1251 }
1252 
1253 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1254 {
1255 	struct input_handler *handler = container_of(v, struct input_handler, node);
1256 	struct input_seq_state *state = seq->private;
1257 
1258 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1259 	if (handler->filter)
1260 		seq_puts(seq, " (filter)");
1261 	if (handler->legacy_minors)
1262 		seq_printf(seq, " Minor=%d", handler->minor);
1263 	seq_putc(seq, '\n');
1264 
1265 	return 0;
1266 }
1267 
1268 static const struct seq_operations input_handlers_seq_ops = {
1269 	.start	= input_handlers_seq_start,
1270 	.next	= input_handlers_seq_next,
1271 	.stop	= input_seq_stop,
1272 	.show	= input_handlers_seq_show,
1273 };
1274 
1275 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1276 {
1277 	return seq_open_private(file, &input_handlers_seq_ops,
1278 				sizeof(struct input_seq_state));
1279 }
1280 
1281 static const struct proc_ops input_handlers_proc_ops = {
1282 	.proc_open	= input_proc_handlers_open,
1283 	.proc_read	= seq_read,
1284 	.proc_lseek	= seq_lseek,
1285 	.proc_release	= seq_release_private,
1286 };
1287 
1288 static int __init input_proc_init(void)
1289 {
1290 	struct proc_dir_entry *entry;
1291 
1292 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1293 	if (!proc_bus_input_dir)
1294 		return -ENOMEM;
1295 
1296 	entry = proc_create("devices", 0, proc_bus_input_dir,
1297 			    &input_devices_proc_ops);
1298 	if (!entry)
1299 		goto fail1;
1300 
1301 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1302 			    &input_handlers_proc_ops);
1303 	if (!entry)
1304 		goto fail2;
1305 
1306 	return 0;
1307 
1308  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1309  fail1: remove_proc_entry("bus/input", NULL);
1310 	return -ENOMEM;
1311 }
1312 
1313 static void input_proc_exit(void)
1314 {
1315 	remove_proc_entry("devices", proc_bus_input_dir);
1316 	remove_proc_entry("handlers", proc_bus_input_dir);
1317 	remove_proc_entry("bus/input", NULL);
1318 }
1319 
1320 #else /* !CONFIG_PROC_FS */
1321 static inline void input_wakeup_procfs_readers(void) { }
1322 static inline int input_proc_init(void) { return 0; }
1323 static inline void input_proc_exit(void) { }
1324 #endif
1325 
1326 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1327 static ssize_t input_dev_show_##name(struct device *dev,		\
1328 				     struct device_attribute *attr,	\
1329 				     char *buf)				\
1330 {									\
1331 	struct input_dev *input_dev = to_input_dev(dev);		\
1332 									\
1333 	return sysfs_emit(buf, "%s\n",					\
1334 			  input_dev->name ? input_dev->name : "");	\
1335 }									\
1336 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1337 
1338 INPUT_DEV_STRING_ATTR_SHOW(name);
1339 INPUT_DEV_STRING_ATTR_SHOW(phys);
1340 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1341 
1342 static int input_print_modalias_bits(char *buf, int size,
1343 				     char name, const unsigned long *bm,
1344 				     unsigned int min_bit, unsigned int max_bit)
1345 {
1346 	int bit = min_bit;
1347 	int len = 0;
1348 
1349 	len += snprintf(buf, max(size, 0), "%c", name);
1350 	for_each_set_bit_from(bit, bm, max_bit)
1351 		len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1352 	return len;
1353 }
1354 
1355 static int input_print_modalias_parts(char *buf, int size, int full_len,
1356 				      const struct input_dev *id)
1357 {
1358 	int len, klen, remainder, space;
1359 
1360 	len = snprintf(buf, max(size, 0),
1361 		       "input:b%04Xv%04Xp%04Xe%04X-",
1362 		       id->id.bustype, id->id.vendor,
1363 		       id->id.product, id->id.version);
1364 
1365 	len += input_print_modalias_bits(buf + len, size - len,
1366 				'e', id->evbit, 0, EV_MAX);
1367 
1368 	/*
1369 	 * Calculate the remaining space in the buffer making sure we
1370 	 * have place for the terminating 0.
1371 	 */
1372 	space = max(size - (len + 1), 0);
1373 
1374 	klen = input_print_modalias_bits(buf + len, size - len,
1375 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1376 	len += klen;
1377 
1378 	/*
1379 	 * If we have more data than we can fit in the buffer, check
1380 	 * if we can trim key data to fit in the rest. We will indicate
1381 	 * that key data is incomplete by adding "+" sign at the end, like
1382 	 * this: * "k1,2,3,45,+,".
1383 	 *
1384 	 * Note that we shortest key info (if present) is "k+," so we
1385 	 * can only try to trim if key data is longer than that.
1386 	 */
1387 	if (full_len && size < full_len + 1 && klen > 3) {
1388 		remainder = full_len - len;
1389 		/*
1390 		 * We can only trim if we have space for the remainder
1391 		 * and also for at least "k+," which is 3 more characters.
1392 		 */
1393 		if (remainder <= space - 3) {
1394 			/*
1395 			 * We are guaranteed to have 'k' in the buffer, so
1396 			 * we need at least 3 additional bytes for storing
1397 			 * "+," in addition to the remainder.
1398 			 */
1399 			for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1400 				if (buf[i] == 'k' || buf[i] == ',') {
1401 					strcpy(buf + i + 1, "+,");
1402 					len = i + 3; /* Not counting '\0' */
1403 					break;
1404 				}
1405 			}
1406 		}
1407 	}
1408 
1409 	len += input_print_modalias_bits(buf + len, size - len,
1410 				'r', id->relbit, 0, REL_MAX);
1411 	len += input_print_modalias_bits(buf + len, size - len,
1412 				'a', id->absbit, 0, ABS_MAX);
1413 	len += input_print_modalias_bits(buf + len, size - len,
1414 				'm', id->mscbit, 0, MSC_MAX);
1415 	len += input_print_modalias_bits(buf + len, size - len,
1416 				'l', id->ledbit, 0, LED_MAX);
1417 	len += input_print_modalias_bits(buf + len, size - len,
1418 				's', id->sndbit, 0, SND_MAX);
1419 	len += input_print_modalias_bits(buf + len, size - len,
1420 				'f', id->ffbit, 0, FF_MAX);
1421 	len += input_print_modalias_bits(buf + len, size - len,
1422 				'w', id->swbit, 0, SW_MAX);
1423 
1424 	return len;
1425 }
1426 
1427 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1428 {
1429 	int full_len;
1430 
1431 	/*
1432 	 * Printing is done in 2 passes: first one figures out total length
1433 	 * needed for the modalias string, second one will try to trim key
1434 	 * data in case when buffer is too small for the entire modalias.
1435 	 * If the buffer is too small regardless, it will fill as much as it
1436 	 * can (without trimming key data) into the buffer and leave it to
1437 	 * the caller to figure out what to do with the result.
1438 	 */
1439 	full_len = input_print_modalias_parts(NULL, 0, 0, id);
1440 	return input_print_modalias_parts(buf, size, full_len, id);
1441 }
1442 
1443 static ssize_t input_dev_show_modalias(struct device *dev,
1444 				       struct device_attribute *attr,
1445 				       char *buf)
1446 {
1447 	struct input_dev *id = to_input_dev(dev);
1448 	ssize_t len;
1449 
1450 	len = input_print_modalias(buf, PAGE_SIZE, id);
1451 	if (len < PAGE_SIZE - 2)
1452 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1453 
1454 	return min_t(int, len, PAGE_SIZE);
1455 }
1456 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1457 
1458 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1459 			      int max, int add_cr);
1460 
1461 static ssize_t input_dev_show_properties(struct device *dev,
1462 					 struct device_attribute *attr,
1463 					 char *buf)
1464 {
1465 	struct input_dev *input_dev = to_input_dev(dev);
1466 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1467 				     INPUT_PROP_MAX, true);
1468 	return min_t(int, len, PAGE_SIZE);
1469 }
1470 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1471 
1472 static int input_inhibit_device(struct input_dev *dev);
1473 static int input_uninhibit_device(struct input_dev *dev);
1474 
1475 static ssize_t inhibited_show(struct device *dev,
1476 			      struct device_attribute *attr,
1477 			      char *buf)
1478 {
1479 	struct input_dev *input_dev = to_input_dev(dev);
1480 
1481 	return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1482 }
1483 
1484 static ssize_t inhibited_store(struct device *dev,
1485 			       struct device_attribute *attr, const char *buf,
1486 			       size_t len)
1487 {
1488 	struct input_dev *input_dev = to_input_dev(dev);
1489 	ssize_t rv;
1490 	bool inhibited;
1491 
1492 	if (kstrtobool(buf, &inhibited))
1493 		return -EINVAL;
1494 
1495 	if (inhibited)
1496 		rv = input_inhibit_device(input_dev);
1497 	else
1498 		rv = input_uninhibit_device(input_dev);
1499 
1500 	if (rv != 0)
1501 		return rv;
1502 
1503 	return len;
1504 }
1505 
1506 static DEVICE_ATTR_RW(inhibited);
1507 
1508 static struct attribute *input_dev_attrs[] = {
1509 	&dev_attr_name.attr,
1510 	&dev_attr_phys.attr,
1511 	&dev_attr_uniq.attr,
1512 	&dev_attr_modalias.attr,
1513 	&dev_attr_properties.attr,
1514 	&dev_attr_inhibited.attr,
1515 	NULL
1516 };
1517 
1518 static const struct attribute_group input_dev_attr_group = {
1519 	.attrs	= input_dev_attrs,
1520 };
1521 
1522 #define INPUT_DEV_ID_ATTR(name)						\
1523 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1524 					struct device_attribute *attr,	\
1525 					char *buf)			\
1526 {									\
1527 	struct input_dev *input_dev = to_input_dev(dev);		\
1528 	return sysfs_emit(buf, "%04x\n", input_dev->id.name);		\
1529 }									\
1530 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1531 
1532 INPUT_DEV_ID_ATTR(bustype);
1533 INPUT_DEV_ID_ATTR(vendor);
1534 INPUT_DEV_ID_ATTR(product);
1535 INPUT_DEV_ID_ATTR(version);
1536 
1537 static struct attribute *input_dev_id_attrs[] = {
1538 	&dev_attr_bustype.attr,
1539 	&dev_attr_vendor.attr,
1540 	&dev_attr_product.attr,
1541 	&dev_attr_version.attr,
1542 	NULL
1543 };
1544 
1545 static const struct attribute_group input_dev_id_attr_group = {
1546 	.name	= "id",
1547 	.attrs	= input_dev_id_attrs,
1548 };
1549 
1550 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1551 			      int max, int add_cr)
1552 {
1553 	int i;
1554 	int len = 0;
1555 	bool skip_empty = true;
1556 
1557 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1558 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1559 					    bitmap[i], skip_empty);
1560 		if (len) {
1561 			skip_empty = false;
1562 			if (i > 0)
1563 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1564 		}
1565 	}
1566 
1567 	/*
1568 	 * If no output was produced print a single 0.
1569 	 */
1570 	if (len == 0)
1571 		len = snprintf(buf, buf_size, "%d", 0);
1572 
1573 	if (add_cr)
1574 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1575 
1576 	return len;
1577 }
1578 
1579 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1580 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1581 				       struct device_attribute *attr,	\
1582 				       char *buf)			\
1583 {									\
1584 	struct input_dev *input_dev = to_input_dev(dev);		\
1585 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1586 				     input_dev->bm##bit, ev##_MAX,	\
1587 				     true);				\
1588 	return min_t(int, len, PAGE_SIZE);				\
1589 }									\
1590 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1591 
1592 INPUT_DEV_CAP_ATTR(EV, ev);
1593 INPUT_DEV_CAP_ATTR(KEY, key);
1594 INPUT_DEV_CAP_ATTR(REL, rel);
1595 INPUT_DEV_CAP_ATTR(ABS, abs);
1596 INPUT_DEV_CAP_ATTR(MSC, msc);
1597 INPUT_DEV_CAP_ATTR(LED, led);
1598 INPUT_DEV_CAP_ATTR(SND, snd);
1599 INPUT_DEV_CAP_ATTR(FF, ff);
1600 INPUT_DEV_CAP_ATTR(SW, sw);
1601 
1602 static struct attribute *input_dev_caps_attrs[] = {
1603 	&dev_attr_ev.attr,
1604 	&dev_attr_key.attr,
1605 	&dev_attr_rel.attr,
1606 	&dev_attr_abs.attr,
1607 	&dev_attr_msc.attr,
1608 	&dev_attr_led.attr,
1609 	&dev_attr_snd.attr,
1610 	&dev_attr_ff.attr,
1611 	&dev_attr_sw.attr,
1612 	NULL
1613 };
1614 
1615 static const struct attribute_group input_dev_caps_attr_group = {
1616 	.name	= "capabilities",
1617 	.attrs	= input_dev_caps_attrs,
1618 };
1619 
1620 static const struct attribute_group *input_dev_attr_groups[] = {
1621 	&input_dev_attr_group,
1622 	&input_dev_id_attr_group,
1623 	&input_dev_caps_attr_group,
1624 	&input_poller_attribute_group,
1625 	NULL
1626 };
1627 
1628 static void input_dev_release(struct device *device)
1629 {
1630 	struct input_dev *dev = to_input_dev(device);
1631 
1632 	input_ff_destroy(dev);
1633 	input_mt_destroy_slots(dev);
1634 	kfree(dev->poller);
1635 	kfree(dev->absinfo);
1636 	kfree(dev->vals);
1637 	kfree(dev);
1638 
1639 	module_put(THIS_MODULE);
1640 }
1641 
1642 /*
1643  * Input uevent interface - loading event handlers based on
1644  * device bitfields.
1645  */
1646 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1647 				   const char *name, const unsigned long *bitmap, int max)
1648 {
1649 	int len;
1650 
1651 	if (add_uevent_var(env, "%s", name))
1652 		return -ENOMEM;
1653 
1654 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1655 				 sizeof(env->buf) - env->buflen,
1656 				 bitmap, max, false);
1657 	if (len >= (sizeof(env->buf) - env->buflen))
1658 		return -ENOMEM;
1659 
1660 	env->buflen += len;
1661 	return 0;
1662 }
1663 
1664 /*
1665  * This is a pretty gross hack. When building uevent data the driver core
1666  * may try adding more environment variables to kobj_uevent_env without
1667  * telling us, so we have no idea how much of the buffer we can use to
1668  * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1669  * reduce amount of memory we will use for the modalias environment variable.
1670  *
1671  * The potential additions are:
1672  *
1673  * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1674  * HOME=/ (6 bytes)
1675  * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1676  *
1677  * 68 bytes total. Allow extra buffer - 96 bytes
1678  */
1679 #define UEVENT_ENV_EXTRA_LEN	96
1680 
1681 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1682 					 const struct input_dev *dev)
1683 {
1684 	int len;
1685 
1686 	if (add_uevent_var(env, "MODALIAS="))
1687 		return -ENOMEM;
1688 
1689 	len = input_print_modalias(&env->buf[env->buflen - 1],
1690 				   (int)sizeof(env->buf) - env->buflen -
1691 					UEVENT_ENV_EXTRA_LEN,
1692 				   dev);
1693 	if (len >= ((int)sizeof(env->buf) - env->buflen -
1694 					UEVENT_ENV_EXTRA_LEN))
1695 		return -ENOMEM;
1696 
1697 	env->buflen += len;
1698 	return 0;
1699 }
1700 
1701 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1702 	do {								\
1703 		int err = add_uevent_var(env, fmt, val);		\
1704 		if (err)						\
1705 			return err;					\
1706 	} while (0)
1707 
1708 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1709 	do {								\
1710 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1711 		if (err)						\
1712 			return err;					\
1713 	} while (0)
1714 
1715 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1716 	do {								\
1717 		int err = input_add_uevent_modalias_var(env, dev);	\
1718 		if (err)						\
1719 			return err;					\
1720 	} while (0)
1721 
1722 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1723 {
1724 	const struct input_dev *dev = to_input_dev(device);
1725 
1726 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1727 				dev->id.bustype, dev->id.vendor,
1728 				dev->id.product, dev->id.version);
1729 	if (dev->name)
1730 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1731 	if (dev->phys)
1732 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1733 	if (dev->uniq)
1734 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1735 
1736 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1737 
1738 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1739 	if (test_bit(EV_KEY, dev->evbit))
1740 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1741 	if (test_bit(EV_REL, dev->evbit))
1742 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1743 	if (test_bit(EV_ABS, dev->evbit))
1744 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1745 	if (test_bit(EV_MSC, dev->evbit))
1746 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1747 	if (test_bit(EV_LED, dev->evbit))
1748 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1749 	if (test_bit(EV_SND, dev->evbit))
1750 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1751 	if (test_bit(EV_FF, dev->evbit))
1752 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1753 	if (test_bit(EV_SW, dev->evbit))
1754 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1755 
1756 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1757 
1758 	return 0;
1759 }
1760 
1761 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1762 	do {								\
1763 		int i;							\
1764 		bool active;						\
1765 									\
1766 		if (!test_bit(EV_##type, dev->evbit))			\
1767 			break;						\
1768 									\
1769 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1770 			active = test_bit(i, dev->bits);		\
1771 			if (!active && !on)				\
1772 				continue;				\
1773 									\
1774 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1775 		}							\
1776 	} while (0)
1777 
1778 static void input_dev_toggle(struct input_dev *dev, bool activate)
1779 {
1780 	if (!dev->event)
1781 		return;
1782 
1783 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1784 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1785 
1786 	if (activate && test_bit(EV_REP, dev->evbit)) {
1787 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1788 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1789 	}
1790 }
1791 
1792 /**
1793  * input_reset_device() - reset/restore the state of input device
1794  * @dev: input device whose state needs to be reset
1795  *
1796  * This function tries to reset the state of an opened input device and
1797  * bring internal state and state if the hardware in sync with each other.
1798  * We mark all keys as released, restore LED state, repeat rate, etc.
1799  */
1800 void input_reset_device(struct input_dev *dev)
1801 {
1802 	unsigned long flags;
1803 
1804 	mutex_lock(&dev->mutex);
1805 	spin_lock_irqsave(&dev->event_lock, flags);
1806 
1807 	input_dev_toggle(dev, true);
1808 	if (input_dev_release_keys(dev))
1809 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1810 
1811 	spin_unlock_irqrestore(&dev->event_lock, flags);
1812 	mutex_unlock(&dev->mutex);
1813 }
1814 EXPORT_SYMBOL(input_reset_device);
1815 
1816 static int input_inhibit_device(struct input_dev *dev)
1817 {
1818 	mutex_lock(&dev->mutex);
1819 
1820 	if (dev->inhibited)
1821 		goto out;
1822 
1823 	if (dev->users) {
1824 		if (dev->close)
1825 			dev->close(dev);
1826 		if (dev->poller)
1827 			input_dev_poller_stop(dev->poller);
1828 	}
1829 
1830 	spin_lock_irq(&dev->event_lock);
1831 	input_mt_release_slots(dev);
1832 	input_dev_release_keys(dev);
1833 	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1834 	input_dev_toggle(dev, false);
1835 	spin_unlock_irq(&dev->event_lock);
1836 
1837 	dev->inhibited = true;
1838 
1839 out:
1840 	mutex_unlock(&dev->mutex);
1841 	return 0;
1842 }
1843 
1844 static int input_uninhibit_device(struct input_dev *dev)
1845 {
1846 	int ret = 0;
1847 
1848 	mutex_lock(&dev->mutex);
1849 
1850 	if (!dev->inhibited)
1851 		goto out;
1852 
1853 	if (dev->users) {
1854 		if (dev->open) {
1855 			ret = dev->open(dev);
1856 			if (ret)
1857 				goto out;
1858 		}
1859 		if (dev->poller)
1860 			input_dev_poller_start(dev->poller);
1861 	}
1862 
1863 	dev->inhibited = false;
1864 	spin_lock_irq(&dev->event_lock);
1865 	input_dev_toggle(dev, true);
1866 	spin_unlock_irq(&dev->event_lock);
1867 
1868 out:
1869 	mutex_unlock(&dev->mutex);
1870 	return ret;
1871 }
1872 
1873 static int input_dev_suspend(struct device *dev)
1874 {
1875 	struct input_dev *input_dev = to_input_dev(dev);
1876 
1877 	spin_lock_irq(&input_dev->event_lock);
1878 
1879 	/*
1880 	 * Keys that are pressed now are unlikely to be
1881 	 * still pressed when we resume.
1882 	 */
1883 	if (input_dev_release_keys(input_dev))
1884 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1885 
1886 	/* Turn off LEDs and sounds, if any are active. */
1887 	input_dev_toggle(input_dev, false);
1888 
1889 	spin_unlock_irq(&input_dev->event_lock);
1890 
1891 	return 0;
1892 }
1893 
1894 static int input_dev_resume(struct device *dev)
1895 {
1896 	struct input_dev *input_dev = to_input_dev(dev);
1897 
1898 	spin_lock_irq(&input_dev->event_lock);
1899 
1900 	/* Restore state of LEDs and sounds, if any were active. */
1901 	input_dev_toggle(input_dev, true);
1902 
1903 	spin_unlock_irq(&input_dev->event_lock);
1904 
1905 	return 0;
1906 }
1907 
1908 static int input_dev_freeze(struct device *dev)
1909 {
1910 	struct input_dev *input_dev = to_input_dev(dev);
1911 
1912 	spin_lock_irq(&input_dev->event_lock);
1913 
1914 	/*
1915 	 * Keys that are pressed now are unlikely to be
1916 	 * still pressed when we resume.
1917 	 */
1918 	if (input_dev_release_keys(input_dev))
1919 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1920 
1921 	spin_unlock_irq(&input_dev->event_lock);
1922 
1923 	return 0;
1924 }
1925 
1926 static int input_dev_poweroff(struct device *dev)
1927 {
1928 	struct input_dev *input_dev = to_input_dev(dev);
1929 
1930 	spin_lock_irq(&input_dev->event_lock);
1931 
1932 	/* Turn off LEDs and sounds, if any are active. */
1933 	input_dev_toggle(input_dev, false);
1934 
1935 	spin_unlock_irq(&input_dev->event_lock);
1936 
1937 	return 0;
1938 }
1939 
1940 static const struct dev_pm_ops input_dev_pm_ops = {
1941 	.suspend	= input_dev_suspend,
1942 	.resume		= input_dev_resume,
1943 	.freeze		= input_dev_freeze,
1944 	.poweroff	= input_dev_poweroff,
1945 	.restore	= input_dev_resume,
1946 };
1947 
1948 static const struct device_type input_dev_type = {
1949 	.groups		= input_dev_attr_groups,
1950 	.release	= input_dev_release,
1951 	.uevent		= input_dev_uevent,
1952 	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1953 };
1954 
1955 static char *input_devnode(const struct device *dev, umode_t *mode)
1956 {
1957 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1958 }
1959 
1960 const struct class input_class = {
1961 	.name		= "input",
1962 	.devnode	= input_devnode,
1963 };
1964 EXPORT_SYMBOL_GPL(input_class);
1965 
1966 /**
1967  * input_allocate_device - allocate memory for new input device
1968  *
1969  * Returns prepared struct input_dev or %NULL.
1970  *
1971  * NOTE: Use input_free_device() to free devices that have not been
1972  * registered; input_unregister_device() should be used for already
1973  * registered devices.
1974  */
1975 struct input_dev *input_allocate_device(void)
1976 {
1977 	static atomic_t input_no = ATOMIC_INIT(-1);
1978 	struct input_dev *dev;
1979 
1980 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1981 	if (!dev)
1982 		return NULL;
1983 
1984 	/*
1985 	 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1986 	 * see input_estimate_events_per_packet(). We will tune the number
1987 	 * when we register the device.
1988 	 */
1989 	dev->max_vals = 10;
1990 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1991 	if (!dev->vals) {
1992 		kfree(dev);
1993 		return NULL;
1994 	}
1995 
1996 	mutex_init(&dev->mutex);
1997 	spin_lock_init(&dev->event_lock);
1998 	timer_setup(&dev->timer, NULL, 0);
1999 	INIT_LIST_HEAD(&dev->h_list);
2000 	INIT_LIST_HEAD(&dev->node);
2001 
2002 	dev->dev.type = &input_dev_type;
2003 	dev->dev.class = &input_class;
2004 	device_initialize(&dev->dev);
2005 	/*
2006 	 * From this point on we can no longer simply "kfree(dev)", we need
2007 	 * to use input_free_device() so that device core properly frees its
2008 	 * resources associated with the input device.
2009 	 */
2010 
2011 	dev_set_name(&dev->dev, "input%lu",
2012 		     (unsigned long)atomic_inc_return(&input_no));
2013 
2014 	__module_get(THIS_MODULE);
2015 
2016 	return dev;
2017 }
2018 EXPORT_SYMBOL(input_allocate_device);
2019 
2020 struct input_devres {
2021 	struct input_dev *input;
2022 };
2023 
2024 static int devm_input_device_match(struct device *dev, void *res, void *data)
2025 {
2026 	struct input_devres *devres = res;
2027 
2028 	return devres->input == data;
2029 }
2030 
2031 static void devm_input_device_release(struct device *dev, void *res)
2032 {
2033 	struct input_devres *devres = res;
2034 	struct input_dev *input = devres->input;
2035 
2036 	dev_dbg(dev, "%s: dropping reference to %s\n",
2037 		__func__, dev_name(&input->dev));
2038 	input_put_device(input);
2039 }
2040 
2041 /**
2042  * devm_input_allocate_device - allocate managed input device
2043  * @dev: device owning the input device being created
2044  *
2045  * Returns prepared struct input_dev or %NULL.
2046  *
2047  * Managed input devices do not need to be explicitly unregistered or
2048  * freed as it will be done automatically when owner device unbinds from
2049  * its driver (or binding fails). Once managed input device is allocated,
2050  * it is ready to be set up and registered in the same fashion as regular
2051  * input device. There are no special devm_input_device_[un]register()
2052  * variants, regular ones work with both managed and unmanaged devices,
2053  * should you need them. In most cases however, managed input device need
2054  * not be explicitly unregistered or freed.
2055  *
2056  * NOTE: the owner device is set up as parent of input device and users
2057  * should not override it.
2058  */
2059 struct input_dev *devm_input_allocate_device(struct device *dev)
2060 {
2061 	struct input_dev *input;
2062 	struct input_devres *devres;
2063 
2064 	devres = devres_alloc(devm_input_device_release,
2065 			      sizeof(*devres), GFP_KERNEL);
2066 	if (!devres)
2067 		return NULL;
2068 
2069 	input = input_allocate_device();
2070 	if (!input) {
2071 		devres_free(devres);
2072 		return NULL;
2073 	}
2074 
2075 	input->dev.parent = dev;
2076 	input->devres_managed = true;
2077 
2078 	devres->input = input;
2079 	devres_add(dev, devres);
2080 
2081 	return input;
2082 }
2083 EXPORT_SYMBOL(devm_input_allocate_device);
2084 
2085 /**
2086  * input_free_device - free memory occupied by input_dev structure
2087  * @dev: input device to free
2088  *
2089  * This function should only be used if input_register_device()
2090  * was not called yet or if it failed. Once device was registered
2091  * use input_unregister_device() and memory will be freed once last
2092  * reference to the device is dropped.
2093  *
2094  * Device should be allocated by input_allocate_device().
2095  *
2096  * NOTE: If there are references to the input device then memory
2097  * will not be freed until last reference is dropped.
2098  */
2099 void input_free_device(struct input_dev *dev)
2100 {
2101 	if (dev) {
2102 		if (dev->devres_managed)
2103 			WARN_ON(devres_destroy(dev->dev.parent,
2104 						devm_input_device_release,
2105 						devm_input_device_match,
2106 						dev));
2107 		input_put_device(dev);
2108 	}
2109 }
2110 EXPORT_SYMBOL(input_free_device);
2111 
2112 /**
2113  * input_set_timestamp - set timestamp for input events
2114  * @dev: input device to set timestamp for
2115  * @timestamp: the time at which the event has occurred
2116  *   in CLOCK_MONOTONIC
2117  *
2118  * This function is intended to provide to the input system a more
2119  * accurate time of when an event actually occurred. The driver should
2120  * call this function as soon as a timestamp is acquired ensuring
2121  * clock conversions in input_set_timestamp are done correctly.
2122  *
2123  * The system entering suspend state between timestamp acquisition and
2124  * calling input_set_timestamp can result in inaccurate conversions.
2125  */
2126 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2127 {
2128 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2129 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2130 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2131 							   TK_OFFS_BOOT);
2132 }
2133 EXPORT_SYMBOL(input_set_timestamp);
2134 
2135 /**
2136  * input_get_timestamp - get timestamp for input events
2137  * @dev: input device to get timestamp from
2138  *
2139  * A valid timestamp is a timestamp of non-zero value.
2140  */
2141 ktime_t *input_get_timestamp(struct input_dev *dev)
2142 {
2143 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2144 
2145 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2146 		input_set_timestamp(dev, ktime_get());
2147 
2148 	return dev->timestamp;
2149 }
2150 EXPORT_SYMBOL(input_get_timestamp);
2151 
2152 /**
2153  * input_set_capability - mark device as capable of a certain event
2154  * @dev: device that is capable of emitting or accepting event
2155  * @type: type of the event (EV_KEY, EV_REL, etc...)
2156  * @code: event code
2157  *
2158  * In addition to setting up corresponding bit in appropriate capability
2159  * bitmap the function also adjusts dev->evbit.
2160  */
2161 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2162 {
2163 	if (type < EV_CNT && input_max_code[type] &&
2164 	    code > input_max_code[type]) {
2165 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2166 		       type);
2167 		dump_stack();
2168 		return;
2169 	}
2170 
2171 	switch (type) {
2172 	case EV_KEY:
2173 		__set_bit(code, dev->keybit);
2174 		break;
2175 
2176 	case EV_REL:
2177 		__set_bit(code, dev->relbit);
2178 		break;
2179 
2180 	case EV_ABS:
2181 		input_alloc_absinfo(dev);
2182 		__set_bit(code, dev->absbit);
2183 		break;
2184 
2185 	case EV_MSC:
2186 		__set_bit(code, dev->mscbit);
2187 		break;
2188 
2189 	case EV_SW:
2190 		__set_bit(code, dev->swbit);
2191 		break;
2192 
2193 	case EV_LED:
2194 		__set_bit(code, dev->ledbit);
2195 		break;
2196 
2197 	case EV_SND:
2198 		__set_bit(code, dev->sndbit);
2199 		break;
2200 
2201 	case EV_FF:
2202 		__set_bit(code, dev->ffbit);
2203 		break;
2204 
2205 	case EV_PWR:
2206 		/* do nothing */
2207 		break;
2208 
2209 	default:
2210 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2211 		dump_stack();
2212 		return;
2213 	}
2214 
2215 	__set_bit(type, dev->evbit);
2216 }
2217 EXPORT_SYMBOL(input_set_capability);
2218 
2219 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2220 {
2221 	int mt_slots;
2222 	int i;
2223 	unsigned int events;
2224 
2225 	if (dev->mt) {
2226 		mt_slots = dev->mt->num_slots;
2227 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2228 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2229 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2230 		mt_slots = clamp(mt_slots, 2, 32);
2231 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2232 		mt_slots = 2;
2233 	} else {
2234 		mt_slots = 0;
2235 	}
2236 
2237 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2238 
2239 	if (test_bit(EV_ABS, dev->evbit))
2240 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2241 			events += input_is_mt_axis(i) ? mt_slots : 1;
2242 
2243 	if (test_bit(EV_REL, dev->evbit))
2244 		events += bitmap_weight(dev->relbit, REL_CNT);
2245 
2246 	/* Make room for KEY and MSC events */
2247 	events += 7;
2248 
2249 	return events;
2250 }
2251 
2252 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2253 	do {								\
2254 		if (!test_bit(EV_##type, dev->evbit))			\
2255 			memset(dev->bits##bit, 0,			\
2256 				sizeof(dev->bits##bit));		\
2257 	} while (0)
2258 
2259 static void input_cleanse_bitmasks(struct input_dev *dev)
2260 {
2261 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2262 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2263 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2264 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2265 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2266 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2267 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2268 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2269 }
2270 
2271 static void __input_unregister_device(struct input_dev *dev)
2272 {
2273 	struct input_handle *handle, *next;
2274 
2275 	input_disconnect_device(dev);
2276 
2277 	mutex_lock(&input_mutex);
2278 
2279 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2280 		handle->handler->disconnect(handle);
2281 	WARN_ON(!list_empty(&dev->h_list));
2282 
2283 	del_timer_sync(&dev->timer);
2284 	list_del_init(&dev->node);
2285 
2286 	input_wakeup_procfs_readers();
2287 
2288 	mutex_unlock(&input_mutex);
2289 
2290 	device_del(&dev->dev);
2291 }
2292 
2293 static void devm_input_device_unregister(struct device *dev, void *res)
2294 {
2295 	struct input_devres *devres = res;
2296 	struct input_dev *input = devres->input;
2297 
2298 	dev_dbg(dev, "%s: unregistering device %s\n",
2299 		__func__, dev_name(&input->dev));
2300 	__input_unregister_device(input);
2301 }
2302 
2303 /*
2304  * Generate software autorepeat event. Note that we take
2305  * dev->event_lock here to avoid racing with input_event
2306  * which may cause keys get "stuck".
2307  */
2308 static void input_repeat_key(struct timer_list *t)
2309 {
2310 	struct input_dev *dev = from_timer(dev, t, timer);
2311 	unsigned long flags;
2312 
2313 	spin_lock_irqsave(&dev->event_lock, flags);
2314 
2315 	if (!dev->inhibited &&
2316 	    test_bit(dev->repeat_key, dev->key) &&
2317 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2318 
2319 		input_set_timestamp(dev, ktime_get());
2320 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2321 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2322 
2323 		if (dev->rep[REP_PERIOD])
2324 			mod_timer(&dev->timer, jiffies +
2325 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2326 	}
2327 
2328 	spin_unlock_irqrestore(&dev->event_lock, flags);
2329 }
2330 
2331 /**
2332  * input_enable_softrepeat - enable software autorepeat
2333  * @dev: input device
2334  * @delay: repeat delay
2335  * @period: repeat period
2336  *
2337  * Enable software autorepeat on the input device.
2338  */
2339 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2340 {
2341 	dev->timer.function = input_repeat_key;
2342 	dev->rep[REP_DELAY] = delay;
2343 	dev->rep[REP_PERIOD] = period;
2344 }
2345 EXPORT_SYMBOL(input_enable_softrepeat);
2346 
2347 bool input_device_enabled(struct input_dev *dev)
2348 {
2349 	lockdep_assert_held(&dev->mutex);
2350 
2351 	return !dev->inhibited && dev->users > 0;
2352 }
2353 EXPORT_SYMBOL_GPL(input_device_enabled);
2354 
2355 static int input_device_tune_vals(struct input_dev *dev)
2356 {
2357 	struct input_value *vals;
2358 	unsigned int packet_size;
2359 	unsigned int max_vals;
2360 
2361 	packet_size = input_estimate_events_per_packet(dev);
2362 	if (dev->hint_events_per_packet < packet_size)
2363 		dev->hint_events_per_packet = packet_size;
2364 
2365 	max_vals = dev->hint_events_per_packet + 2;
2366 	if (dev->max_vals >= max_vals)
2367 		return 0;
2368 
2369 	vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2370 	if (!vals)
2371 		return -ENOMEM;
2372 
2373 	spin_lock_irq(&dev->event_lock);
2374 	dev->max_vals = max_vals;
2375 	swap(dev->vals, vals);
2376 	spin_unlock_irq(&dev->event_lock);
2377 
2378 	/* Because of swap() above, this frees the old vals memory */
2379 	kfree(vals);
2380 
2381 	return 0;
2382 }
2383 
2384 /**
2385  * input_register_device - register device with input core
2386  * @dev: device to be registered
2387  *
2388  * This function registers device with input core. The device must be
2389  * allocated with input_allocate_device() and all it's capabilities
2390  * set up before registering.
2391  * If function fails the device must be freed with input_free_device().
2392  * Once device has been successfully registered it can be unregistered
2393  * with input_unregister_device(); input_free_device() should not be
2394  * called in this case.
2395  *
2396  * Note that this function is also used to register managed input devices
2397  * (ones allocated with devm_input_allocate_device()). Such managed input
2398  * devices need not be explicitly unregistered or freed, their tear down
2399  * is controlled by the devres infrastructure. It is also worth noting
2400  * that tear down of managed input devices is internally a 2-step process:
2401  * registered managed input device is first unregistered, but stays in
2402  * memory and can still handle input_event() calls (although events will
2403  * not be delivered anywhere). The freeing of managed input device will
2404  * happen later, when devres stack is unwound to the point where device
2405  * allocation was made.
2406  */
2407 int input_register_device(struct input_dev *dev)
2408 {
2409 	struct input_devres *devres = NULL;
2410 	struct input_handler *handler;
2411 	const char *path;
2412 	int error;
2413 
2414 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2415 		dev_err(&dev->dev,
2416 			"Absolute device without dev->absinfo, refusing to register\n");
2417 		return -EINVAL;
2418 	}
2419 
2420 	if (dev->devres_managed) {
2421 		devres = devres_alloc(devm_input_device_unregister,
2422 				      sizeof(*devres), GFP_KERNEL);
2423 		if (!devres)
2424 			return -ENOMEM;
2425 
2426 		devres->input = dev;
2427 	}
2428 
2429 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2430 	__set_bit(EV_SYN, dev->evbit);
2431 
2432 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2433 	__clear_bit(KEY_RESERVED, dev->keybit);
2434 
2435 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2436 	input_cleanse_bitmasks(dev);
2437 
2438 	error = input_device_tune_vals(dev);
2439 	if (error)
2440 		goto err_devres_free;
2441 
2442 	/*
2443 	 * If delay and period are pre-set by the driver, then autorepeating
2444 	 * is handled by the driver itself and we don't do it in input.c.
2445 	 */
2446 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2447 		input_enable_softrepeat(dev, 250, 33);
2448 
2449 	if (!dev->getkeycode)
2450 		dev->getkeycode = input_default_getkeycode;
2451 
2452 	if (!dev->setkeycode)
2453 		dev->setkeycode = input_default_setkeycode;
2454 
2455 	if (dev->poller)
2456 		input_dev_poller_finalize(dev->poller);
2457 
2458 	error = device_add(&dev->dev);
2459 	if (error)
2460 		goto err_devres_free;
2461 
2462 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2463 	pr_info("%s as %s\n",
2464 		dev->name ? dev->name : "Unspecified device",
2465 		path ? path : "N/A");
2466 	kfree(path);
2467 
2468 	error = mutex_lock_interruptible(&input_mutex);
2469 	if (error)
2470 		goto err_device_del;
2471 
2472 	list_add_tail(&dev->node, &input_dev_list);
2473 
2474 	list_for_each_entry(handler, &input_handler_list, node)
2475 		input_attach_handler(dev, handler);
2476 
2477 	input_wakeup_procfs_readers();
2478 
2479 	mutex_unlock(&input_mutex);
2480 
2481 	if (dev->devres_managed) {
2482 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2483 			__func__, dev_name(&dev->dev));
2484 		devres_add(dev->dev.parent, devres);
2485 	}
2486 	return 0;
2487 
2488 err_device_del:
2489 	device_del(&dev->dev);
2490 err_devres_free:
2491 	devres_free(devres);
2492 	return error;
2493 }
2494 EXPORT_SYMBOL(input_register_device);
2495 
2496 /**
2497  * input_unregister_device - unregister previously registered device
2498  * @dev: device to be unregistered
2499  *
2500  * This function unregisters an input device. Once device is unregistered
2501  * the caller should not try to access it as it may get freed at any moment.
2502  */
2503 void input_unregister_device(struct input_dev *dev)
2504 {
2505 	if (dev->devres_managed) {
2506 		WARN_ON(devres_destroy(dev->dev.parent,
2507 					devm_input_device_unregister,
2508 					devm_input_device_match,
2509 					dev));
2510 		__input_unregister_device(dev);
2511 		/*
2512 		 * We do not do input_put_device() here because it will be done
2513 		 * when 2nd devres fires up.
2514 		 */
2515 	} else {
2516 		__input_unregister_device(dev);
2517 		input_put_device(dev);
2518 	}
2519 }
2520 EXPORT_SYMBOL(input_unregister_device);
2521 
2522 static int input_handler_check_methods(const struct input_handler *handler)
2523 {
2524 	int count = 0;
2525 
2526 	if (handler->filter)
2527 		count++;
2528 	if (handler->events)
2529 		count++;
2530 	if (handler->event)
2531 		count++;
2532 
2533 	if (count > 1) {
2534 		pr_err("%s: only one event processing method can be defined (%s)\n",
2535 		       __func__, handler->name);
2536 		return -EINVAL;
2537 	}
2538 
2539 	return 0;
2540 }
2541 
2542 /**
2543  * input_register_handler - register a new input handler
2544  * @handler: handler to be registered
2545  *
2546  * This function registers a new input handler (interface) for input
2547  * devices in the system and attaches it to all input devices that
2548  * are compatible with the handler.
2549  */
2550 int input_register_handler(struct input_handler *handler)
2551 {
2552 	struct input_dev *dev;
2553 	int error;
2554 
2555 	error = input_handler_check_methods(handler);
2556 	if (error)
2557 		return error;
2558 
2559 	INIT_LIST_HEAD(&handler->h_list);
2560 
2561 	error = mutex_lock_interruptible(&input_mutex);
2562 	if (error)
2563 		return error;
2564 
2565 	list_add_tail(&handler->node, &input_handler_list);
2566 
2567 	list_for_each_entry(dev, &input_dev_list, node)
2568 		input_attach_handler(dev, handler);
2569 
2570 	input_wakeup_procfs_readers();
2571 
2572 	mutex_unlock(&input_mutex);
2573 	return 0;
2574 }
2575 EXPORT_SYMBOL(input_register_handler);
2576 
2577 /**
2578  * input_unregister_handler - unregisters an input handler
2579  * @handler: handler to be unregistered
2580  *
2581  * This function disconnects a handler from its input devices and
2582  * removes it from lists of known handlers.
2583  */
2584 void input_unregister_handler(struct input_handler *handler)
2585 {
2586 	struct input_handle *handle, *next;
2587 
2588 	mutex_lock(&input_mutex);
2589 
2590 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2591 		handler->disconnect(handle);
2592 	WARN_ON(!list_empty(&handler->h_list));
2593 
2594 	list_del_init(&handler->node);
2595 
2596 	input_wakeup_procfs_readers();
2597 
2598 	mutex_unlock(&input_mutex);
2599 }
2600 EXPORT_SYMBOL(input_unregister_handler);
2601 
2602 /**
2603  * input_handler_for_each_handle - handle iterator
2604  * @handler: input handler to iterate
2605  * @data: data for the callback
2606  * @fn: function to be called for each handle
2607  *
2608  * Iterate over @bus's list of devices, and call @fn for each, passing
2609  * it @data and stop when @fn returns a non-zero value. The function is
2610  * using RCU to traverse the list and therefore may be using in atomic
2611  * contexts. The @fn callback is invoked from RCU critical section and
2612  * thus must not sleep.
2613  */
2614 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2615 				  int (*fn)(struct input_handle *, void *))
2616 {
2617 	struct input_handle *handle;
2618 	int retval = 0;
2619 
2620 	rcu_read_lock();
2621 
2622 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2623 		retval = fn(handle, data);
2624 		if (retval)
2625 			break;
2626 	}
2627 
2628 	rcu_read_unlock();
2629 
2630 	return retval;
2631 }
2632 EXPORT_SYMBOL(input_handler_for_each_handle);
2633 
2634 /*
2635  * An implementation of input_handle's handle_events() method that simply
2636  * invokes handler->event() method for each event one by one.
2637  */
2638 static unsigned int input_handle_events_default(struct input_handle *handle,
2639 						struct input_value *vals,
2640 						unsigned int count)
2641 {
2642 	struct input_handler *handler = handle->handler;
2643 	struct input_value *v;
2644 
2645 	for (v = vals; v != vals + count; v++)
2646 		handler->event(handle, v->type, v->code, v->value);
2647 
2648 	return count;
2649 }
2650 
2651 /*
2652  * An implementation of input_handle's handle_events() method that invokes
2653  * handler->filter() method for each event one by one and removes events
2654  * that were filtered out from the "vals" array.
2655  */
2656 static unsigned int input_handle_events_filter(struct input_handle *handle,
2657 					       struct input_value *vals,
2658 					       unsigned int count)
2659 {
2660 	struct input_handler *handler = handle->handler;
2661 	struct input_value *end = vals;
2662 	struct input_value *v;
2663 
2664 	for (v = vals; v != vals + count; v++) {
2665 		if (handler->filter(handle, v->type, v->code, v->value))
2666 			continue;
2667 		if (end != v)
2668 			*end = *v;
2669 		end++;
2670 	}
2671 
2672 	return end - vals;
2673 }
2674 
2675 /*
2676  * An implementation of input_handle's handle_events() method that does nothing.
2677  */
2678 static unsigned int input_handle_events_null(struct input_handle *handle,
2679 					     struct input_value *vals,
2680 					     unsigned int count)
2681 {
2682 	return count;
2683 }
2684 
2685 /*
2686  * Sets up appropriate handle->event_handler based on the input_handler
2687  * associated with the handle.
2688  */
2689 static void input_handle_setup_event_handler(struct input_handle *handle)
2690 {
2691 	struct input_handler *handler = handle->handler;
2692 
2693 	if (handler->filter)
2694 		handle->handle_events = input_handle_events_filter;
2695 	else if (handler->event)
2696 		handle->handle_events = input_handle_events_default;
2697 	else if (handler->events)
2698 		handle->handle_events = handler->events;
2699 	else
2700 		handle->handle_events = input_handle_events_null;
2701 }
2702 
2703 /**
2704  * input_register_handle - register a new input handle
2705  * @handle: handle to register
2706  *
2707  * This function puts a new input handle onto device's
2708  * and handler's lists so that events can flow through
2709  * it once it is opened using input_open_device().
2710  *
2711  * This function is supposed to be called from handler's
2712  * connect() method.
2713  */
2714 int input_register_handle(struct input_handle *handle)
2715 {
2716 	struct input_handler *handler = handle->handler;
2717 	struct input_dev *dev = handle->dev;
2718 	int error;
2719 
2720 	input_handle_setup_event_handler(handle);
2721 	/*
2722 	 * We take dev->mutex here to prevent race with
2723 	 * input_release_device().
2724 	 */
2725 	error = mutex_lock_interruptible(&dev->mutex);
2726 	if (error)
2727 		return error;
2728 
2729 	/*
2730 	 * Filters go to the head of the list, normal handlers
2731 	 * to the tail.
2732 	 */
2733 	if (handler->filter)
2734 		list_add_rcu(&handle->d_node, &dev->h_list);
2735 	else
2736 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2737 
2738 	mutex_unlock(&dev->mutex);
2739 
2740 	/*
2741 	 * Since we are supposed to be called from ->connect()
2742 	 * which is mutually exclusive with ->disconnect()
2743 	 * we can't be racing with input_unregister_handle()
2744 	 * and so separate lock is not needed here.
2745 	 */
2746 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2747 
2748 	if (handler->start)
2749 		handler->start(handle);
2750 
2751 	return 0;
2752 }
2753 EXPORT_SYMBOL(input_register_handle);
2754 
2755 /**
2756  * input_unregister_handle - unregister an input handle
2757  * @handle: handle to unregister
2758  *
2759  * This function removes input handle from device's
2760  * and handler's lists.
2761  *
2762  * This function is supposed to be called from handler's
2763  * disconnect() method.
2764  */
2765 void input_unregister_handle(struct input_handle *handle)
2766 {
2767 	struct input_dev *dev = handle->dev;
2768 
2769 	list_del_rcu(&handle->h_node);
2770 
2771 	/*
2772 	 * Take dev->mutex to prevent race with input_release_device().
2773 	 */
2774 	mutex_lock(&dev->mutex);
2775 	list_del_rcu(&handle->d_node);
2776 	mutex_unlock(&dev->mutex);
2777 
2778 	synchronize_rcu();
2779 }
2780 EXPORT_SYMBOL(input_unregister_handle);
2781 
2782 /**
2783  * input_get_new_minor - allocates a new input minor number
2784  * @legacy_base: beginning or the legacy range to be searched
2785  * @legacy_num: size of legacy range
2786  * @allow_dynamic: whether we can also take ID from the dynamic range
2787  *
2788  * This function allocates a new device minor for from input major namespace.
2789  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2790  * parameters and whether ID can be allocated from dynamic range if there are
2791  * no free IDs in legacy range.
2792  */
2793 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2794 			bool allow_dynamic)
2795 {
2796 	/*
2797 	 * This function should be called from input handler's ->connect()
2798 	 * methods, which are serialized with input_mutex, so no additional
2799 	 * locking is needed here.
2800 	 */
2801 	if (legacy_base >= 0) {
2802 		int minor = ida_alloc_range(&input_ida, legacy_base,
2803 					    legacy_base + legacy_num - 1,
2804 					    GFP_KERNEL);
2805 		if (minor >= 0 || !allow_dynamic)
2806 			return minor;
2807 	}
2808 
2809 	return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2810 			       INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2811 }
2812 EXPORT_SYMBOL(input_get_new_minor);
2813 
2814 /**
2815  * input_free_minor - release previously allocated minor
2816  * @minor: minor to be released
2817  *
2818  * This function releases previously allocated input minor so that it can be
2819  * reused later.
2820  */
2821 void input_free_minor(unsigned int minor)
2822 {
2823 	ida_free(&input_ida, minor);
2824 }
2825 EXPORT_SYMBOL(input_free_minor);
2826 
2827 static int __init input_init(void)
2828 {
2829 	int err;
2830 
2831 	err = class_register(&input_class);
2832 	if (err) {
2833 		pr_err("unable to register input_dev class\n");
2834 		return err;
2835 	}
2836 
2837 	err = input_proc_init();
2838 	if (err)
2839 		goto fail1;
2840 
2841 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2842 				     INPUT_MAX_CHAR_DEVICES, "input");
2843 	if (err) {
2844 		pr_err("unable to register char major %d", INPUT_MAJOR);
2845 		goto fail2;
2846 	}
2847 
2848 	return 0;
2849 
2850  fail2:	input_proc_exit();
2851  fail1:	class_unregister(&input_class);
2852 	return err;
2853 }
2854 
2855 static void __exit input_exit(void)
2856 {
2857 	input_proc_exit();
2858 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2859 				 INPUT_MAX_CHAR_DEVICES);
2860 	class_unregister(&input_class);
2861 }
2862 
2863 subsys_initcall(input_init);
2864 module_exit(input_exit);
2865